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ABSTRACT

We present Sapiens2, a model family of high-resolution transformers for human-
centric vision focused on generalization, versatility, and high-fidelity outputs. Our
model sizes range from 0.4 to 5 billion parameters, with native 1K resolution and
hierarchical variants that support 4K. Sapiens2 substantially improves over its pre-
decessor in both pretraining and post-training. First, to learn features that capture
low-level details (for dense prediction) and high-level semantics (for zero-shot or
few-label settings), we combine masked image reconstruction with self-distilled
contrastive objectives. Our evaluations show that this unified pretraining objec-
tive is better suited for a wider range of downstream tasks. Second, along the data
axis, we pretrain on a curated dataset of 750 million high-quality human images
and improve the quality and quantity of task annotations. Third, architecturally,
we incorporate advances from frontier models that enable longer training sched-
ules with improved stability. Our 4K models adopt windowed attention to reason
over longer spatial context and are pretrained with 2K output resolution. Sapi-
ens2 sets a new state-of-the-art and improves over the first generation on pose
(+4 mAP), body-part segmentation (+22.3 mIoU), normal estimation (+29.2 rel-
angular error) and extends to new tasks such as pointmap and albedo estimation.

1 INTRODUCTION

Sapiens introduced a foundation model for human-centric vision (Khirodkar et al., 2024). The over-
arching goal is to build models that operate across any human task and any human imagery while
maintaining highest output fidelity. In this work, we present SAPIENS2, which advances this objec-
tive along all three axes—task, image, and fidelity.

Any human task. Sapiens primarily relied on MAE (He et al., 2022) pretraining, a form of masked
image modeling (MIM) (Hondru et al., 2025). MIM preserves signal and spatial details by opti-
mizing reconstruction and thus primarily learns by compression (Zhang et al., 2022). Unlike lan-
guage—where tokens are discrete and largely self-semantic and masked modeling has become a
default—visual semantics are denser, context-dependent and under-constrained by pixel prediction
alone; consequently, MIM features often require moderate-to-high supervision to express semantics
reliably. In contrast, contrastive learning (CL) (Chen et al., 2020a) injects semantics by enforcing
instance-level invariances using positives and negatives(Chen et al. (2020b), Chen et al. (2021)), yet
its global invariance objectives tend to underperform on dense prediction, where fine spatial detail
and photometric fidelity matter. This gap has motivated hybrids that combine global CL and MIM
- such as iBOT’s masked student–teacher matching (Zhou et al., 2021) and successors such as DI-
NOv2 (Oquab et al., 2023) and v-JEPA (Bardes et al., 2024). While these approaches narrow the
gap, performance at high resolution remains mixed and can exhibit representation drift: aggressive
invariances (notably appearance augs.) decouple teacher and student from the true observations,
eroding cues -such as color- that are critical for human-centric dense tasks (e.g. photorealistic avatar
creation). SAPIENS2 addresses these limitations by coupling a reconstruction objective with con-
trastive objectives, anchoring features in pixel space (Huang et al., 2023) while organizing them
semantically. The result is a general-purpose representation that transfers across zero-shot, few-
shot (Song et al., 2023), and fully supervised regimes and a broad spectrum of human-centric tasks.

Any human image. Generalization scales with data and model capacity. During pretraining, we
curate 750M high-quality human images from a web-scale corpus via multi-stage filtering. The
collection spans diverse ages, ethnicities, backgrounds, and real-world conditions, subject to a sin-
gle constraint: each image contains at least one prominent person. Beyond this human-centric
requirement, we use no task labels and inject no human-specific priors during pretraining. For
post-training, we target fundamental human tasks—pose estimation (Zheng et al., 2023), body-part
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Image Sapiens-1B Sapiens2-1B (Ours)

Figure 1: SAPIENS2 for dense-prediction tasks. We compare 1B models from both generations on segmen-
tation, depth, and normals. Sapiens2 improves over Sapiens with stronger generalization and sharper segmen-
tation of rare classes (lips, tongue, earrings), achieving pixel-accurate hair segmentation. On geometric tasks
(depth, normals), it captures subtler facial, clothing, and hair details—all without task-specific architectures.

segmentation Thisanke et al. (2023), surface-normal (Bae & Davison, 2024), pointmap (per-pixel
XYZ) (Wang et al., 2024) and albedo estimation (Ran et al., 2024). Relative to Khirodkar et al.
(2024), we scale task-specific supervision by 10×, typically on the order of 1M labels per task,
and improve synthetic assets with more detailed geometry and photorealism. On the model axis,
our largest variant has 5B parameters, accompanied by 0.4B, 0.8B, and 1B models for different
compute settings and broader use. At a native resolution of 1K, our largest model achieves among
the highest FLOPs reported for vision transformers. Fig. 1 showcases improvements over Sapiens
for segmentation, depth and normals. Our models segment tiny accessories such as chains and ear-
rings, and separate teeth and gums with pixel accuracy. Additionally, the predicted normals better
capture facial wrinkles and hair details. Our evaluations show that, learning at scale yields strong
generalization across unconstrained human images and challenging in-the-wild conditions.

Highest fidelity. Prediction fidelity scales with the number of visual tokens a model processes, which
in turn grows with input resolution (Zhao et al., 2018). Beyond standard 1K backbones (Khirodkar
et al., 2024), we introduce a 4K backbone pretrained and post-trained for dense prediction, with
task heads that decode to 2K resolution across tasks. To make 4K tractable, we adopt a hierarchi-
cal design (Li et al., 2022): an initial stack of windowed self-attention layers operates locally to
capture texture and fine boundaries, from each window we pool a summary token and then apply
global self-attention—mirroring our 1K models—to fuse long-range context. This layout is natu-
rally compatible with MAE-style pretraining: after the local stage, masked tokens can be dropped
so that information does not flow across masked regions, avoiding the leakage that convolutional
backbones typically require masked convolutions to prevent (Gao et al., 2022). We additionally
incorporate targeted efficiency and stability upgrades—RMSNorm in place of LayerNorm (Meta,
2025), grouped-query attention for higher throughput (Ainslie et al., 2023), QK-Norm for robust
high-resolution training (Henry et al., 2020)—and employ a pixel-shuffle (Shi et al., 2016) decoder
for sub-pixel reasoning. Together, these choices fully exploit our high-resolution setting while keep-
ing memory in check.
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Sapiens Sapiens2 (Ours)Query Sapiens Sapiens2 (Ours)Query

Figure 2: k-NN comparison using [CLS] token. SAPIENS2 learns a more discriminative, human-semantic
feature space—grouping visually similar concepts and improving retrieval performance at high resolution

We extensively evaluate SAPIENS2 across various tasks and benchmarks. Figure 2 qualitatively
visualizes nearest neighbors retrieved using [CLS] tokens from 1K-resolution Sapiens and SAPI-
ENS2. Our contrastive pretraining yields a feature space that captures human semantics and returns
plausible neighbors. Figure 3 further shows that, without any supervision, our model produces
human-centric attention maps. Overall, our contributions are summarized as follows.

• SAPIENS2 is a family of transformers (0.4B–5B parameters) pretrained on 750 million
high-quality human images. Our models support 1K native resolution and 4K hierarchical
resolution and are designed for high-resolution dense predictions.

• We use masked reconstruction with contrastive objectives to learn features that generalize
in zero-shot settings on human tasks while preserving fine details in dense predictions.

• We fine-tune with high-quality annotations for pose, part segmentation, pointmaps, nor-
mals, and albedo, achieving state-of-the-art performance across benchmarks.

2 RELATED WORK

Self-Supervised Learning. Recent breakthroughs in self-supervised learning at scale fall into two
families: (1) Masked Image Modeling (MIM) and (2) Contrastive Learning (CL). MIM follows
masked language modeling in NLP, but unlike language—where tokens are self-semantic—image
patches are context-dependent. Visual representations are thus denser and more ambiguous. MIM
objectives are commonly viewed as a form of compression (Zhang et al., 2022) of the input tokens.
Among popular approaches, BEiT (Bao et al., 2021) uses a dVAE tokenizer to discretize image
patches and trains the model to predict the codebook indices of masked patches, while MAE (He
et al., 2022) masks a large fraction of patches (75%) and reconstructs the missing pixels directly.
Numerous studies adopt this paradigm for pretraining—e.g., U-MAE, CAE, SiamMAE, MR-MAE,
and Sapiens (Khirodkar et al., 2024). Representative methods in CL include BYOL (Grill et al.,
2020), SimCLRv2 (Chen et al., 2020b), MoCov3 (Chen et al., 2021), and DINO (Caron et al., 2021).
Given their complementarity, combining the objectives is natural; for instance, iBOT (Zhou et al.,
2021) combines MIM with CL-style self-distillation, aligning student and teacher features via the
masked objective rather than reconstructing pixels or codewords, consistent with JEPA (Assran et al.,
2023) and v-JEPA2 (Assran et al., 2025). DINOv2 (Oquab et al., 2023) adopt iBOT objective as their
primary pretraining strategy. However, latent-space objectives risk abstract drift: the representations
are not anchored to observations (images or sentences), inducing lossy compression and discarding
cues (e.g. color) critical for dense prediction. In Sapiens2, we combine the image-anchored MAE
objective with the semantic CL objective. Prior work such as CMAE (Huang et al., 2023) explores
this combination but evaluates primarily on classification. In contrast, we study a unified objective
at billion-scale across multiple human-centric tasks.

Human-Centric Vision Models. Many recent works focus on building models for human-centric
vision. These models often outperform general models of similar scale on human-related tasks.
For instance, HAP (Yuan et al., 2023) uses 2D keypoints to guide the mask sampling process
during masked image modeling, encouraging the model to focus on body structure information.
Geoman (Kim et al., 2025a) uses a image-to-video diffusion model for geometry estimation.
HCMoCo (Hong et al., 2022) and PBoP (Meng et al., 2024) employ multiple encoders to ex-
ploit multimodal human body consistency through a hierarchical contrastive learning framework.
SOLIDER (Chen et al., 2023) introduces a human semantic classification loss to inject semantic
information into the learned features. LiftedCL (Chen et al., 2022) incorporates an adversarial
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Figure 3: Human-centric attention. Visualization of [CLS]-token self-attention across heads in the final layer.

loss to supervise the lifted 3D skeletons, explicitly embedding 3D human structure information
for human-centric pretraining. SapiensID (Kim et al., 2025b) trains a model specifically for person
re-identification. In contrast to these approaches, Sapiens2 does not inject any explicit human priors
beyond the data itself during pretraining. This truly inductive prior-free approach enables scaling to
millions of images and model sizes without introducing handcrafted human-centric biases.

Vision Transformers at Scale. Although the largest vision backbones remain an order of magni-
tude smaller than language models (Lu et al., 2024), the field is scaling rapidly as both data and
model sizes grow. To clarify the landscape, we position prior works along three axes: parameters,
resolution, and data. Amongst notable recent works, the largest vision backbone in the Perception
Encoder family (Bolya et al., 2025) has 2B parameters, is trained at 448 px resolution, and uses 5.4B
samples. DINOv2 (Oquab et al., 2023) scales to 1B parameters at 512 px and is pretrained on 152M
images. ViT-22B (Dehghani et al., 2023) remains the largest model by parameter count; it is trained
at 224 px and is pretrained on 1M images from ImageNet (Russakovsky et al., 2015). Sapiens-
2B (Khirodkar et al., 2024), at 1024 px, was the largest human-centric vision backbone, pretrained
on 300M human images. In Sapiens2, we scale to 5B parameters and extend the input resolution to
4K, yielding a vision backbone with the largest FLOPs, trained on 750M human images.

3 PRETRAINING

This section details our pretraining data and methodology, with emphasis on human-centric curation
and design choices that preserve output fidelity and strengthen semantic understanding.

3.1 HUMANS-750M DATASET

Scale helps only when the data distribution is diverse, balanced, and high quality (Touvron et al.,
2023; Radford et al., 2021; Chuang et al., 2025). From a web-scale pool of ∼4B images, we iso-
late human-centric content via a multi-stage filter: bounding box detection, head-pose estimation,
aesthetic and realism scoring, CLIP (Radford et al., 2021) features and text-overlay detection. We
remove images that fail realism, quality or other checks. From the remainder, we retain instances
where at least one person is ≥384 pixels on the short side; images may contain multiple people. We
deduplicate via perceptual hashing and deep-feature nearest-neighbor pruning, and we cluster visual
embeddings followed by selective sampling (Oquab et al., 2023) to balance content across poses,
viewpoints, occlusion, clothing, scene types, and illumination. Thresholds and balance caps are cal-
ibrated with small human audits. The result is a curated, balanced corpus of ∼750M high-quality
human images for pretraining.

3.2 SELF-SUPERVISED LEARNING

Let I denote the training set. We sample an image x ∼ I and draw V random augmentations to
obtain views {xi}Vi=1. Each view is patchified into N tokens indexed by P = {1, . . . , N}, i.e.,
xi = {xp

i }p∈P . Let {eppos}p∈P be positional embeddings (Dosovitskiy et al., 2020) and Φenc, Φdec,
Φcls be our transformer encoder, patch decoder and contrastive decoder respectively. Specifically,
Φcls maps the encoder [CLS] token to K logits.

Masked Image Modeling. For each view i ∈ {1, . . . , V }, we sample a binary mask mi ∈ {0, 1}N
with masking ratio r. The masked and visible index sets are defined as Mi = {p ∈ P : mp

i = 1}
and Vi = P \Mi. The encoder Φenc processes only visible tokens: zvis

i = Φenc({xp
i + eppos}p∈Vi

).
We then form a full sequence by scattering zvis

i back to Vi and inserting a learned mask token at
Mi: zi = scatter

(
zvis
i ;Vi

)
∪

{
e[MASK] + eppos

}
p∈Mi

. The decoder Φdec reconstructs all patches,
x̂i = Φdec(zi) with outputs {x̂p

i }p∈P . Following He et al. (2022), targets are normalized x̃p
i , and

the loss averages MSE over masked tokens and views:

LMAE =
1

V

V∑
i=1

1

|Mi|
∑

p∈Mi

∥∥x̃p
i − x̂p

i

∥∥
2
.
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Figure 4: SAPIENS2 Pretraining. We combine the masked reconstruction loss (Lmae) with a global contrastive
loss on [CLS] (Lcl). Multiple image views are generated, and a student–teacher framework matches predicted
distributions across views. Lmae helps the model learns low-level details (e.g.texture) for high-fidelity dense
tasks, while Lcl improves semantic understanding across human images.

Contrastive Learning. We adopt a student–teacher scheme (Caron et al.), the teacher has the same
architecture (Φenc,Φcls), is non-learnable, and its parameters are an EMA of the student. For each
view i, the student and teacher [CLS] embeddings and logits are

csi = [CLS](Φenc(xi)), cti = [CLS](Φema
enc (xi)), si = Φcls(c

s
i ), ti = Φema

cls (cti),

with pi = softmax(si) and qi = softmax(ti). For the V -view (global + local) setting, we form the
positive pair set S consisting of all cross-view global↔global and global↔local pairs (excluding
same-view matches for global crops; local↔local pairs are skipped). The contrastive objective
averages a teacher-to-student cross-entropy over these pairs:

LCL =
1

|S|
∑

(i,j)∈S

H(qj ,pi), H(q,p) = −
K∑

k=1

qk log pk.

Finally, Fig. 4 shows our pretraining setup for V = 2. We use a joint objective L = LMAE + λLCL,
combining human-centric low-level fidelity with view-invariant semantics.

4 MODEL ARCHITECTURE
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Figure 5: Windowed self-attention for 4K resolution.

We revise the backbone to stably scale to 5B pa-
rameters, increase the input resolution from 1K
to 4K, and maintain compatibility with sparse
masked pretraining. The mid-depth blocks use
grouped-query attention (GQA) (Ainslie et al.,
2023), while the early and late blocks use stan-
dard multi-head self-attention. We replace the
feed-forward layers with gated SwiGLU-FFN
variants (Shazeer, 2020). For long-schedule
stability, we apply QK-Norm (Henry et al.,
2020)—normalizing queries and keys before
attention—and substitute LayerNorm with the
parameter-efficient RMSNorm (Zhang & Sennrich, 2019). To scale to 4K inputs, we adopt a hier-
archical attention design (Ryali et al., 2023): given an H × W image with patch size p, yielding
N = (H/p)(W/p) tokens, the first K layers apply windowed self-attention to capture local struc-
ture. We then downsample the 2D token grid by a spatial stride

√
ω via [CLS]-guided pooling to ob-

tain N/ω tokens. Next L layers use global attention over this reduced sequence, refer Fig. 5. During
pretraining, we apply token masking after the local stage, and include a brief masked-reconstruction
phase at 2K to sharpen sub-pixel fidelity on dense tasks without degrading semantics. Finally, we
increase decoder outputs to 1K for base backbones (from 0.5K) and to 2K for 4K backbones.

5 POST-TRAINING

We fine-tune the pretrained backbone on five human-centric tasks—pose estimation, body-part seg-
mentation, depth, surface normals, and albedo—using lightweight task-specific heads while leaving
the backbone unchanged. Relative to Khirodkar et al. (2024), we broaden supervision and refine
task objectives.
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a) Pose (308 Keypoints)

b) Segmentation (29 Classes) c) Synthetic (Pointmap, Normal, Albedo)

Figure 6: Post-Training Annotations. We annotated 100K in-the-wild images with pose (a) and segmentation
(b), class vocabulary is also extended to include eyeglasses (in cyan). For pointmap, normal, albedo (c), we
improve our synthetic assets to capture finer geometric details and color variations.
Pose Estimation. We follow a top-down paradigm to estimate keypoint heatmaps from an input
image. Our keypoint topology is a 308-keypoint full-body skeleton with dense coverage of the face
(243) and hands (40 total), with the remainder spanning torso and lower-body. Unlike Khirodkar
et al. (2024), which relied solely on capture-studio annotations, we add in-the-wild supervision
(Fig. 6a) by newly annotating 100K high-resolution images from our pretraining corpus with the
same vocabulary. This hybrid supervision improves generalization to unconstrained images. Our
objective uses MSE over ground-truth heatmaps with OHEM (Chen et al., 2018) to focus supervision
within a large keypoint set as Lpose =

∑
u∈Ω ∥Ĥ(u)−H(u)∥2.

Body-Part Segmentation. Our segmentation vocabulary has 29 classes (previously 28 plus eye-
glasses category; see Fig. 6b). The vocabulary targets part-specific supervision and precise localiza-
tion of semantic human body parts. Similar to pose, we increase segmentation supervision to 20K
in-the-wild images with segmentation labels. Our objective uses per-pixel weighted cross-entropy
combined with Dice loss (Azad et al., 2023) for sharper boundaries.

Pointmap (Depth) Estimation. Rather than relative depth, we regress a per-pixel 3D pointmap
P̂(u) ∈ R3 in the camera frame. Since metric scale is ambiguous with unknown intrinsics (Yin
et al., 2023), we predict a focal-normalized pointmap P̃(u) and a scalar head s, forming P̂(u) =

s P̃(u) (Bochkovskii et al., 2024). Supervision is entirely synthetic and use higher-fidelity assets
(hair, eyes, fine facial wrinkles, Fig. 6c). The loss is Lpointmap =

∑
u∈Ω ∥P̂(u)−P(u)∥2+ ∥∇P̂(u)−

∇P(u)∥2 where ∇ is finite differences along XY.

Normal Estimation. We predict per-pixel unit normals N̂(u) ∈ R3 for human pixels using the same
high-fidelity synthetic assets; the decoder uses multiple PixelShuffle (Aitken et al., 2017) layers for
artifact-free upsampling. The loss is defined as: Lnormal =

∑
u∈Ω 1 − N̂(u) ·N(u) + ∥N̂(u) −

N(u)∥2 + ∥∇N̂(u)−∇N(u)∥2.

Albedo Estimation. We predict per-pixel diffuse albedo Â(u) ∈ [0, 1]3, crucial for relighting (Kim
et al., 2024). Training uses high-fidelity synthetic pairs A(u) (Fig. 6c) and encourages illumination-
invariant recovery of skin tone and clothing. The loss is Lalbedo =

∑
u∈Ω ∥Â(u) − A(u)∥2 +

∥∇Â(u)−∇A(u)∥2 + ∥µ(Â)− µ(A)∥2, where µ(·) is the spatial RGB mean for alignment.

6 EXPERIMENTS

In this section, we initially outline implementation details, then evaluate pretrained feature general-
ization using dense probing and post-train performance across a variety of downstream tasks.

6.1 IMPLEMENTATION DETAILS

Sapiens2 is implemented in PyTorch with HF-Accelerate (Gugger et al., 2022). All our models are
trained on A100 GPUs using bfloat16 and FSDP for efficiency. We use fused AdamW (Loshchilov
& Hutter, 2017) as the optimizer for all experiments, with a brief learning-rate warmup followed
by cosine decay. We pretrain from scratch at 1024 × 768 (1K) and 4096 × 3072 (4K) resolutions.
Starting from Sapiens–0.3B, 0.6B and 1B, we apply the architectural revisions in Sec. 2 to produce
Sapiens2–0.4B, 0.8B and 1B. To push the frontier for human-centric vision models, we also intro-
duce a 5B model that scales both network depth and token embedding dimensions. Sapiens2-5B is
the highest-FLOPs vision transformer at 15 TFlops. Table 1 summarizes our model configurations
at 1K resolution. Finally, we fine-tune the 1B–4K model for segmentation and normal estimation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Parent-Model #Params FLOPs Hidden size Layers Heads

Sapiens2-0.4B Sapiens-0.3B 0.398 B 1.260 T 1024 24 16
Sapiens2-0.8B Sapiens-0.6B 0.818 B 2.592 T 1280 32 16
Sapiens2-1B Sapiens-1B 1.462 B 4.715 T 1536 40 24
Sapiens2-5B - 5.071 B 15.722 T 2432 56 32

Table 1: SAPIENS2 architectural details. Broadly, we base the smaller models on the first generation and
introduce a 5B variant that scales both depth (layers) and width (token embeddings).

Evaluation. We construct task-specific test sets to measure fidelity and generalization, and impor-
tantly go beyond existing benchmarks in annotation quality. Each set contains challenging in-the-
wild samples. For pose, we evaluate on 11K images annotated with 308 keypoints, in contrast to the
5K capture-studio images used by SAPIENS. For segmentation, we use a similar in-the-wild test of
10K images with 29 classes. For pointmap, normals, and albedo, following Saleh et al. (2025), we
evaluate on a 10K-image test set built from our photorealistic assets with higher geometric detail.
Please refer to the appendix for additional details.

6.2 PRETRAINING GENERALIZATION: DENSE PROBING

To evaluate zero-shot generalization of the pretrained backbone, we perform dense probing and com-
pare against state-of-the-art vision backbones—Sapiens (Khirodkar et al., 2024), PE (Bolya et al.,
2025), and DINOv2 (Oquab et al., 2023)—across a variety of human tasks. For dense probing, we
freeze the backbone and lightly train a task-specific decoder with identical hyperparameters across
all methods. The tasks vary in their demands: for pose estimation, high-level human semantics
aid keypoint localization, whereas for albedo recovery, the backbone must closely capture input
appearance. Table 2 reports task-specific metrics across multiple model sizes. Among baselines,
DINOv2 is strongest for pose and geometric understanding (e.g., pointmaps), despite its non-human-
centric pretraining, likely due to its contrastive objective. Sapiens (Khirodkar et al., 2024), due to
its masked-autoencoder pretraining, lacks semantic understanding but performs well on albedo esti-
mation. With our combined pretraining objective, Sapiens2 consistently outperforms the baselines,
and the 5B model exhibits strong zero-shot generalization and precision.

6.3 COMPARISON WITH STATE-OF-THE-ART METHODS

To understand performance and generalization across human-centric tasks, we compare our models
against task-specific state-of-the-art methods in this section. We provide a brief summary here and
refer to the appendix for detailed analysis.

Pose. We compare Sapiens2 with state-of-the-art whole-body top-down pose estimators in Table 3.
We retrain baselines on our new keypoint set using recommended settings. Our models substantially
improve over the first generation; specifically, Sapiens2-0.8B, despite its smaller parameter count,
outperforms larger models due to architectural improvements and broader supervision. Consistent
with scaling laws Kaplan et al. (2020), our results show predictable gains with increased scale. Our
largest model, Sapiens2-5B, sets a new state of the art for dense 308-keypoint predictions in-the-
wild, achieving 82.3 mAP on challenging poses.

Model
Pose Seg Pointmap Normal Albedo
mAP ↑ mIoU (%) ↑ L2 ↓ MAE◦ ↓ MAE (×10−2) ↓

PE-L (Bolya et al., 2025) 22.7 16.8 0.537 28.7 4.22

PE-H (Bolya et al., 2025) 36.2 19.7 0.529 27.4 4.14

Sapiens-1B (Khirodkar et al., 2024) 25.9 31.8 0.532 26.9 3.85

Sapiens-2B (Khirodkar et al., 2024) 33.6 34.7 0.515 26.0 3.72

DINOv2-H (Oquab et al., 2023) 30.4 37.6 0.468 26.3 4.01

DINOv2-G (Oquab et al., 2023) 42.9 43.7 0.432 24.1 3.92

Sapiens2-0.4B (Ours) 28.3 36.5 0.471 28.7 3.96

Sapiens2-0.8B (Ours) 39.6 39.1 0.435 24.2 3.89

Sapiens2-1B (Ours) 47.4 41.0 0.428 22.6 3.64

Sapiens2-5B (Ours) 56.7 46.2 0.358 19.4 3.12

Table 2: Dense probing on human tasks. We freeze the backbone and fine-tune a lightweight,
task-specific decoder with identical hyperparameters across all methods.
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Model Input Size mAP (%) mAR (%)

ViTPose+-L, TPAMI23 256× 192 47.8 53.6
ViTPose+-H, TPAMI23 256× 192 48.3 54.1
DWPose-M, ICCV23 256× 192 60.6 67.4
DWPose-L, ICCV23 384× 288 66.5 72.8
RTMW-L, arxiv23 384× 288 70.1 75.9
RTMW-X, arxiv23 384× 288 70.2 76.1
Sapiens-1B*, ECCV24 1024× 768 76.8 79.3
Sapiens-2B*, ECCV24 1024× 768 78.3 82.1

Sapiens2-0.4B (Ours) 1024× 768 76.9 81.3
Sapiens2-0.8B (Ours) 1024× 768 79.4 (+1.1) 83.1 (+1.0)

Sapiens2-1B (Ours) 1024× 768 80.4 (+2.1) 84.0 (+1.9)

Sapiens2-5B (Ours) 1024× 768 82.3 (+4.0) 85.3 (+3.2)

Table 3: Pose estimation on 11K test. Flip test is used, same
detections. *Denotes v1 open-sourced models.

Model mIoU (%) mAcc (%)

SegFormer. Neurips21 45.2 68.3
Mask2Former, CVPR22 48.7 71.5
DeepLabV3+, ECCV18 42.8 66.9
HRNetV2+OCR 47.3 70.2
Sapiens-1B*, ECCV24 53.8 74.7
Sapiens-2B*, ECCV24 58.2 77.2

Sapiens2-0.4B (Ours) 74.9 (+16.7) 85.8 (+8.6)

Sapiens2-0.8B (Ours) 78.4 (+20.2) 89.1 (+11.9)

Sapiens2-1B (Ours) 79.3 (+21.1) 88.2 (+11.0)

Sapiens2-1B-4K (Ours) 79.8 (+21.6) 88.9 (+11.7)

Sapiens2-5B (Ours) 80.5 (+22.3) 89.3 (+12.1)

Table 4: Segmentation on 5K test. All
methods have the same train set. *De-
notes v1 open-sourced models.

Image Sapiens-1B Sapiens2-1B-4K (Ours)

Figure 7: Body-part segmentation using our 1B-4K model.

Segmentation. Table 4 compares
our models to state-of-the-art meth-
ods on our segmentation vocabulary.
For fairness, we train all baselines
on our training set. Sapiens2 gener-
alizes strongly to in-the-wild images
with high-resolution outputs. Al-
though the input resolution is the
same (1K) for Sapiens and Sapiens2,
Sapiens2–1B outperforms Sapiens-
1B by 21.1% mIoU and 11% mAcc,
owing to in-the-wild supervision and an increased output resolution of 1K (from 0.5K).

Pointmap. Table 5 compares Sapiens2 with existing pointmap (XYZ) estimation methods such
as UniDepth (Piccinelli et al., 2024), DUSt3R (Wang et al., 2024), VGGT (Wang et al., 2025a),
and MoGe Wang et al. (2025b). This task is more challenging than relative depth estimation, as it
requires reasoning about camera intrinsics. For fairness, we optimize for scale and evaluate all pre-
dictions in a focal-length-normalized canonical space. Interestingly, MoGe outperforms Sapiens2-
0.4B despite being trained without human-centric data due to its affine-invariant design. However,
our larger models substantially outperform all baselines. Fig. 8 qualitatively compares Sapiens2-1B
with MoGe, showing that our predicted pointmaps better preserve human-specific geometric details.

Image MoGe, CVPR 2025 Sapiens2-1B (Ours)

Figure 8: (Top) Pointmap qualitative comparison of Sapiens2-1B with MoGe (Wang et al., 2025b). (Bottom)
Depth visualized from the predicted pointmap, along with surface normals and novel 3D viewpoints.
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Method Distance Abs. Error (e−3)
L2 RMSE X Y Z (cam)

UniDepth, CVPR24 0.368 0.689 8.34 10.92 5.23
DUSt3R, CVPR24 0.349 0.663 7.66 10.11 4.86
VGGT, CVPR25 0.217 0.515 3.79 4.96 2.19
MoGe, CVPR25 0.202 0.486 3.21 4.41 1.89

Sapiens2-0.4B (Ours) 0.203 0.491 3.24 4.44 1.90
Sapiens2-0.8B (Ours) 0.199 0.469 3.10 4.29 1.86
Sapiens2-1B (Ours) 0.194 0.492 3.12 4.24 1.81
Sapiens2-5B (Ours) 0.181 0.470 2.93 3.99 1.69

Table 5: Pointmap evaluation in focal-length
normalized canonical coordinates on 10K test.

Method Angular Error◦ % Within t◦

Mean Median 5◦ 11.25◦ 30◦

Marigold, CVPR24 18.83 15.27 9.41 39.87 45.21
DSINE, CVPR24 17.24 13.51 11.67 45.62 48.79
Sapiens-1B* ECCV24 13.62 10.11 32.18 69.34 82.14
Sapiens-2B* ECCV24 12.38 9.46 37.05 70.54 85.62
DAViD-L, ICCV25 10.73 7.49 42.91 72.16 89.27

Sapiens2-0.4B (Ours) 9.26 5.77 44.35 74.51 94.43
Sapiens2-0.8B (Ours) 8.78 5.25 47.63 76.24 94.77
Sapiens2-1B (Ours) 7.98 4.72 53.38 78.69 95.35
Sapiens2-1B-4K (Ours) 7.84 4.05 54.14 79.10 95.46
Sapiens2-5B (Ours) 7.59 3.71 57.87 80.06 95.23

Table 6: Normal evaluations on 10K whole-
body test set at 4K ground-truth resolution.

Image DAViD, ICCV 2025 Sapiens2-1B (Ours) Image DAViD, ICCV 2025 Sapiens2-1B (Ours)

Figure 9: Normal prediction. Qualitative comparison of Sapiens2-1B with DAViD (Saleh et al., 2025).

Normal. We compare our finetuned normal estimators with current state-of-the-art monocular meth-
ods in Table 6. Our evaluation set consists of whole-body scan images captured from random virtual
camera viewpoints, with ground-truth normals available at 4K resolution. Our smallest model,
Sapiens2-0.4B, outperforms existing methods by achieving a mean angular error of 9.26◦, with
94.43% of human pixels below the 22.5◦ threshold. Fig. 9 compares Sapiens2 with the baseline
DAViD Saleh et al. (2025) and shows that it captures geometric details accurately and remains ro-
bust under varying lighting conditions.

Albedo. We present qualitative results of our 1B albedo estimation model in Fig. 10. Our model
recovers true skin tone under varying lighting conditions, despite being trained solely on synthetic
data. Additionally, compared to diffusion-based methods Liang et al. (2025), our feedforward model
is significantly faster. Please refer to the appendix for the quantitative comparisons.

Figure 10: Albedo estimation using Sapiens2-1B. Our model effectively encodes low-level details crucial for
albedo estimation and generalizes well to in-the-wild images, despite being trained on limited synthetic data.

Limitations and Declaration. Sapiens2 data sources typically contain 1–4 humans, with a promi-
nent subject present in the image during both pre- and post-training. As a result, the models do not
perform well in crowded, multi-person scenarios. All data used in our experiments was collected
under appropriate licensing. Additionally, we used an LLM for light grammatical edits to the paper.

7 CONCLUSION

SAPIENS2 introduces high-resolution, human-centric models pretrained on a 750-million-image
dataset. Our models simultaneously learn appearance cues and semantics by combining masked
reconstruction and contrastive objectives. They consistently outperform general-purpose models on
human images and extend to tasks ranging from pose estimation to albedo recovery. SAPIENS2 sets a
new benchmark for high-fidelity dense predictions and provides a robust foundation for applications
requiring a nuanced, detailed understanding of humans in unconstrained visual contexts.
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Anke Schmeink, and Dorit Merhof. Loss functions in the era of semantic segmentation: A survey
and outlook. arXiv preprint arXiv:2312.05391, 2023.

Gwangbin Bae and Andrew J Davison. Rethinking inductive biases for surface normal estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9535–9545, 2024.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mahmoud
Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from
video. arXiv preprint arXiv:2404.08471, 2024.

Aleksei Bochkovskii, AmaÃĢl Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R
Richter, and Vladlen Koltun. Depth pro: Sharp monocular metric depth in less than a second.
arXiv preprint arXiv:2410.02073, 2024.

Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma,
Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, et al. Perception encoder: The best visual
embeddings are not at the output of the network. arXiv preprint arXiv:2504.13181, 2025.

M Caron, H Touvron, I Misra, H Jégou, J Mairal, P Bojanowski, and A Joulin. Self-
supervised vision transformers with dino. GitHub Repository. Available online: https://github.
com/facebookresearch/dino (accessed on 11 August 2022).

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A APPENDIX

A.1 PRETRAINING

A.1.1 IMPLEMENTATION DETAILS

We use the dense-probing evaluations as the final metrics to guide any design decisions during
the pretraining stage. For instance, we pretrain the SAPIENS2–1B (embed dim 1536, 40 layers, 24
heads, patch size 16, final norm with [CLS]) at 1024×768. Training uses a joint MAE and contrastive
objective: an 8-layer MAE decoder (dim 512) with ℓ2 reconstruction, and a [CLS] projection head
for contrastive learning. Loss weights are MAE: 1.0, CLS: 0.4, KoLeo: 0.04. We adopt multi-view
training with 2 global and 4 local crops; global crops use random resize–crop in ratio [0.5, 1.0], local
crops in [0.2, 0.7], with standard color/blur/solarize and horizontal flips. Inputs are normalized to
ImageNet means/stds. Importantly, we do not use color augmentations on the global views - used
for masked reconstruction objective.

Optimization uses fused AdamW (lr 1×10−4, (β1, β2)=(0.9, 0.95), wd 0.05) with zero-decay for
norms, biases, positional and special tokens. We train for 5×105 iters with 103 warmup, cosine
decay to 10−7, and global grad-norm clip 5.0. The contrastive teacher EMA is 0.992 (center mo-
mentum 0.9); student temperature is 0.1, teacher temperature warms from 0.065 to 0.07 over the
first 103 iters. We evaluate every checkpoint for downstream tasks with a frozen encoder and report
results using the best checkpoint.

A.1.2 MASKING STRATEGY

Given the high resolution of our backbones, we use mixed blockwise/patchwise masking (blockwise
prob 0.4) with a 75% mask ratio at patch size 16, refer Fig. 11. At 1024×768 (64×48=3072
patches), this masks ∼ 2304 patches per image, yielding coarse occlusions that regularize MAE
while leaving sufficient context for contrastive learning.

Blockwise Masking Patchwise Masking

Figure 11: We randomly mix blockwise and patchwise masking to provide coarse occlusions. For MAE pre-
training at high resolution (1024), we use a 75% mask ratio. Each sample represents (ground-truth image,
masked input, reconstruction).
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Figure 12: We visualize the encoder features using PCA (3 major components) with different colors. We use
foreground masking to extract patch features for human pixels. Sapiens2 features capture texture and color
information as well as showcase human semantics.
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A.2 POSE ESTIMATION

We evaluate Sapiens2 using ground-truth bounding boxes on our in-the-wild test set for 308 key-
points. We fine-tune a top-down pose estimator initialized from a pretrained checkpoint with the
[CLS] token disabled so the encoder outputs a feature map. The head is a heatmap decoder with
in-channels 1536 and out-channels 308 (keypoints). It uses two deconvolution stages (kernel 4,
stride 2) for 4× upsampling, followed by 1×1 convolutions with channels (768, 768, 512) and a
final 1×1 projection to 308 heatmaps. We adopt UDP heatmaps (stride 4, σ=6) and optimize a
weighted MSE loss. At test time, we enable flip testing with heatmap fusion.

Optimization uses AdamW (lr 5×10−4, (β1, β2)=(0.9, 0.999), weight decay 0.1) with layer-wise
learning-rate decay and zero weight decay for biases, positional embeddings, relative position biases,
and norms. We clip gradients to a global ℓ2 norm of 1.0. The schedule warms up linearly for 500
iterations (start factor 10−3), then follows polynomial decay (power 1.0) for the remainder. In
addition to the main table, we provide fine-grained evaluations in Table 7, which compares Sapiens2
with Sapiens.

Model Foot Face Left Hand Right Hand Whole Body

AP AR AP AR AP AR AP AR AP AR

Sapiens-0.3B 72.1 77.6 82.4 86.7 66.8 72.9 67.3 73.2 70.5 77.0
Sapiens-0.6B 73.8 78.9 83.9 87.8 68.4 74.1 69.0 74.5 72.8 78.6
Sapiens-1B 75.0 80.1 85.1 88.6 69.7 75.3 70.2 75.7 74.1 79.4
Sapiens-2B 76.0 81.0 86.0 89.2 70.9 76.4 71.3 76.8 75.3 80.4

Sapiens2-0.4B 78.4 82.0 86.2 89.5 75.1 79.0 75.6 79.4 76.9 81.3
Sapiens2-0.8B 80.1 83.4 87.6 90.4 76.8 80.3 77.2 80.7 79.4 83.1
Sapiens2-1B 81.0 84.1 88.3 90.9 77.6 81.0 78.0 81.3 80.4 84.0
Sapiens2-5B 82.6 85.3 89.7 91.8 79.2 82.4 79.6 82.7 82.3 85.3

Table 7: Pose estimation results on 10K test set (K=308). Flip test is used.

Figure 13: In addition to in-the-wild annotations we also use capture-studio 3D triangulated ground-truth 308
keypoints for finetuning Sapiens2.
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Figure 14: Top-down 308 keypoint predictions using Sapiens2-1B model on in-the-wild images.
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A.3 BODY-PART SEGMENTATION

Figure 15: Body-part segmentation (29 classes) using Sapiens2-1B on real-world images.
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A.4 POINTMAP ESTIMATION

Figure 16: Pointmap using Sapiens2-1B. For each image, we visualize the absolute depth derived from the
predicted XYZ pointmap as a heatmap and surface normals computed from depth.
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Figure 17: Pointmap using Sapiens2-1B. For each image, we visualize the absolute depth derived from the
predicted XYZ pointmap as a heatmap and surface normals computed from depth.
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A.5 NORMAL ESTIMATION

Figure 18: Surface normal prediction using Sapiens2-1B.
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A.6 ALBEDO ESTIMATION

We report quantitative results on our 10K test set for albedo estimation in Table 8 and qualitative
results in Fig. 19.

Model MAE RMSE PSNR SSIM Grad-L1

Sapiens2-0.4B 0.01825 0.03257 29.74412 0.88937 0.00642
Sapiens2-0.8B 0.01602 0.02876 30.82573 0.90337 0.00624
Sapiens2-1B 0.01224 0.02392 32.42509 0.91410 0.00612
Sapiens2-5B 0.01191 0.02341 32.61346 0.91524 0.00610

Table 8: Quantative evaluations for albedo estimation using Sapiens2 models.

Figure 19: Albedo (base color) prediction using Sapiens2-1B at 1024× 768 resolution.
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