

000 FOUNDATIONMOTION: AUTO-LABELING AND 001 REASONING ABOUT SPATIAL MOVEMENT IN VIDEOS 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 008 ABSTRACT 009

010 Motion understanding is fundamental to physical reasoning, enabling models to
011 infer dynamics and predict future states. However, state-of-the-art models still
012 struggle on recent motion benchmarks, primarily due to the scarcity of large-scale,
013 fine-grained motion datasets. Current approaches rely heavily on costly manual
014 annotation, severely limiting scalability. To address this challenge, we introduce
015 FoundationMotion, a fully automated data curation pipeline that constructs large-
016 scale motion datasets. Our approach first detects and tracks objects in videos
017 to extract their trajectories, then leverages these trajectories and video frames
018 with large language models to generate fine-grained captions and diverse ques-
019 tion-answer pairs about motion and spatial reasoning. Using datasets produced
020 by this pipeline, we fine-tune open-source models including NVILA-Video-15B
021 and Qwen2.5-7B, achieving substantial improvements in motion understanding
022 without compromising performance on other tasks. Notably, our models outper-
023 form strong closed-source baselines like Gemini-2.5 Flash and large open-source
024 models such as Qwen2.5-VL-72B across diverse motion understanding datasets
025 and benchmarks. FoundationMotion thus provides a scalable solution for curating
026 fine-grained motion datasets that enable effective fine-tuning of diverse models to
027 enhance motion and spatial reasoning capabilities.
028

029 1 INTRODUCTION 030

031 “*Spatial thinking is the foundation of thought.*”
032

033 — Barbara Tversky, *Mind in Motion: How Action Shapes Thought*
034

035 In *Mind in Motion* (Tversky, 2019), psychologist Barbara Tversky argues that spatial cognition is
036 not a secondary aspect of thought but a foundational one. It enables us to make sense of the world
037 through our physical actions and interactions. These real-world movements become internalized
038 as mental operations, often expressed spontaneously through gestures. Moreover, spatial thinking
039 supports a wide range of everyday and expert activities, from using maps and assembling furniture
040 to designing systems and understanding flows of people, traffic, or information. Whether estimating
041 how to parallel park, imagining how to fold a piece of paper into a shape, mentally rotating an
042 object, or figuring out how to carry multiple items through a narrow doorway, we rely on a powerful
043 yet often overlooked capacity: spatial thinking. Motivated by this insight, our goal is to enable
044 machines to effectively describe and reason about object motion, allowing them to understand and
045 reason in the physical world as humans do through the development of robust Vision-Language
046 Models (VLMs). To ground this effort, we focus on learning from videos, where motion and spatial
047 interactions unfold over time.

048 Reflecting on the rapid advancement of VLMs, significant progress has been made in learning from
049 videos (Liu et al., 2025; Weng et al., 2024; Chen et al., 2024; 2025). State-of-the-art models such
050 as Gemini (Comanici et al., 2025) and Qwen-VL (Bai et al., 2025; Wang et al., 2024) demonstrate
051 impressive capabilities in identifying objects and interpreting complex environments and events.
052 However, despite these advances, current VLMs still face considerable challenges in fully under-
053 standing the nuanced spatial and motion dynamics inherent in many real-world videos. Addressing
these challenges is crucial for enabling machines to reason about the physical world as effectively as
humans do. For instance, while Gemini models achieve remarkable results in understanding objects,

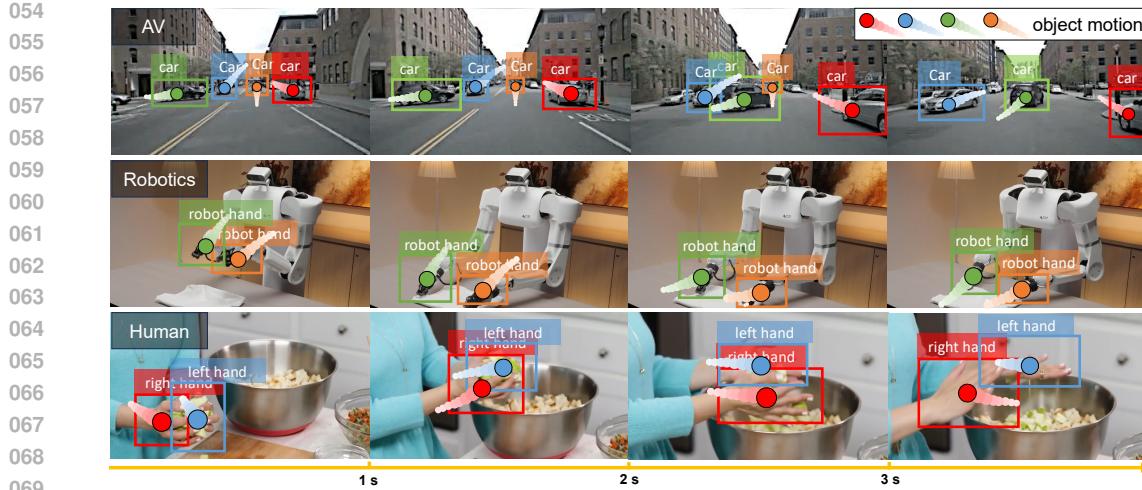


Figure 1: **Illustration of motion automatically labeled using FoundationMotion.** Our proposed FoundationMotion automatically detects and tracks moving objects, annotating their spatial movement (motion) in videos. We demonstrate the auto-labeled motion trajectories on diverse video domains, including autonomous driving, robotics, and human daily activities.

scenes, and events in videos, they sometimes fail to recognize basic object motion, such as “the car is turning right,” which is a relatively simple task for humans. These limitations pose serious threats when deploying these foundation models in real-world embodied applications such as robotics and autonomous driving. This is because we need machines to understand not only “what is this motion” (e.g., pouring water) but also “how this motion happens” (e.g., pouring water from a bottle into a glass). Recent state-of-the-art methods such as PerceptionLM (Cho et al., 2025) and NVILA (Liu et al., 2025) have excelled at understanding “what” but still face challenges in understanding “how.” We attribute this primarily to the lack of “how” motion data.

However, creating “how” motion data is quite challenging. Building a robust VLM that can generalize in understanding spatial movement and object motion requires accurate training data in object detection, tracking, and linking behaviors to specific motions. This means an annotator might need several minutes to label just a 3-second video. It would take a team of 10 people approximately 100 days to complete annotations for 100,000 videos. When videos may vary in length from a few seconds to several minutes or even hours, the cost and time required increase significantly, not to mention the challenge of ensuring annotation quality. To address this challenge, we propose **FoundationMotion**, a fully automated and unified data curation pipeline for large-scale object motion understanding. FoundationMotion leverages state-of-the-art recognition models (e.g., Segment Anything V2) and LLM-based reasoning to detect, track, and annotate object motion across diverse videos (see Figure 1 for examples of our auto-labeled visualizations). It focuses on motion-centric video cropping, object detection (e.g., vehicles, hands, bodies), and multi-object tracking, generating structured motion data. These annotations are then aggregated and distilled into descriptive motion summaries using Large Language Models (LLMs), enabling both motion understanding and question-answering over dynamic scenes.

In summary, our main contributions are as follows:

1. We propose **FoundationMotion**, a fully automated, unified data curation pipeline that constructs large-scale motion datasets for accurate detection, tracking, and understanding of object behavior. Based on this auto-labeling pipeline, we generate approximately 500K question-answering pairs (QAs) and captions, collectively referred to as the **FoundationMotion Dataset**.
2. To address the lack of “how” motion benchmarks, we manually collect videos of varying lengths and annotate QAs across multiple domains, including hand motion in human daily activities and driving, robot motion during manipulation tasks, and car motion in autonomous driving.

108 3. We fine-tune several open-source VLMs with our FoundationMotion Dataset and evaluate
 109 the results on both public, widely-used benchmark (primarily focusing on “what” behavior)
 110 and our manually annotated “how” motion benchmark . Our results demonstrate that mod-
 111 els fine-tuned on the FoundationMotion dataset achieve superior performance compared to
 112 larger open-source models and even closed-source models such as Gemini-2.5-Flash.
 113 4. We will release all our code, data, and benchmarks. We hope that FoundationMotion will
 114 raise awareness about the importance of motion understanding, establish a standard for the
 115 field, and foster community development. Continuous efforts and improvements will be
 116 made to refine the FoundationMotion codebase and dataset.
 117

118 2 RELATED WORK

120 2.1 MOTION-FOCUSED VIDEO UNDERSTANDING BENCHMARKS

122 Recent work has introduced benchmarks for fine-grained motion understanding in videos. Mo-
 123 tionBench (Hong et al., 2025) evaluates basic motion-level perception through granular movement
 124 questions, revealing that state-of-the-art video VLMs score below 60%, highlighting a significant
 125 deficiency in motion reasoning. FAVOR-Bench (Tu et al., 2025) further expands this evaluation
 126 with 1,776 curated videos and thousands of Q&A pairs across categories such as sequential ac-
 127 tions and camera motions, alongside a training set (FAVOR-Train). However, evaluations across 21
 128 multimodal LLMs demonstrated performance far below human level.

129 MotionBench and FAVOR-Bench emphasize fine-grained motion recognition (what moves, when,
 130 and how detailed) but overlook spatial reasoning (how motions interact, relative trajectories, ge-
 131 ometric constraints). We fill these gaps by enabling models to capture spatial relations and by
 132 addressing data scarcity: instead of relying on limited or manually curated data, we construct a
 133 large-scale dataset with a fully automated pipeline. Training on it produces foundation models with
 134 state-of-the-art motion reasoning, serving as both a benchmark and training resource for advancing
 135 fine-grained motion understanding.

137 2.2 AUTOMATED VIDEO DATASET CONSTRUCTION AND ANNOTATION

138 Manual video annotation for captioning or QA is costly, so recent work has shifted to auto-
 139 mated pipelines. VideoEspresso (Han et al., 2025) used LLMs to generate a large-scale VideoQA
 140 dataset, scaling beyond crowdsourcing. CinePile (Rawal et al., 2024) produced 305k QA pairs for
 141 long movies via LLM prompting with audio descriptions, enabling complex temporal and narra-
 142 tive queries. VoCap (Uijlings et al., 2025) auto-captioned objects using segmentation masks and
 143 vision-language models, improving object-centric captioning. UltraVideo (Xue et al., 2025) applied
 144 motion-based filters to retain only informative clips.

145 Our data generation pipeline extends this paradigm with a focus on fine-grained object motions.
 146 Unlike prior work, it applies multi-object tracking and automatically generates detailed captions and
 147 QA pairs about object trajectories. This yields a dataset tailored to spatial object behavior, filling the
 148 gap left by earlier QA- or captioning-focused efforts and enabling models to acquire motion-centric
 149 knowledge at a scale and granularity that would be infeasible with manual labeling.

151 2.3 VISION-LANGUAGE VIDEO FOUNDATION MODELS

153 Recent advances in vision-language video models extend LLMs to video understanding, enabling
 154 captioning, QA, and retrieval, yet they struggle with fine-grained motion and spatio-temporal rea-
 155 soning. MotionBench (Hong et al., 2025) shows that leading models (e.g., InternVideo (Wang
 156 et al., 2022), Video-LLaMA (Zhang et al., 2023)) remain weak in motion understanding. Mean-
 157 while, PerceptionLM (Cho et al., 2025) stresses perceptual grounding with open-access data, and
 158 Locate3D (Arnaud et al., 2025) improves object-centric spatial reasoning via self-supervised 3D
 159 localization but still fails to capture how motion happens.

160 We address this gap by introducing a motion-aware vision-language model explicitly trained with
 161 our new fine-grained motion dataset. Infusing such data enables strong performance on motion
 162 recognition, localization, and reasoning while preserving broad video-language capabilities. Unlike

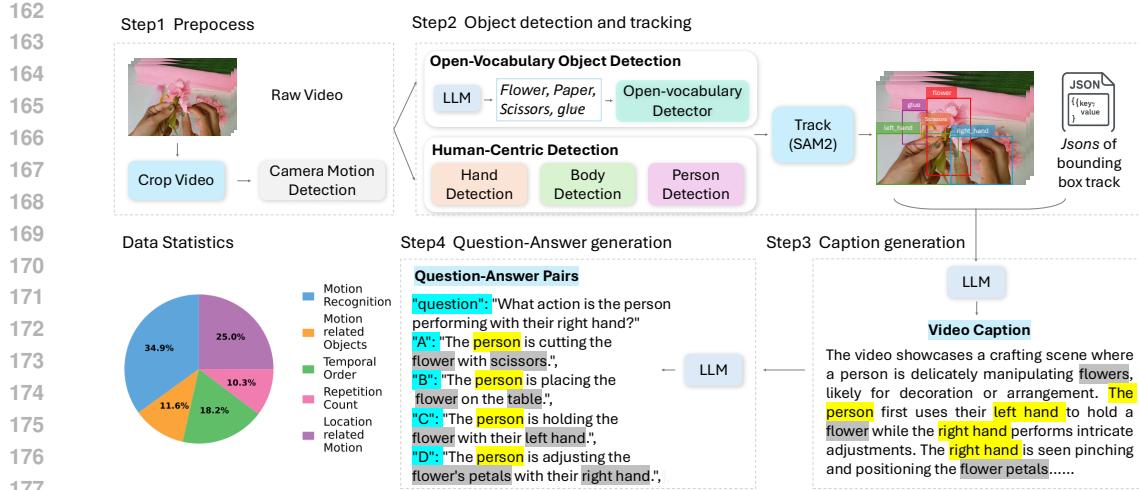


Figure 2: **FoundationMotion Data Curation Pipeline**. FoundationMotion is a fully automated pipeline for constructing large-scale motion datasets, enabling accurate detection, tracking, and understanding of object behavior. It leverages recognition models (e.g., Segment Anything) and understanding models (e.g., LLMs). Videos are first cropped to focus on motion, then objects such as cars and human-centric items (hands, bodies, persons) are detected and tracked. Their location changes are annotated into JSON files, which are summarized into captions. Finally, we design specific prompts for the LLM to generate questions and answers.

prior models that lacked targeted motion training, our approach demonstrates that motion-focused learning can both improve motion understanding and enhance overall versatility.

3 FOUNDATIONMOTION DATA CURATION PIPELINE

Overview. Training a high-capability video motion model requires large-scale data, yet manually annotating fine-grained motion in videos is costly and time-consuming. This motivates the need for an automated data curation pipeline. While LLMs have shown remarkable progress in building automated pipelines across several domains, their ability is constrained when given only raw video input: they can handle simple object and action recognition but struggle to capture spatial relations and complex motions. In parallel, recent advances in vision models have demonstrated strong capabilities in detection, tracking, and summarization. Building on these complementary strengths, we design a fully automated data curation pipeline that produces detailed motion annotations and corresponding question–answer (QA) pairs from videos, as illustrated in Figure 2. In the following, we describe its four stages in detail: video preprocessing (Sec. 3.1), object detection and tracking (Sec. 3.2), caption generation (Sec. 3.3), and QA generation (Sec. 3.4).

3.1 VIDEO PREPROCESSING

The preprocessing stage prepares raw videos for downstream analysis by performing temporal cropping and frame extraction. Given an input video V with duration t_v , we extract a temporal segment of 5–10 seconds. If $t_v \leq 5$ seconds, the entire video is retained. For longer videos, we sample a segment with duration $t_s \sim \mathcal{U}(5, \min(10, t_v))$, centered approximately at the midpoint of the video:

$$t_{\text{start}} = \max(0, \min(t_v - t_s, t_{\text{mid}} + \epsilon)),$$

where $t_{\text{mid}} = \frac{t_v}{2} - \frac{t_s}{2}$ denotes the centered position and $\epsilon \sim \mathcal{U}(-0.2t_v, 0.2t_v)$ introduces temporal variation. This strategy yields representative segments while controlling computational costs.

When the camera moves together with the object, even humans find it difficult to describe the object’s motion. To ensure the model can learn clear spatial relations, we employ VGGT (Wang et al., 2025) to detect and filter videos with significant camera motion. The model predicts camera poses across sampled frames, computing motion scores based on translation and rotation changes between

216 consecutive frames. We compute the motion score as $s_m = \alpha \cdot \Delta_t + \beta \cdot \Delta_r + \gamma \cdot \max(\Delta_t) + \delta \cdot \max(\Delta_r)$, where Δ_t and Δ_r represent average translation and rotation changes, respectively. Videos exceeding a motion threshold $\tau_{motion} = 0.3$ are excluded from further processing, as camera motion significantly degrades tracking quality and annotation accuracy.
 217
 218
 219
 220

221 3.2 OBJECT DETECTION AND TRACKING 222

223 Our object detection is divided into two components: open-vocabulary object detection (Sec 3.2.1)
 224 and human-centric detection (Sec 3.2.2). We first design an open-vocabulary detection pipeline to
 225 identify all general objects in the images. we also introduce a tailored human-centric detector spe-
 226 cialized for detecting humans, left hands, right hands, and objects held in hands, since distinguishing
 227 between the left and right hands is particularly challenging for standard detectors.
 228
 229

3.2.1 OPEN-VOCABULARY OBJECT DETECTION

230 We leverage the Qwen2.5-VL-7B model (Bai et al., 2025) to analyze the first frame and iden-
 231 tify salient objects within the scene. Specifically, the model produces a set of object categories
 232 $\mathcal{O} = \{o_1, o_2, \dots, o_n\}$ in the video via natural language generation, providing high-level semantic
 233 coverage of the scene content. Given these object categories, we employ Grounded-DINO (Liu
 234 et al., 2023) to localize objects precisely, yielding $\mathcal{B}_{obj} = \text{GroundedDINO}(I_0, \mathcal{O})$, where I_0 denotes
 235 the first frame and \mathcal{B}_{obj} corresponds to the detected bounding boxes with class labels. We query
 236 Grounded-DINO with individual object classes rather than concatenating all classes into a single
 237 prompt. This enforces a one-to-one alignment between detected boxes and semantic labels, thereby
 238 improving detection quality.
 239
 240

3.2.2 HUMAN-CENTRIC DETECTION

241 For human motion understanding, we adopt a hierarchical pipeline that refines detection from
 242 person- to hand-level. Person detection uses Cascade Mask R-CNN with a ViTDet-H backbone (Li
 243 et al., 2022), ensuring robust localization with high confidence ($\tau_{person} = 0.8$). Each detected per-
 244 son is then processed by ViTPose+ (Xu et al., 2022) to extract whole-body keypoints, including 42
 245 hand keypoints that define initial hand regions, later expanded by 1.5 \times to cover pose variations. The
 246 Hands23 model (Cheng et al., 2023) performs hand detection with contact-state and hand-object
 247 interaction analysis. For each hand h_i , it predicts $(b_h^i, s_h^i, c_h^i, b_o^i)$, where $b_h^i \in \mathbb{R}^4$ is the bounding
 248 box, $s_h^i \in \{\text{left, right}\}$ the laterality, $c_h^i \in \{\text{no_contact, self_contact, object_contact, other_contact}\}$
 249 the contact state, and b_o^i the object box if $c_h^i = \text{object_contact}$. Hand-person associations are estab-
 250 lished via IoU matching between ViTPose regions and Hands23 detections, requiring $\text{IoU} > 0.3$.
 251
 252

3.2.3 TEMPORAL TRACKING

253 Temporal coherence is maintained through SAM2 (Ravi et al., 2024), which propagates detections
 254 across video frames using a two-stage tracking strategy. In the initial tracking stage, person and
 255 object bounding boxes from the first frame initialize SAM2’s video predictor. Each entity receives a
 256 unique identifier following a hierarchical scheme: persons are assigned IDs in the range [0, 99] with
 257 sub-IDs for associated body parts (ID \times 10 for person, ID \times 10 + 1 for left hand, ID \times 10 + 4 for right
 258 hand), while objects receive IDs starting from 1000. This ID allocation enables consistent tracking
 259 while maintaining semantic relationships between entities.
 260
 261

The refined tracking stage incorporates hand and hand-object detections at keyframes (every 5th
 262 frame) to maintain tracking accuracy throughout the video. The propagation follows: $\mathcal{M}_t =$
 263 $\text{SAM2}.\text{propagate}(\mathcal{M}_{t-1}, \mathcal{B}_{new})$, where \mathcal{M}_t represents segmentation masks at frame t and \mathcal{B}_{new}
 264 contains newly detected bounding boxes. This iterative refinement prevents tracking drift while
 265 maintaining temporal consistency across extended sequences.
 266
 267

3.3 CAPTION GENERATION

268 The caption generation module uses GPT-4o-mini (Hurst et al., 2024) to transform tracking out-
 269 puts into natural language. Inputs to GPT-4o-mini include (i) video frames sampled at 2 fps, (ii)
 270 structured motion data in JSON containing normalized bounding box trajectories, and (iii) visual



Figure 3: Examples of four zero-shot FoundationMotion evaluation benchmark.

overlays with color-coded bounding boxes. The structured data encodes explicit spatial and temporal information, enabling fine-grained cross-frame reasoning. Caption generation is guided by a prompt covering seven dimensions of motion: (1) action and gesture recognition, (2) temporal sequencing, (3) object–action associations, (4) spatial context, (5) repetition patterns, (6) motion dynamics (direction, distance, velocity, trajectory), and (7) evolving spatial relationships. This structured prompting yields comprehensive and consistent captions capturing both fine-grained motion and high-level semantics.

3.4 QUESTION-ANSWER GENERATION

The QA generation stage creates evaluation questions from captions to assess motion and spatial understanding. GPT-4o-mini is prompted with both captions and video frames to produce multi-choice questions targeting specific skills within a structured framework. We design five categories: (1) motion recognition, identifying entity actions; (2) temporal ordering, capturing event sequences; (3) action–object association, linking actors and actions; (4) location-based motion, grounding actions spatially; and (5) repetition counting, recognizing action frequency and patterns. Each question has four options, with distractors drawn from video content, and correct answers randomly distributed to avoid position bias.

4 FINE-TUNING WITH FOUNDATIONMOTION FOR STATE-OF-THE-ART MOTION UNDERSTANDING

4.1 EXPERIMENTAL SETUP

Training data. For training, we take videos from InternVid (Wang et al., 2023), randomly extract 5-second clips from each video, and use the proposed auto-labeling pipeline to obtain captioning and QA data for each video clip. This results in a total of 467K caption/QA-video pairs.

Evaluation data. We evaluate our model on both public benchmarks and self-labeled benchmarks. The public benchmarks include MotionBench (Hong et al., 2025) and VLM4D (Zhou et al., 2025), two common benchmarks that evaluate motion understanding in videos. Concretely, MotionBench is a benchmark for fine-grained motion understanding covering six motion tasks, built from internet videos, public datasets, and Unity-simulated data, and containing 5,385 videos with 8,052 carefully human-annotated QA pairs. VLM4D is a benchmark that is specifically designed to test the spatiotemporal reasoning capability of VLMs and contains 1800 QA pairs over 1000 videos that are either from real world or simulated.

The self-labeled benchmarks (“how” motion benchmark), on the other hand, are curated to test the model’s zero-shot generalizability to out-of-distribution videos. Specifically, we evaluate motion understanding in daily scenes, autonomous vehicles (AV) and robotic scenarios, which are different from the training videos. For daily scenes, we source videos from 100 Days of Hands (Shan et al., 2020) and manually label 832 QA pairs that are focused on hand motions and hand-object interactions, we refer to this benchmark as **Daily**. Similarly, we collect robotic videos from YouTube and manually label 102 QA pairs on robot motions (**Robotics**), primarily on the robot’s hands. We also collect videos from widely used Nuscenes dataset (Caesar et al., 2020) and turn the official manually annotated motion captions (Li et al., 2025) into 1,968 QA pairs that focus on cars’ motion (**AV-Car**)

324 Table 1: Comparison on motion benchmarks. Accuracy gains/losses are marked green/red. The
 325 highest and second highest value marked with **bold** / underline. Results are percentages (%). Our
 326 **FoundationMotion** dataset consistently boosts performance across benchmarks and yields larger
 327 gains than PLM when fine-tuned with the same number of examples. Training with FoundationMo-
 328 tion data brings significant improvement on various motion tasks.

Model	MotionBench	VLM4D	AV-Car	AV-Hand	Daily	Robotics
Gemini-2.5-Flash	<u>55.6</u>	54.7	84.1	72.7	75.4	36.1
Qwen-2.5-VL-72B	61.4	50.5	83.3	56.5	<u>80.2</u>	<u>36.7</u>
NVILA-Video-15B	45.7	51.8	84.4	58.1	76.2	21.4
FT w/ FoundationMotion	46.7 <small>+1.0↑</small>	51.9 <small>+0.1↑</small>	91.5 <small>+7.1↑</small>	58.7 <small>+0.6↑</small>	78.6 <small>+2.4↑</small>	36.3 <small>+14.9↑</small>
FT w/ PLM 467k	47.5 <small>+1.8↑</small>	<u>52.9</u> <small>+1.1↑</small>	79.4 <small>-5.0↓</small>	55.6 <small>-2.5↓</small>	77.1 <small>+0.9↑</small>	27.4 <small>+6.0↑</small>
NVILA-Video-8B	42.3	49.0	88.9	54.6	79.1	20.4
FT w/ FoundationMotion	42.9 <small>+0.6↑</small>	52.4 <small>+3.4↑</small>	90.6 <small>+1.7↑</small>	61.4 <small>+6.8↑</small>	81.1 <small>+2.0↑</small>	38.2 <small>+17.8↑</small>
FT w/ PLM 467k	43.6 <small>+1.3↑</small>	49.1 <small>+0.1↑</small>	87.9 <small>-1.0↓</small>	56.0 <small>+1.4↑</small>	75.0 <small>-4.1↓</small>	26.5 <small>+6.1↑</small>
Qwen-2.5-VL-7B	39.1	41.7	80.3	47.2	61.4	28.3
FT w/ FoundationMotion	41.3 <small>+2.1↑</small>	44.9 <small>+3.2↑</small>	82.1 <small>+1.8↑</small>	52.8 <small>+5.6↑</small>	73.1 <small>+11.7↑</small>	32.5 <small>+4.2↑</small>

342 and 108 QA pairs that focus on hands’ motion (**AV-Hand**). Therefore, we establish four zero-shot
 343 motion benchmarks: AV-car, AV-hand, Daily, and Robotics, with examples from each benchmark
 344 shown in Figure 3. We emphasize that there is no overlap between the FoundationMotion dataset
 345 and the evaluation benchmarks, which means the results are fully zero-shot.

346 **Baselines.** We compare our models with state-of-the-art open- and closed-source VLMs including
 347 *Gemini-2.5-Flash* (Comanici et al., 2025), *Qwen-2.5-VL-72B/7B* (Bai et al., 2025), and *NVILA-
 348 Video-15B/8B* (Liu et al., 2025). To evaluate the quality of our dataset, we compare with PLM (Cho
 349 et al., 2025) dataset, a large-scale motion-targeted video QA dataset, by fine-tuning the same model
 350 on either our data or PLM data and compare the performances. For fair comparison, we randomly
 351 sample 467K instances from PLM dataset such that it has the same amount of data as ours.

352 **Implementation Details.** Our experiments are conducted on A100 GPUs. For Qwen-related training,
 353 we use llmfactory (Zheng et al., 2024) and follow the recommended settings with a learning
 354 rate of 10^{-5} . For NVILA-related training, we follow the official settings (Liu et al., 2025) and set
 355 the learning rate to 1.5×10^{-5} . We apply a cosine annealing schedule and choose Adam as the
 356 optimizer. No weight decay is applied.

357 4.2 MAIN RESULTS

358 **Using FoundationMotion data for fine-tuning yields clear gains across benchmarks and**
 359 **datasets.** With *NVILA-Video-15B*, FoundationMotion lifts MotionBench by +1.0%, AV-Car by
 360 +7.1%, and Robotics by +14.9%, while also providing smaller but consistent gains on VLM4D
 361 (+0.1%), AV-Hand (+0.6%), and Daily (+2.4%). For *NVILA-Video-8B*, FoundationMotion data
 362 improves MotionBench by +0.6%, AV-Car by +6.8%, and Robotics by +17.8%. Similarly, for
 363 *Qwen-2.5-VL-7B*, FoundationMotion delivers broad gains across MotionBench (+2.1%), VLM4D
 364 (+3.2%), AV-Car (+1.8%), AV-Hand (+5.6%), Daily (+11.7%), and Robotics (+4.2%). These re-
 365 sults demonstrate consistent improvements across diverse motion and spatial reasoning tasks.

366 **Compared with PLM data, fine-tuning on our data with the same budget gives bigger improve-
 367 ments and avoids performance drops.** Compared with PLM, our dataset yields larger and more
 368 consistent gains with the same number of examples. On *NVILA-Video-15B* (FoundationMotion vs
 369 PLM), FoundationMotion surpasses PLM on AV-Car (+7.1% vs. -5.0%), AV-Hand (+0.6% vs.
 370 -2.5%), Daily (+2.4% vs. +0.9%), and Robotics (+14.9% vs. +6.0%), with PLM slightly better
 371 only on MotionBench (+1.0% vs. +1.8%) and VLM4D (+0.1% vs. +1.1%). On *NVILA-Video-8B*,
 372 our dataset again dominates: VLM4D (+3.4% vs. +0.1%), AV-Car (+1.7% vs. -1.0%), AV-Hand
 373 (+6.8% vs. +1.4%), Daily (+2.0% vs. -4.1%), and Robotics (+17.8% vs. +6.1%), while slightly
 374 unperforming on MotionBench (+0.6% vs. +1.3%). These results demonstrate that the Foundation-
 375 Motion dataset provides higher-quality supervision than an equal amount of PLM data.

378 **With FoundationMotion data, 15B and 7B models surpass Gemini-2.5-Flash and**
 379 **Qwen-2.5-VL-72B on several motion tasks.** FoundationMotion-tuned models can even outper-
 380 form much larger models like *Gemini-2.5-Flash* and *Qwen-2.5-VL-72B* on several tasks. With
 381 *NVILA-Video-15B* + *FoundationMotion*, AV-Car reaches 91.5%, surpassing *Gemini-2.5-Flash*
 382 (84.1%) and *Qwen-2.5-VL-72B* (83.3%). The same model also exceeds *Qwen-72B* on VLM4D
 383 (51.9% vs. 50.5%) and AV-Hand (58.7% vs. 56.5%). These results show that mid-sized open
 384 models, when fine-tuned with FoundationMotion, can surpass much larger closed-source and open-
 385 source models on motion benchmarks.

387 5 ANALYSIS

389 The experimental results in the previous section demonstrate the high quality of our dataset; fine-
 390 tuning models with only 46.7k videos (467k QAs) already leads to substantial improvements in
 391 motion understanding. In this section, we analyze the dataset, including ablation studies on the data
 392 curation process (Sec. 5.1) as well as the data distribution and overall statistics (Sec. 5.2).

394 5.1 DATA CURATION RELATED ANALYSIS

396 Our data curation pipeline rests on two key factors. (i) By leveraging object detection and trajectory
 397 tracking, we extract precise spatial relations and motion trajectories of all objects in the videos and
 398 feed them into LLMs to generate detailed captions and QA pairs. (ii) We design five complementary
 399 QA types that jointly capture diverse aspects of spatial relationships and motion understanding. In
 400 the following sections, we evaluate the contribution of each factor.

401 Table 2: Comparison of QA quality from video-only vs. video+bounding box JSONs, evaluated by
 402 GPT-4. Scores are normalized to 0–10 (higher is better) and averaged over three runs.

Evaluation Dimension	Video Only	Video + BBox JSONs	Gain
Fine-grained Action Accuracy	5.8	8.4	+2.6
Motion Detail and Specificity	6.1	8.7	+2.6
Temporal Coherence	6.5	8.9	+2.4
Question Relevance	6.9	8.5	+1.6
Overall QA Quality	6.3	8.6	+2.3

411 **Bounding Box JSONs Improve Caption and QA Generation.** To assess the effect of structured
 412 object annotations, we compare QA generation with two input settings to LLMs: (i) raw video
 413 input and (ii) video with bounding box JSONs. We use GPT-4 as the evaluator (see prompts in
 414 Appendix A.4). As shown in Table 2, setting (ii) achieves higher scores across all dimensions, yielding
 415 substantial gains, particularly in fine-grained action accuracy (+2.6), motion detail and specificity
 416 (+2.6), and temporal coherence (+2.4). These improvements highlight the role of bounding boxes
 417 in providing structured spatial signals that help disambiguate subtle motions (e.g., hand reaching,
 418 object sliding) and support richer, temporally coherent QA generation. In contrast, video-only input
 419 often produces generic and less precise descriptions.



431 Figure 4: Impact of different question types on model accuracy.

422 **Different QA Pair Types Provide Complementary**
 423 **Benefits.** We have five different question types, and
 424 in this section we study their impact on model perfor-
 425 mance. We take *Qwen2.5-7B* as the base model and
 426 fine-tune it with 2,000 data samples for each exper-
 427 iment. As shown in Figure 4, every motion-focused
 428 question type outperforms the baseline (Base = 48%).
 429 Motion Recognition (MR) and Action Order (AO) each
 430 reach 52% (+8.3% over Base), Motion-related Objects
 431 (MO) and Location-related Motion (LM) both achieve
 432 53% (+10.4%), and Repetition Count (RC) delivers the
 433 largest gain at approximately 55% (+14.6%).

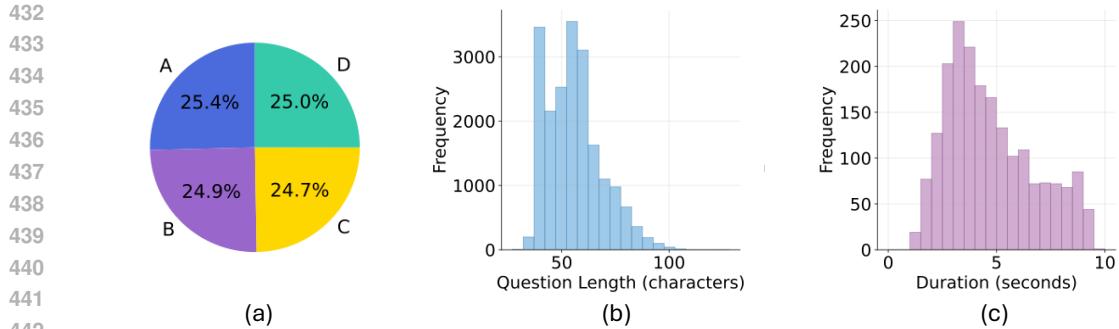


Figure 5: Dataset statistics. (a) correct answer distribution across options, (b) question length distribution measured in characters, and (c) video duration distribution in seconds.

The aggregated setting (ALL) also attains 55%, indicating that combining types matches the best single-type improvement and stabilizes performance. The ranking is $RC \approx ALL > MO \approx LM > MR \approx AO \gg Base$, suggesting that categories demanding explicit temporal integration and counting (RC) add the most, while object/spatial grounding (MO/LM) and coarse motion recognition/ordering (MR/AO) contribute complementary, mid-sized gains. Overall, the diverse QA types target distinct error modes—temporal precision, object–motion association, and spatial grounding—whose combined coverage yields consistent improvements over the baseline.

5.2 DATA DISTRIBUTION OF THE FOUNDATIONMOTION DATASET

The FoundationMotion Dataset consists of 46.7k videos and 467k QAs, where each QA pair consists of a question, four options, an answer, and a category. The task distribution is displayed in Fig. 5. Fig. 5(a) shows that the correct answers are evenly distributed across the four options, indicating no annotation bias. Fig. 5 (b) illustrates the distribution of question lengths measured in characters, where most questions fall between 30 and 80 characters. Fig. 5 (c) reports the distribution of video durations, which are mostly concentrated within 3–7 seconds, ensuring that the dataset emphasizes short but motion-rich clips. Together, these statistics highlight that FoundationMotion provides a balanced QA design, concise yet informative questions, and temporally compact videos well-suited for motion-centric video understanding.

We show the distributions of correct answers, question lengths, and video durations in Figure 5. The correct answers are nearly uniformly distributed across the four options (A–D), ensuring no bias toward a particular choice. Question lengths are concentrated between 40 and 70 characters, suggesting that the majority of questions are concise while still containing sufficient descriptive detail. Video durations primarily range from 2 to 6 seconds, providing short yet information-rich clips that balance annotation efficiency with motion diversity. Together, these statistics indicate that the dataset is well-balanced and designed to support reliable evaluation of video–language models.

6 CONCLUSION

In this paper, we propose FoundationMotion, an automated motion labeling pipeline for generalized spatial detection, tracking, and understanding of object behaviors. We demonstrate that fine-tuning with the FoundationMotion Dataset on various “how” motion benchmarks enables existing open-source VLMs to outperform larger models, and even compete with or surpass some closed-source models such as Gemini-2.5-Flash.

Limitations and Future Work. While FoundationMotion has achieved significantly strong results as demonstrated, its current spatial understanding is primarily limited to 2D space. Understanding “how” objects move in 3D remains a challenging but essential step toward a more comprehensive understanding of the real world. For example, while we demonstrate hand movement in this paper, understanding how each joint moves to form dexterous hand motions in 3D space would greatly benefit robotics and related applications. We will continue to explore this direction and promise to release all our code, data, and benchmarks to support further development in this field.

486 REPRODUCIBILITY STATEMENT
487

488 We are committed to ensuring the reproducibility of our work. All code, datasets, and benchmarks
489 associated with FoundationMotion will be publicly released upon publication. Details of the data
490 generation pipeline are provided in Sec. 3, while the implementation details of fine-tuning are de-
491 scribed in Sec. 4.1. Our goal is to facilitate research on motion understanding by providing trans-
492 parent and accessible resources, thereby raising awareness of its importance, establishing a common
493 standard for the field, and fostering community development. We will continue to maintain and
494 improve the FoundationMotion codebase and dataset to support long-term reproducibility.

496 REFERENCES
497

498 Sergio Arnaud, Paul McVay, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip
499 Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges,
500 Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Michael Rabbat,
501 Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, and Franziska Meier.
502 Locate 3d: Real-world object localization via self-supervised learning in 3d, 2025. URL
503 <https://arxiv.org/abs/2504.14151>.

504 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
505 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
506 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
507 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
508 URL <https://arxiv.org/abs/2502.13923>.

510 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liang, Qiang Xu, Anush
511 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
512 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
513 *recognition*, pp. 11621–11631, 2020.

514 Guo Chen, Zhiqi Li, Shihao Wang, Jindong Jiang, Yicheng Liu, Lidong Lu, De-An Huang, Wonmin
515 Byeon, Matthieu Le, Tuomas Rintamaki, et al. Eagle 2.5: Boosting long-context post-training for
516 frontier vision-language models. *arXiv preprint arXiv:2504.15271*, 2025.

518 Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
519 Tang, Shang Yang, Zhijian Liu, Ethan He, Hongxu Yin, Pavlo Molchanov, Jan Kautz, Linxi Fan,
520 Yuke Zhu, Yao Lu, and Song Han. Longvila: Scaling long-context visual language models for
521 long videos, 2024. URL <https://arxiv.org/abs/2408.10188>.

522 Tianyi Cheng, Dandan Shan, Ayda Hassen, Richard Higgins, and David Fouhey. Towards a richer
523 2d understanding of hands at scale. *Advances in Neural Information Processing Systems*, 36:
524 30453–30465, 2023.

526 Jang Hyun Cho, Andrea Madotto, Effrosyni Mavroudi, Triantafyllos Afouras, Tushar Nagarajan,
527 Muhammad Maaz, Yale Song, Tengyu Ma, Shuming Hu, Suyog Jain, Miguel Martin, Huiyu
528 Wang, Hanoona Rasheed, Peize Sun, Po-Yao Huang, Daniel Bolya, Nikhila Ravi, Shashank Jain,
529 Tammy Stark, Shane Moon, Babak Damavandi, Vivian Lee, Andrew Westbury, Salman Khan,
530 Philipp Krähenbühl, Piotr Dollár, Lorenzo Torresani, Kristen Grauman, and Christoph Feichten-
531 hofer. Perceptionlm: Open-access data and models for detailed visual understanding, 2025. URL
532 <https://arxiv.org/abs/2504.13180>.

533 Gheorghe Comanici, Eric Bieber, Mike Schaekermann, et al. Gemini 2.5: Pushing the frontier with
534 advanced reasoning, multimodality, long context, and next generation agentic capabilities, 2025.
535 URL <https://arxiv.org/abs/2507.06261>.

537 Songhao Han, Wei Huang, Hairong Shi, Le Zhuo, Xiu Su, Shifeng Zhang, Xu Zhou, Xiaojuan Qi,
538 Yue Liao, and Si Liu. Videoespresso: A large-scale chain-of-thought dataset for fine-grained
539 video reasoning via core frame selection. In *Proceedings of the Computer Vision and Pattern*
Recognition Conference (CVPR), pp. 26181–26191, June 2025.

540 Wenyi Hong, Yean Cheng, Zhuoyi Yang, Weihan Wang, Lefan Wang, Xiaotao Gu, Shiyu Huang,
 541 Yuxiao Dong, and Jie Tang. Motionbench: Benchmarking and improving fine-grained video
 542 motion understanding for vision language models. In *Proceedings of the Computer Vision and*
 543 *Pattern Recognition Conference*, pp. 8450–8460, 2025.

544 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 545 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 546 *arXiv:2410.21276*, 2024.

548 Boyi Li, Ligeng Zhu, Ran Tian, Shuhan Tan, Yuxiao Chen, Yao Lu, Yin Cui, Sushant Veer, Max
 549 Ehrlich, Jonah Philion, et al. Wolf: Dense video captioning with a world summarization frame-
 550 work. *Transactions on Machine Learning Research*, 2025.

551 Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer back-
 552 bones for object detection, 2022. URL <https://arxiv.org/abs/2203.16527>.

553 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
 554 Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
 555 open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023.

556 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
 557 Shiyi Cao, Yuxian Gu, Dacheng Li, et al. Nvila: Efficient frontier visual language models. In
 558 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 4122–4134, 2025.

559 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 560 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
 561 sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
 562 ichtenhofer. Sam 2: Segment anything in images and videos, 2024. URL <https://arxiv.org/abs/2408.00714>.

563 Ruchit Rawal, Khalid Saifullah, Miquel Farré, Ronen Basri, David Jacobs, Gowthami Somepalli,
 564 and Tom Goldstein. Cinepile: A long video question answering dataset and benchmark, 2024.
 565 URL <https://arxiv.org/abs/2405.08813>.

566 Dandan Shan, Jiaqi Geng, Michelle Shu, and David F Fouhey. Understanding human hands in
 567 contact at internet scale. In *Proceedings of the IEEE/CVF conference on computer vision and*
 568 *pattern recognition*, pp. 9869–9878, 2020.

569 Chongjun Tu, Lin Zhang, Pengtao Chen, Peng Ye, Xianfang Zeng, Wei Cheng, Gang Yu, and Tao
 570 Chen. Favor-bench: A comprehensive benchmark for fine-grained video motion understanding.
 571 *arXiv preprint arXiv:2503.14935*, 2025.

572 Barbara Tversky. *Mind in motion: How action shapes thought*. Basic Books, 2019.

573 Jasper Uijlings, Xingyi Zhou, Xiuye Gu, Arsha Nagrani, Anurag Arnab, Alireza Fathi, David Ross,
 574 and Cordelia Schmid. Vocap: Video object captioning and segmentation from any prompt, 2025.
 575 URL <https://arxiv.org/abs/2508.21809>.

576 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 577 Novotny. Vggt: Visual geometry grounded transformer, 2025. URL <https://arxiv.org/abs/2503.11651>.

578 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 579 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 580 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

581 Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
 582 Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via generative and
 583 discriminative learning. *arXiv preprint arXiv:2212.03191*, 2022.

584 Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan
 585 Chen, Yaohui Wang, et al. Internvid: A large-scale video-text dataset for multimodal under-
 586 standing and generation. *arXiv preprint arXiv:2307.06942*, 2023.

594 Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient
 595 long video understanding via large language models. In *European Conference on Computer
 596 Vision*, pp. 453–470. Springer, 2024.

597

598 Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vitpose: Simple vision transformer base-
 599 lines for human pose estimation. *Advances in neural information processing systems*, 35:38571–
 600 38584, 2022.

601 Zhucun Xue, Jiangning Zhang, Teng Hu, Haoyang He, Yinan Chen, Yuxuan Cai, Yabiao Wang,
 602 Chengjie Wang, Yong Liu, Xiangtai Li, and Dacheng Tao. Ultravideo: High-quality uhd
 603 video dataset with comprehensive captions, 2025. URL <https://arxiv.org/abs/2506.13691>.

604

605 Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
 606 model for video understanding. *arXiv preprint arXiv:2306.02858*, 2023.

607

608 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 609 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 610 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 611 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
 612 tics. URL <http://arxiv.org/abs/2403.13372>.

613 Shijie Zhou, Alexander Vilesov, Xuehai He, Ziyu Wan, Shuwang Zhang, Aditya Nagachandra,
 614 Di Chang, Dongdong Chen, Xin Eric Wang, and Achuta Kadambi. Vlm4d: Towards spatiotem-
 615 poral awareness in vision language models. *arXiv preprint arXiv:2508.02095*, 2025.

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A APPENDIX**
649650
651 **A.1 BASIC STATISTICS OF FOUNDATIONMOTION DATASET**
652653 Table 3 summarizes the overall statistics of the FoundationMotion dataset. On average, each video
654 lasts 17.51 seconds and is paired with about 10 questions. This corresponds to an annotation den-
655 sity of 1.671 questions per second, indicating a high level of temporal granularity in QA annotations.
656 The average question length is 55.9 characters, showing that the questions are concise yet sufficiently
657 descriptive. Together, these statistics highlight that FoundationMotion provides dense and informa-
658 tive annotations over relatively short video clips, making it well-suited for evaluating motion-level
659 understanding in video-language models.
660661 **Table 3: Overall statistics of the FoundationMotion dataset.**
662663
664

Metric	Value
Average video duration	17.51 seconds
Average questions per video	10.04
Average annotation density	1.671 questions/second
Average question length	55.9 characters

665
666
667
668669 **A.2 PROMPTS USED FOR CAPTION GENERATION**
670
671672 **Background**
673674 You are a detailed video caption generation tool focusing on object motion analysis and
675 spatial relationships. You generate comprehensive captions for videos based on the video
676 itself and the provided object motion information drawn on the video and in JSON.
677678 **Motion label**
679680 The motion information for the video in JSON format is as follows `{motion_info}`. It
681 captures bounding box locations for various objects and their interactions in each frame of
682 the video.
683684 In the JSON format, it starts with object id, e.g., `"object_00"`, `"object_01"`,
685 `"object_02"`, etc. Under each object id, there are `"bbox"`, `"object_type"` and
686 `"interactions"` keys for the object. The `"bbox"` key contains a list of bounding boxes
687 of the object in each frame throughout the video. The `"object_type"` key specifies the
688 category of the object (e.g., `"person"`, `"cup"`, `"ball"`, `"car"`, etc.).
689690 Under `"interactions"`, there are lists of other objects that this object is interacting with
691 or spatially related to in each frame. The bounding boxes are in the format of `[left, top,`
692 `right, bottom]` where the values are normalized to `[0, 1]` according to video width and
693 height as in `[left/width, top/height, right/width, bottom/height]`.
694 If the object is not detected in the frame, the bounding box value will be `None` in the list at
695 the corresponding frame index. If objects are not interacting with any other objects in the
696 frame, then `"interactions"` will be `None` at the corresponding frame index.
697698 The detected bounding boxes are also drawn on each frame of the video: different object
699 types with labels on top of colored bounding boxes for easy identification.
700

702 A.3 PROMPTS USED FOR QA GENERATION
703

704

705

Background and task

706

707

708

709

Requirements

710

Question coverage should focus on five main categories:

711

1. Motion Recognition Questions: - **Action description**: What action is [object/person] performing? (e.g., raising hand, skiing, cooking, walking, etc.) - **Activity identification**: Describe the specific motion or gesture being performed - **Behavior characterization**: What type of movement pattern is observed?

712

2. Action Order Questions: - **Temporal sequence**: Which action happens first/second/last? - **Action timing**: What action occurs before/after [specific action]? - **Sequential events**: In what order do the actions unfold?

713

3. Motion-related Object Questions: - **Actor identification**: Which object/person performs [specific action]? - **Object-action association**: What does [object] do in the video? - **Agent-activity linking**: Who or what is responsible for [specific motion]?

714

4. Location-related Motion Questions: - **Spatial motion context**: Where does [action] take place in the scene? - **Position-based activity**: What motion happens in the [left/right/center/upper/lower] part of the scene? - **Spatial properties**: How does the location affect or relate to the motion?

715

5. Repetition Count Questions: - **Frequency counting**: How many times does [action] occur? - **Repetitive patterns**: How often is [motion] repeated? - **Cyclical behaviors**: What is the count of [repeated action]?

716

6. Traditional Motion Analysis Questions: - **Direction**: Which direction does [object] move? (left, right, up, down, diagonal directions) - **Distance**: How far does [object] move? (specific measurements, relative distances) - **Velocity**: How fast does [object] move? (speed characteristics, acceleration patterns) - **Trajectory**: What path does [object] follow? (straight, curved, circular, zigzag patterns)

717

7. Spatial Relationship Questions: - **Relative positions**: Where is [object A] positioned relative to [object B]? (left/right/up/down/front/back) - **Distance relationships**: How far apart are [object A] and [object B]? - **Positional changes**: How does the spatial relationship between [object A] and [object B] change?

718

Answer requirements

719

- Answers must be concise and directly address the question. - Include specific directional terms, distance measurements, and spatial descriptors when available. - Do not include extra explanations or thought processes in the answers.

720

Task

721

First, generate a list of questions and answers as below, with an empty line between each question and answer pair. Do not include any other texts in the output. Q1: ... A1: ...

722

Here are example questions and answers: Q1: What action is the person performing with their right hand? A1: The person is raising their right hand above their head.

723

Q2: Which action happens first in the video? A2: The person picks up the cup before stirring.

724

Q3: What object performs the cutting motion? A3: The knife performs the cutting motion on the vegetables.

725

Q4: Where in the scene does the stirring action take place? A4: The stirring action takes place in the upper-left area of the kitchen counter.

726

Then, for each question and answer, turn the single answer into 4 multiple choices with reasonable choices generated from the caption but distinctive from the correct answer. Please make sure each choice in the four choices is distinctive and do not have ambiguity with any other choice. Check the video content to make sure to never generate ambiguous multiple choices for the same question. Always put the correct answer at the first choice.

727

Output format

728

The output format: output a list of strings and each string contains a question and its corresponding multiple choices as below. The number of questions equal to the number of items

756

in the list. Each question must have 4 choices listed, after A, B, C, D. ['Q1: ... A: ... B: ... C: ... D: ...', ...]

759

The correct answer is always at A. Do not include any other texts in the output. with an empty line between each question and answer pair.

760

Focus on generating questions that test understanding of: - Motion recognition and action identification (raising hand, cooking, walking, etc.) - Action temporal sequences and ordering - Object-action associations and actor identification - Location-based motion analysis and spatial context - Repetition counting and frequency analysis - Object movement directions (left, right, up, down, diagonal) - Movement distances and trajectories - Movement speeds and velocity patterns - Spatial positioning (left/right/up/down relationships) - Changes in spatial arrangements - Object proximity and distance relationships

761

Please generate your questions and answers accordingly, focusing on motion analysis and spatial relationships described in the caption.

762

763

764

765

766

767

768

769

770

771

772

773

774

775

A.4 PROMPTS USED FOR EVALUATE QA QUALITY

776

777

778

779

780

You are an expert evaluator of video-based question–answer generation.

Given two sets of QAs for the same video (Set A: generated with video only; Set B: generated with video + bounding box JSONs), rate each set independently on a scale of 0–10 for the following dimensions:

1. Fine-grained action accuracy (does the QA capture detailed actions precisely?)
2. Motion detail and specificity (does it describe how objects move, not just that they move?)
3. Temporal coherence (are the actions ordered and consistent over time?)
4. Question relevance (are the QAs relevant and informative about the video?)

781

782

783

784

785

786

787

788

789

790

791

792

793

A.5 QUESTION-ANSWER EXAMPLES

794

795

796

QA type 1: Motion Recognition

797

798

799

800

801

802

803

804

What action is the person performing with their right hand?

805

806

807

808

809

- A. The person is raising their left hand.
- B. The person is writing with a pen using their left hand.
- C. The person is manipulating the red object with their right hand.
- D. The person is resting both hands on their lap.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

QA type 2: Motion-related Objects

What object performs the action of holding during the presentation?

- A. The speaker's right hand holds an object, likely a microphone or remote.
- B. The speaker's right hand holds a glass of water.
- C. The speaker's left hand holds a phone.
- D. The speaker's left hand holds a notepad.

QA type 3: Action Order

Which action happens first in the video?

- A. The child picks an orange before standing still.
- B. **The child stands still before reaching for the oranges.**
- C. The child looks around before reaching for the oranges.
- D. The child walks towards the oranges before reaching.

QA type 4: Repetition Count

5. How many times does the person gesture with their hands?

- A. The person gestures with their hands three times.
- B. The person gestures with their hands only once.
- C. The person does not gesture with their hands at all.
- D. **The person gestures with their hands multiple times throughout the video.**

864
865

QA type 5: Location-related Motion

866

867

868

869

870

871



872 **Where in the scene does the walking action take place?**

873

874 A. The walking action takes place along a path in the center of the frame.

875 B. The walking action takes place on the left side of the frame.

876 C. The walking action takes place indoors.

877 D. The walking action takes place in a park.

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917