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ABSTRACT

Motion understanding is fundamental to physical reasoning, enabling models to
infer dynamics and predict future states. However, state-of-the-art models still
struggle on recent motion benchmarks, primarily due to the scarcity of large-scale,
fine-grained motion datasets. Current approaches rely heavily on costly manual
annotation, severely limiting scalability. To address this challenge, we introduce
FoundationMotion, a fully automated data curation pipeline that constructs large-
scale motion datasets. Our approach first detects and tracks objects in videos
to extract their trajectories, then leverages these trajectories and video frames
with large language models to generate fine-grained captions and diverse ques-
tion–answer pairs about motion and spatial reasoning. Using datasets produced
by this pipeline, we fine-tune open-source models including NVILA-Video-15B
and Qwen2.5-7B, achieving substantial improvements in motion understanding
without compromising performance on other tasks. Notably, our models outper-
form strong closed-source baselines like Gemini-2.5 Flash and large open-source
models such as Qwen2.5-VL-72B across diverse motion understanding datasets
and benchmarks. FoundationMotion thus provides a scalable solution for curating
fine-grained motion datasets that enable effective fine-tuning of diverse models to
enhance motion and spatial reasoning capabilities.

1 INTRODUCTION

“Spatial thinking is the foundation of thought.”

— Barbara Tversky, Mind in Motion: How Action Shapes Thought

In Mind in Motion (Tversky, 2019), psychologist Barbara Tversky argues that spatial cognition is
not a secondary aspect of thought but a foundational one. It enables us to make sense of the world
through our physical actions and interactions. These real-world movements become internalized
as mental operations, often expressed spontaneously through gestures. Moreover, spatial thinking
supports a wide range of everyday and expert activities, from using maps and assembling furniture
to designing systems and understanding flows of people, traffic, or information. Whether estimating
how to parallel park, imagining how to fold a piece of paper into a shape, mentally rotating an
object, or figuring out how to carry multiple items through a narrow doorway, we rely on a powerful
yet often overlooked capacity: spatial thinking. Motivated by this insight, our goal is to enable
machines to effectively describe and reason about object motion, allowing them to understand and
reason in the physical world as humans do through the development of robust Vision-Language
Models (VLMs). To ground this effort, we focus on learning from videos, where motion and spatial
interactions unfold over time.

Reflecting on the rapid advancement of VLMs, significant progress has been made in learning from
videos (Liu et al., 2025; Weng et al., 2024; Chen et al., 2024; 2025). State-of-the-art models such
as Gemini (Comanici et al., 2025) and Qwen-VL (Bai et al., 2025; Wang et al., 2024) demonstrate
impressive capabilities in identifying objects and interpreting complex environments and events.
However, despite these advances, current VLMs still face considerable challenges in fully under-
standing the nuanced spatial and motion dynamics inherent in many real-world videos. Addressing
these challenges is crucial for enabling machines to reason about the physical world as effectively as
humans do. For instance, while Gemini models achieve remarkable results in understanding objects,
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Figure 1: Illustration of motion automatically labeled using FoundationMotion. Our proposed
FoundationMotion automatically detects and tracks moving objects, annotating their spatial move-
ment (motion) in videos. We demonstrate the auto-labeled motion trajectories on diverse video
domains, including autonomous driving, robotics, and human daily activities.

scenes, and events in videos, they sometimes fail to recognize basic object motion, such as “the car
is turning right,” which is a relatively simple task for humans. These limitations pose serious threats
when deploying these foundation models in real-world embodied applications such as robotics and
autonomous driving. This is because we need machines to understand not only “what is this motion”
(e.g., pouring water) but also “how this motion happens” (e.g., pouring water from a bottle into a
glass). Recent state-of-the-art methods such as PerceptionLM (Cho et al., 2025) and NVILA (Liu
et al., 2025) have excelled at understanding “what” but still face challenges in understanding “how.”
We attribute this primarily to the lack of “how” motion data.

However, creating “how” motion data is quite challenging. Building a robust VLM that can gener-
alize in understanding spatial movement and object motion requires accurate training data in object
detection, tracking, and linking behaviors to specific motions. This means an annotator might need
several minutes to label just a 3-second video. It would take a team of 10 people approximately
100 days to complete annotations for 100,000 videos. When videos may vary in length from a
few seconds to several minutes or even hours, the cost and time required increase significantly, not
to mention the challenge of ensuring annotation quality. To address this challenge, we propose
FoundationMotion, a fully automated and unified data curation pipeline for large-scale object mo-
tion understanding. FoundationMotion leverages state-of-the-art recognition models (e.g., Segment
Anything V2) and LLM-based reasoning to detect, track, and annotate object motion across diverse
videos (see Figure 1 for examples of our auto-labeled visualizations). It focuses on motion-centric
video cropping, object detection (e.g., vehicles, hands, bodies), and multi-object tracking, gener-
ating structured motion data. These annotations are then aggregated and distilled into descriptive
motion summaries using Large Language Models (LLMs), enabling both motion understanding and
question-answering over dynamic scenes.

In summary, our main contributions are as follows:

1. We propose FoundationMotion, a fully automated, unified data curation pipeline that con-
structs large-scale motion datasets for accurate detection, tracking, and understanding of
object behavior. Based on this auto-labeling pipeline, we generate approximately 500K
question-answering pairs (QAs) and captions, collectively referred to as the Foundation-
Motion Dataset.

2. To address the lack of “how” motion benchmarks, we manually collect videos of vary-
ing lengths and annotate QAs across multiple domains, including hand motion in human
daily activities and driving, robot motion during manipulation tasks, and car motion in
autonomous driving.
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3. We fine-tune several open-source VLMs with our FoundationMotion Dataset and evaluate
the results on both public, widely-used benchmark (primarily focusing on “what” behavior)
and our manually annotated “how” motion benchmark . Our results demonstrate that mod-
els fine-tuned on the FoundationMotion dataset achieve superior performance compared to
larger open-source models and even closed-source models such as Gemini-2.5-Flash.

4. We will release all our code, data, and benchmarks. We hope that FoundationMotion will
raise awareness about the importance of motion understanding, establish a standard for the
field, and foster community development. Continuous efforts and improvements will be
made to refine the FoundationMotion codebase and dataset.

2 RELATED WORK

2.1 MOTION-FOCUSED VIDEO UNDERSTANDING BENCHMARKS

Recent work has introduced benchmarks for fine-grained motion understanding in videos. Mo-
tionBench (Hong et al., 2025) evaluates basic motion-level perception through granular movement
questions, revealing that state-of-the-art video VLMs score below 60%, highlighting a significant
deficiency in motion reasoning. FAVOR-Bench (Tu et al., 2025) further expands this evaluation
with 1,776 curated videos and thousands of Q&A pairs across categories such as sequential ac-
tions and camera motions, alongside a training set (FAVOR-Train). However, evaluations across 21
multimodal LLMs demonstrated performance far below human level.

MotionBench and FAVOR-Bench emphasize fine-grained motion recognition (what moves, when,
and how detailed) but overlook spatial reasoning (how motions interact, relative trajectories, ge-
ometric constraints). We fill these gaps by enabling models to capture spatial relations and by
addressing data scarcity: instead of relying on limited or manually curated data, we construct a
large-scale dataset with a fully automated pipeline. Training on it produces foundation models with
state-of-the-art motion reasoning, serving as both a benchmark and training resource for advancing
fine-grained motion understanding.

2.2 AUTOMATED VIDEO DATASET CONSTRUCTION AND ANNOTATION

Manual video annotation for captioning or QA is costly, so recent work has shifted to auto-
mated pipelines. VideoEspresso (Han et al., 2025) used LLMs to generate a large-scale VideoQA
dataset, scaling beyond crowdsourcing. CinePile (Rawal et al., 2024) produced 305k QA pairs for
long movies via LLM prompting with audio descriptions, enabling complex temporal and narra-
tive queries. VoCap (Uijlings et al., 2025) auto-captioned objects using segmentation masks and
vision-language models, improving object-centric captioning. UltraVideo (Xue et al., 2025) applied
motion-based filters to retain only informative clips.

Our data generation pipeline extends this paradigm with a focus on fine-grained object motions.
Unlike prior work, it applies multi-object tracking and automatically generates detailed captions and
QA pairs about object trajectories. This yields a dataset tailored to spatial object behavior, filling the
gap left by earlier QA- or captioning-focused efforts and enabling models to acquire motion-centric
knowledge at a scale and granularity that would be infeasible with manual labeling.

2.3 VISION-LANGUAGE VIDEO FOUNDATION MODELS

Recent advances in vision-language video models extend LLMs to video understanding, enabling
captioning, QA, and retrieval, yet they struggle with fine-grained motion and spatio-temporal rea-
soning. MotionBench (Hong et al., 2025) shows that leading models (e.g., InternVideo (Wang
et al., 2022), Video-LLaMA (Zhang et al., 2023)) remain weak in motion understanding. Mean-
while, PerceptionLM (Cho et al., 2025) stresses perceptual grounding with open-access data, and
Locate3D (Arnaud et al., 2025) improves object-centric spatial reasoning via self-supervised 3D
localization but still fails to capture how motion happens.

We address this gap by introducing a motion-aware vision-language model explicitly trained with
our new fine-grained motion dataset. Infusing such data enables strong performance on motion
recognition, localization, and reasoning while preserving broad video-language capabilities. Unlike
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Figure 2: FoundationMotion Data Curation Pipeline. FoundationMotion is a fully automated
pipeline for constructing large-scale motion datasets, enabling accurate detection, tracking, and un-
derstanding of object behavior. It leverages recognition models (e.g., Segment Anything) and un-
derstanding models (e.g., LLMs). Videos are first cropped to focus on motion, then objects such
as cars and human-centric items (hands, bodies, persons) are detected and tracked. Their location
changes are annotated into JSON files, which are summarized into captions. Finally, we design spe-
cific prompts for the LLM to generate questions and answers.

prior models that lacked targeted motion training, our approach demonstrates that motion-focused
learning can both improve motion understanding and enhance overall versatility.

3 FOUNDATIONMOTION DATA CURATION PIPELINE

Overview. Training a high-capability video motion model requires large-scale data, yet manually
annotating fine-grained motion in videos is costly and time-consuming. This motivates the need
for an automated data curation pipeline. While LLMs have shown remarkable progress in building
automated pipelines across several domains, their ability is constrained when given only raw video
input: they can handle simple object and action recognition but struggle to capture spatial relations
and complex motions. In parallel, recent advances in vision models have demonstrated strong ca-
pabilities in detection, tracking, and summarization. Building on these complementary strengths,
we design a fully automated data curation pipeline that produces detailed motion annotations and
corresponding question–answer (QA) pairs from videos, as illustrated in Figure 2. In the following,
we describe its four stages in detail: video preprocessing (Sec. 3.1), object detection and tracking
(Sec. 3.2), caption generation (Sec. 3.3), and QA generation (Sec. 3.4).

3.1 VIDEO PREPROCESSING

The preprocessing stage prepares raw videos for downstream analysis by performing temporal crop-
ping and frame extraction. Given an input video V with duration tv , we extract a temporal segment
of 5–10 seconds. If tv ≤ 5 seconds, the entire video is retained. For longer videos, we sample a
segment with duration ts ∼ U(5,min(10, tv)), centered approximately at the midpoint of the video:

tstart = max
(
0,min(tv − ts, tmid + ϵ)

)
,

where tmid = tv
2 − ts

2 denotes the centered position and ϵ ∼ U(−0.2tv, 0.2tv) introduces temporal
variation. This strategy yields representative segments while controlling computational costs.

When the camera moves together with the object, even humans find it difficult to describe the ob-
ject’s motion. To ensure the model can learn clear spatial relations, we employ VGGT (Wang et al.,
2025) to detect and filter videos with significant camera motion. The model predicts camera poses
across sampled frames, computing motion scores based on translation and rotation changes between
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consecutive frames. We compute the motion score as sm = α ·∆t + β ·∆r + γ ·max(∆t) + δ ·
max(∆r), where ∆t and ∆r represent average translation and rotation changes, respectively. Videos
exceeding a motion threshold τmotion = 0.3 are excluded from further processing, as camera motion
significantly degrades tracking quality and annotation accuracy.

3.2 OBJECT DETECTION AND TRACKING

Our object detection is divided into two components: open-vocabulary object detection (Sec 3.2.1)
and human-centric detection (Sec 3.2.2). We first design an open-vocabulary detection pipeline to
identify all general objects in the images. we also introduce a tailored human-centric detector spe-
cialized for detecting humans, left hands, right hands, and objects held in hands, since distinguishing
between the left and right hands is particularly challenging for standard detectors.

3.2.1 OPEN-VOCABULARY OBJECT DETECTION

We leverage the Qwen2.5-VL-7B model (Bai et al., 2025) to analyze the first frame and iden-
tify salient objects within the scene. Specifically, the model produces a set of object categories
O = {o1, o2, . . . , on} in the video via natural language generation, providing high-level semantic
coverage of the scene content. Given these object categories, we employ Grounded-DINO (Liu
et al., 2023) to localize objects precisely, yielding Bobj = GroundedDINO(I0,O), where I0 denotes
the first frame and Bobj corresponds to the detected bounding boxes with class labels. We query
Grounded-DINO with individual object classes rather than concatenating all classes into a single
prompt. This enforces a one-to-one alignment between detected boxes and semantic labels, thereby
improving detection quality.

3.2.2 HUMAN-CENTRIC DETECTION

For human motion understanding, we adopt a hierarchical pipeline that refines detection from
person- to hand-level. Person detection uses Cascade Mask R-CNN with a ViTDet-H backbone (Li
et al., 2022), ensuring robust localization with high confidence (τperson = 0.8). Each detected per-
son is then processed by ViTPose+ (Xu et al., 2022) to extract whole-body keypoints, including 42
hand keypoints that define initial hand regions, later expanded by 1.5× to cover pose variations. The
Hands23 model (Cheng et al., 2023) performs hand detection with contact-state and hand–object
interaction analysis. For each hand hi, it predicts (bih, s

i
h, c

i
h, b

i
o), where bih ∈ R4 is the bounding

box, sih ∈ {left, right} the laterality, cih ∈ {no contact, self contact, object contact, other contact}
the contact state, and bio the object box if cih = object contact. Hand–person associations are estab-
lished via IoU matching between ViTPose regions and Hands23 detections, requiring IoU > 0.3.

3.2.3 TEMPORAL TRACKING

Temporal coherence is maintained through SAM2 (Ravi et al., 2024), which propagates detections
across video frames using a two-stage tracking strategy. In the initial tracking stage, person and
object bounding boxes from the first frame initialize SAM2’s video predictor. Each entity receives a
unique identifier following a hierarchical scheme: persons are assigned IDs in the range [0, 99] with
sub-IDs for associated body parts (ID ×10 for person, ID ×10+1 for left hand, ID ×10+4 for right
hand), while objects receive IDs starting from 1000. This ID allocation enables consistent tracking
while maintaining semantic relationships between entities.

The refined tracking stage incorporates hand and hand-object detections at keyframes (every 5th
frame) to maintain tracking accuracy throughout the video. The propagation follows: Mt =
SAM2.propagate(Mt−1,Bnew), where Mt represents segmentation masks at frame t and Bnew

contains newly detected bounding boxes. This iterative refinement prevents tracking drift while
maintaining temporal consistency across extended sequences.

3.3 CAPTION GENERATION

The caption generation module uses GPT-4o-mini (Hurst et al., 2024) to transform tracking out-
puts into natural language. Inputs to GPT-4o-mini include (i) video frames sampled at 2 fps, (ii)
structured motion data in JSON containing normalized bounding box trajectories, and (iii) visual
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Q: What obstacle does the ego vehicle 

encounter ahead on its route?

A: A pedestrian crossing the road.

B: A truck crossing the route.

C: A cyclist moving in the same direction.

D: A parked car blocking the lane.

Q: What is the robot doing with its 

right hand?

A: Releasing the wine bottle.

B: Picking up the wine bottle.

C: Doing nothing.

D: Putting down the wine bottle.

AV-Car

Q: Which hand of the person is 

gesturing in the video?

A: Both hands.

B: Neither hand.

C: The left hand.

D: The right hand.

AV-Hand

Q: In which direction does the person 

guide the thread?

A: Away from the fabric.

B: Through the fabric.

C: To the right.

D: To the left.

RoboticsDaily

Figure 3: Examples of four zero-shot FoundationMotion evaluation benchmark.

overlays with color-coded bounding boxes. The structured data encodes explicit spatial and tem-
poral information, enabling fine-grained cross-frame reasoning. Caption generation is guided by
a prompt covering seven dimensions of motion: (1) action and gesture recognition, (2) temporal
sequencing, (3) object–action associations, (4) spatial context, (5) repetition patterns, (6) motion
dynamics (direction, distance, velocity, trajectory), and (7) evolving spatial relationships. This struc-
tured prompting yields comprehensive and consistent captions capturing both fine-grained motion
and high-level semantics.

3.4 QUESTION-ANSWER GENERATION

The QA generation stage creates evaluation questions from captions to assess motion and spatial un-
derstanding. GPT-4o-mini is prompted with both captions and video frames to produce multi-choice
questions targeting specific skills within a structured framework. We design five categories: (1) mo-
tion recognition, identifying entity actions; (2) temporal ordering, capturing event sequences; (3)
action–object association, linking actors and actions; (4) location-based motion, grounding actions
spatially; and (5) repetition counting, recognizing action frequency and patterns. Each question has
four options, with distractors drawn from video content, and correct answers randomly distributed
to avoid position bias.

4 FINE-TUNING WITH FOUNDATIONMOTION FOR STATE-OF-THE-ART
MOTION UNDERSTANDING

4.1 EXPERIMENTAL SETUP

Training data. For training, we take videos from InternVid (Wang et al., 2023), randomly extract
5-second clips from each video, and use the proposed auto-labeling pipeline to obtain captioning
and QA data for each video clip. This results in a total of 467K caption/QA-video pairs.

Evaluation data. We evaluate our model on both public benchmarks and self-labeled benchmarks.
The public benchmarks include MotionBench (Hong et al., 2025) and VLM4D (Zhou et al., 2025),
two common benchmarks that evaluate motion understanding in videos. Concretely, MotionBench
is a benchmark for fine-grained motion understanding covering six motion tasks, built from internet
videos, public datasets, and Unity-simulated data, and containing 5,385 videos with 8,052 carefully
human-annotated QA pairs. VLM4D is a benchmark that is specifically designed to test the spa-
tiotemporal reasoning capability of VLMs and contains 1800 QA pairs over 1000 videos that are
either from real world or simulated.

The self-labeled benchmarks (“how” motion benchmark), on the other hand, are curated to test the
model’s zero-shot generalizability to out-of-distribution videos. Specifically, we evaluate motion
understanding in daily scenes, autonomous vehicles (AV) and robotic scenarios, which are different
from the training videos. For daily scenes, we source videos from 100 Days of Hands (Shan et al.,
2020) and manually label 832 QA pairs that are focused on hand motions and hand-object interac-
tions, we refer to this benchmark as Daily. Similarly, we collect robotic videos from YouTube and
manually label 102 QA pairs on robot motions (Robotics), primarily on the robot’s hands. We also
collect videos from widely used Nuscenes dataset (Caesar et al., 2020) and turn the official manually
annotated motion captions (Li et al., 2025) into 1,968 QA pairs that focus on cars’ motion (AV-Car)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison on motion benchmarks. Accuracy gains/losses are marked green/red. The
highest and second highest value marked with bold / underline. Results are percentages (%). Our
FoundationMotion dataset consistently boosts performance across benchmarks and yields larger
gains than PLM when fine-tuned with the same number of examples. Training with FoundationMo-
tion data brings signiciant improvement on various motion tasks.

Model MotionBench VLM4D AV-Car AV-Hand Daily Robotics

Gemini-2.5-Flash 55.6 54.7 84.1 72.7 75.4 36.1
Qwen-2.5-VL-72B 61.4 50.5 83.3 56.5 80.2 36.7

NVILA-Video-15B 45.7 51.8 84.4 58.1 76.2 21.4
FT w/ FoundationMotion 46.7+1.0↑ 51.9+0.1↑ 91.5+7.1↑ 58.7+0.6↑ 78.6+2.4↑ 36.3+14.9↑
FT w/ PLM 467k 47.5+1.8↑ 52.9+1.1↑ 79.4−5.0↓ 55.6−2.5↓ 77.1+0.9↑ 27.4+6.0↑

NVILA-Video-8B 42.3 49.0 88.9 54.6 79.1 20.4
FT w/ FoundationMotion 42.9+0.6↑ 52.4+3.4↑ 90.6+1.7↑ 61.4+6.8↑ 81.1+2.0↑ 38.2+17.8↑

FT w/ PLM 467k 43.6+1.3↑ 49.1+0.1↑ 87.9−1.0↓ 56.0+1.4↑ 75.0−4.1↓ 26.5+6.1↑

Qwen-2.5-VL-7B 39.1 41.7 80.3 47.2 61.4 28.3
FT w/ FoundationMotion 41.3+2.1↑ 44.9+3.2↑ 82.1+1.8↑ 52.8+5.6↑ 73.1+11.7↑ 32.5+4.2↑

and 108 QA pairs that focus on hands’ motion (AV-Hand). Therefore, we establish four zero-shot
motion benchmarks: AV-car, AV-hand, Daily, and Robotics, with examples from each benchmark
shown in Figure 3. We emphasize that there is no overlap between the FoundationMotion dataset
and the evaluation benchmarks, which means the results are fully zero-shot.

Baselines. We compare our models with state-of-the-art open- and closed-source VLMs including
Gemini-2.5-Flash (Comanici et al., 2025), Qwen-2.5-VL-72B/7B (Bai et al., 2025), and NVILA-
Video-15B/8B (Liu et al., 2025). To evaluate the quality of our dataset, we compare with PLM (Cho
et al., 2025) dataset, a large-scale motion-targeted video QA dataset, by fine-tuning the same model
on either our data or PLM data and compare the performances. For fair comparison, we randomly
sample 467K instances from PLM dataset such that it has the same amount of data as ours.

Implementation Details. Our experiments are conducted on A100 GPUs. For Qwen-related train-
ing, we use llamafactory (Zheng et al., 2024) and follow the recommended settings with a learning
rate of 10−5. For NVILA-related training, we follow the official settings (Liu et al., 2025) and set
the learning rate to 1.5 × 10−5. We apply a cosine annealing schedule and choose Adam as the
optimizer. No weight decay is applied.

4.2 MAIN RESULTS

Using FoundationMotion data for fine-tuning yields clear gains across benchmarks and
datasets. With NVILA-Video-15B, FoundationMotion lifts MotionBench by +1.0%, AV-Car by
+7.1%, and Robotics by +14.9%, while also providing smaller but consistent gains on VLM4D
(+0.1%), AV-Hand (+0.6%), and Daily (+2.4%). For NVILA-Video-8B, FoundationMotion data
improves MotionBench by +0.6%, AV-Car by +6.8%, and Robotics by +17.8%. Similarly, for
Qwen-2.5-VL-7B, FoundationMotion delivers broad gains across MotionBench (+2.1%), VLM4D
(+3.2%), AV-Car (+1.8%), AV-Hand (+5.6%), Daily (+11.7%), and Robotics (+4.2%). These re-
sults demonstrate consistent improvements across diverse motion and spatial reasoning tasks.

Compared with PLM data, fine-tuning on our data with the same budget gives bigger improve-
ments and avoids performance drops. Compared with PLM, our dataset yields larger and more
consistent gains with the same number of examples. On NVILA-Video-15B (FoundationMotion vs
PLM ), FoundationMotion surpasses PLM on AV-Car (+7.1% vs. -5.0%), AV-Hand (+0.6% vs.
-2.5%), Daily (+2.4% vs. +0.9%), and Robotics (+14.9% vs. +6.0%), with PLM slightly better
only on MotionBench (+1.0% vs. +1.8%) and VLM4D (+0.1% vs. +1.1%). On NVILA-Video-8B,
our dataset again dominates: VLM4D (+3.4% vs. +0.1%), AV-Car (+1.7% vs. -1.0%), AV-Hand
(+6.8% vs. +1.4%), Daily (+2.0% vs. -4.1%), and Robotics (+17.8% vs. +6.1%), while slightly
unperforming on MotionBench (+0.6% vs. +1.3%). These results demonstrate that the Foundation-
Motion dataset provides higher-quality supervision than an equal amount of PLM data.
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With FoundationMotion data, 15B and 7B models surpass Gemini-2.5-Flash and
Qwen-2.5-VL-72B on several motion tasks. FoundationMotion-tuned models can even outper-
form much larger models like Gemini-2.5-Flash and Qwen-2.5-VL-72B on several tasks. With
NVILA-Video-15B + FoundationMotion, AV-Car reaches 91.5%, surpassing Gemini-2.5-Flash
(84.1%) and Qwen-2.5-VL-72B (83.3%). The same model also exceeds Qwen-72B on VLM4D
(51.9% vs. 50.5%) and AV-Hand (58.7% vs. 56.5%). These results show that mid-sized open
models, when fine-tuned with FoundationMotion, can surpass much larger closed-source and open-
source models on motion benchmarks.

5 ANALYSIS

The experimental results in the previous section demonstrate the high quality of our dataset; fine-
tuning models with only 46.7k videos (467k QAs) already leads to substantial improvements in
motion understanding. In this section, we analyze the dataset, including ablation studies on the data
curation process (Sec. 5.1) as well as the data distribution and overall statistics (Sec. 5.2).

5.1 DATA CURATION RELATED ANALYSIS

Our data curation pipeline rests on two key factors. (i) By leveraging object detection and trajectory
tracking, we extract precise spatial relations and motion trajectories of all objects in the videos and
feed them into LLMs to generate detailed captions and QA pairs. (ii) We design five complementary
QA types that jointly capture diverse aspects of spatial relationships and motion understanding. In
the following sections, we evaluate the contribution of each factor.

Table 2: Comparison of QA quality from video-only vs. video+bounding box JSONs, evaluated by
GPT-4. Scores are normalized to 0–10 (higher is better) and averaged over three runs.

Evaluation Dimension Video Only Video + BBox JSONs Gain
Fine-grained Action Accuracy 5.8 8.4 +2.6
Motion Detail and Specificity 6.1 8.7 +2.6
Temporal Coherence 6.5 8.9 +2.4
Question Relevance 6.9 8.5 +1.6
Overall QA Quality 6.3 8.6 +2.3

Bounding Box JSONs Improve Caption and QA Generation. To assess the effect of structured
object annotations, we compare QA generation with two input settings to LLMs: (i) raw video
input and (ii) video with bounding box JSONs. We use GPT-4 as the evaluator (see prompts in Ap-
pendix A.4). As shown in Table 2, setting (ii) achieves higher scores across all dimensions, yielding
substantial gains, particularly in fine-grained action accuracy (+2.6), motion detail and specificity
(+2.6), and temporal coherence (+2.4). These improvements highlight the role of bounding boxes
in providing structured spatial signals that help disambiguate subtle motions (e.g., hand reaching,
object sliding) and support richer, temporally coherent QA generation. In contrast, video-only input
often produces generic and less precise descriptions.

Base MR MO AO RC LM ALL
Question Types

0.46

0.48

0.50

0.52

0.54

0.56

Ac
cu

ra
cy

Figure 4: Impact of different question
types on model accuracy.

Different QA Pair Types Provide Complementary
Benefits. We have five different question types, and
in this section we study their impact on model perfor-
mance. We take Qwen2.5-7B as the base model and
fine-tune it with 2,000 data samples for each exper-
iment. As shown in Figure 4, every motion-focused
question type outperforms the baseline (Base = 48%).
Motion Recognition (MR) and Action Order (AO) each
reach 52% (+8.3% over Base), Motion-related Objects
(MO) and Location-related Motion (LM) both achieve
53% (+10.4%), and Repetition Count (RC) delivers the
largest gain at approximately 55% (+14.6%).
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(a)                                                              (b)                                                                  (c)

Figure 5: Dataset statistics. (a) correct answer distribution across options, (b) question length distri-
bution measured in characters, and (c) video duration distribution in seconds.

The aggregated setting (ALL) also attains 55%, indicating that combining types matches the best
single-type improvement and stabilizes performance. The ranking is RC ≈ ALL > MO ≈
LM > MR ≈ AO ≫ Base, suggesting that categories demanding explicit temporal integra-
tion and counting (RC) add the most, while object/spatial grounding (MO/LM) and coarse motion
recognition/ordering (MR/AO) contribute complementary, mid-sized gains. Overall, the diverse
QA types target distinct error modes—temporal precision, object–motion association, and spatial
grounding—whose combined coverage yields consistent improvements over the baseline.

5.2 DATA DISTRIBUTION OF THE FOUNDATIONMOTION DATASET

The FoundationMotion Dataset consists of 46.7k videos and 467k QAs, where each QA pair consists
of a question, four options, an answer, and a category. The task distribution is displayed in Fig. 5.
Fig. 5(a) shows that the correct answers are evenly distributed across the four options, indicating
no annotation bias. Fig. 5 (b) illustrates the distribution of question lengths measured in characters,
where most questions fall between 30 and 80 characters. Fig. 5 (c) reports the distribution of video
durations, which are mostly concentrated within 3–7 seconds, ensuring that the dataset emphasizes
short but motion-rich clips. Together, these statistics highlight that FoundationMotion provides a
balanced QA design, concise yet informative questions, and temporally compact videos well-suited
for motion-centric video understanding.

We show the distributions of correct answers, question lengths, and video durations in Figure 5.
The correct answers are nearly uniformly distributed across the four options (A–D), ensuring no
bias toward a particular choice. Question lengths are concentrated between 40 and 70 characters,
suggesting that the majority of questions are concise while still containing sufficient descriptive
detail. Video durations primarily range from 2 to 6 seconds, providing short yet information-rich
clips that balance annotation efficiency with motion diversity. Together, these statistics indicate that
the dataset is well-balanced and designed to support reliable evaluation of video–language models.

6 CONCLUSION

In this paper, we propose FoundationMotion, an automated motion labeling pipeline for generalized
spatial detection, tracking, and understanding of object behaviors. We demonstrate that fine-tuning
with the FoundationMotion Dataset on various “how” motion benchmarks enables existing open-
source VLMs to outperform larger models, and even compete with or surpass some closed-source
models such as Gemini-2.5-Flash.

Limitations and Future Work. While FoundationMotion has achieved significantly strong results
as demonstrated, its current spatial understanding is primarily limited to 2D space. Understanding
“how” objects move in 3D remains a challenging but essential step toward a more comprehensive
understanding of the real world. For example, while we demonstrate hand movement in this paper,
understanding how each joint moves to form dexterous hand motions in 3D space would greatly
benefit robotics and related applications. We will continue to explore this direction and promise to
release all our code, data, and benchmarks to support further development in this field.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All code, datasets, and benchmarks
associated with FoundationMotion will be publicly released upon publication. Details of the data
generation pipeline are provided in Sec. 3, while the implementation details of fine-tuning are de-
scribed in Sec. 4.1. Our goal is to facilitate research on motion understanding by providing trans-
parent and accessible resources, thereby raising awareness of its importance, establishing a common
standard for the field, and fostering community development. We will continue to maintain and
improve the FoundationMotion codebase and dataset to support long-term reproducibility.
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A APPENDIX

A.1 BASIC STATISTICS OF FOUNDATIONMOTION DATASET

Table 3 summarizes the overall statistics of the FoundationMotion dataset. On average, each video
lasts 17.51 seconds and is paired with about 10 questions. This corresponds to an annotation den-
sity of 1.671 questions per second, indicating a high level of temporal granularity in QA annotations.
The average question length is 55.9 characters, showing that the questions are concise yet sufficiently
descriptive. Together, these statistics highlight that FoundationMotion provides dense and informa-
tive annotations over relatively short video clips, making it well-suited for evaluating motion-level
understanding in video-language models.

Table 3: Overall statistics of the FoundationMotion dataset.

Metric Value
Average video duration 17.51 seconds
Average questions per video 10.04
Average annotation density 1.671 questions/second
Average question length 55.9 characters

A.2 PROMPTS USED FOR CAPTION GENERATION

Background
You are a detailed video caption generation tool focusing on object motion analysis and
spatial relationships. You generate comprehensive captions for videos based on the video
itself and the provided object motion information drawn on the video and in JSON.

Motion label
The motion information for the video in JSON format is as follows {motion info}. It
captures bounding box locations for various objects and their interactions in each frame of
the video.

In the JSON format, it starts with object id, e.g., "object 00", "object 01",
"object 02", etc. Under each object id, there are "bbox", "object type" and
"interactions" keys for the object. The "bbox" key contains a list of bounding boxes
of the object in each frame throughout the video. The "object type" key specifies the
category of the object (e.g., "person", "cup", "ball", "car", etc.).

Under "interactions", there are lists of other objects that this object is interacting with
or spatially related to in each frame. The bounding boxes are in the format of [left, top,
right, bottom] where the values are normalized to [0, 1] according to video width and
height as in [left/width, top/height, right/width, bottom/height].
If the object is not detected in the frame, the bounding box value will be None in the list at
the corresponding frame index. If objects are not interacting with any other objects in the
frame, then "interactions" will be None at the corresponding frame index.

The detected bounding boxes are also drawn on each frame of the video: different object
types with labels on top of colored bounding boxes for easy identification.
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A.3 PROMPTS USED FOR QA GENERATION

Background and task
You are provided with a video and a video caption that describes object motions and spatial
relationships. Your task is to generate a list of concise questions and corresponding answers
that evaluate a viewer’s understanding of object motion analysis and spatial relationships.
Requirements

Question coverage should focus on five main categories:
**1. Motion Recognition Questions:** - **Action description**: What action is [object/per-
son] performing? (e.g., raising hand, skiing, cooking, walking, etc.) - **Activity identifica-
tion**: Describe the specific motion or gesture being performed - **Behavior characteriza-
tion**: What type of movement pattern is observed?
**2. Action Order Questions:** - **Temporal sequence**: Which action happens first/sec-
ond/last? - **Action timing**: What action occurs before/after [specific action]? - **Se-
quential events**: In what order do the actions unfold?
**3. Motion-related Object Questions:** - **Actor identification**: Which object/person
performs [specific action]? - **Object-action association**: What does [object] do in the
video? - **Agent-activity linking**: Who or what is responsible for [specific motion]?
**4. Location-related Motion Questions:** - **Spatial motion context**: Where does [ac-
tion] take place in the scene? - **Position-based activity**: What motion happens in the
[left/right/center/upper/lower] part of the scene? - **Spatial properties**: How does the lo-
cation affect or relate to the motion?
**5. Repetition Count Questions:** - **Frequency counting**: How many times does [ac-
tion] occur? - **Repetitive patterns**: How often is [motion] repeated? - **Cyclical behav-
iors**: What is the count of [repeated action]?
**6. Traditional Motion Analysis Questions:** - **Direction**: Which direction does [ob-
ject] move? (left, right, up, down, diagonal directions) - **Distance**: How far does [object]
move? (specific measurements, relative distances) - **Velocity**: How fast does [object]
move? (speed characteristics, acceleration patterns) - **Trajectory**: What path does [ob-
ject] follow? (straight, curved, circular, zigzag patterns)
**7. Spatial Relationship Questions:** - **Relative positions**: Where is [object A] po-
sitioned relative to [object B]? (left/right/up/down/front/back) - **Distance relationships**:
How far apart are [object A] and [object B]? - **Positional changes**: How does the spatial
relationship between [object A] and [object B] change?
Answer requirements

- Answers must be concise and directly address the question. - Include specific directional
terms, distance measurements, and spatial descriptors when available. - Do not include extra
explanations or thought processes in the answers.
Task

First, generate a list of questions and answers as below, with an empty line between each
question and answer pair. Do not include any other texts in the output. Q1: ... A1: ...
Here are example questions and answers: Q1: What action is the person performing with
their right hand? A1: The person is raising their right hand above their head.
Q2: Which action happens first in the video? A2: The person picks up the cup before stirring.
Q3: What object performs the cutting motion? A3: The knife performs the cutting motion on
the vegetables.
Q4: Where in the scene does the stirring action take place? A4: The stirring action takes
place in the upper-left area of the kitchen counter.
Then, for each question and answer, turn the single answer into 4 multiple choices with rea-
sonable choices generated from the caption but distinctive from the correct answer. Please
make sure each choice in the four choices is distinctive and do not have ambiguity with any
other choice. Check the video content to make sure to never generate ambiguous multiple
choices for the same question. Always put the correct answer at the first choice.
Output format

The output format: output a list of strings and each string contains a question and its corre-
sponding multiple choices as below. The number of questions equal to the number of items
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in the list. Each question must have 4 choices listed, after A, B, C, D. [ ’Q1: ... A: ... B: ... C:
... D: ...’,
... ]
The correct answer is always at A. Do not include any other texts in the output. with an empty
line between each question and answer pair.
Focus on generating questions that test understanding of: - Motion recognition and action
identification (raising hand, cooking, walking, etc.) - Action temporal sequences and ordering
- Object-action associations and actor identification - Location-based motion analysis and
spatial context - Repetition counting and frequency analysis - Object movement directions
(left, right, up, down, diagonal) - Movement distances and trajectories - Movement speeds and
velocity patterns - Spatial positioning (left/right/up/down relationships) - Changes in spatial
arrangements - Object proximity and distance relationships
Please generate your questions and answers accordingly, focusing on motion analysis and
spatial relationships described in the caption.

A.4 PROMPTS USED FOR EVALUATE QA QUALITY

You are an expert evaluator of video-based question–answer generation.
Given two sets of QAs for the same video (Set A: generated with video only; Set B: generated
with video + bounding box JSONs), rate each set independently on a scale of 0–10 for the
following dimensions:
1. Fine-grained action accuracy (does the QA capture detailed actions precisely?)
2. Motion detail and specificity (does it describe how objects move, not just that they move?)
3. Temporal coherence (are the actions ordered and consistent over time?)
4. Question relevance (are the QAs relevant and informative about the video?)

A.5 QUESTION-ANSWER EXAMPLES

QA type 1: Motion Recognition

What action is the person performing with their right hand?

A. The person is raising their left hand.
B. The person is writing with a pen using their left hand.
C. The person is manipulating the red object with their right hand.
D. The person is resting both hands on their lap.
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QA type 2: Motion-related Objects

What object performs the action of holding during the presentation?

A. The speaker’s right hand holds an object, likely a microphone or remote.
B. The speaker’s right hand holds a glass of water.
C. The speaker’s left hand holds a phone.
D. The speaker’s left hand holds a notepad.

QA type 3: Action Order

Which action happens first in the video?

A. The child picks an orange before standing still.
B. The child stands still before reaching for the oranges.
C. The child looks around before reaching for the oranges.
D. The child walks towards the oranges before reaching.

QA type 4: Repetition Count

5. How many times does the person gesture with their hands?

A. The person gestures with their hands three times.
B. The person gestures with their hands only once.
C. The person does not gesture with their hands at all.
D. The person gestures with their hands multiple times throughout the video.
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QA type 5: Location-related Motion

Where in the scene does the walking action take place?

A. The walking action takes place along a path in the center of the frame.
B. The walking action takes place on the left side of the frame.
C. The walking action takes place indoors.
D. The walking action takes place in a park.
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