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1 Introduction

Recent advances in transformer architectures [8,4] have introduced powerful new
ways of representing textual information as meaningful numerical vectors, en-
abling models to process information at a semantic level and capture relation-
ships beyond simple surface features. Such approaches are already integrated
into common search engines [5] and demonstrate great potential across a va-
riety of domains. In textual proofs in olympiad-style mathematics problems,
where solutions often rely on novel reasoning, it remains difficult to system-
atically identify problems that train students to recognize where a particular
line of reasoning should be applied. To address this challenge, we investigate
transformer-based pipelines for searching similar problems through the seman-
tic understanding of their solutions. While earlier attempts in this direction
[3] primarily grouped problems by topic, we believe that solving strategy is a
more fine-tuned and informative criterion. Accordingly, our approach explores
Number Theory olympiad problems, specifically those from 104 Number The-
ory Problems by Titu Andreescu [1], and evaluates how effectively transformer
models can group problems based on the similarity of their solutions.

Problems from 104 Number Theory Problems were extracted along with their
solutions in order to evaluate the strategy recognition capabilities of BERT-
family models, which are well known for their effectiveness in summarization
and semantic understanding [7,2]. We designed and tested three distinct datasets:
Textbook Dataset, Text Piece Dataset, and Ranking Dataset.

The Textbook Dataset consists of problem—solution pairs labeled by book
chapter, with the task of clustering problems based on similarity scores derived
from BERT embeddings. The Text Piece Dataset is an engineered collection
of short text segments representing specific mathematical strategies, where the
task was again clustering, but this time grouping strategy-oriented text pieces
rather than entire problems. Finally, the Ranking Dataset is also engineered
and consists of tuples of four problems, where one problem serves as the anchor
and the model’s objective is to rank the remaining three according to their
similarity to this anchor.

As shown in Table 1, problems can be clustered into groups, with the correct
grouping being [1,4] and [2, 3]. Similarly, in the ranking task from Table 2, the
correct output would be [2, 3, 4].

In our experiments, we evaluated the impact of domain adaptation and con-
text window sizes on the ability of LLMs to perform these tasks, using a variety of
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ID|Problem Text True Label

1 |Problem. Compute 17 mod 5. Solution. Since 17 + 5 = 3 with remain-|Modular Arithmetic
der 2, 17 mod 5 = 2.

2 |Problem. Find the remainder when 1234 is divided by 7. Solution.Modular Arithmetic
1234 = 7 = 176 with remainder 2, so the remainder is 2.

3 [Problem. Using Euler’s theorem, find 3'™° mod 7. Solution. Since| Euler Theorem
©(7) =6 and 3° =1 mod 7, 100 mod 6 = 4, thus 3'° =3* =81 =4
mod 7.

4 [Problem. Calculate 5" mod 13 using Euler’s theorem. Solution. Since| Euler Theorem
©(13) = 12, 5" = 1 mod 13. Because 40 mod 12 = 4, 5% = 5* =
625 =1 mod 13.

Table 1. Example Problems for Clustering Task

ID|Group ID|Problem Text Label

1 1 Problem. Determine if 72 is divisible by 8. Solution. Since 72 + 8 = 9|Anchor
with no remainder, 72 is divisible by 8.

2 1 Problem. Check whether 56 is divisible by 7. Solution. 56 + 7 = 8|Golden
exactly, so 56 is divisible by 7.

3 1 Problem. Find the remainder when 56 is divided by 7. Solution. 56+7 =| Silver
8 remainder 0, so the remainder is 0.

4 1 Problem. Calculate Euler’s totient function ¢(12). Solution. The prime| Wrong
factors of 12 are 2 and 3, 50 p(12) =12x (1—3) x (1 —3) =4.

Table 2. Example Problems for Ranking Task

BERT models. For similarity computation, each dataset element was tokenized
into chunks, and the average of the [CLS] token embeddings was recorded. Prob-
lem similarity was then measured using cosine similarity, allowing us to identify
and compare semantically related instances.

2 Results and discussion

Our investigation shows that current encoder models struggle with mathematical
strategy recognition reaching an accuracy of at most 48%. We also found that,
in our setup, the context window has a greater impact than domain adaptation.
Finally, we observed that training with textbook chapter annotations, such as
those in 104 Number Theory Problems [1], is ineffective, while human-engineered
datasets yield more meaningful results. Future work could focus on construct-
ing larger benchmarks that reward a deeper understanding of problem-solving
structure for training purposes, as well as on exploring hybrid models that com-
bine symbolic reasoning [6] with encoders. Additionally, improved approaches for
handling texts that exceed the model’s context window could be investigated.
Possible directions include developing a tailored encoder model with a larger con-
text window or exploring alternative methods for embedding long texts beyond
simple average pooling.
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