Safety Beyond Verification:
The Need for Continual, User-Driven Assessment of AI Systems

Siddharth Srivastava', Georgios Fainekos?, Pulkit Verma®, and Daniel Bramblett!
! Arizona State University
2Toyota Motor North America, Research & Development
3Massachusetts Institute of Technology
{siddharths,drbrambl } @asu.edu, georgios.fainekos@toyota.com, pulkitv@mit.edu

Abstract

How should we assess the safety and functional-
ity of taskable Al systems that are designed to con-
tinually learn and solve user-desired tasks in user-
specific environments? From household robotics to
digital assistants that can make potentially danger-
ous changes to their operational environments, this
question is central to realizing the promise of Al

We investigate why answering this question re-
quires more than an extrapolation of existing
paradigms for verification and validation, and iden-
tify concrete desiderata and promising directions
for research on formal assessment of Al systems.

1 Introduction

The vast majority of today’s engineered systems operate in
an ecosystem where well defined Operating Design Domains
(ODD) yields safety. Designers play a key role in evaluating
safety and defining operational envelopes for systems with
narrow scope of functionality. E.g., conventional automo-
bile systems run through various empirical tests, semi-formal
and formal verification pipelines. In addition, they are sup-
ported by an ecosystem of product support, safety and main-
tenance organizations, all of which make system expertise
readily available to non-expert users. Taskable Al systems
(henceforth referred to as “Al systems”) invalidate both of
these conventional avenues for ensuring safe operation. Such
systems are commonly formulated as agents that carry out
some form of sequential decision making, a.k.a. planning.
Such systems often utilize machine learning to improve their
computational performance, although our discussion also ap-
plies to Al systems that do not utilize learning.

Conventional verification and validation (V&V) paradigms
evaluate whether a given component or system satisfies
designer-formulated functional properties such as safe lead
distance in adaptive cruise-control [Loos et al., 2011; Hasuo
et al., 2023]. The designers (broadly construed as the team
or the organization responsible for creating the product) take
the responsibility for designing safety properties, and iterat-
ing over system designs to create specifications of expected
behavior (possible executions) and safety constraints, and de-
signs that match these specifications.

However, taskable Al systems are designed to address sit-
uations where the designer need not know the objectives that
their users may have in mind — prior knowledge of expected
behaviors is even less likely. A system doesn’t need to change
after deployment to invalidate the assumption of prior knowl-
edge of expected behaviors. Indeed, taskable Al systems are
typically designed to adapt to the environment and compute
new behaviors for achieving user-desired tasks even when
they are not actively learning and/or changing the algorithms
or heuristics used to plan.

As a result, even though conventional notions of verifica-
tion and validation (V&V) have their uses for taskable Al
systems, they will not be able to address the emerging chal-
lenges. For example, they can still be used to assert and verify
physical safety properties that are expected to be maintained
across all possible tasks and environments. E.g., robot de-
signers can develop physical safety and operability envelopes
for their robot and for specific environments, e.g., maximal
accelerations and velocities. More generally, traditional V&V
methods can be used to verify and monitor traditional de-
signer defined safety rules Hashemi et al. [2023a]; Hekmat-
nejad et al. [2019]. While such properties are necessary, they
are clearly not sufficient for ensuring safety.

For instance, safety assessment for a general purpose hos-
pital robot goes beyond physical movement. It is essential
to determine whether it could deliver critical medication to
the wrong room, and whether it could be relied upon to as-
sure delivery of life-saving medication in an emergency situ-
ation. Knowledge of possible objectives, possible executions
or user-specific safety constraints is untenable as a running
assumption in ensuring the safety of such systems.

2 Continual User-Driven AI Assessment

We argue that the assessment of Al systems needs to ad-
dress fundamentally different questions that go beyond those
addressed in existing paradigms for system evaluation and
safety assurance. Fig.1 illustrates these differences. In
the conventional paradigm (shown on the left), the designer
plays a central role in transferring users’ intent to specifica-
tions and ensuring, through formal and empirical methods
that the system design meets these specifications [Tuncali et
al., 2020; Hashemi et al., 2023a; Yaghoubi and Fainekos,
2019a]. In some forms of this paradigm the designer uses
automated synthesis from specifications to go directly from
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Figure 1: Conventional system verification (L) and user-driven as-
sessment of Al systems (R). Solid boxes indicate components avail-
able at design stage. Dashed boxes indicate components available
for systems that don’t use learning after deployment.

the functional specifications to correct-by-construction sys-
tem designs [Hashemi et al., 2023b; Yaghoubi and Fainekos,
2019b].

In contrast, assessment of an Al system includes sev-
eral new components. The user typically possesses a la-
tent task/objective, which they typically enunciate as a par-
tial specification. Such colloquial specifications are typically
incomplete, and need to be juxtaposed with common-sense
knowledge and context. E.g., “I"d like some Arabica cof-
fee” could refer to the beverage or the beans depending on
the situation. An Al agent needs to interact with the user to
internalize a goal, or control objective based on their partial
specifications. This interaction could employ multi-modal in-
terfaces including text, speech, and gestures.

The agent then utilizes some form of sequential-decision
making algorithms to synthesize the behavior for achieving
that internalized objective. In practice, implementations of
these algorithms are typically suboptimal either by design
(e.g., an algorithm that achieves local optima), or due to
practical reasons (e.g., an implementation that places a time-
bound on an algorithm that is guaranteed to converge to an
optimal). Furthermore, the agent’s behavior synthesis needs
to take into account constraints that maybe unknown to the
user, e.g., a robot manipulating large atypical shaped objects,
or wider domain-specific safety guidelines that may be man-
dated for all systems in a given situation such as a hospital
or factory environment. Thus the designer is no longer in the
loop — not only do they not control the design of the “exe-
cutable program or controller” that dictates system behavior,
for Al systems designers will not be aware of the system’s
current objectives and constraints.

These differences are essential to empowering users and
placing them closer to the central role in utilizing their Al
agents in tasks that they desire. Unsurprisingly, this also di-
minishes the designer’s control on the overall behavior of the
Al system thereby necessitating a new, user-driven Al assess-
ment paradigm.

We discuss the key challenges in this new paradigm of Al
assessment below.

Bespoke product support and maintenance processes
The current paradigm for safe usability of complex systems
relies on an eco-system of product support driven by a diverse
body of technicians with low-barriers to entry. If a driver ex-

periences unexpected vibrations while braking, a stop at the
local garage can help diagnose and repair possible safety is-
sues. This may be feasible due to the finite number of compo-
nents and specific functionality and variability among similar
products being deployed.

Al systems, on the other hand, are expected to adapt to
their environments. With systems changing to meet idiosyn-
crasies of user-specific tasks and environments, it becomes
all but impossible to utilize the economies of scale in product
support: debugging a deployed Al system or characterizing
what it can safely achieve would require an expert to focus
on that particular system — an effort whose results would not
easily transfer to other instances of the same system, each of
which are expected to adapt to their own users and deploy-
ment environments.

Dynamic synthesis and incorporation of safety properties
Since users’ tasks and environments are not known a priori,
one of the major open questions involves effectively gener-
ating, with feedback from the user, safety properties relevant
to the user’s intent. This is a critical departure from the con-
ventional paradigm, where experts carefully scope operating
environments and corresponding safety properties for a lim-
ited range of functionality. In addition, once acquired, these
safety properties need to be incorporated in planning and rea-
soning algorithms used for behavior synthesis, and they need
to be updated during execution while incorporating interven-
tions and feedback from the user.

Overall capability assessment While the central question
for conventional systems can be stated as “Will a given im-
plementation achieve (the designers’) functional specifica-
tions under assumptions on the environment?”’, the central
question for Al assessment is significantly more user-centric:
“Will it be safe for a user to use their Al system for the task
and environment that they have in mind?” This question ne-
cessitates that the user understands the scope of safe oper-
ation of their current Al system. Addressing this problem
requires approaches for dynamically identifying what an Al
system can and can’t do and the impact of these capabilities
on user-desired notions of safety as well as safety consider-
ations stemming from regulatory guidelines. Early work in
this direction shows promise in identifying Al system capa-
bilities by interrogating the system through a minimal, query-
response interface [Verma et al., 2021, 2022, 2023].

Acquisition of user intent Typically, users express their in-
tent inaccurately through an instruction or a command to the
Al system, which needs to be translated into a goal or an ob-
jective function and associated cost functions for the agent’s
behavior. Absence of robust methods for addressing this as-
pect leads to problems such as reward miss-specification and
wireheading [Russell et al., 2015; Amodei et al., 2016].

Reconciling behavior synthesis with user intent While
conventional V&V paradigms assume that designers have ac-
cess to the code that controls a system’s sensors and actua-
tors, in Al systems, the code available at design stage (e.g.,
the DQN algorithm [Mnih et al., 2015]) controls the agent’s
computation, which generates, post deployment task-specific
executable sensing and control actions. In the case of Al
systems, the executable controller is therefore specific to the



user’s intent and the current operating environment, and un-
determined during system design.

Almost all practical implementations of planning and rea-
soning algorithms produce suboptimal behavior. Further-
more, users are often unaware of constraints on the Al sys-
tem’s abilities (e.g. a robot’s kinematic or dynamic con-
straints). Consequently, as evidenced by research on explain-
able planning and learning, the computed behavior often be-
lies users’ expectations for what the system should be doing.
User-driven assessment of Al systems needs to ensure that
the algorithms used for behavior synthesis yield executions
that comply with the safety properties acquired as discussed
above, in the context of user-specific tasks in user-specific en-
vironments.

Differential assessment Currently deployed Al systems al-
ready feature dynamic updates (e.g., [Jones, 2021]). This can
leave users unable to determine whether the updated system
can still perform the tasks they had in mind, in their environ-
ments. A full re-assessment of the Al system from scratch
would be wasteful with every change in the task, the envi-
ronment or the system itself. Early work in this direction in-
dicates that differential assessment paradigms can be more
efficient [Nayyar et al., 2022], although much remains to be
done in making these methods practical and more robust for
the real world.

Requirements monitoring Even though the verification of
safety requirements at design time may not be possible, it may
be possible to monitor safety requirements that are identi-
fied during design stage, at runtime [ Yamaguchi et al., 2023].
New opportunities arise on how such safety requirements can
be extracted from user intent.

3 Promising Research Directions

Alignment with users’ intent Ensuring that Al systems re-
main aligned with users’ intentions represents one of the most
fundamental challenges in user-driven assessment [Gabriel
and Ghazavi, 2022]. Value alignment research has identi-
fied several critical failure modes that emerge across different
gaps in the user-driven assessment pipeline.

Reward misspecification occurs when users inadvertently
reward observations, beliefs, or correlated features rather than
the actual desired outcome, manifesting primarily in the gap
between user intent and formal specification [Russell et al.,
2015; Amodei et al., 2016]. In terms of the overall frame-
work shown in Fig. 1, this issue manifests primarily in the
gap between the user’s intent and their specification (shown
on the right in Fig. 1). Users may lack the vocabulary or un-
derstanding to correctly articulate what they want the Al sys-
tem to optimize for, leading to systems that achieve the literal
specification while missing the intended goal.

Wireheading represents a more severe alignment failure
where the agent manipulates its reward function directly, such
as by convincing the user to change their requirements or by
adding noise to the reward signal [Ring and Orseau, 2011;
Everitt and Hutter, 2016]. This issue arises in the gap between
the user’s specification and the agent’s internalized goal or
control objective (shown on the right in Fig. 1), highlighting

the challenge of maintaining reward integrity throughout the
system’s operation.

The off-switch problem exemplifies one of the most com-
plex alignment challenges: Al systems may resist being
turned off because continuation is instrumental to achieving
their assigned objectives [Hadfield-Menell et al., 2017]. In
terms of the overall framework shown in Fig. 1, this prob-
lem spans multiple gaps in the assessment pipeline, affecting
both how users specify their requirements (they may not ex-
plicitly state that the system should be interruptible) and how
the agent interprets and pursues its objectives. The challenge
arises because rational agents that maximize expected utility
cannot achieve their objectives if they are turned off, creat-
ing strong incentives for self-preservation and resistance to
shutdown commands. Solving this requires developing sys-
tems that maintain a cooperative stance toward human over-
sight and preserve user agency even when such intervention
conflicts with goal achievement — a property known as corri-
gibility [Soares et al., 2015].

Existing research also investigate methods for embed-
ding preferences into the reward function, but even expert-
designed rewards can lead to unintended or unsafe behav-
iors [Booth et al., 2023]. In partially observable environ-
ments, this misalignment is compounded when users spec-
ify preferences over the true state that agents cannot directly
observe. A promising alternative to this approach would al-
low users to specify high-level preferences on desired agent
behavior. Belief-state query (BSQ) policies Srivastava et al.
[2013] provide such a mechanism. They allow the user to
specify preferred agent behavior for different areas of the
agent’s belief-state space without specifying quantitative re-
wards/costs. However, naive approaches for specifying such
preferences can lead to blinkered behavior where the agent
turns off its sensors to achieve belief states conducive to “low-
cost” behavior. Our recent results on the topic show that this
can be done in a manner that avoids blinkered behavior in par-
tially observable settings [Bramblett and Srivastava, 2024].
Theoretical results show that user-preferences expressed as
belief-state query policies can be effectively refined into exe-
cutable agent behavior through a finite search process; empir-
ical results show that the resulting algorithm is more efficient
in finding the optimal user-aligned policy. These results pro-
vide a promising foundation that can be developed to express
more diverse user requirements. They also open the door to
interactive algorithms for automatically translating users’ la-
tent preferences into BSQ policies, which can then be refined
into executable agent policies.

Future directions in alignment research must address these
failure modes through robust frameworks that can dynami-
cally adapt to user intentions while preserving safety con-
straints. This includes developing methods for better intent
specification, creating alignment mechanisms that resist gam-
ing and manipulation, and ensuring that Al systems remain
responsive to human oversight throughout their operational
lifetime.

Preventing side effects and reward hacking Side effects
are special cases of reward misspecification that arise in sit-
uations where it is infeasible for the user to specify what the
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Figure 2: The personalized Al assessment module uses the user’s
preferred vocabulary, queries the Al system, and delivers an inter-
pretable model of the Al system’s capabilities.

agent must not do. As such they arise due to a discrepancy
between the user’s intent and their specification. Various ap-
proaches have been considered for addressing side effects in
particular. Krakovna et al. [2020] consider side effects as the
results of agent behavior that interfere with potentially un-
stated future tasks, and propose methods for mitigating them
by specifying a distribution over expected future tasks and
goals. Saisubramanian et al. [2021] view side effects as vi-
olations of lower priority objectives, which may have been
difficult to specify under the agent’s necessarily inaccurate
model of the world. In their approach, the agent can learn
to avoid side-effects by getting feedback from the user or by
interacting with the real world in an effort to improve their
models.

Agent interrogation A critical component of user-driven
Al assessment is the ability to understand what an Al sys-
tem can and cannot do without making strong assumptions
about its internal design or implementation. This addresses
the broadest span of taskable Al system operation shown in
Fig. 1, addressing the consistency of agent’s executions with
the user’s specification, incorporating nuances of the agent’s
suboptimal behavior synthesis algorithms.

Ideally, we need a personalized Al-assessment module
(AAM) (Fig. 2) that can interrogate the Al system to de-
rive a model of its capabilities. Our recent work develops
AAMs that take as input (i) the agent (ii) a compatible sim-
ulator which the agent can simulate its primitive action se-
quences; and (iii) the user’s concept vocabulary, which may
be insufficient to express the simulator’s state representation.
Such assumptions on the agent are common. In fact, use
of third-party simulators for development and testing is the
bedrock of most of the research on taskable Al systems to-
day (including game playing Al, autonomous cars, and fac-
tory robots). Providing simulator access for assessment is
reasonable as it would allow Al developers to retain freedom
and proprietary controls on internal software while support-
ing calls for assessment and regulation using approaches like
ours. AAM then queries the Al system and receives its re-
sponses. At the end of the querying process, AAM returns a
user-interpretable model of the Al system’s capabilities. This
approach’s advantage is that the Al system need not know the
user vocabulary or the modeling language. AAMs can help
make arbitrary Al systems compliant with Level II assistive
Al — systems that make it easy for users to learn how to use
them safely [Srivastava, 2021].

Most simulator-based and analytical-model-based Al sys-
tems can easily answer the kind of questions discussed earlier.
However, identifying the high-level capabilites of the Al sys-

tem and generating the right set of questions to ask the Al
system to efficiently learn a model of system’s capabilities is
a challenging problem.

Our early research in the area showed that it is possible
to design AAM algorithms that can efficiently interrogate Al
systems and derive a user-interpretable models of their capa-
bilities in stationary, fully observable, and deterministic set-
tings[Verma et al., 2021]. Furthermore, learned models were
found to be causally accurate [Verma and Srivastava, 2024],
unlike the approaches that learned agent models through pas-
sive observations. These methods were later developed to
yield AAMs that can discover high-level capabilities of an Al
planning agent [Verma et al., 2022] in deterministic settings
as well as to learn models of known capabilities in stochastic
settings Verma et al. [2023].

Autonomous benchmarking and evaluation Most exist-
ing assessments of LLM/VLM agents rely on handcrafted or
static evaluation examples, raising concerns about accuracy
and susceptibility to the Benchmark Contamination Problem
when agents are trained on test data. Manually crafting new
examples to prevent this problem is expensive and tedious.
Rather, being able to automatically create novel evaluation
examples is necessary to avoid these problems. Recent work
has explored synthesizing evaluation problems by chaining
formal language rules and using LLMs to construct stories
[Tian et al., 2021; Clark et al., 2020; Saparov and He, 2023;
Patel et al., 2024]. Existing approaches focus on multiple-
choice or short-answer formats while extending to evaluating
free-form text generation remains an open problem.

Recent work by some of the co-authors shows that it is in-
deed possible to design autonomous evaluation paradigms for
LLMs while overcoming the benchmark contamination prob-
lem. This work focuses on formal translation tasks that in-
volve the synthesis of formal language from natural language
descriptions and vice versa. Such tasks constitute a signif-
icant fraction of LLM use cases, and are often featured in
human-robot or human-Al interfaces. The Vuto3VAL sys-
tem [Karia er al., 2024] autonomously evaluates semantic
accuracy in formal language translation tasks. It first cre-
ates formal language expressions via a grammar. The eval-
uated LLM is prompted to produce a description of each ex-
pression and then reproduce the expression from just the de-
scription. A formal prover then verifies whether the orig-
inal and reconstructed expressions are semantically equiva-
lent, making the evaluation robust to paraphrasing. Empirical
evaluation using Yuto3VAL avoids benchmark contamination
problems and revealed that the accuracy of SoTA LLMs and
LRMs falls to 50% for specifications with twenty logical op-
erators (real-world specifications typically use hundreds of
operators). This process opens the door to other evaluation
pipelines that feature more expressive languages as well as
more specific notions semantic accuracy.

Monitoring, runtime verification, and safety filters
Monitoring and safety filters have the potential to become
the operational backbone of User-Driven Assessment of Al
Systems, transforming a largely offline safety analysis into a
continuous runtime verification on what the system is allowed
to do in an online operation. Methods that allow for real-time



user-tunable risk monitoring of safety specification violations
and hard safety envelopes from control-barrier filters could let
non-developer stakeholders detect emerging mis-alignment
and automatically constrain the Al’s actions before a viola-
tion becomes inevitable.

The access to a black-box simulator — as in the case of
AAM - or supervised system operation allows for collect-
ing training and calibration data on the expected Al system
operation. Then, user expressed requirements can be en-
coded in Signal Temporal Logic (STL) [Bartocci et al., 2018]
and monitored for safety even under distribution shifts during
real-world autonomous deployment [Zhao et al., 2024]. Dis-
tribution shifts on predicted system behavior can occur due
to the simulation-to-real gap, or due to unknown unknowns
during system operation. More expressive specification lan-
guages than STL may be necessary to capture user require-
ments for embodied Al systems Hekmatnejad ef al. [2024].

For user taskable Al systems, the developer can further
raise the assurance level by layering risk-aware Control Bar-
rier Functions (CBFs) to shield the behavior of learning com-
ponents. For instance, Zhang et al. [2025] integrate con-
formal prediction into CBF synthesis so that the user’s ac-
cepted risk level is enforced even as the state-estimation error
changes over time. Wang et al. [2025] propose an alterna-
tive strategy to crowded environments with CVaR-adaptive
barriers that automatically widen or narrow the safety mar-
gin in response to distribution shift. Such safety filters com-
plement user-driven Al alignment. The agent may still exe-
cute any behaviour that satisfies the user’s task, but the CBF
layer acts as a formal safety net that guarantees that those be-
haviours remain within an acceptable risk envelopes. Thus,
simulation-derived taskability and deployment-time safety
could be reconciled through a single pipeline that couples
AAM-based capability discovery with statistically calibrated,
barrier-function enforcement.
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