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Abstract— Time- and frequency-domain studies of EEG 

signals are most commonly employed to study the electrical 

activities of the brain in order to diagnose potential neurological 

disorders. In this work, we applied the global coherence 

approach to help estimating the neural synchrony across 

multiple nodes in the brain, prior and during a seizure. The ratio 

of the largest eigenvalue to the sum of the eigenvalues of the cross 

spectral matrix at a certain frequency and time allowed 

detecting a strong coordinated neural activity in alpha sub-band 

for the frontal lobe epilepsy. Kruskal Wallis test reveals that 

global coherence is an efficient tool before the seizure for the 

temporal lobe epilepsy in a wide range of frequencies from Delta 

to Beta sub-bands.  

 
Clinical Relevance— The work introduces global coherence as 

a new and efficient feature in prediction of seizure and 

specifically for the frontal lobe epilepsy. 

 

I. INTRODUCTION 

Seizure, a neurological disorder, affects more than 70 

million worldwide and there is not yet a concrete treatment 

for a majority of patients [1, 2]. A seizure activity is generally 

associated with a sudden and excessive electrical discharge in 

a part or the entire brain. During the epileptic seizure, the 

normal activity of the brain is interrupted, which affects an 

individual’s behavior and cognitive function [3]. A reliable 

automated system that can predict seizure will help 

caretakers/physicians in monitoring and treating the disorder 

thus, enhancing the patient’s quality of life and safety. 

Electroencephalogram (EEG) and intracranial 

electroencephalography (iEEG) have been used to unravel and 

understand the mechanisms that can help identifying different 

neurological disorders, such as epilepsy, and studying the 

functioning and behavior of the brain [4, 5]. The proposed 

work aims to introduce a novel and efficient measure to help 

predicting epileptic seizures based on invasive EEG electrode 

recordings. The results could provide further insight into the 

brain behaving and underlying mechanisms that are behind 

various forms of epilepsy. 

Intracranial EEG (iEEG) is an electroencephalography 

recording utilizing invasive techniques or employing invasive 

intracranial electrodes implanting in the brain during surgery. 

So, compared to the scalp electrodes, the seizures can be 

identified typically earlier through the intracranial electrodes 

[6]. 
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The International League Against Epilepsy (ILAE) divided 

epileptic seizures into partial or focal and generalized seizures. 

Focal seizures originate in a limited region of the brain and 

may spread to other regions. On the other hand, generalized 

seizures are initiated in bilateral hemispheric areas, which 

appear to be simultaneously involved [7]. Though there are 

different forms of seizures, we focused on those that happen 

“locally”, mainly in the frontal and temporal lobes. 

Frontal lobe epilepsy is the second-most common form of 

focal epilepsy after the temporal lobe. Frontal lobe seizures are 

usually brief and tend to occur during sleep [7-9]. Few 

researches have been done for patients with frontal epilepsy 

due to the complexity of this kind of seizure [10]. Since only a 

small number of papers have been published, then research in 

frontal lobe epilepsy is still valuable to be considered.  

Diagnose of the frontal epilepsy is rather hard due to having 

similar symptoms as sleep disorder or night terror and 

psychiatric [11]. 

Many algorithms have been developed including Phase-

Amplitude Coupling Measure [12], Phase and Amplitude 

Lock Values [13], Cross-Frequency Coupling [14] and there 

is still room to enhance or develop new techniques that can 

help us to better detect, analyze, and study the seizure and its 

mechanisms. 

 To distinguish between the normal and abnormal 

synchronization of a neural activity, a coherence-based 

analysis can be proposed. Coherence is a measure that 

provides synchrony between pairs of brain regions while 

global coherence offers coordinated neural activity across 

multiple brain areas. Unlike pairwise coherence, global 

coherence gives a better understanding of neural 

synchronization across several brain regions due to rendering 

a higher coordinate spatial activity [15, 16].   

 Global coherence can be described based on the 

eigenvalues of a cross spectral matrix for a range of 

frequencies and, therefore, spectral analysis should be applied 

[118]. Global coherence can be defined as the ratio of the 

largest eigenvalue of the cross spectral matrix to the sum of its 

eigenvalues at a given frequency [17-19]. 

To the best of the authors’ knowledge, global coherence 

has not been used to study seizures, evaluate the potential of 

this measure in prediction of the seizure, as well as to explore 

the synchronous activities during and before the seizure. 
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The paper is structured as follows: section II describes the 

database employed in this study to acquire the iEEG signal as 

well as the preprocessing step. Further, this section details the 

calculation of the coherence. Section III presents and discusses 

the results. Section IV concludes the work. 

II. II. DATABASE AND METHODOLOGY  

A. EEG Database 

The EEG dataset employed in this research is from the 

University Hospital of Freiburg, Germany. The EEG-database 

consists of two sets of files: “preictal (pre-seizure) data,” i.e. 

epileptic seizures with at least 50 min preictal data, and 

“interictal data,” which contains about 24 hours seizure-free  

EEG-recordings. The EEG-database comprises six iEEG 

electrodes from 21 patients with a sampling rate of 256 Hz. 

We studied six patients with ictal origin in the temporal lobe 

(134 hours) and six with frontal lobe epilepsy origin (200 

hours) [20].  

In Fig. 1, one-hour data from a patient with frontal and 

temporal lobes is depicted. As we can see, epilepsy from the 

frontal lobe (which takes about 7 seconds) is shorter than the 

temporal one (which takes about 91 seconds). In addition, the 

morphology of the signal over a given period of time for each 

type of epilepsy is completely different. In fact, we can 

observe some hints in the preictal stage of the temporal one 

that are not in the other one. 

 

Figure 1. An overview of an EEG signal containing seizure for a 

patient suffering from frontal and temporal lobe epilepsy (the 
seizure period is highlighted in red). 

 

B. Proposed Method 

In order to explore global coherence on iEEG data, we used 

the multitaper FFT, a nonparametric technique, to determine 

the cross spectral matrix and, then, the global coherence, 

which can be defined by the eigenvalues of the cross spectral 

matrix, calculated per each frequency over time. 

Applying techniques like the periodogram offers 

inaccurate (biased) and noisy (variable) estimation of the 

power spectrum and spectrogram with a high-resolution 

spectra. Other possible approaches to improve the EEG 

spectral estimation can be refereed to averaging these spectra 

across time like the Welch’s method. Whereas this approach 

generates high-resolution and low-variance spectra, the 

temporal resolution is significantly weakened because of 

applying an extra smoothing over time [21]. 

Therefore, one needs to look for a trade-off between 

frequency and temporal resolution. Interestingly, a modern 

approach, the multitaper spectral estimation, can generate a 

clear, precise, and high-resolution spectral estimation, without 

taking an average over frequency or time [21]. Also, it 

involves a fast algorithm to estimate the global coherence [19]. 

Prior to applying the multitaper FFT, the power line 

interference at 50 Hz was eliminated with a second-order 

Butterworth filter then multitaper parameters were set using a 

DPSS (Discrete Prolate Spheroidal Sequence) window length 

of 2 s with 50% overlap, time-bandwidth product TW of 3.5,  

and a number of Slepian tapers L=2×TW-1=6. To improve the 

performance of the spectral estimation we filled the cross-

spectral matrix by considering a 30 s segment window. For a 

given 6 channels, we have then a 6×6 matrix   

𝐶𝑘
𝑓(𝑖, 𝑗) =< 𝑋̃𝑖,𝑘(𝑓)𝑋̃𝑗,𝑘

∗ (𝑓) >=
1

𝑄
∑ 𝑋𝑖,𝑘

(𝑞)(𝑓)𝑋𝑗,𝑘
(𝑞)∗(𝑓)𝑄

𝑞=1    𝑖, 𝑗 = 1, … , 𝑀  (1) 

where 𝑋̃𝑖,𝑘(𝑓) is the spectrum estimate of the 𝑖𝑡ℎ channel (of 

𝑀 channels) at time interval 𝑘 (of 𝐾 time intervals), 𝑋𝑖,𝑘
(𝑞)(𝑓) 

is the 𝑞𝑡ℎ tapered Fourier transform (of 𝑄 Slepian tapers), 

which can be defined by 

𝑋𝑖,𝑘
(𝑞)(𝑓) = ∫ 𝑋𝑖,𝑘(𝑡) × 𝑞(𝑡) × 𝑒−2𝜋𝑖𝑡𝑓𝑑𝑡

+∞

−∞ 
                       (2) 

where q(t) is the 𝑞𝑡ℎSlepian taper. For calculating eigenvalues 

from cross spectral matrix, you can use SVD decomposition 

[15, 19] and decompose 𝐶𝑘
𝑓
into eigenvalue and eigenvector 

components   

𝐶𝑘
𝑓

= 𝐿𝑘
𝑓

𝐷𝑘
𝑓

𝐿𝑘
𝑓 𝐻

                                                                   (3) 

where 𝐿𝑘
𝑓

 is the eigenvector matrix and 𝐷𝑘
𝑓
 the orthogonal 

eigenvalue matrix at time interval 𝑘 and frequency 𝑓. Its 𝑖𝑡ℎ 

element 𝜆𝑖,𝑘
𝑓

 can be expressed as 

𝜆𝑖,𝑘
𝑓

= 𝐷𝑘
𝑓(𝑖, 𝑖)     𝑖 = 1, … , 𝑀                                             (4) 

From that, the Global Coherence measure at time interval 

𝑘 and frequency 𝑓 would be: 

𝑔𝑘
𝑓

=
𝜆1,𝑘

𝑓

∑ 𝜆
𝑖,𝑘
𝑓𝑀

𝑖=1

                                                                       (5) 

where 𝜆𝑚,𝑘
𝑓

 is the 𝑚𝑡ℎ largest eigenvalue (𝜆1,𝑘
𝑓

>𝜆2,𝑘
𝑓

> ⋯ . >

𝜆𝑀,𝑘
𝑓

)  [16]. 

This measure varies from 0 to 1, a low value (0) dealing 

with a random reading from all the channels, while a large 

value (1) indicates that all the channels are completely 

coherent. Then, higher the global coherence value, higher 

coordinated activity is suggested [15]. 

III. RESULTS AND DISCUSSION 

An EEG signal consists of various frequency sub-bands 

namely, Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), 

Beta (12-30 Hz), as well as low-Gamma (30-70 Hz) and high-

gamma bands (>70 Hz) [22-24].   
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We illustrated the global coherence for both preictal and 

interictal over various frequencies in Figs. 2 and 3.  Fig. 2 

shows the global coherence of preictal (two consecutive hours) 

and interictal (One hour) portions for a frontal lobe epilepsy. 

From figs. 2-a and 2-b we can see a meaningful change in 

global coherence for the range of frequencies of 20-60 Hz 

before and during seizure, while the results of the global 

coherence for non-seizure file (Fig. 2-c) do not show the 

pattern in preictal files. 

 

Figure 2. Global coherence for various frequencies of a frontal lobe 
epilepsy patient a) one hour data contains seizure from 356 to375 

seconds and precede a seizure b)  A seizure occurs between 287- 

305 seconds c) one hour interictal file 

 

Based on the results of the global coherence for patient #1, 

we can conclude that, prior to seizure, the range of frequencies 

from 20 to 65 Hz can be important for patients suffering from 

a frontal epilepsy (Beta and Gamma sub-bands). In addition, 

during the non-seizure activity, the frontal lobes generate a 

range of frequencies where dominant ones are Delta and 

Alpha.  

Fig. 3 shows the global coherence of preictal and interictal 

portions (one hour each) for a patient with temporal epilepsy. 

Figs. 3-a demonstrates that there is a wide range of frequencies 

that should be considered prior to the seizure, whereas Fig. 3-

c can confine this broad range. Our results confirmed that high-

gamma frequencies (>60 Hz) are a promising biomarker 

during ictal phase for temporal lobe epilepsy [25-28].  

 

Figure 3. Global coherence for various frequencies of a temporal 
lobe epilepsy patient a) one hour EEG signal contains the seizure 

from 53 to 56 minutes b)  one hour interictal file 

 

We employed the Kruskal Wallis (KW) feature selection 

technique, which is a nonparametric test, without making prior 

assumptions about the data distribution, unlike the One Way 

ANOVA [29-30]. 

By applying Kruskal Wallis on six EEG sub-bands, we 

ranked these features based on their medians for both lobes of 

the brains. The results, shown in Fig. 4, illustrate that Alpha 

sub-band is the most important feature among other sub-bands 

for the frontal lobe while, for the temporal lobe one, we were 

faced with a higher range of frequencies, which required to 

take into account various sub-bands. Consequently, Alpha 

oscillation is strong for the Frontal lobe whereas for the 

temporal lobe various sub-bands may change the dynamics of 

the brain. 

IV. CONCLUSION 

The proposed work demonstrated that the global coherence 
can be a promising measure prior to the seizure, in the range 
of Alpha sub-band for the frontal lobe epilepsy. For a temporal 
lobe epilepsy, we should consider a wider range of frequencies 
(various brainwaves) in the preictal stage. 

The above approach will be applied to other available 
patients on the dataset in order to explore how the neural 
activity is coordinated and associated before and during 
seizure in order to understand how the brain functions during 
those states (while investigating changes in the eigenvectors 
and Hermitian angles).  
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Figure 4. Ranking the features, 6 EEG sub bands, with Kruskal 

Wallis for both lobes of the brains. 
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