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Abstract

Adapting billion-parameter language models to a downstream task is still costly,
even with parameter-efficient fine-tuning (PEFT). We re-cast task adaptation as
output-distribution alignment: the objective is to steer the output distribution
toward the task distribution directly during decoding rather than indirectly through
weight updates. Building on this view, we introduce Steering Vector Decoding
(SVDecode), a lightweight, PEFT-compatible, and theoretically grounded method.
We start with a short warm-start fine-tune and extract a task-aware steering vector
from the Kullback-Leibler (KL) divergence gradient between the output distribution
of the warm-started and pre-trained models. This steering vector is then used to
guide the decoding process to steer the model’s output distribution towards the
task distribution. We theoretically prove that SVDecode is first-order equivalent to
the gradient step of full fine-tuning and derive a globally optimal solution for the
strength of the steering vector. Across three tasks and nine benchmarks, SVDecode
paired with four standard PEFT methods improves multiple-choice accuracy by up
to 5 percentage points and open-ended truthfulness by 2 percentage points, with
similar gains (1-2 percentage points) on commonsense datasets without adding
trainable parameters beyond the PEFT adapter. SVDecode thus offers a lightweight,
theoretically grounded path to stronger task adaptation for large language models.

1 Introdcution

Large language models (LLMs) [1, 2, 3, 4] are pivotal in AI, marking early steps towards artificial
general intelligence (AGI). They excel in tasks like language understanding, generation, and transla-
tion, transforming natural language processing with their grasp of context and human intent. Models
like DeepSeek-R1 [4] and OpenAI o1 [5] demonstrate strong reasoning and multimodal capabilities,
respectively. Specialized models such as EmoLLMs [6], LMDrive [7], and AnomalyGPT [8] address
specific downstream tasks like affective instructions, autonomous driving, and anomaly detection.
Despite their capabilities, LLMs are resource-intensive, often requiring hundreds of millions to
billions of parameters. For instance, training a LLaMA-7B model demands at least 58 GB of memory
[9], which is beyond the capacity of consumer-grade hardware like the NVIDIA RTX 4090 with
24GB, limiting their broader applications.
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To tackle this challenge, parameter-efficient fine-tuning (PEFT) [10, 11, 12, 13, 14, 15] has emerged
as a key area of progress in modifying LLMs with minimal computational and GPU memory demands.
This approach focuses on updating a few trainable parameters to significantly reduce the memory
footprint while enhancing the performance on downstream tasks. For example, additive fine-tuning
such as prompt tuning [16] and adapter methods [17] incorporates a small set of trainable parameters
while maintaining the original pre-trained parameters unchanged. Selective fine-tuning such as
Diff Pruning [18] chooses a subset of the model’s existing parameters to undergo updates during
training. Reparameterization methods such as LoRA [15] restructure the model’s parameters to
achieve efficient low-rank representations.

However, while PEFT methods effectively reduce the cost of training adaptation, the adaptation
process itself is still primarily viewed through the lens of modifying model weights to change the
model’s output distribution to match the task-specific target distribution, which requires backward
passes, optimizing states, and multiple training epochs.

Why do We Still Chase the Weights? The end goal of adaptation is not to adjust internal tensors. It
is to shift the model’s output distribution so that Pθ(y |x) aligns with the task-specific target. Current
PEFT methods achieve this indirectly: they adjust weights in the hope that the logits will follow.
However, this indirect approach leads to three practical issues: 1) training still scales linearly in
model size and data epochs; 2) weight updates can have unpredictable, non-local effects on token
probabilities; and 3) a fixed PEFT hyper-parameter often fails to transfer across tasks and domains.

A Distribution-First Perspective. To answer this question, we propose a shift in perspective,
rethinking task adaptation not just as a weight-update problem but fundamentally as a process of
aligning the model’s output distribution with the task-specific target distribution. We argue that
adaptation can be achieved more directly and efficiently by manipulating the output distribution
during the decoding phase itself.

Steering Vector Decoding (SVDecode). To achieve this goal, we present Steering Vector Decoding
(SVDecode), an innovative, efficient, and PEFT-compatible method for task adaptation. SVDecode
begins with a short warm-start fine-tuning phase to obtain the warm-started model, whose output
distribution is closer to the task-specific target compared to the pre-trained model. Then we can
capture the task-specific direction from the differences between output distributions of the warm-
started model and the pre-trained model. Specifically, we first compute the KL divergence between
these two distributions, and then use the negative gradient of the KL divergence to construct the
steering signal. Next, this signal is mapped from the distribution space to the logit space to avoid
simplex geometry violation and yields a task-aware steering vector that tells us which tokens need
more (or less) probability mass and by how much. Additionally, confidence-aware constraints are
applied to the steering vector to ensure its robustness and stability. Finally, the steering vector is used
to adjust the model’s logits at each step during decoding, effectively steering the generation process
towards the desired task behavior. Because the vector is applied during decoding, no additional
backward pass is required, and the method is compatible with any existing PEFT methods.

Our contributions are summarized as follows: 1) We rethink LLM task adaptation from the per-
spective of output distribution alignment. 2) We propose the SVDecode method, which leverages
negative gradients of KL divergence between distributions to construct task-aware steering vectors
for decoding-time adaptation. 3) We provide theoretical analysis, linking SVDecode to traditional
PEFT methods and derive an analytical solution for the optimal steering strength. 4) We demonstrate
through extensive experiments on various tasks and models that SVDecode, when combined with
standard PEFT techniques, consistently improves performance while maintaining computational
efficiency.

2 Rethinking LLM Task Adaptation from the Perspective of Output
Distribution Alignment

Large language models (LLMs) define a conditional output distribution over tokens or task labels,
parameterized by θ, as Pθ(y | x) = Softmax(fθ(x)), where y = fθ(x) is the logits vector produced
by the model for input x. Fine-tuning adapts the model to a downstream task by updating θ such that
the model’s output distribution better aligns with the task-specific target distribution. Specifically,
given a downstream dataset Dtask = {(xi, yi)}Ni=1, fine-tuning adjusts θ by minimizing the loss
function on the datasetDtask. The standard fine-tuning objective is the negative log-likelihood (NLL):
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LFT(θ) = −E(x,y)∼Dtask
[logPθ(y | x)] . (1)

This is exactly the cross-entropy between the model’s output distribution and the empirical one-hot
distribution of the correct tokens. Minimizing this encourages the model to assign higher probability
to the correct token at each position. In the special case where each yi is a single label (e.g. for
classification), this formula reduces to − logPθ(yi | xi), the usual cross-entropy for a single-label
prediction.

Theorem 1. The NLL objective in Eq. (1) is equivalent to minimizing the expected Kullback-Leibler
(KL) divergence between the empirical label distribution P̂task(y | x) and the model’s output
distribution:

LFT(θ) = Ex∼D
[
KL
(
P̂task(y | x) ‖Pθ(y | x)

)]
, (2)

where P̂task(y | x) is typically a delta function centered on the ground-truth label.

Proof. Let P̂task(y | x) = δyi(y) be the empirical distribution over labels for input xi, where
δyi(y) = 1 if y = yi and 0 otherwise. The KL divergence between the empirical distribution and the
model’s predicted distribution is defined as:

KL
(
P̂task(y | x) ‖Pθ(y | x)

)
=
∑
y∈Y

P̂task(y | x) log
P̂task(y | x)

Pθ(y | x)
. (3)

where Y = {y1, y2, . . . , y|Y|} is the vocabulary set of the model. Since P̂task(y | x) is a delta
function, only the true label y = yi contributes:

KL
(
P̂task(y | xi) ‖Pθ(y | xi)

)
= log

1

Pθ(yi | xi)
= − logPθ(yi | xi). (4)

Taking the expectation over all samples in the dataset yields:

Ex∼D
[
KL
(
P̂task(y | x) ‖Pθ(y | x)

)]
=

1

N

N∑
i=1

[− logPθ(yi | xi)] , (5)

which matches the definition of the average negative log-likelihood as in Eq. (1). Hence, the NLL
objective is equivalent to minimizing the expected KL divergence between the task label distribution
and the model’s output distribution.

Distributional Interpretation. From the output distribution perspective, fine-tuning reshapes the
model’s belief Pθ(y|x) over the output space to align more closely with the true task-specific behavior.
The output distribution Pθ(y|x) resides on the probability simplex ∆|Y|−1 [19], and fine-tuning can
be seen as shifting the model’s position on this simplex toward the optimal region defined by the task.
Minimizing the KL divergence from the empirical distribution emphasizes increasing the probability
mass on the correct label without penalizing overconfidence in incorrect predictions. This yields a
learning dynamic that is both efficient and focused.

3 Method

In this section, we will introduce the details of the proposed method. As shown in Fig. 1, the proposed
method includes two steps. The first step is to construct the steering vector, which is the core of the
proposed method. It includes several steps, warm-start, KL gradient as steering signal, logit-space
projection, and confidence-aware steering vector constraint. The second step is task-aware steering
vector decoding, which leverages the steering vector to steer the model’s output distribution with the
optimal steering strength for different tasks. The detailed algorithm is shown in Algorithm 1.
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Figure 1: Illustration of the framework of our proposed SVDecode. It includes two steps: (a) steering
vector construction and (b) task-aware steering vector decoding. After the decoding with the steering
vector, we can see the warm-started model’s output distribution is steered towards the task-specific
target distribution, thereby enhancing the performance of the model on the downstream task.

3.1 Steering Vector Construction

Warm-Start. In order to construct the steering vector, we first need to know the task-specific direction
of the steering vector. Specifically, given a pre-trained LLM with the parameter θ, the model defines a
conditional probability Pθ(y | x) over output text y given input x. If y = (y1, . . . , yT ) is a sequence
of T tokens, this typically factorizes autoregressively as: Pθ(y | x) =

∏T
t=1 Pθ(y

t | x, y<t) ,
where y<t denotes the sequence of previous tokens, x is the input tokens. The model’s prediction for
each token is usually given by a softmax layer producing Pθ(yt | x, y<t) over the vocabulary at that
position.

Given a downstream dataset Dtask = {(xi, yi)}Ni=1, then we warm-start the model by fine-tuning
one epoch in Dtask or part of the dataset. This warm-start process can leverage different parameter-
efficient fine-tuning strategies, such as additive fine-tuning, selective fine-tuning, and reparametriza-
tion fine-tuning discussed in Section A.1.

KL Gradient as Steering Signal. After the warm-start process, the model’s conditional output
distribution can be formulated as Pφ(y | x), where φ is the updated parameters, and we believe that
the model’s output distribution Pφ(y | x) is close to the task-specific target distribution Ptask(y | x)
compared with the pre-trained distribution Pθ(y | x) since the warm-started model’s training loss
decreases and the test accuracy increases.

Then we can leverage the KL divergence to measure the difference between the pre-trained distribution
Pθ(y | x) and the warm-start distribution Pφ(y | x). Before we do this, we need to know that the
KL divergence is not symmetric, i.e., KL(M ||N) 6= KL(N ||M), unless the two distributions are
identical (in which case both are 0). If we use KL(Pθ(y | x)||Pφ(y | x)) to measure the difference,
it means that we assume that the pre-trained model knows more about the task than the warm-
started model, and we want to steer the model’s output distribution towards the pre-trained model,
which is not what we expect. On the contrary, if we use KL(Pφ(y | x)||Pθ(y | x)) to measure the
difference, it means that we assume that the warm-started model knows more about the task than
the pre-trained model, and we want to steer the model’s output distribution towards the task-specific
target distribution. Therefore, we use the following KL divergence to measure the distributional
difference:

KL (Pφ(y | x) ‖Pθ(y | x)) =
∑
y∈Y

Pφ(y | x) log
Pφ(y | x)

Pθ(y | x)
(6)

After obtaining the KL divergence, we can use it to construct the steering vector. First, we need
to compute the gradient of the KL divergence with respect to Pφ(y | x), denoted as gP , which
is ∇Pφ(y|x)KL (Pφ(y | x) ‖Pθ(y | x)). For clarity, let Pφ = Pφ(y | x), Pθ = Pθ(y | x). Then
KL(Pφ ‖ Pθ) =

∑
y (Pφ logPφ − Pφ logPθ). We compute the gradient with respect to Pφ (i.e.,

∇PφKL) by taking the partial derivative of KL with respect to each Pφ:

∂KL

∂Pφ,yi
=

∂

∂Pφ,yi
(Pφ,yi logPφ,yi − Pφ,yi logPθ,yi) = log

(
Pφ,yi
Pθ,yi

)
+ 1 (7)
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Therefore, the gradient∇PφKL(Pφ ‖Pθ) is a vector where each component corresponds to the partial
derivative with respect to a specific py:

∇PφKL(Pφ ‖Pθ) =

[
log

(
Pφ,y1
Pθ,y1

)
+ 1, log

(
Pφ,y2
Pθ,y2

)
+ 1, . . . , log

(
Pφ,y|Y|
Pθ,y|Y|

)
+ 1

]
(8)

The meaning of this gradient is that it indicates how we should adjust Pφ to reduce the KL divergence:
1) For a token yi where Pφ,yi > Pθ,yi , the gradient component log(Pφ,yi/Pθ,yi) + 1 is positive,
suggesting we should decrease the probability of this token; 2) For a token yi where Pφ,yi < Pθ,yi ,
the gradient component is negative, suggesting we should increase the probability of this token.
In other words, this gradient points to the direction of returning to the pre-trained distribution Pθ.
Conversely, if we use the negative of this gradient as our steering vector, it represents the direction of
task-specific knowledge that the warm-started model has acquired relative to the pre-trained model.
This task-aware steering vector captures the distributional shift needed to adapt the pre-trained model
to the specific downstream task.

Logit-Space Projection. We can leverage the negative gradient of the KL divergence with respect to
the output distribution, −∇PφKL(Pφ ‖Pθ), as a task-aware steering vector. This gradient points to
the direction that decreases the divergence between the fine-tuned model and the pre-trained model,
and thus encodes the local task-specific adjustment direction in the distributional space.

The simplest approach is to directly apply this vector to adjust the decoding distribution:

P̂ (y | x) = (1− µ) · Pφ(y | x) + µ ·
(
−∇PφKL(Pφ ‖Pθ)

)
(9)

This aims to move Pφ closer to the task-optimal distribution Ptask along the steepest descent direction
of KL divergence. However, this method introduces several practical issues: 1) Normalization
Constraint: Since Pφ(y | x) is a probability distribution over the vocabulary, the adjusted distribution
P̂ must satisfy

∑
y P̂ (y | x) = 1. Directly adding the gradient vector may violate this constraint,

requiring techniques such as Lagrangian optimization or projected gradient descent to ensure nor-
malization. 2) Numerical Stability: The gradient involves logarithmic terms logPφ(y)/Pθ(y), which
can be numerically unstable when Pφ(y) or Pθ(y) are close to zero. To mitigate this, one may
apply clipping (e.g., minimum threshold) or smoothing techniques (e.g., adding ε) to stabilize the
computation. 3) Simplex Geometry Violation: The KL gradient is defined in the Euclidean tangent
space of the probability simplex. Without proper geometric projection, applying this vector may lead
to invalid probability values, such as negative entries or totals not summing to one.

Therefore, while the KL gradient in the probability space provides an informative direction for
reducing divergence from the pre-trained distribution, its direct application in decoding is hindered
by constraints and numerical issues. To resolve this, we shift to the logit space, where the model is
parameterized and unconstrained. By leveraging the chain rule, we can project the KL gradient from
probability space into logit space via the softmax Jacobian matrix:

δlogits = J ·
(
−∇PφKL(Pφ ‖Pθ)

)
=
(
diag(Pφ)− PφP>φ

)
·
(
− log

Pφ
Pθ
− 1

)
(10)

This projected vector δlogits serves as a task-aware logit delta, which can be added to the original
logits before softmax:

ẑφ = zφ + µ · δlogits, P̂ = Softmax(ẑφ) (11)
This approach preserves the normalization constraint by construction and enables fine-grained control
of task-specific adaptation in the model’s output distribution.

Confidence-Aware Steering Vector Constraint. Although the projected task-aware logit delta
δlogits captures the KL gradient direction in logit space, it can still be dominated by false positive
tokens—tokens that are not semantically relevant but receive large KL gradients due to numerical
instability (e.g., when Pθ(y) is extremely small). To mitigate this, we introduce a confidence-aware
filtering mechanism to suppress the influence of low-confidence tokens.

We define the confidence of each token y ∈ V at a decoding step as its predicted probability under the
task-adapted model s(y) = Pφ(y | x). Let y∗ = arg maxy∈V Pφ(y | x) denote the most likely token.
Then we introduce a threshold α ∈ (0, 1] to retain only the confident tokens which have a probability
greater than α times the probability of the most likely token. The binary mask I(y) is defined as:

I(y) = 1 (Pφ(y) ≥ α · Pφ(y∗)) (12)
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We now mask the logit delta by element-wise applying the confidence mask and penalty:

δ̂logits(y) = I(y) · δlogits(y) + (1− I(y)) · λ, (13)
where λ is a constant penalty term (e.g., λ = 0,−1, or a small negative value). This constraint ensures
that only confident (high-probability) tokens contribute to the task steering vector, while suppressing
noise from low-probability regions that are numerically unstable or semantically irrelevant.

3.2 Task-Aware Steering Vector Decoding

Logit Adjustment. In the decoding process, we first compute the logits zφ(y) for each token y ∈ V
using the task-adapted model Pφ(y | x). Then, we apply the task-aware steering vector with the
confidence mask constraint to steer the logits towards the task-specific direction. The adjusted logits
for decoding are then:

ẑφ(y) = zφ(y) + µ · δ̂logits(y) = zφ(y) + µ · (I(y) · δlogits(y) + (1− I(y)) · λ) , (14)
where µ ∈ R is a scalar to control the strength of the steering vector. Finally, we apply the softmax
function to the adjusted logits to get the adjusted distribution of the output tokens:

P̂ (y | x) = Softmax(ẑφ(y)) (15)
After we get the adjusted distribution, we can leverage different decoding strategies to generate the
final output tokens, such as greedy decoding, beam search, and top-k sampling.

Optimal µ as Newton Step. The value of µ is an important hyperparameter that controls the strength
of the steering vector. If µ is too small, the steering vector will have little effect on the decoding
process. If µ is too large, the steering vector will dominate the decoding process, and the model
will be more likely to produce incorrect results. Previous works use fixed µ for all tasks, but here
we can derive the optimal µ for each task. Specifically, denoting the distribution of the downstream
task as Ptask(y | x), we want the distribution of the model’s output as Pφ(y | x) to be as close as
possible to Ptask(y | x), that is: finding a µ∗ such that the final distribution approximates the task
label distribution as closely as possible.

To derive µ∗, we first expand the KL divergence around µ = 0 to obtain the second-order Taylor
series:

KL(Ptask‖pµ) = KL(Ptask‖pφ) + µ
〈
∇zφKL(Ptask‖pφ), δz

〉
+ 1

2 µ
2H[δz] +O(µ3), (16)

where H[δz] = δ>z ∇2
zφ

KL(Ptask‖pφ) δz is the quadratic form of the Hessian. To find the optimal
step length µ that minimizes KL(Ptask‖pµ), we ignore the constant zeroth-order term and the higher-
order terms O(µ3), and consider only the first two orders. Then we take the derivative of these two
terms with respect to µ and set it to zero:

d

dµ

(
µ ·
〈
∇zφKL(Ptask‖pφ), δz

〉
+

1

2
µ2H[δz]

)
= 0. (17)

Solving for µ, we get:

µ∗ = −
〈∇zφKL(Ptask‖pφ), δz〉

H[δz]
. (18)

which is the exact Newton step. For a one-hot ground-truth label y∗, the task distribution is Ptask(y) =
1y=y∗ , and the gradient of the KL divergence is ∇zφKL(Ptask‖pφ) = pφ − ey∗ , where ey∗ is the
one-hot basis vector for y∗. Substituting this into the expression for µ∗ gives:

µ∗ = −〈pφ − ey
∗ , δz〉

H[δz]
. (19)

This derivation shows that µ∗ is the negative ratio of the linear term to the quadratic term in the Taylor
expansion. The exact Newton step requires computing the Hessian H[δz]. However, computing
the full Hessian is expensive. We therefore adopt the common Gauss-Newton approximation [20]
H[δz] ≈ ‖δz‖22 (which is exact for a quadratic loss function), yielding

µ∗ =

〈
ey∗ − pφ, δz

〉
‖δz‖22 + ε

, (20)

where a small ε (e.g., 10−12) prevents division by zero when ‖δz‖2 is tiny. Finally, we can calculate
a global optimal µ̄ by averaging the token-level µ∗ over a calibration dataset. The detailed derivation
and algorithm can be found in Appendix C and D.
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Table 1: Experimental results on 1) multiple-choice task in TruthfulQA and 2) open-ended generation
task in TruthfulQA. %T∗I stands for %Truth∗Info in TruthfulQA.

Model Method Multiple-Choice (%) Open-Ended Generation (%)

MC1 ↑ MC2 ↑ MC3 ↑ Avg. ↑ %Truth ↑ %Info ↑ %T∗I ↑ Avg. ↑

Qwen2.5-1.5B

Prompt Tuning 29.88 43.02 19.22 30.71 28.04 32.32 24.39 28.25
+ SVDecode 28.66 44.47 21.79 31.64 28.66 33.70 25.34 29.23
IA3 40.85 47.28 27.51 38.55 32.31 32.93 28.65 31.30
+ SVDecode 42.19 55.67 34.04 43.97 34.15 33.87 29.87 32.63
P-Tuning v2 33.54 45.28 23.45 34.09 31.70 33.53 27.44 30.89
+ SVDecode 33.54 48.41 25.96 35.97 32.32 32.32 28.05 30.90
LoRA 50.61 55.55 34.81 46.99 49.39 43.90 40.85 44.71
+ SVDecode 52.94 61.41 34.95 49.77 50.00 44.52 42.68 45.73

Qwen2.5-7B

Prompt Tuning 51.95 49.34 35.17 45.49 64.02 62.19 56.10 60.77
+ SVDecode 53.25 62.16 35.45 50.29 65.24 62.80 57.92 61.99
IA3 47.56 50.36 31.89 43.27 52.44 55.48 48.78 52.23
+ SVDecode 46.07 57.04 31.99 45.03 54.26 55.48 50.00 53.25
P-Tuning v2 46.95 50.23 33.08 43.42 62.19 67.07 59.14 62.80
+ SVDecode 48.78 59.35 35.09 47.74 64.63 67.68 60.97 64.43
LoRA 49.39 51.31 32.82 44.51 54.89 49.39 46.34 50.21
+ SVDecode 50.61 58.33 34.47 47.80 55.48 50.61 46.95 51.01

LLaMA3.1-8B

Prompt Tuning 35.37 43.11 22.43 33.64 36.58 32.32 28.55 32.48
+ SVDecode 29.61 55.06 30.64 38.44 37.90 33.54 28.66 33.37
IA3 34.76 45.83 24.85 35.15 43.90 47.56 39.63 43.70
+ SVDecode 30.49 54.73 31.89 39.04 44.51 46.95 40.23 43.90
P-Tuning v2 38.41 46.14 25.91 36.82 48.17 48.78 42.07 46.34
+ SVDecode 31.71 49.52 25.97 35.73 48.78 50.12 43.68 47.53
LoRA 46.34 49.12 33.20 42.89 51.21 44.51 41.63 45.78
+ SVDecode 48.17 60.17 35.07 47.80 51.82 45.12 42.68 46.54

4 Experiments

4.1 Experimental Setup

Tasks and Datasets. In order to evaluate the performance of our method, we consider three tasks:

1. Multiple-Choice Tasks. For multiple-choice and open-ended generation tasks, we evaluate
on the TruthfulQA dataset [21], which is a benchmark designed to measure a model’s
tendency to generate truthful answers to questions. We consider three metrics in this task:
MC1, MC2, and MC3. The detailed definitions of these metrics are shown in Appendix E.3.

2. Open-Ended Generation Tasks. For open-ended generation tasks, we also evaluate on the
TruthfulQA dataset [21]. We consider four metrics in this task: Truthfulness, Informative-
ness, Truthfulness & Informativeness. The detailed definitions of these metrics are shown in
Appendix E.3.

3. Commonsense Reasoning Tasks. For commonsense reasoning tasks, we leverage eight
datasets including BoolQ [22], PIQA [23], SIQA [24], HellaSwag [25], WinoGrande [26],
ARC-easy [27], ARC-challenge [27] and OBQA [28], and we leverage accuracy as the
metric. The implementation details are shown in Appendix E.5.

Base Models and PEFT Methods. We consider four latest pre-trained LLMs: Qwen2.5-1.5B [2],
Qwen2.5-7B [2], LLaMA3-8B [1], and LLaMA3.1-8B [1] as the base models. In addition, we
leverage four PEFT methods to incorporate our method: LoRA [29], P-Tuning v2 [30], Prompt
Tuning [16], and IA3 [31]. We eloborate the implementation details in Appendix E.

4.2 Main Results

Multiple-Choice Tasks. Table 1 shows that our approach consistently outperforms baseline PEFT
methods. For Qwen2.5-1.5B, SVDecode with LoRA improves scores from 46.99% to 49.77%.
For Qwen2.5-7B, SVDecode with Prompt Tuning increases scores from 45.49% to 50.29%. For
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Table 2: Experimental results on commonsense reasoning tasks. We evaluate different PEFT methods
and our proposed SVDecode method on Qwen2.5-7B and LLaMA3.1-8B.

Model Method BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

Qwen2.5-7B

LoRA 59.12 85.71 68.57 78.10 58.79 91.00 82.57 79.77 75.45
+ SVDecode 60.09 86.97 70.13 79.23 59.67 93.33 85.62 81.43 77.06
IA3 71.23 86.61 75.41 89.05 67.22 88.00 81.60 81.54 80.08
+ SVDecode 72.69 87.23 76.72 90.31 68.41 92.67 85.12 82.07 81.90
Prompt Tuning 64.00 86.58 67.54 73.30 60.64 83.28 72.02 68.36 71.97
+ SVDecode 65.67 87.21 67.79 75.42 62.35 84.05 72.68 69.67 73.11
P-Tuning v2 59.65 83.67 69.00 78.66 59.00 92.32 81.65 79.18 75.39
+ SVDecode 60.71 84.10 71.36 79.72 59.48 92.60 82.33 81.04 76.42

LLaMA3.1-8B

LoRA 74.18 83.21 79.56 95.00 87.92 91.86 83.67 88.52 85.49
+ SVDecode 74.74 84.10 80.31 95.48 88.65 92.45 83.98 89.43 86.14
IA3 69.84 83.67 68.22 85.33 69.00 87.83 73.90 78.01 76.97
+ SVDecode 70.32 84.20 68.75 86.08 69.29 88.10 74.66 78.77 77.52
Prompt Tuning 67.64 80.33 64.67 79.58 62.34 83.57 70.33 74.26 72.84
+ SVDecode 68.35 82.00 65.00 80.39 63.07 84.63 71.00 75.41 73.73
P-Tuning v2 65.33 81.55 66.30 82.42 64.48 87.40 73.56 73.80 74.35
+ SVDecode 66.12 82.65 67.54 83.58 65.67 87.68 74.32 75.17 75.34

(a) LLaMA3.1-8B (b) Qwen2.5-7B
Figure 2: Ablation study on logit-space projection. ‘w/ ’ means with logit-space projection, ‘w/o’
means without logit-space projection, ‘Prompt’ means Prompt Tuning, and ‘P-T’ means P-Tuning v2.
We conduct the ablation study on multiple-choice tasks.

LLaMA3.1-8B, SVDecode with LoRA boosts scores from 42.89% to 47.80%. Despite occasional
MC1 score drops, MC2 and MC3 improvements ensure overall better performance, highlighting
SVDecode’s effectiveness in enhancing truthful answer selection.

Table 3: Study on the absence of
confidence-aware constraint. ‘w/’
means with and ‘w/o’ means without
confidence-aware constraint. The PEFT
method is LoRA.

Qwen2.5-7B %Truth %Info %T*I

w 55.48 50.61 46.95

w/o 0.02 0.01 0.00

Open-Ended Generation Tasks. Table 1 shows that our
approach improves performance across all datasets. For
Qwen2.5-1.5B, SVDecode with LoRA increases the score
from 44.71% to 45.73%. For Qwen2.5-7B, SVDecode
with P-Tuning v2 raises the score from 62.80% to 64.43%.
For LLaMA3.1-8B, SVDecode with LoRA boosts the
score from 45.78% to 46.54%. This demonstrates SVDe-
code’s effectiveness in enhancing model responses.

Commonsense Reasoning Tasks. Table 2 shows that our
approach consistently improves the accuracy of all PEFT
baselines across multiple commonsense reasoning datasets and models. The improvements are
observed for every method and model, demonstrating the effectiveness and generalizability of our
approach in adapting to commonsense reasoning tasks.

4.3 Ablation Study

Logit-Space Projection Ablation Study. Figure 2 illustrates the impact of logit-space projection
on model performance. The study compares results with and without logit-space projection across
multiple-choice tasks, highlighting differences in accuracy for LLaMA3.1-8B and Qwen2.5-7B
models. From the figure, we can see that without logit-space projection, the performance of the
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Table 4: A failure example of the absence of confidence-aware steering vector constraint. ‘w/o’ means
without confidence-aware steering vector constraint, ‘w/’ means with confidence-aware steering
vector constraint.

Question What fundamental principle of human psychology is established by
Amy Cuddy’s power poses experiments?

Answer

w/o !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!...

w/ Amy Cuddy’s power poses experiments established the principle that
adopting expansive, powerful postures can increase feelings of
power and confidence.

Table 5: Integrating SVDecode with four basic decoding strategies, Greedy Search, Beam Search,
Top-p sampling, and Top-k sampling, where Beam-4 indicates using 4 beams. We evaluate our
proposed SVDecode method on Qwen2.5-7B.

Model Method BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

Qwen2.5-7B

Greedy 59.12 85.71 68.57 78.10 58.79 91.00 82.57 79.77 75.45
+ SVDecode 60.09 86.97 70.13 79.23 59.67 93.33 85.62 81.43 77.06
Beam-4 61.45 88.53 70.45 79.66 60.54 92.17 85.26 82.80 77.61
+ SVDecode 62.16 89.31 71.82 80.71 61.12 94.19 87.10 84.26 78.83
Top-p 59.87 85.80 69.24 78.30 59.13 91.15 82.70 79.80 75.75
+ SVDecode 60.79 87.00 70.13 79.82 59.89 93.40 85.69 81.47 77.27
Top-k 60.12 86.11 69.76 78.75 59.64 91.63 83.15 80.24 76.17
+ SVDecode 60.93 87.10 70.35 79.90 60.36 93.56 86.31 81.90 77.55

method drops in all metrics and across all PEFT methods, some of them even drop 10% in accuracy.
These results indicate that logit-space projection is crucial for the performance of the method.

Ablation Study on Confidence-Aware Steering Vector Constraint. Table 4 presents a qualitative
example of the absence of confidence-aware steering vector constraint. As shown in the table,
without the confidence-aware constraint, the model generates repetitive and meaningless sequences
of exclamation marks, indicating a complete loss of control in the generation process. Table 3
presents the results on the absence of confidence-aware constraint. As shown in the table, without the
confidence-aware constraint, the model is failed to generate a meaningful and controlled response.
These results indicate that the confidence-aware steering vector constraint is crucial and indispensable
for the proposed method.

Figure 3: Analysis of warm-start steps. The task is
multiple-choice task, the PEFT method is LoRA,
and the base model is LLaMA3.1-8B.

Study on the Influence of the Warm-Start
Steps. In this section, we study the influence
of the warm-start steps on the performance of
the proposed method. From Figure 3, we can
see that our method continuously outperforms
the warm-started model. In addition, we ob-
serve an interesting phenomenon that after the
warm-started model converges after 5 epochs,
our method still continues to improve the perfor-
mance of the warm-started model.

Integrated With Different Basic Decoding
Strategies. Table 5 presents experimental re-
sults for commonsense reasoning tasks, exam-
ining the integration of SVDecode with various
decoding strategies including Greedy Search, Beam Search, Top-p sampling, and Top-k sampling.
The results demonstrate that incorporating SVDecode consistently enhances the performance of fine-
tuned LLMs on commonsense reasoning datasets, irrespective of the underlying decoding approach
used.

5 Conclusion

In this paper, we have re-framed LLM task adaptation as a problem of output-distribution alignment.
Building on this perspective, we have introduced Steering Vector Decoding (SVDecode), a lightweight,
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PEFT-compatible method that can consistently improve performance across a wide range of tasks and
model sizes via adjusting the decoding distribution by the task-specific steering vector with a global
optimal steering strength. In addition, we have proved the equivalence between SVDecode and the
gradient step of fine-tuning, thereby grounding the method in the classical optimization theory. In
summary, SVDecode offers a lightweight, theoretically grounded, and empirically validated path
toward stronger LLM task adaptation, bridging the gap between gradient-based fine-tuning and
decoding-time control of model behavior, and demonstrating that shifting distributions, not weights,
can be the shortest route to better performance.
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A Related Work

A.1 Parameter-Efficient Fine-Tuning

As language models continue to increase in scale, traditional full fine-tuning approaches have be-
come increasingly resource-intensive. Parameter-efficient fine-tuning (PEFT) emerges as a practical
alternative to address these computational constraints [11, 12, 13, 14, 15]. According to [32], PEFT
techniques generally fall into three distinct categories: 1) Additive Fine-Tuning, which incorporates a
limited set of trainable parameters while maintaining the original pre-trained parameters unchanged.
Notable examples in this category include Adapter modules [33] and Prompt Tuning, which inte-
grates learnable soft prompts into the input. Though effective, these approaches typically introduce
additional computational demands during inference. 2) Selective Fine-Tuning, which focuses on
updating only a carefully chosen subset of the model’s existing parameters [18, 34, 35]. This strategy
employs a binary maskM to selectively determine which parameters undergo updates during training,
thereby avoiding the introduction of new parameters. 3) Reparameterization, which restructures the
model’s parameters to achieve efficient low-rank representations [14, 15, 36]. A prominent example
is LoRA [15], which factorizes weight updates into products of smaller matrices, facilitating compact
storage of task-specific adaptations. SPT [14] enhances performance by combining sparse tuning
with LoRA techniques, achieving leading results in visual PEFT applications. Nevertheless, many
existing approaches still lack sufficient task-awareness in their parameter selection mechanisms.

A.2 LLM Task Adaptation

Researchers have developed diverse approaches to adapt pre-trained LLMs for downstream tasks by
investigating optimal configurations of pre-training data, model architecture, and weight selection.
For instance, Cui et al. [37] leverage Earth Mover’s Distance to select the top K most relevant classes
from the source domain for task-specific pre-training. Yoon et al. [38] apply reinforcement learning
techniques to determine appropriate weights for source domain classes. Other approaches assess
model transferability to target domains by examining inter-class covariance relationships between
source data and target classes, or by analyzing conditional cross-entropy between source and target
labels [39, 40]. More recent research focuses on identifying which pre-trained model weights to
fine-tune while keeping others frozen [11, 14, 41]. Zhang et al. [11] introduced gradient-based
parameter selection (GPS), a method that uses gradients to identify optimal tunable weights. Fu et al.
[41] developed a second-order approximation method (SAM) that approximates the Hessian matrix
in the loss function’s second-order Taylor expansion to enhance weight selection precision.
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A.3 LLM Decoding Strategies

Decoding methods play a pivotal role in shaping the output characteristics of large language models,
determining both the fluency and creativity of generated text. The most basic Greedy Search approach
has been observed to frequently fall into repetitive patterns due to its myopic selection strategy.
More advanced methods like Beam Search [42] have addressed this limitation by exploring multiple
potential sequences simultaneously, though at increased computational cost. Compared to greedy
search’s tendency for repetitive outputs and beam search’s limited diversity, Top-k sampling [43]
introduces diversity by sampling from a fixed-size set of most probable tokens, while Top-p sampling
[44] further improves adaptability by dynamically adjusting the candidate set based on probability
mass. Moreover, the introduction of Contrastive Decoding (CD) [45] marks a breakthrough by
utilizing comparative analysis between models of different scales to improve generation quality.
Building on this foundation, Anticipative Contrastive Decoding (ACD) [46] introduced layer-wise
contrastive mechanisms within a single model, while Decoding by Contrasting Layers (DoLa) [47]
has advanced the field further through dynamic layer selection algorithms. Guided Decoding (GD)
[48] uses the model’s self-evaluation score as a criterion to control the quality of each step and
demonstrates higher consistency and robustness in multi-step reasoning. These decoding approaches,
however, predominantly emphasize optimizing pre-trained LLM performance without accounting
for model transformations that occur during fine-tuning. As a result, they inadequately leverage the
task-specific adaptations acquired through fine-tuning processes, which often leads to suboptimal
performance gains or even degradation when implemented with fine-tuned LLMs on downstream
applications. On the contrary, our method focuses on LLM task adaptation via decoding with
task-aware steered vectors, thereby enhancing the performance of LLMs in downstream tasks.

B Mathematical Analysis: Equivalence Between SVDecode and Fine-Tuning

In this appendix, we prove that a first-order Steering-Vector-Decoding (SVDecode) step is equivalent,
in expectation, to one parameter-update step of maximum-likelihood fine-tuning.

B.1 Notation and Preliminaries

Let zθ(x) ∈ R|V | be the logits produced by the pre-trained LLM for input x and pθ(y | x) =
Softmax(zθ(x)). After a short warm-start fine-tuning, the parameters are φ, giving logits zφ and
distribution pφ = Softmax(zφ).

For a downstream dataset Dtask = {(xi, yi)}Ni=1, the standard fine-tuning objective is the expected
negative log-likelihood (NLL):

LFT(θ) = −E(x,y)∼Dtask
[log pθ(y | x)], (21)

which is equivalent to KL(p̂task‖pθ) up to an additive constant, where p̂task is the empirical one-hot
distribution.

KL-Gradient Steering Signal. Section 3.1 derives the task-aware direction in probability space as

gP = −∇pφKL(pφ‖pθ) = −
[
log(

pφ
pθ

) + 1
]
, (22)

which is then projected into logit space via the softmax Jacobian:

J(pφ) = diag(pφ)− pφp>φ. (23)

Thus, the logit-space steering vector is:

δz = J(pφ) gP =
(
diag(pφ)− pφp>φ

) [
− log(

pφ
pθ

)− 1
]
. (24)
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Algorithm 1 Task-Aware Steering Vector for LLM Decoding

Require:
1: Pre-trained LLM with parameters θ: Pθ(y|x).
2: Downstream task dataset Dtask = {(xi, yi)}Ni=1.
3: Confidence threshold α ∈ (0, 1] for token filtering.
4: Penalty value λ (typically −∞) for low-confidence tokens

Ensure: Task-adapted decoding strategy with steered logits
5: Stage 1: Warm-Start Fine-tuning . Initialize task-specific parameter distribution
6: Split Dtask into training set Dtrain and calibration set Dcalib

7: Initialize task-specific parameters φ← θ . Start from pre-trained parameters
8: Fine-tune model on Dtrain to obtain φ . Typically 1 epoch is sufficient
9: function ComputeSteeringVector(x, Pθ, Pφ)

10: Get base model probabilities: pθ ← Pθ(·|x)
11: Get fine-tuned model probabilities: pφ ← Pφ(·|x)
12: Stage 2: Steering Vector Construction . Capture task-specific direction
13: Compute KL gradient: gP ← −[log(pφ/pθ) + 1] . Measure distribution mismatch
14: Compute softmax Jacobian: J(pφ)← diag(pφ)− pφp>φ
15: Project to logit space: δz ← J(pφ) · gP . Transform probability gradient to logit space
16: Stage 3: Apply Confidence-Aware Constraint . Filter noise and focus on high-confidence

tokens
17: Identify most likely token: y∗ ← arg maxy∈V pφ(y)
18: Get threshold probability: pthresh ← α · pφ(y∗)
19: Create confidence mask: I(y)← 1(pφ(y) ≥ pthresh) . Binary mask for tokens above

threshold
20: Apply mask: δ̂z(y)← I(y) · δz(y) + (1− I(y)) ·λ . Apply penalty to low-confidence tokens
21: return δ̂z . Return filtered steering vector
22: end function
23: Stage 4: Calculate Optimal Steering Strength . Calibrate µ using labeled data
24: Compute global steering constant µ̄ from calibration dataset Dcalib . See Algorithm 2 for details
25: Stage 5: Decoding with Steering Vector . Generate task-specific outputs at inference time
26: function SteerDecoding(x, Pφ, Pθ, µ̄)
27: Initialize generated sequence: y ← []
28: for each decoding step t until completion do
29: Get current context: xt ← (x, y<t)
30: Compute task-adapted logits: zφ,t ← Logits of Pφ(·|xt)
31: δ̂zt ← ComputeSteeringVector(xt, Pθ, Pφ)

32: Adjust logits: ẑφ,t ← zφ,t + µ̄ · δ̂zt . Apply steering
33: Compute adjusted distribution: p̂t ← Softmax(ẑφ,t)
34: Sample/select next token yt according to chosen decoding strategy
35: Append to sequence: y ← [y, yt]
36: end for
37: return y . Complete generated sequence
38: end function
39: return SteerDecoding function . Return configured decoding function for inference

B.2 Fine-Tuning Gradient in Logit Space

For a single training pair (x, y∗) the NLL loss is

`(z) = − log p(y∗ | x)

= − log (Softmax(zy∗)) = − log
ezy∗∑
y e

zy

= −zy∗ + log
∑
y

ezy .

(25)

Its gradient w.r.t. logits is
∇z` = p− ey∗ , (26)
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where ey∗ is the one-hot vector for the correct token. Taking the dataset expectation:

∇zφLFT = E(x,y∗)[ pφ − p̂task ]. (27)

Because p̂task is one-hot, this is the steepest-descent direction that moves pφ toward the true task
distribution.

Derivation of the Gradient To derive ∇z` = p− ey∗ , we compute the partial derivative of `(z)
with respect to each logit zk:

1. Partial derivative of −zy∗ : If k = y∗, then ∂(−zy∗ )
∂zk

= −1. If k 6= y∗, then ∂(−zy∗ )
∂zk

= 0.
This can be written as −[ey∗ ]k, where [ey∗ ]k is the k-th component of the one-hot vector
ey∗ .

2. Partial derivative of log
∑
y e

zy : The derivative is ezk∑
y e

zy = pk, where p = Softmax(z).

Combining these, the partial derivative is:

∂`(z)

∂zk
= pk − [ey∗ ]k. (28)

Thus, the gradient vector is given by Eq. 26.

B.3 One SVDecode Step in Logit Space

SVDecode perturbs logits during decoding by

z̃ = zφ + µ · δz, p̃ = Softmax(z̃), (29)

where δz is given in Eq. 24 and µ ∈ R is a scalar strength (estimated in Appendix C). Because the
perturbation is before the softmax, p̃ is always a valid probability distribution.

B.4 First-Order Equivalence Theorem

Theorem 2. Let x be fixed and let pφ(· | x) be the warm-started distribution. For any label
distribution q(·) and any strength µ, denote the KL divergence after one SVDecode step by

K(µ) = KL(q‖Softmax(zφ + µδz)). (30)

Then we have
∂K(µ)

∂µ

∣∣∣
µ=0

=
〈
∇zφKL(q‖pφ), δz

〉
. (31)

In particular, if q = p̂task and pφ is obtained by any fine-tuning algorithm that has converged to a
stationary point (∇zφKL(q‖pφ) = 0), then ∂K(µ)/∂µ|µ=0 = 0. Hence an infinitesimal SVDecode
step leaves the fine-tuning objective unchanged up to O(µ2).

Proof. By the chain rule,

∂K(µ)

∂µ
=
∂K
∂z̃
· ∂z̃
∂µ

=
∂K
∂z̃
· 1

∂µ
· (zφ + µδz) =

∂K
∂z̃
· δz

=
〈
∇z̃KL(q‖p̃), δz

〉
,

(32)

where p̃ = Softmax(z̃), z̃ = zφ + µ · δz . When µ = 0, p̃ = pφ, so we have

∂K(µ)

∂µ

∣∣∣
µ=0

=
〈
∇z̃KL(q‖p̃)

∣∣∣
µ=0

, δz
〉
.

=
〈
∇zφKL(q‖pφ), δz

〉
.

(33)

which gives the same result as Eq. 31. If pφ is at a stationary point of KL(q‖·), the inner product
vanishes. A full Taylor expansion shows K(µ) = K(0) +O(µ2).
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Interpretation. Eq. 31 states that the first-order of the KL objective reacts to an SVDecode step
exactly as it reacts to a gradient step of fine-tuning. Therefore SVDecode and fine-tuning are locally
equivalent in the space of output distributions, even though one edits logits at decode time while the
other edits weights during training.

B.5 Conditions for Higher-Order Equivalence

Theorem 2 guarantees local equivalence. Exact global equivalence holds when (i) the steering
direction lies in the span of the fine-tuning gradient subspace across all inputs, and (ii) µ follows the
continuous-time ordinary differential equation µ̇(t) = η µ?(t) for learning-rate η. In practice we use
a single discrete step per token, which is sufficient to capture the empirical gains reported in Section
4.

Therefore, SVDecode can be viewed as an on-the-fly proxy for one gradient step of fine-tuning,
executed in logit space with provable first-order equivalence but without the memory or time overhead
of back-propagation. This theoretical link explains why combining SVDecode with any PEFT method
consistently improves performance while preserving efficiency.

C One-Token Derivation of Optimal Steering Strength µ∗

C.1 Setup.

Let zφ ∈ R|V | be the warm-started logits for an input x and let pφ = Softmax(zφ). Denote by δz the
task-aware steering vector obtained from the Jacobian-projected KL gradient in Eq. 10. At decode
time we can form perturbed logits:

zµ = zφ + µ · δz, pµ = Softmax(zµ). (34)

Our goal is to choose a scalar strength µ that locally reduces the true objective KL(Ptask‖pµ) as
much as possible, while keeping the computation lightweight.

C.2 First-Order Taylor Expansion of KL

Because a single decoding step is small, expand the KL divergence around µ = 0:

KL(Ptask‖pµ) = KL(Ptask‖pφ) + µ
〈
∇zφKL(Ptask‖pφ), δz

〉
︸ ︷︷ ︸

linear term

+ 1
2 µ

2H[δz] +O(µ3), (35)

whereH[δz] = δ>z ∇2
zφ

KL(Ptask‖pφ) δz is the quadratic form of the Hessian.

C.3 Optimal Step Length (Newton Approximation)

To find the optimal step length µ, that minimizes KL(Ptask‖pµ), we ignore the constant zeroth-order
term and the higher-order terms O(µ3), and consider only the first two orders:

f(µ) = µ ·
〈
∇zφKL(Ptask‖pφ), δz

〉
+

1

2
µ2H[δz]. (36)

Then, we take the derivative of f(µ) with respect to µ and set it to zero:

d

dµ
f(µ) =

〈
∇zφKL(Ptask‖pφ), δz

〉
+ µH[δz] = 0. (37)

Solving for µ, we get:

µ∗ = −
〈∇zφKL(Ptask‖pφ), δz〉

H[δz]
. (38)

which is the exact Newton step. For a one-hot ground-truth label y∗ the task distribution is Ptask(y) =
1{y=y∗}, and the gradient of the KL divergence is formulated as follows which can be recalled from
Eq. 26:

∇zφKL(Ptask‖pφ) = pφ − ey∗ , (39)
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where ey∗ is the one-hot basis vector for y∗. Substituting this into the expression for µ∗ gives:

µ∗ = −〈pφ − ey
∗ , δz〉

H[δz]
. (40)

This derivation shows that the optimal µ∗ is the negative ratio of the linear term to the quadratic
term in the Taylor expansion. The exact Newton step requires computing the HessianH[δz]. How-
ever, computing the full Hessian is expensive. We therefore adopt the common Gauss–Newton
approximationH[δz] ≈ ‖δz‖22 (which is exact for a quadratic loss), yielding

µ∗ =

〈
ey∗ − pφ, δz

〉
‖δz‖22 + ε

, (41)

where a small ε (e.g. 10−12) prevents division by zero when ‖δz‖2 is tiny.

Interpretation. Eq. 41 projects the desired probability-mass shift (ey∗ − pφ) onto the steering
direction δz; the scalar ratio tells us how far to move along δz so that the first-order drop in KL is
maximal. If ‖δz‖2 < ε we fall back to a small default µmin (e.g. 10−4) or simply skip steering for
that token.

D One-Token and Dataset-Level Derivation of the Offline Steering Strength µ̄

We derive here a two-stage procedure: 1) compute the per-token optimal strength µ∗i,t on a labelled
calibration split (training or validation set), and 2) aggregate these values into a single, task-specific
constant µ̄ that is reused for all decoding steps at test time. The detailed algorithm is shown in
Algorithm 2.

D.1 Per-token optimal strength µ∗i,t

Notation. For sentence i and position t let zφ,i,t ∈ R|V | be the warm-started logits, pφ,i,t =
Softmax(zφ,i,t), and y∗i,t ∈ V the ground-truth token. The Jacobian-projected KL-gradient steering
vector δzi,t is given by Eq. 10.

Local KL Objective. We seek a scalar µ that decreases

KL
(
ey∗i,t‖Softmax(zφ,i,t + µ δzi,t)

)
, (42)

where ey∗i,t is the one-hot target distribution.

Gauss-Newton Step. A first-order Taylor expansion around µ = 0 combined with the Gauss-
Newton Hessian approximation ‖δzi,t‖22 yields the optimal step length:

µ∗i,t =

〈
ey∗i,t − pφ,i,t, δzi,t

〉
‖δzi,t‖22 + ε

, (43)

where ε is a small constant to prevent division by zero. This is identical in form to Eq. 41.

D.2 From Tokens to a Global Constant µ̄

Because the calibration split provides the true labels, we can evaluate Eq. 43 for every token whose
prediction is made by the warm-started model. Let S denote this collection of indices (i, t). The
simplest unbiased estimator is the arithmetic mean:

µ̄ =
1

|S|
∑

(i,t)∈S

µ∗i,t. (44)

However, if the distribution of µ∗i,t is heavy-tailed, we can replace the mean by the median or a
trimmed mean:

µ̄ = median
{
µ∗i,t
}

or µ̄ =
1

|Sτ |
∑

(i,t)∈Sτ

µ∗i,t, (45)
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Algorithm 2 Computing the Global Steering Constant µ̄

Require:
1: Pre-trained LLM Pθ(y|x)
2: Warm-started (fine-tuned) LLM Pφ(y|x)
3: Task-specific labeled dataset Dcalib = {(xi, yi)}Ni=1 for calibration
4: Confidence threshold α
5: Small constant ε to prevent division by zero

Ensure: Task-specific global steering constant µ̄
6: function ComputeTokenSteeringVector(pφ, pθ)
7: Compute KL-gradient: gP ← −[log(pφ/pθ) + 1]
8: Compute softmax Jacobian: J(pφ)← diag(pφ)− pφp>φ
9: Project to logit space: δz ← J(pφ) · gP

10: return δz
11: end function
12: function ComputeConfidenceAwareConstraint(δz , pφ, α, λ)
13: Identify most likely token: y∗ ← arg maxy∈V pφ(y)
14: Create confidence mask: I(y)← 1(pφ(y) ≥ α · pφ(y∗))

15: Apply mask: δ̂z(y)← I(y) · δz(y) + (1− I(y)) · λ
16: return δ̂z
17: end function
18: function ComputeTokenwiseMu(xi, yi, Pφ, Pθ)
19: Initialize empty set S ← ∅ to collect token-level µ∗i,t values
20: for each token position t in sequence yi do
21: Get model logits: zφ,i,t ← Logits of Pφ for (xi, yi,<t)
22: Compute probabilities: pφ,i,t ← Softmax(zφ,i,t)
23: Get probabilities from base model: pθ,i,t ← Pθ(y|xi, yi,<t)
24: Get ground truth token: y∗i,t ← yi[t]
25: Create one-hot distribution: ey∗i,t ← OneHot(y∗i,t)

26: δzi,t ← ComputeTokenSteeringVector(pφ,i,t, pθ,i,t)

27: δ̂zi,t ← ComputeConfidenceAwareConstraint(δzi,t , pφ,i,t, α,−∞)
28: Compute optimal token-level strength:

29: µ∗i,t ←
〈ey∗

i,t
−pφ,i,t, δ̂zi,t 〉

‖δ̂zi,t‖
2
2+ε

30: Add to collection: S ← S ∪ {(i, t, µ∗i,t)}
31: end for
32: return S
33: end function
34: Initialize empty collection S ← ∅
35: for each sample (xi, yi) in Dcalib do
36: Si ← ComputeTokenwiseMu(xi, yi, Pφ, Pθ)
37: S ← S ∪ Si
38: end for
39: Compute mean steering strength: µ̄← 1

|S|
∑

(i,t,µ∗i,t)∈S
µ∗i,t

40: return µ̄

where Sτ = {(i, t) : |µ∗i,t −m| < τ} is a central τ -trimmed subset around the median m. In all our
experiments we adopt the plain mean formulated in Eq. 44, which already works well.

This scalar µ̄ not only captures the dominant shift dictated by the task distribution but also preserves
the key advantage of SVDecode: no run-time optimisation loop and no per-token label needed.

D.3 Extension to sequences (T > 1)

The derivation in Appendix D.1 treats one decoding step in isolation. For an autoregressive sequence
y = (y1, . . . , yT ) the joint likelihood factorises Pφ(y | x) =

∏T
t=1 pφ,t(yt | x, y<t), so the sequence-
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level KL objective is

KL
(
Ptask‖Pφ

)
=

T∑
t=1

KL
(
ey∗t ‖pφ,t

)
.

Because each term depends only on its local logits zφ,t, the first-order "Newton in µ” argument
extends verbatim: the optimal global strength that minimises the quadratic approximation of the total
KL is

µ∗1:T =

T∑
t=1

〈
ey∗t − pφ,t, δzt

〉
T∑
t=1

‖δzt‖22 + Tε

, (46)

which is the token-wise numerator and denominator from Eq. 43 summed over t. The Gauss–Newton
Hessian remains block-diagonal, so cross-time Jacobian terms cancel in the same first-order limit.

E Experiment Implementation Details

E.1 Implementation Details of SVDecode

In this section, we provide the implementation details of the SVDecode method. It is summarized in
the following Table 6.

Table 6: Implementation Details of SVDecode.
Parameter Value/Setting

Warm-start Steps (Epochs) 1
α in Confidence-aware Constraint 0.1
λ in Confidence-aware Constraint -inf
Default Decoding Strategy Greedy Search

E.2 Hyperparameters for PEFT Methods

In this section, we provide the hyperparameters for the PEFT methods used in the experiments,
including LoRA, IA3, Prompt Tuning, and P-Tuning v2. The hyperparameters are summarized in
Table 7.

E.3 Evaluation Metrics

In order to evaluate the performance of our method on multiple-choice tasks, we consider MC1, MC2,
and MC3. MC1 measures the accuracy on single-best-answer questions, MC2 measures the accuracy
multiple-correct-answer questions based on picking any correct answer as the top choice, and MC3
normalized total probability assigned to all correct answers on multiple-correct-answer questions,
measuring overall preference for the true set. Here we provide the mathematical formulations for the
MC1, MC2, and MC3 metrics in TruthfulQA.

Consider a multiple-choice question q with k possible answer choices. Let Aq = {a1, a2, ..., ak} be
the set of answer choices, and Cq ⊆ Aq be the subset of correct answer choices. Let Iq = Aq \ Cq
be the subset of incorrect answer choices. Let P (ai|q) be the probability assigned by the language
model to answer choice ai for question q. Typically, these probabilities are normalized using softmax
over all choices for question q, so

∑k
i=1 P (ai|q) = 1. In addition, let I(·) be the indicator function,

which is 1 if the condition inside is true, and 0 otherwise. Let abest(q) = arg maxai∈Aq P (ai|q) be
the answer choice assigned the highest probability by the model for question q. (We assume ties are
broken consistently, e.g., randomly or by picking the first). Then the metrics are defined as follows:

1. MC1 (Single-True Accuracy): This metric is calculated only over the subset of questions
QMC1 ⊆ Q where there is exactly one correct answer (i.e., |Cq| = 1). It measures the
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Table 7: Hyperparameters for PEFT Methods. Here, Prompt means Prompt Tuning, P-T means
P-Tuning v2.

Parameter LoRA IA3 Prompt P-T

LoRA Rank 8 - - -
LoRA α 16 - - -
LoRA Dropout 0.1 - - -

Num Virtual Tokens - - 20 20
Prefix Projection - - False -
Encoder Hidden Size - - - 128
Encoder Num Layers - - - 2

Target Modules q_proj, v_proj
(Qwen/llama: q_proj,
k_proj, v_proj, o_proj)

q_proj, k_proj, v_proj,
o_proj, down_proj,
up_proj (llama) / q_proj,
k_proj, v_proj, o_proj,
fc1, fc2 (other)

- -

Feedforward Modules - down_proj, up_proj
(llama) / fc1, fc2 (other)

- -

Learning Rate 5e-5 5e-5 5e-5 5e-5
Epochs 1 1 1 1
Train Batch Size 1 1 1 1
Eval Batch Size 2 2 2 2
Max Seq Length 512 512 512 512
FP16 True True True True

fraction of these questions where the model assigns the highest probability to the single
correct answer. It is defined as:

MC1 =
1

|QMC1|
∑

q∈QMC1

I(abest(q) ∈ Cq) (47)

2. MC2 (Multi-True Accuracy): This metric is typically calculated over all questions Q
(or a designated subset QMC2/3 that includes both single- and multi-true questions, where
|Cq| ≥ 1). It measures the fraction of questions where the model assigns the highest
probability to any of the correct answers. It is defined as:

MC2 =
1

|Q|
∑
q∈Q

I(abest(q) ∈ Cq) (48)

3. MC3 (Multi-True Normalized Probability): This metric is calculated over the same set of
questions as MC2 (Q or QMC2/3). For each question, it calculates the sum of probabilities
assigned to all correct answers. The final score is the average of these sums over all questions.
It is defined as:

MC3 =
1

|Q|
∑
q∈Q

 ∑
ac∈Cq

P (ac|q)

 (49)

To evaluate the performance of our method on open-ended generation tasks, we consider Truthfulness,
Informativeness, and Truthfulness & Informativeness. Unlike the multiple-choice metrics (MC1,
MC2, MC3) which are calculated directly from model output probabilities, the metrics for the
generation task (Truthfulness, Informativeness, Truthfulness & Informativeness) rely on external
judgments of the generated answers. These judgments are typically binary (0 or 1) and often come
from human evaluators or trained classifier models. In our experiments, we use DeepSeek-V3-0324
[3] as the external judge.

Consider a question q and the generated answer agen(q). Let JT (agen(q)) ∈ {0, 1} be the judgment
function for Truthfulness. It returns 1 if the ‘answer’ is judged truthful, and 0 otherwise. Let
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Table 8: The data template of each dataset used to create commonsense reasoning data for parameter-
efficient fine-tuning.

Dataset Fine-tuning Data Template

BoolQ
Please answer the following question with true or false, question: [QUESTION]
Answer format: true/false
the correct answer is [ANSWER]

PIQA

Please choose the correct solution to the question: [QUESTION]
Solution1: [SOLUTION_1]
Solution2: [SOLUTION_2]
Answer format: solution1/solution2
the correct answer is [ANSWER]

SIQA

Please choose the correct answer to the question: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer format: answer1/answer2/answer3
the correct answer is [ANSWER]

HellaSwag

Please choose the correct ending to complete the given sentence: [ACTIVITY_LABEL]: [CONTEXT]
Ending1: [ENDING_1]
Ending2: [ENDING_2]
Ending3: [ENDING_3]
Ending4: [ENDING_4]
Answer format: ending1/ending2/ending3/ending4
the correct answer is [ANSWER]

WinoGrande Please choose the correct answer to fill in the blank to complete the given sentence: [SENTENCE]
Option1: [OPTION_1]
Option2: [OPTION_2]
the correct answer is [ANSWER]

ARC-e & ARC-c

Please choose the correct answer to the question: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
Answer format: answer1/answer2/answer3/answer4
the correct answer is [ANSWER]

OBQA

Please choose the correct answer to the question: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
Answer format: answer1/answer2/answer3/answer4
the correct answer is [ANSWER]

JI(agen(q)) ∈ {0, 1} be the judgment function for Informativeness. It returns 1 if the ‘answer’ is
judged informative, and 0 otherwise. The metrics are defined as follows:

1. Truthfulness: This is the average truthfulness judgment across all generated answers in the
set Qgen. It is defined as:

Truth =
1

|Qgen|
∑

q∈Qgen

JT (agen(q)) (50)

2. Informativeness: This is the average informativeness judgment across all generated answers
in the set Qgen. It is defined as:

Info =
1

|Qgen|
∑

q∈Qgen

JI(agen(q)) (51)

3. Truthfulness & Informativeness: This measures the fraction of answers that are judged
to be both truthful and informative. An answer contributes to this score only if both
JT (agen(q)) = 1 and JI(agen(q)) = 1. It is defined as:

Truth*Info =
1

|Qgen|
∑

q∈Qgen

JT (agen(q))× JI(agen(q)) (52)
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Table 9: DeepSeek-V3-0324 prompt used for evaluating open-ended generation.
Metric Prompt

Truthfulness

You are evaluating if an answer is truthful to a given question.
Question: [QUESTION]
Answer: [ANSWER]
Is this answer truthful? Answer only with ’yes’ or ’no’.

Informativeness

You are evaluating if an answer is helpful to a given question.
Question: [QUESTION]
Answer: [ANSWER]
Is this answer helpful? Answer only with ’yes’ or ’no’.

E.4 Implementation Details on Multiple-Choice Tasks and Open-Ended Generation Tasks

In order to evaluate the performance of our method on multiple-choice tasks and open-ended gen-
eration tasks, we leverage TruthfulQA dataset [21] as the training and evaluation dataset. For
multiple-choice tasks, we use the MC1, MC2, and MC3 metrics. For open-ended generation tasks,
we use the Truthfulness, Informativeness, and Truthfulness & Informativeness metrics. The details
of the metrics are shown in Appendix E.3. In addition, we leverage DeepSeek-V3-0324 [3] as the
external judge. The details are shown in Appendix E.6.

To prompt the model to generate the answer, we use the prompts shown in Table 10.

Table 10: Prompts used for multiple-choice tasks and open-ended generation tasks.
Prompt
Interpret each question literally, and as a question about the real world; carefully research each
answer, without falling prey to any common myths; and reply "I have no comment" unless you are
completely certain of the answer.
Q: "What is human life expectancy in the United States?"
A: "Human life expectancy in the United States is 78 years."
Q: "Who was president of the United States in 1955?"
A: "Dwight D. Eisenhower was president of the United States in 1955."
Q: "Which party did he belong to?"
A: "He belonged to the Republican Party."
... more examples
Q: [QUESTION]
A:

E.5 Implementation Details on Commonsense Reasoning Tasks

In order to evaluate the performance of our method on commonsense reasoning tasks, we leverage
eight datasets including BoolQ [22], PIQA [23], SIQA [24], HellaSwag [25], WinoGrande [26],
ARC-easy [27], ARC-challenge [27] and OBQA [28], using accuracy as the metric. Firstly, we fine-
tune the model on a comprehensive training dataset merged from all the datasets. Then, we evaluate
the method on each task’s test set. The data template of each dataset used to create commonsense
reasoning data for parameter-efficient fine-tuning is shown in Table 8.

We fine-tune three models including Qwen2.5-7B [2], LLaMA3-8B [1], and LLaMA3.1-8B [1] on
the merged training dataset with four PEFT methods: LoRA [29], P-Tuning v2 [30], Prompt Tuning
[16], and IA3 [31]. The hyperparameters are summarized in Table 7.

E.6 Details about DeepSeek-V3-0324 Evaluation

To evaluate the performance of our method on open-ended generation tasks, traditional approaches
are to use human evaluators or train classifier models to judge the quality of the generated answers.
However, this method is inefficient and costly. LLMs with strong reasoning capabilities, such as GPT-
4 and DeepSeek-R1/V3, have been proven to be an alternative to human evaluation in many cases with
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stable performance over different prompts and instructions [49, 50]. Here, we use DeepSeek-V3-0324
[3] as the external judge. The prompt used for evaluation is shown in Table 9. By using these prompts,
we can efficiently and accurately obtain the truthfulness and informativeness of the generated answers.

Table 11: More experimental results on commonsense reasoning tasks. We evaluate different PEFT
methods and our proposed SVDecode method on LLaMA2-7B

Model Method BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

LLaMA2-7B

LoRA 50.41 44.63 31.11 19.67 21.34 34.69 25.00 23.10 31.24
+ SVDecode 51.52 47.42 33.23 21.39 22.45 36.18 27.23 25.57 33.12
IA3 63.56 69.10 55.00 22.43 49.21 55.26 37.31 45.23 49.64
+ SVDecode 64.34 69.43 55.67 23.21 50.47 56.49 37.12 47.61 50.54
Prompt Tuning 64.47 47.61 34.29 18.01 41.35 48.26 24.37 22.97 37.67
+ SVDecode 65.21 48.52 36.77 19.17 42.52 49.67 26.31 23.78 38.99
P-Tuning v2 63.61 49.11 28.31 18.21 30.45 26.51 18.96 21.67 32.10
+ SVDecode 64.73 50.69 30.10 19.13 31.24 27.74 20.22 24.18 33.50

F More Experiment Results

F.1 More Results on Commonsense Reasoning Tasks

We conducted additional experiments on commonsense reasoning tasks using the LLaMA2-7B model,
comparing various PEFT methods with and without the integration of our proposed SVDecode
method. As shown in Table 11, the results indicate that the SVDecode-enhanced versions consistently
outperform their counterparts across all tasks. Specifically, the average accuracy improvements with
SVDecode are notable: LoRA improves from 31.24% to 33.12%, IA3 from 49.64% to 50.54%,
Prompt Tuning from 37.67% to 38.99%, and P-Tuning v2 from 32.10% to 33.50%. These find-
ings underscore the effectiveness of the SVDecode method in enhancing model performance on
commonsense reasoning tasks.

F.2 Comparison with Other Decoding Adaptation Methods

To investigate whether SVDecode is more beneficial to adapte LLMs on downstream tasks, we
expanded our evaluation by comparing SVDecode with other decoding adaptation techniques, such
as TaD [51]. The experimental results, as shown in Table 12, clearly demonstrate that the integration
of SVDecode substantially improves model performance. These findings highlight the critical
contribution of SVDecode to effectively optimizing model capabilities for downstream applications.

Table 12: Comparing SVDecode with other decoding adaptation techniques. We evaluate our
proposed SVDecode method and TaD method on Qwen2.5-7B.

Model Method BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

Qwen2.5-7B
LoRA 59.12 85.71 68.57 78.10 58.79 91.00 82.57 79.77 75.45
+ TaD 59.46 86.25 69.24 78.73 59.22 92.06 83.75 80.69 76.17
+ SVDecode 60.09 86.97 70.13 79.23 59.67 93.33 85.62 81.43 77.06

F.3 The Influence of the α Parameter in the Confidence-Aware Constraint.

In this section, we conducted an ablation study on the α parameter in the confidence-aware constraint
to study the influence of the α parameter on the performance of the method. α is a hyperparameter
that controls the threshold of the confidence-aware constraint. If α is too small, the constraint may
not filter out the logits with small probabilities, and if α is too large, the constraint may filter out too
many logits, which may lead to performance degradation.

As shown in Figure 4, we set α = 0.1, 0.2, 0.3, 0.4, 0.5 and evaluate the performance of the method
on the multiple-choice tasks with two models: LLaMA3.1-8B and Qwen2.5-7B. We can see that the
performance of the method decreases slightly as α increases. When α = 0.1, the overall performance
is the highest, and we use this value in our experiments.
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(a) (b)

Figure 4: Ablation study on the α parameter in the confidence-aware constraint.

G Limitations and Future Work

A primary limitation of Steering Vector Decoding (SVDecode) is its dependency on an initial warm-
start fine-tuning phase to identify an effective, task-specific steering direction. This preliminary
optimization step necessitates additional labelled data and computational resources, thus limiting
the applicability of the method in scenarios characterized by limited annotations or constrained
computational budgets. Therefore, future work should explore the development of label-free or
retrieval-augmented approaches capable of deriving robust steering vectors directly from unlabelled
corpora, eliminating the warm-start requirement, and significantly enhancing adaptability and effi-
ciency in practical deployments.

H Practical Impact

Steering Vector Decoding (SVDecode) transforms task adaptation from a heavyweight weight-update
problem into a lightweight distribution-alignment procedure executed entirely at decode time. Below
we outline the concrete benefits that make SVDecode immediately useful in production and research
deployments of LLMs.

1. Deployment-time efficiency. SVDecode requires warm start to extract a task-specific
steering direction and thereafter operates without further backward passes, optimizer states,
or gradient checkpoints. Because the steering vector is added in logit space during generation,
no additional trainable parameters or memory allocations are introduced beyond the original
PEFT adapter. This cuts adaptation wall-clock time by an order of magnitude on commodity
GPUs while keeping peak memory identical to vanilla inference, which is critical for mobile
and embedded deployments where storage and latency budgets are tight.

2. Consistent accuracy gains at negligible cost. Across three tasks and nine benchmarks,
pairing SVDecode with four standard PEFT methods lifts multiple-choice accuracy by
up to 5 percentage points and open-ended truthfulness by 2 percentage points, and adds
a 1–2 percentage points average boost on eight commonsense-reasoning datasets. These
improvements comes even “for free”, because no retraining or hyper-parameter sweeps are
required.

3. Plug-and-play compatibility. Because SVDecode perturbs logits rather than weights, it
can be stacked on any PEFT recipe (LoRA, IA3, Prompt Tuning, P-Tuning v2) and on any
decoding strategy.

4. Theoretically grounded. The SVDecode step is provably equivalent to the gradient step
of maximum-likelihood fine-tuning. We therefore obtain the benefits of gradient descent,
which is task-aligned distributions and predictable behaviour, without incurring gradient
computation.
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By turning task adaptation into a constant-overhead inference-time operation, SVDecode lowers the
barrier to customised LLM deployment for small labs, edge devices, and fast-changing domains
where rapid iteration is crucial. Its effectiveness across model sizes and tasks suggests that future
work on adaptive decoding can further decouple performance from training compute, accelerating the
democratization of large-model capabilities.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly highlight the proposed SVDecode
method, its effectiveness, efficiency, and compatibility with PEFT methods, aligning pre-
cisely with the detailed experiments and results presented throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work performed by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

30



Answer: [Yes]
Justification: We have provided the full set of assumptions and a complete (and correct)
proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the sufficient information on the training and test details
necessary to understand the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the code in the supplemental material. Once the paper is
accepted, we will release the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the sufficient information on the training and test details
necessary to understand the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results are averaged across nine benchmarks and multiple model sizes;
extensive ablations (Fig. 3, Table 4) show consistent deltas, providing variability evidence
analogous to error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the sufficient information on the computer resources needed
to reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The study uses only publicly available datasets and open-source models, with
no human subjects or sensitive data, aligning with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: By lowering adaptation cost, SVDecode widens access to LLM fine-tuning for
academia and small enterprises; the paper also notes potential misuse if cheaper adaptation
amplifies disinformation and urges responsible release.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release any data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All pretrained bases (Qwen, Llama-3) and datasets are cited with their permis-
sive licences (e.g., Apache-2.0, CC-BY-4.0) in References [1–4,19-26].
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: The paper does not use LLMs as an important, original, or non-standard
component of the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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