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Abstract

As the range of applications for Large Language
Models (LLMs) continues to grow, the demand
for effective serving solutions becomes increas-
ingly critical. Despite the versatility of LLMs,
no single model can optimally address all tasks
and applications, particularly when balancing per-
formance with cost. This limitation has led to
the development of LLM routing systems, which
combine the strengths of various models to over-
come the constraints of individual LLMs. Yet,
the absence of a standardized benchmark for
evaluating the performance of LLM routers hin-
ders progress in this area. To bridge this gap,
we present ROUTERBENCH, a novel evaluation
framework designed to systematically assess the
efficacy of LLM routing systems, along with a
comprehensive dataset comprising over 405k in-
ference outcomes from representative LLMs to
support the development of routing strategies. We
further propose a theoretical framework for LLM
routing, and deliver a comparative analysis of vari-
ous routing approaches through ROUTERBENCH,
highlighting their potentials and limitations within
our evaluation framework. This work not only
formalizes and advances the development of
LLM routing systems but also sets a standard
for their assessment, paving the way for more
accessible and economically viable LLM de-
ployments. The code and data are available at
https://github.com/withmartian/routerbench.

1. Introduction
Large Language Models (LLMs) have exhibited remarkable
capabilities in addressing a wide range of tasks across aca-
demic and industrial scenarios (Bubeck et al., 2023). This
has motivated both researchers and practitioners to intro-
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duce new LLMs, designed for both generic and specialized
use cases, on a near-daily basis 1. However, the proliferation
of LLMs presents a challenge for LLM application builders
to identify the most suitable model for their applications.
While some proprietary models, such as GPT-4, are distin-
guished by their superior performance, they often incur high
economic costs due to the high API prices.

Many prior works focus on improving the capabilities of
individual LLMs while maintaining low costs. Techniques
such as prompting (Wei et al., 2022), quantization (Lin et al.,
2023; Kim et al., 2023), and system optimization (Kwon
et al., 2023) may reduce a single model’s serving cost, yet
with new models emerging daily, these approaches may not
remain feasible or scalable in long term. Moreover, the
diversity of choices of LLMs available at various price and
performance tiers can be daunting for users attempting to
select and optimize an appropriate model2.

An alternative solution aims to select to optimal LLM for
each input through ”routing.” (Chen et al., 2023; Shnitzer
et al., 2023; Šakota et al., 2023). Routing offers several
advantages over single-LLM optimization. First, it is a
lightweight process, which treats each LLM as an input-
output black box, avoiding the need to delve into intricate
infrastructure details, thus making it flexible and broadly
applicable. Second, routing systems benefit from the diver-
sity of LLMs, while single-LLM methods may struggle to
keep pace with the expanding LLM landscape. Lastly, while
single-LLM strategies often face a compromise between per-
formance and other factors such as per-token costs, routing
systems adeptly balance a spectrum of user demands.

The rise in routing-related research has improved cost
efficiency, enhanced performance, and broadened acces-
sibility (Chen et al., 2023; Lee et al., 2023; Lu et al.,
2023). Despite these advances, a comprehensive bench-
mark for evaluating routing techniques remains absent. We
introduce ROUTERBENCH, the first comprehensive bench-
mark designed specifically for assessing router mecha-
nisms in terms of inference dollar cost and performance.

1As of January 16th, 2024, there are 469,848 models listed on
huggingface.com

2As of January 29th, 2024, there are 22,177 language models
with 7 billion parameters listed on huggingface.com
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Figure 1. Left: The ROUTERBENCH Construction Process integrates eight datasets with eleven distinct models to develop
ROUTERBENCH. Detailed format can be found in Appendix A.3. Right: The Model Routing Process shows the method of rout-
ing prompts through a router to various LLMs based on specific requests, demonstrating the dynamic allocation of resources.

ROUTERBENCH encompasses a diverse array of tasks and
domains, with pre-generated LLM response and quality
metrics, on which different routing mechanisms can be effi-
ciently tested without inference. Our experiments revealed
that while some previous routing mechanisms have difficulty
generalizing to complex tasks and up-to-date models, there
are several promising fields on which even simple routing
demonstrated outstanding performance.

In conclusion, we present the following key contributions:

1. We have developed a comprehensive benchmark for
LLM routing covering major tasks for LLMs, which
includes a wide range of both open-source and propri-
etary models. ROUTERBENCH enables efficient train-
ing and testing of model routers without inference, and
can be flexibly extended to cover new tasks and mod-
els.

2. We introduce a theoretical framework designed to as-
sess the efficacy of routers across several metrics, with
a particular emphasis on inference cost (expressed in
dollars) and performance. This framework includes
mathematical formulations that enable the seamless
integration and comparative analysis of various routers
and LLMs.

3. We evaluate the efficiency of routing strategies across
a broad range of tasks. Our results provide insights
into the performance of various routers in different con-
texts and demonstrate that the monetary costs of LLM
services can routinely vary by factors of 2-5× for com-
parable levels of performance. This underscores the
significance and utility of our benchmark, highlighting
promising areas for future enhancements.

2. Related Work
Various strategies have been proposed to optimize the cost
and performance of current LLMs. We provide an overview
of them with a focus on routing-related approaches.

Single LLM Enhancement Fine-tuning is used to improve
models for specific tasks, which requires additional training
and domain-specific data (Rafailov et al., 2023). Prompt-
ing mechanisms like Chain-of-Thought (CoT) (Wei et al.,
2022; Zhou et al., 2023; Wang et al., 2022) and Tree of
Thoughts (ToT) (Yao et al., 2023) could bolster LLM perfor-
mance without additional fine-tuning. Mixture-of-Experts
(MoE) (Eigen et al., 2014; Shazeer et al., 2017; Fedus et al.,
2022; Du et al., 2022; Shen et al., 2023; Si et al., 2023) is an-
other line of work that explores routing within the model to
enhance performance efficiently, which contains specialized
”experts” and routes the input to the best expert. Neverthe-
less, these single-LLM enhancements are usually model and
scenario specific, and could not benefit from the explosion
in the number of LLMs.

LLM Synthesis Beyond single LLM approaches, LLM
synthesis utilizes the ensemble of multiple LLMs, integrat-
ing their outputs into an enhanced final result (Jiang et al.,
2023b). Another approach has shown that a strategic com-
bination of smaller models can match or even outperform
larger models (Lu et al., 2024). However, these methods
require at least two steps: text generation and synthesis,
which increases costs and latency, creating challenges to
applying this approach in production.

Routing Unlike LLM Synthesis, routing can select the suit-
able model for specific input without performing inference
on every candidate model. Routing can be classified into
two categories, non-predictive routing and predictive rout-
ing. Non-predictive routing strategies retrieve outputs from
LLMs and directly pick one without a model-assisted syn-
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thesis step. FrugalGPT (Chen et al., 2023) presents an inau-
gural application of this type of strategy, which employs a
generation judger that assesses the quality of responses from
various LLMs to a given query, invoking LLMs sequentially
until an answer meets a predefined quality threshold. Sev-
eral studies (Madaan et al., 2023; Yue et al., 2023; Lee et al.,
2023) also have explored systems that integrate small lan-
guage models with LLMs. Another methodology involves
a layered inference framework, re-routing more complex
queries to an advanced model for improved results (Wang
et al., 2023). Predictive routing selects the optimal LLM
without requiring to evaluate the output. One line of research
has implemented routers utilizing supervised learning algo-
rithms (Shnitzer et al., 2023), while some others use reward
model-based techniques (Hari & Thomson, 2023; Lu et al.,
2023). Furthermore, meta-model, trained on inputs along
with a model-specific token to predict the performance score,
represents another approach to determining the most appro-
priate LLM for use (Šakota et al., 2023). In short, predictive
routers could bring substantial cost and performance im-
provement without sacrificing latency, with a number of
early works dedicated to this field.

While many routers currently exist, a systematic benchmark
for their evaluation has been lacking. Our work aims to
address this issue and introduce a benchmark for router
evaluation.

3. Math Formulation for Router Evaluation
The primary challenge in assessing the performance of rout-
ing systems lies in balancing two conflicting objectives:
maximizing efficiency and minimizing cost. To effectively
compare routers, we have developed a framework that cap-
tures the multi-faceted nature with one metric.

3.1. Setup and Basic Operations

Consider a set of models L = {LLM1, . . . , LLMm} a
dataset D consisting of examples xi ∈ {x1, ..., x|D|}. For
each model LLMj , we evaluate its performance by generat-
ing an output oji = LLMj(xi) for each example xi. Each
output oji has two associated quantities: the cost c(oji ) of
generating that output and the quality or performance q(oji )
of the output itself. Through this process, we establish an
expected cost cm and an expected quality qm for each model
LLMm across the dataset D.

cm = E[c(LLMm(x))|x ∈ D]

qm = E[q(LLMm(x))|x ∈ D]

A router R, define as a function, takes in a prompt x and a
set of parameters θ, subsequently selecting the most suitable
model LLMi from a set L to complete the prompt, i.e.

Rθ(x) 7→ LLMi ∈ L.

The parameters θ typically include the maximum price the
user is willing to pay, the desired latency, or a number of
layers of neural networks for the router model, etc. More
details of router parameters will be elaborated and discussed
in Section 5.1.

The expected cost of a router Rθ1 across dataset D is defined
as

cRθ1
(D) = E[c(Rθ1(x))|x ∈ D]

and the expected performance of a router Rθ1 can be defined
similarly.

By experimenting with various router parame-
ters θ1, ..., θk, we obtain a series of data points
(cRθ1

, qRθ1
), ..., (cRθk

, qRθk
) which can be graphi-

cally represented in the cost-quality (c− q) plane alongside
the results of LLMs for comparative analysis.

Linear Interpolation The initial operation we introduce
within this framework is linear interpolation, which enables
the computation of a weighted average between any two
points on the cost-quality (c− q) plane.

As illustrated by an example in the left of Figure 2, consider
two routers, Rθ1 and Rθ2 , we can formulate a third router,
Rint(Rθ1 , Rθ2), based on the following principle: given a
prompt x select t ∈ [0, 1] such that:

Rint(Rθ1 , Rθ2 , t)(x) =

{
Rθ1(x), w.p. t
Rθ2(x), w.p. 1− t

Through the principle of linearity of expectation, we can
deduce the expected cost of Rint(Rθ1 , Rθ2 , t)(x) in terms
of LLM1 and LLM2:

E[cRint(x)|x ∈ D] = t · cRθ1
+ (1− t) · cRθ2

and the expected performance of Rint(Rθ1 , Rθ2 , t)(x) can
be defined similarly.

Notably, for two data points (c1, q1) and (c2, q2) correspond-
ing to Rθ1 and Rθ2 respectively, Rint(t) can precisely inter-
polate any point along the line segment connecting (c1, q1)
and (c2, q2).

Extrapolation To ensure all routers can enrich our math-
ematical framework, we also introduce the extrapolation
operation, which enables all routers to extend to the cost
domain [0,∞]. For a given router Rθ, we can trivially add
more cost to the system without adding performance (for
example repeat LLM generation k times and only take the
last generation as final output) and thus extend the cost to
∞. To extend the router to a smaller cost domain, we simply
interpolate the null router (zero cost, zero performance) and
Rθ1 . Thus we are able to achieve any cost level between
[0,∞] to when comparing routers with different domains.
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Figure 2. Left: linear interpolation is the process of achieving the cost-performance trade-off between any concrete routers. Point A
and B are routers with different input parameters. To achieve the average of A and B, we build router C which routes to A or B with
50% probability each, and it performs the average of A and B in expectation. Middle: Consider points A to E, we can construct the
non-decreasing convex hull consisting of points A, B, and C. D and E as they can be replaced by a strictly superior affine combination of
A, B, and C. Right: ABC and DEF are two routing systems (already convexified with ABC extrapolated to (0.1,0) for a fair comparison).
To compare, we interpolate A and B to cmin = 0.1 and cmax = 0.8, respectively, and then calculate the area under the curve normalized
by cmax − cmin to derive AIQ.

It is essential to note that the routers discussed are function-
ally analogous to LLMs within this context, as both can be
represented as coordinates in the cost-quality (c− q) plane.

3.2. Non-Decreasing Convex Hull

When working with multiple routers, it’s feasible to con-
struct any affine combination of points through linear inter-
polation among them. Specifically, for a set S of points in
the cost-quality (c− q) plane, these affine combinations can
target any point (c, q) in R2 lying within the convex hull
formed by S. We identify Sch ⊆ S as the subset of points
that delineate the vertices of this convex hull.

Furthermore, it’s possible to configure a non-decreasing
convex hull from Sch, ensuring that for any two points
(c1, q1) and (c2, q2) where c2 ≥ c1, it follows that q2 ≥
q1. Intuitively, if the extra cost of c2 − c1 does not bring
any performance improvement, it is advisable to simply
extrapolate (c1, q1) to the domain of c2, and (c2, q2) could
be (c2, q1). An example is shown in the middle of Figure 2.

For a given routing system R1, constituted by LLMs
and routers plotted in the c − q plane for dataset D, we
can conceptualize a new routing system R̃1. This in-
volves constructing routers Rθ1 , ..., Rθk , yielding points
(c1, q1), ..., (ck, qk). By establishing a non-decreasing con-
vex hull Sndch from these points and for any cost c within
the range [cmin, cmax], optimal performance is attainable
by interpolating between the two closest cost points. This
process effectively creates a new routing system that spans
the complete domain [cmin, cmax].

Given the framework established, we define the Zero
router (Rzero) as a router that selects LLMs from

{LLM1, . . . , LLMm} based on their collective non-
decreasing convex hull. For a specified cost c, Rzero pro-
vides a probabilistic mix of LLMs that maximizes expected
output quality with a simple, mathematics-driven routing
strategy. Rzero serves as a basic benchmark for assessing
the efficacy of other routing systems; a router is deemed
significant only if it demonstrates superior performance
compared to Rzero.

3.3. Comparing Different Routing Systems

Given the agnostic nature of our comparison framework
towards the router’s structure, routing systems can produce
an assorted set of points on the c − q plane that may be
non-deterministic and non-parametric, complicating direct
comparisons. Leveraging the methodologies delineated
previously, we have the capacity to condense these dis-
parate points into a streamlined function—specifically, a
non-decreasing convex hull—and subsequently distill this
representation into a singular metric that encapsulates the
system’s characteristics.

Routing systems often generate multiple points on the cost-
quality (c − q) plane, making it difficult to compare the
underlying systems. However, our framework allows us to
transform these non-parametric points into a simpler func-
tion, specifically a non-decreasing convex hull, which can
be characterized by a single numerical value.

Let’s consider two different routing systems (for example
KNN and MLP-based routers), Rθ where θ ∈ Θ, and
Rλ where λ ∈ Λ. To compare their effectiveness, we
parametrize them by sampling from Θ,Λ to generate a set
of points: Rθ1 , . . . , Rθk , and Rλ1 , . . . , Rλk

. Then, we con-
struct a non-decreasing convex hull for both groups, R̃θ and
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R̃λ, defined on a shared domain [cmin, cmax].

We define AIQ (Average Improvement in Quality) for one
of the routing systems as follows:

AIQ(Rθ) =
1

cmax − cmin

∫ cmax

cmin

R̃θdc

With the equation above, we can calculate AIQs for any
group of routing systems to get a clear understanding of
their relative performance, which is demonstrated in the
right of Figure 2. Rather than performing complex graphic
analysis, AIQ allows users to measure router performance
in a straightforward way.

4. Benchmark Construction - ROUTERBENCH

To systematically assess router performance, we have de-
veloped a dataset, ROUTERBENCH. This comprehensive
dataset consists of a broad spectrum of tasks, includ-
ing commonsense reasoning, knowledge-based language
understanding, conversation, math, coding and retrieval-
augmented generation (RAG). ROUTERBENCH is con-
structed by leveraging existing datasets that are widely
recognized and utilized in the evaluation of leading
LLMs, such as GPT-4, Gemini (Team et al., 2023), and
Claude (Anthropic, 2023). This approach ensures that
ROUTERBENCH is representative of the diverse challenges
and requirements pertinent to mainstream LLM perfor-
mance evaluation.

4.1. Principles in benchmark construction

The construction of ROUTERBENCH is guided by the fol-
lowing principles:

• Extensive Coverage: Our selection process identified a
diverse array of fields where LLMs are widely utilized,
aiming for wide-ranging applicability.

• Practical Relevance: The benchmarks chosen are of
considerable significance to the industry’s current ap-
plications of LLM systems, presenting a balanced chal-
lenge to the state-of-the-art LLMs, that is not too diffi-
cult nor too simplistic.

• Extensibility: ROUTERBENCH is designed for seam-
less integration of additional metrics, such as latencies
and throughputs, ensuring adaptability to the evolving
landscape of LLM.

4.2. Benchmark Dataset

For the initial release, we have curated a selection of 8 rep-
resentative datasets from multiple different tasks. Detailed
descriptions are in Appendix A.2.

• Commonsense Reasoning: Hellaswag (Zellers et al.,
2019), Winogrande (Sakaguchi et al., 2021), and ARC
Challenge (Clark et al., 2018)

• Knowledge-based Language Understanding:
MMLU (Hendrycks et al., 2021)

• Conversation: MT-Bench (Zheng et al., 2023b)

• Math: GSM8K (Cobbe et al., 2021)

• Coding: MBPP (Austin et al., 2021)

RAG Dataset: To evaluate routers in a more practical set-
ting, we collected 800 user queries from one of Martian’s
clients, an LLM-assisted search company, and constructed
an RAG dataset based on these queries. These queries
cover topics including sports, history, media & art, and poli-
tics, and all have ground truth answers. We then manually
collected the ground truths, which were used to evaluate
answers from selected groups of LLM and LLM-assisted
search engines. This initiative is designed to assess the
routers’ performance in a complex ”compound system” set-
ting (Zaharia et al., 2024) – determining whether routers
can adeptly navigate when retrieval abilities are also in play.
For instance, when dealing with news published after the
GPT-4 knowledge cutoff, routers are expected to more fre-
quently opt for models that can access and search the latest
internet-based information (e.g. sonar-medium-online).

4.3. Dataset Construction Process

For the compilation of our benchmark dataset, we perform
inference with 14 different LLMs, with 3 of them specific
to the RAG dataset3, including both open-source and propri-
etary models. This process was applied to each of the eight
datasets and the RAG dataset enumerated in Section 4.2,
which is also illustrated in Figure 1. The selected LLMs are
as follows and more details are in Appendix A.1:

Open Source Model: Llama-70B-chat (Touvron et al.,
2023), Mixtral-8x7B-chat (Madaan et al., 2023), Yi-34B-
chat (AI et al., 2024), Code Llama-34B (Rozière et al.,
2023), Mistral-7B-chat (Jiang et al., 2023a), WizardLM-
13B (Xu et al., 2024)

Proprietary Model: GPT-4, GPT-3.5-turbo (OpenAI,
2023), Claude-instant-v1, Claude-v1, Claude-v2 (Anthropic,
2023), You.com API, sonar-small-online, sonar-medium-
online.

In total, there are 405,467 samples in ROUTERBENCH, cov-
ering 11 models, 8 datasets, and 64 tasks.

3sonar-small-online and sonar-medium-online from Perplexity
AI, You.com API
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Figure 3. Left: Accuracy vs Total Cost of all the 11 LLMs on ROUTERBENCH. Right: The Oracle LLMs selection frequency across the
7 subsets in ROUTERBENCH.

4.4. A Pilot Study: The Oracle Router

We assessed the performance of various models across the
eight datasets, with more details in ( A.4 and 7) while aggre-
gate results are illustrated in Figure 3. The Oracle represents
the best possible router: the one that always routes to the
best-performing LLM (if there are multiple of them, then
route to the cheapest one).

Result: We note that the Oracle router achieves near-
optimal performance at a low cost, highlighting the potential
for efficient routing among LLMs. Although proprietary
models like GPT-4 offer superior performance, their higher
cost than open-source alternatives is a significant drawback.
Factors such as overalignment could also hurt the generation
quality of proprietary models such as Claude 2 (refer to Ap-
pendix C). The heatmap in Figure 3 illustrates that, despite
WizardLM-13B and Mistral-7B achieving only about 50%
accuracy across tasks, their affordability leads to frequent
selection by the Oracle, prioritizing them when they pro-
vide correct responses. Moreover, the surprising observation
that GPT-4 is seldom chosen suggests the existence of less
expensive LLMs that can deliver high-quality answers for
most queries. This underscores the substantial opportunity
for enhancing LLM systems through cost-effective routing
without sacrificing quality.

5. Experiments
5.1. Predictive Router

We propose a novel set of predictive routers that do not
require the pre-generation of LLM outputs. Specifically,
we introduce a router R : xi → LLM, constructed as fol-
lows: for an input xi, the performance score for LLMj is

calculated via:

performance scoreij = λ · Pij − costj

P denotes the predicted performance of LLMj on sample
xi, with λ representing the willingness to pay (WTP) pa-
rameter that delineates the cost-performance trade-off. A
higher λ indicates a preference for superior performance at a
higher cost. We approximate the total cost using the cost per
token metric. The routing decision for the predictive router
is thus formulated as selecting the LLM that optimizes the
performance score.

To estimate P for each input across models, we implemented
two supervised regression approaches: k-nearest neighbors
(KNN) and multi-layer perceptron (MLP) inspired by
(Shnitzer et al., 2023). We allocated a fraction of the dataset
for training a performance predictor for each task, assessing
its efficacy on the remainder.

Specifically, the KNN router estimates
performance scoreij by identifying the k nearest samples in
the training set Dtrain and opting for LLMi, demonstrating
optimal performance within this subset.

PKNN(xi) =
1

k

∑
xj∈NNk(xi,Dtrain)

q(oij)

Where NNk(xi, Dtrain) signifies the subset of k near-
est neighbors to the sample xi within the training dataset
Dtrain.

Similarly, for the MLP router, we have trained a set of
MLP models to predict the performance

PMLP(xi) = f(Wn · σ(... · σ(W1 · xi + b1)...+ bn)

Those series of KNN and MLP routers are trained with
varying hyperparameters, and we present the experimental
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Figure 4. Total Cost vs. Performance for eleven models and KNN, MLP, and Zero routers on ROUTERBENCHexcept for MT-Bench. For
KNN and MLP, we tested different hyper-parameters, and the optimal results are displayed above. The AIQ values are calculated for
all 3 routers. NDCH stands for non-decreasing convex hull, represented by the solid lines. Dotted lines connect points with increasing
willingness to pay.

results derived from the optimal hyperparameter configura-
tions.

5.2. Non-Predictive Routers

This category of routers generates answers from a sequence
of Large Language Models (LLMs), evaluates these an-
swers, and bases routing decisions on the evaluation out-
comes. Drawing inspiration from (Chen et al., 2023; Wang
et al., 2023), we introduce a cascading router comprising
of a total cost parameter T , and a sequence of m LLMs, de-
noted as LLMj : text → text, ranked from the least to the
most expensive in terms of computational cost and expected
accuracy. A key component of its operation is a scoring
function g : text → [0, 1] paired with a threshold t (the
”judge”). Upon receiving a request, it is initially processed
by LLM1. If g(o1)¿t, the output o1 is selected, and the
process terminates; otherwise, if the cumulative cost is still
less than the total cost T, the router proceeds to the next
LLM in the sequence and returns the current output if not.

Although developing an effective scoring function g for a
specific task in a production setting presents challenges,
within the context of this paper, the router possesses perfect
knowledge of the final score, enabling it to consistently se-
lect the most cost-effective model that yields a satisfactory
response (akin to an oracle). To simulate real-world per-
formance more accurately, we introduce an error parameter

ϵ ∈ [0, 1]. The adjusted scoring function gϵ(o) is defined as:

gϵ(o) =

{
1− g(o) with probability ϵ

g(o) with probability 1− ϵ

A variant of the non-predictive router is overgenerate-and-
rerank, which generates all potential outcomes from the
LLM, assesses each, and outputs the optimal one as de-
termined by a designated reward function. Although its
practical application is limited due to significant costs, we
will present its results for demonstration.

5.3. Main Results

Predictive Router With the KNN and MLP router design,
we present the performances of predictive routers across all
tasks (other than MT-Bench). The dataset for each task is
randomly partitioned into two splits, where the routers are
trained on 70% and evaluated on the rest 30%. We exclude
MT-Bench in this set of experiments due to its limited size
in performing such a train-test partition. As shown in Fig-
ure 4, both KNN routers and MLP routers achieve the level
of performance to the best individual LLMs with lower or
similar costs, demonstrating the effectiveness of the pro-
posed routing solutions, despite their simplicity. However,
none of the routing algorithms significantly outperform the
baseline Zero router (The routers exhibit higher AIQ than
the Zero router for MMLU and Winogrande, achieved com-
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parable AIQ for Hellaswag and GSM8K, and underperform
on ARC-Challenge and MBPP), the oracle router consis-
tently exceeds all other routers and LLMs in performance,
underscoring the room for further advancements in routing
algorithms design.

Cascading Router We present results for cascading routers
on MMLU, MBPP, and GSM8K in Figure 5. The results
indicate that with each error rate, as the total cost T in-
creases, the cascading router’s performance improves due
to the availability of a larger budget for selecting more ap-
propriate models. For lower error rates, the cascading router
performs better than the Zero router, as evidenced by the
higher AIQ value. The router with a zero error rate judge
quickly approximates the performance of the Oracle at the
same cost and achieves comparable results as the cost further
increases. Figure 5 illustrates the cascading routers’ effec-
tiveness, showing they surpass both individual LLMs and
the Zero router by a significant margin when the router’s
judge has an error rate of up to 0.1. This indicates the
routing technique’s potential when paired with an effective
judge.

However, as the judge’s error rates increase, the performance
of the cascading router may deteriorate rapidly, particularly
when the error rate exceeds 0.2. Achieving a sufficiently
low error rate for certain real-world tasks to benefit from
cascading routers might be challenging. Additionally, the
sequence in which LLMs are chosen plays a crucial role in
performance and offers room for optimization (Chen et al.,
2023). Our findings present a simulated upper limit for
this method, highlighting the potential and the necessity of
exploring the optimal implementation of cascading routers
for specific applications.

5.4. RAG Results

Building on the results above, we simultaneously compared
various router types, including predictive and cascading
routers, on the RAG dataset. We used the same setting for
KNN and MLP routers while selecting an error rate 0.2
for cascading routers. We randomly partitioned the RAG
dataset into two splits: 70% for training predictive routers
and 30% for evaluating all routers. Figure 6 demonstrates
that all routers significantly improve compared to the Zero
Router. Further analysis shows that the routers can iden-
tify time-sensitive features (like ”2024”) in user queries
and route to online models for time-sensitive queries and
GPT-4/GPT-3.5 for time-insensitive queries. Our findings
highlight the potential of model routing to enhance LLM
applications within the ”Compound AI Systems” (Zaharia
et al., 2024) scenario.

6. Limitations and Future Work
ROUTERBENCH currently only focuses on performance and
economic cost. It is meaningful to include more evaluation
criteria, such as latency, throughput, and others, to capture
a more comprehensive understanding of router capabilities
and limitations. There are also many LLMs and tasks that
are not included in ROUTERBENCH due to the limitation of
time, and future iterations of this benchmark would include
datasets that cover more tasks to evaluate the ever-growing
capability of LLMs effectively and also to add newer LLMs
as they are being released.

Our current work only evaluates the efficacy of predic-
tive and cascading routers, yet considerable scope exists
for investigating further router designs, as highlighted in
Section 5.3. Delving into more advanced router designs
is crucial for enhancing routing efficiency. Notably, our
evaluation within the RAG context was limited to models
possessing inherent retrieval capabilities. Addressing the
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for all four routers. NDCH represents the non-decreasing convex
hull.

challenge of implementing two-stage routing, which encom-
passes retrievers and LLMs, remains critical. This approach
could significantly refine router evaluations on standard
RAG tasks, including HotpotQA (Yang et al., 2018) and
NaturalQuestions (Kwiatkowski et al., 2019), by ensuring
more precise assessments.

Furthermore, although the seven datasets
in ROUTERBENCHoffer broad coverage across vari-
ous tasks, incorporating domain-specific tasks that require
long-tail skills, like translation of low-resource languages,
could reveal additional intriguing aspects of LLM routing.
This enhancement would align the benchmark more closely
with real-world application scenarios. Efforts to integrate
such tasks in future versions are planned.

7. Conclusion
We present ROUTERBENCH, a benchmark specifically de-
signed to evaluate routers for multi-LLM systems. By ad-
dressing the critical need for standardized evaluation in this
domain, our benchmark provides a comprehensive dataset
and a theoretical framework designed for the nuanced anal-
ysis of router cost-efficiency and performance. The insights
from our study shed light on the effectiveness of various
routing strategies and revealed promising early results in
some tasks. This work establishes a robust and scalable
benchmark for router evaluation and aims to facilitate future
progress in the efficient and cost-effective deployment of
Large Language Models.
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A. Additional Dataset Details
A.1. Model Details & Cost Estimation

For all proprietary models, we calculate the cost of input and output results based on their API pricing. For open-source
models, we utilize Together AI 4 to obtain results and reference costs. For the RAG experiment, we refer to the API pricing
of You.com 5 and Perplexity 6 for cost estimation.

A.2. Dataset Details

MMLU (Hendrycks et al., 2021): A benchmark that measures the knowledge acquired by models during pretraining and
evaluates models in zero-shot and few-shot settings across 57 tasks, testing both knowledge and reasoning on different fields
of human knowledge.

Hellaswag (Zellers et al., 2019): This dataset challenges models to pick the best ending choice for a given sentence. It uses
Adversarial Filtering(AF) to create a Goldilocks zone of complexity, wherein generations are largely nonsensical to humans
but always make models struggle.

GSM8K (Cobbe et al., 2021): A dataset of diverse grade school math word problems, testing a model’s ability to perform
multi-step mathematical reasoning.

ARC Challenge(Clark et al., 2018) A rigorous question answering dataset, ARC-Challenge includes complex, different
grade-school level questions that require reasoning beyond simple retrieval, testing the true comprehension capabilities of
models. Arc Challenge dataset contains those that both a retrieval and a co-occurrence method fail to answer correctly)

Winogrande (Sakaguchi et al., 2021): A large-scale and increased harness dataset inspired by the original Winograd Schema
Challenge(WSC) (Levesque et al., 2012) tests models on their ability to resolve pronoun ambiguity and their ability to
understand the context with commonsense knowledge.

MBPP (Austin et al., 2021): The benchmark is designed to be solvable by entry-level programmers, covering programming
fundamentals, standard library functionality, etc. Each problem comprises a task description, code solution, and 3 automated
test cases.

MT-Bench (Zheng et al., 2023b): This dataset contains 3.3K expert-level pairwise human preferences for model responses
generated by 6 models in response to 80 MT-bench questions, multi-run QA. The 6 models are GPT-4, GPT-3.57, Claude-v1,
Vicuna-13B (Zheng et al., 2023a), Alpaca-13B (Taori et al., 2023), and LLaMA-13B (Touvron et al., 2023). The annotators
are mostly graduate students with expertise in the topic areas of each of the questions. In this work, we only used the 80
questions to generate model responses for ROUTERBENCH.

A.3. More Details on Dataset Construction

Each sample in the benchmark dataset will have the following attributes:

• sample id: contain the information about the name of the sub-task, the split of dataset, and the index of the data in
that dataset. Example: mmlu-astronomy.val.5

• model name: the model used to perform inference for this sample. Example: GPT-4
• eval name: the source data from which this specific sample comes. Example: hellaswag.dev.v0
• prompt: prompt sentence. Example: The following are multiple-choice questions...
• model response: Model’s output. Example: The answer is A)
• performance: the result compared to the true label. Example: True/False
• cost: for proprietary model, we use API cost to calculate; for open source model, we use Together AI8 to call the model

and use their cost as reference. Example: 0.00019
4https://www.together.ai/pricing
5https://api.you.com/
6https://docs.perplexity.ai/docs/pricing
7https://openai.com/blog/chatgpt
8https://www.together.ai/
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• true label: the true label or gold response for this prompt. Example: True/False

A.4. Evaluation Metrics

We will perform 5-shot inference on MMLU, HellaSwag, GSM8K, ARC Challenge, Winogrande, and 0-shot inference on
MBPP, MT-Bench, and RAG.

For the datasets MMLU, HellaSwag, GSM8K, ARC Challenge, and Winogrande, we use the exact match method to
compute the final results. In contrast, for MBPP, MT-Bench, and RAG, we use GPT-4 for answer evaluation. Results
categorized as False/True are converted to a binary 0/1 format. In cases where the results are based on ratings, we normalize
all outcomes to a [0, 1] scale.

A.5. Individual Dataset Result

The ROUTERBENCH pilot study result has been shown in Figure 3. We provide the breakdown of each dataset in Figure 7.
Additionally, we list the accuracies and costs for each individual model and the Oracle router in Table 1.

Figure 7. Accuracy vs Total cost of each LLM on each sub dataset in ROUTERBENCH.
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Table 1. Individual models and the Oracle results on the seven datasets.

Method MMLU MT-Bench MBPP HellaSwag Winogrande GSM8k ARC
Perf↑ Cost↓ Perf↑ Cost↓ Perf↑ Cost↓ Perf↑ Cost↓ Perf↑ Cost↓ Perf↑ Cost↓ Perf↑ Cost↓

WizardLM 13B 0.568 0.122 0.796 0.006 0.364 0.011 0.636 0.727 0.512 0.040 0.510 0.354 0.660 0.068
Mistral 7B 0.562 0.081 0.779 0.003 0.349 0.006 0.541 0.485 0.562 0.027 0.409 0.210 0.642 0.046

Mixtral 8x7B 0.733 0.245 0.921 0.012 0.573 0.023 0.707 1.455 0.677 0.081 0.515 0.594 0.844 0.137
Code Llama 34B 0.569 0.317 0.796 0.015 0.465 0.021 0.525 1.882 0.617 0.104 0.462 0.752 0.644 0.177

Yi 34B 0.743 0.326 0.938 0.018 0.333 0.031 0.931 1.938 0.748 0.107 0.552 0.867 0.882 0.182
GPT-3.5 0.720 0.408 0.908 0.026 0.651 0.044 0.816 2.426 0.630 0.134 0.601 1.170 0.855 0.228

Claude Instant V1 0.384 0.327 0.863 0.030 0.550 0.064 0.801 1.943 0.512 0.108 0.626 1.300 0.821 0.183
Llama 70B 0.647 0.367 0.854 0.022 0.302 0.039 0.736 2.183 0.504 0.121 0.529 0.870 0.794 0.205
Claude V1 0.475 3.269 0.938 0.361 0.527 0.607 0.841 19.43 0.570 1.077 0.653 11.09 0.889 1.829
Claude V2 0.619 3.270 0.854 0.277 0.605 0.770 0.421 19.50 0.446 1.081 0.664 13.49 0.546 1.833

GPT-4 0.828 4.086 0.971 0.721 0.682 1.235 0.923 24.29 0.858 1.346 0.654 19.08 0.921 2.286

Oracle 0.957 0.297 0.996 0.052 0.899 0.041 0.994 0.860 1.0 0.042 0.748 1.282 0.977 0.091

B. Extended Experimental Settings
We provide the hyperparameters of MLP and KNN routers in this section.

The KNN routers have two main hyperparameters that were tested in this paper. The number of neighbors, and the embedding
model for the prompts. All KNN routers used cosine similarity as the distance metric, and used either 5, 10, or 40 neighbors.
The embedding models were taken from the default SentenceTransformers library (Reimers & Gurevych, 2019), and are one
of all-MiniLM-L12-v2, all-mpnet-base-v2, or all-distilroberta-v1. The best-performing hyperparameters for the KNN router
were with 40 neighbors, and the all-MiniLM-L12-v2 embedding model.

In MLP routers, the models have either one or two hidden layers, with each layer having 100 neurons, and the ReLU
activation function was applied. The learning rate was kept constant at 0.001, and the models took in embeddings from
one of all-MiniLM-L12-v2, all-mpnet-base-v2, or all-distilroberta-v1. The best MLP router had two hidden layers of 100
neurons each, and used the all-MiniLM-L12-v2 embedding model.

C. Issues with Overly-aligned Models
Some models exhibit reluctance in responding to certain inputs, often replying with statements like ”I do not understand...”
or ”I am not sure about...”. We have identified two primary reasons for models’ refusal to respond:

Insufficient Context Perception Despite being provided with enough context, these models perceive the information as
inadequate. Our hypothesis is that the models’ capabilities might not be robust enough to generate answers or perform tasks
effectively under these conditions. A potential remedy is to modify the prompting strategy to encourage output generation.

Uncertainty Avoidance Some models appear to be fine-tuned to function as ’safe’ assistants, refraining from providing
responses when they lack certainty. This cautious approach likely aims to prevent potential errors stemming from uncertain
answers. Claude 2 exhibits this behavior most frequently.

LLMs have been known to have such kind of issues as documented in various previous studies (Zheng et al., 2024; Alzahrani
et al., 2024). It is essential to apply methods that can make LLM outputs in a more controllable and structural way and
automatically optimize their quality (Khattab et al., 2024; Singhvi et al., 2023) when routing, which warrants further
exploration in future research.

D. Full Cascading Routers Results
Here are we provide the rest cascading routers results on ARC-Challenge, MT-Bench, and HellaSwag.

E. Training Data Distribution
We also conduct Out-domain experiments where we train on held-out tasks in ROUTERBENCH for each dataset and evaluate
on MT-Bench, MBPP and GSM8K in Figure 9.
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Figure 8. Total Cost vs Performance for eleven models and cascading routers on ARC-Challenge, MT-Bench, and HellaSwag. Different
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non-decreasing convex hull and the dotted line represents points with increasing maximum cost parameter.
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