
The Training Agents with Foundation Models Workshop at RLC 2024

Overcoming Knowledge Barriers: Online Imitation
Learning from Observation with Pretrained World
Models

Xingyuan Zhang
xingyuan.zhang@volkswagen.de
Volkswagen AG
Technical University of Munich

Philip Becker-Ehmck
philip.becker-ehmck@volkswagen.de
Volkswagen AG

Patrick van der Smagt
smagt@volkswagen.de
Volkswagen AG
Eötvös Loránd University Budapest

Maximilian Karl
maximilian.karl@volkswagen.de
Volkswagen AG

Abstract

Pretraining and finetuning models has become increasingly popular. But there
are still serious impediments in Imitation Learning from Observation (ILfO) with
pretrained models. This study identifies two primary obstacles: the Embodiment
Knowledge Barrier (EKB) and the Demonstration Knowledge Barrier (DKB). The
EKB emerges due to the pretrained models’ limitations in handling novel observations,
which leads to inaccurate action inference. Conversely, the DKB stems from the
reliance on limited demonstration datasets, restricting the model’s adaptability
across diverse scenarios. We propose separate solutions to overcome each barrier and
apply them to Action Inference by Maximising Evidence (AIME), a state-of-the-art
algorithm. This new algorithm, AIME-NoB, integrates online interactions and a
data-driven regulariser to mitigate the EKB. Additionally, it uses a surrogate reward
function to broaden the policy’s applicability, addressing the DKB. Our experiments
on tasks from the DeepMind Control Suite and Meta-World benchmarks show that
AIME-NoB significantly enhances sample efficiency and performance, presenting a
robust framework for overcoming the challenges in ILfO with pretrained models.

1 Introduction

We have been going through a paradigm shift from learning from scratch to pretraining and finetuning,
in particular in Computer Vision (CV) (He et al., 2016; Radford et al., 2021; He et al., 2022) and
Natural Language Processing (NLP) (Devlin et al., 2019; Radford et al.; Ouyang et al., 2022; Touvron
et al., 2023a;b) fields due to the increasing availability of foundation models (Bommasani et al.,
2021) and ever-growing datasets. However, it is still unclear how to adapt this new paradigm into
decision-making, in particular what type of models we need to pretrain and how these models can be
adapted to solve downstream tasks. Recent work (Zhang et al., 2023; DeMoss et al., 2023; Sekar
et al., 2020; Rajeswar et al., 2023; Hansen et al., 2023a) showed that pretrained latent space world
models enable successful and efficient transfer to new tasks with either reinforcement learning (Sekar
et al., 2020; Rajeswar et al., 2023; Hansen et al., 2023a) or Imitation Learning from Observation
(ILfO) (Zhang et al., 2023; DeMoss et al., 2023). ILfO (Torabi et al., 2018; 2019; Baker et al., 2022;
Zhang et al., 2023; DeMoss et al., 2023; Liu et al., 2022a), especially from videos (Baker et al., 2022;
Zhang et al., 2023; Liu et al., 2022a; DeMoss et al., 2023), is a more promising approach in this new
paradigm since it does not require a handcrafted reward function.
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Figure 1: Main idea of this paper. On the left, we plot the performance of BCO(0) and AIME together
with their oracle versions w.r.t. different number of demonstrations on walker-run task. The purple
region between the oracle version and the expert is the Demonstration Knowledge Barrier (DKB)
while the orange region between the algorithm and its oracle version represents the Embodiment
Knowledge Barrier (EKB). On the right, we present the solutions proposed in this paper to overcome
the two barriers. The blue parts represent the original version of the algorithms that suffer from
the knowledge barriers. Orange parts demonstrate the solution for EKB, where the agent is allowed
to interact with the environment and use Donline together with Dbody to update the world model.
Purple parts show the solution for DKB, where a surrogate reward model is pretrained and used to
label the online dataset Donline and then used as an RL signal for policy learning.

But there are challenges when using pretrained models in ILfO. To quantify these we introduce
two new barriers, which we call the Embodiment Knowledge Barrier (EKB) and the Demonstration
Knowledge Barrier (DKB). The EKB describes the shortcomings of a pretrained model when
confronted with novel observations and actions beyond its training experience. The DKB describes
the generalisation from a limited number of expert demonstrations in imitation learning (Ho & Ermon,
2016). Approaches like BCO(0) (Torabi et al., 2018) and AIME (Zhang et al., 2023) typically suffer
from these two knowledge barriers. First, these algorithms depend on the pretrained model to infer
missing actions from observation sequences. Thus, when the model has not seen a specific observation
before, it may not know enough about the embodiment to infer the correct action. Second, if the
policy optimisation is only guided by limited demonstrations, it can lead to a policy that generalises
poorly, working well in some scenarios but not in others.

To better showcase the two barriers, in Figure 1 left, we evaluate both AIME and BCO(0) and their
oracle versions w.r.t. different number of demonstrations on walker-run task. Both algorithms pretrain
a model from a large embodiment dataset and use that to infer the actions for the observation-only
demonstrations. The oracle versions remove the need to infer the missing actions, thus removing
the EKB. As we can see from the figure, the two algorithms are always upper-bounded by the
corresponding oracle version, and the difference between them represents the EKB. On the other
hand, even if given the true actions of the expert, imitation performance may still be impacted by
a limited number of demonstrations providing insufficient coverage of the state space. Thus, the
difference between the oracle version and the expert performance represents the DKB.

In this paper, we study how to resolve these barriers to improve the performance of ILfO approaches,
in particular of AIME. For the EKB, we extend the setting from offline to online by allowing the
agent to gather more data to train the world model. While for the DKB, we introduce a surrogate
reward function to allow the policy to essentially train on more data. We demonstrate that the
proposed modifications significantly improve the performance on nine tasks in DeepMind Control
Suite (DMC) (Tunyasuvunakool et al., 2020) and six tasks in Meta-World (Yu et al., 2021).
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2 Preliminary

We mostly follow the problem setup as described in Zhang et al. (2023). We consider a POMDP
problem defined by the tuple {S,A, T,R,O,Ω}, where S is the state space, A is the action space,
T : S×A → S is the dynamic function, R : S → R is the reward function, O is the observation space,
which is image in this paper, and Ω : S → O is the emission function. The goal is to find a policy
π : S → A which maximises the accumulated reward, i.e.

∑
t rt.

We presume the existence of three datasets of the same embodiment available to our agent. The
embodiment dataset Dbody contains trajectories {o0, a0, o1, a1 . . . } that represent past experiences
of interacting with the environment. This dataset provides information about the embodiment
for the algorithm to learn a world model. In addition, we also allow the agent to interact with
the environment to collect new data in a replay buffer Donline. Note that, although the simulator
will give us the reward information, the agent is not allowed to use them, and we only use the
reward for evaluation purpose. The demonstration dataset Ddemo contains a few expert trajectories
{o0, o1, o2 . . . } of the embodiment solving a certain task defined by Rdemo. The crucial difference
between this dataset and the other two datasets is that the actions are not provided anymore since
they are not observable from a third-person perspective. The goal of our agent is to learn a policy π
from Ddemo which can solve the task defined by Rdemo as well as the expert who generated Ddemo.

2.1 World Models

A World Model (Ha & Schmidhuber, 2018) is a generative model which models a probability
distribution over sequences of observations, i.e. p(o1:T ). The model can be either unconditioned or
conditioned on other factors, such as previous observations or actions. When the actions taken are
known, they can be considered as the condition, i.e. p(o1:T |a0:T−1).

In this paper, we consider variational latent world models where the observation is governed by a
Markovian hidden state. In the literature, this type of model is also referred to as a State-Space
Model (SSM) (Karl et al., 2017; Hafner et al., 2019b;a; Becker-Ehmck et al., 2019; Klushyn et al.,
2021). Such a variational latent world model involves four components, namely

encoder zt = fϕ(ot), posterior st ∼ qϕ(st|st−1, at−1, zt),
decoder ot ∼ pθ(ot|st), prior st ∼ pθ(st|st−1, at−1).

fϕ(ot) is the encoder to extract the features from the observation; qϕ(st|st−1, at−1, zt) and
pθ(st|st−1, at−1) are the posterior and the prior of the latent state variable; while pθ(ot|st) is the
decoder that decodes the observation distribution from the state. ϕ and θ represent the parameters
of the inference model and the generative model respectively.

Typically, the model is trained by maximising the Evidence Lower Bound (ELBO) which is a lower
bound of the log-likelihood, or evidence, of the observation sequence, i.e. log pθ(o1:T |a0:T−1). Given
a sequence of observations, actions, and states, the objective function can be computed as

ELBO =
T∑
t=1

J rec
t − JKL

t =
T∑
t=1

log pθ(ot|st) −DKL[qϕ||pθ]. (1)

The objective function is composed of two terms: the first term J rec is the likelihood of the observation
under the inferred state, which is usually called the reconstruction loss; while the second term JKL is
the KL divergence between the posterior and the prior distributions of the latent state. To compute
the objective function, we use the re-parameterisation trick (Kingma & Welling, 2022; Rezende et al.,
2014) to autoregressively sample the inferred states from the observation and action sequence. In
summary, a world model is trained by solving the optimisation problem as

ϕ∗, θ∗ = argmax
ϕ,θ

E{o,a}∼Dbody,s∼qϕ [ELBO]. (2)
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2.2 AIME

AIME is a recently proposed algorithm that uses a pretrained world model to solve ILfO in an offline
setting. Specifically, it uses the pretrained world model as an implicit inference model by solving
for the best action sequence that makes the demonstration most likely under the trained world
model. The imitation can be done jointly with the action inference using amortised inference and
the re-parameterisation trick by solving the following optimisation problem

ψ∗ = argmax
ψ

Eo∼Ddemo,s∼qϕ∗,θ∗ ,a∼πψ [ELBO], (3)

where ψ is the parameter for policy πψ(at|st). The resulting objective is very similar to Equation (2),
but with a subtle difference in the sampling path: observations are sampled from the dataset, while
states and actions are iteratively sampled from the learned model and policy, respectively.

3 Methodology

In this section we will analyse the EKB and DKB for AIME. Based on the analysis we introduce
a solution for each knowledge barrier and combine them into AIME-NoB, where NoB stands for
No Barriers. The general framework of the solutions is shown in Figure 1 and the pseudocode of
AIME-NoB is in Algorithm 1 in Appendix E.

3.1 Resolving the EKB

The most natural way to solve the EKB is to allow the agent to further interact with the environment.
New experiences can minimise the error in the pretrained model in proximity of the policy πψ and gain
more embodiment knowledge relevant for the task at hand. Torabi et al. (2018) proposed a modified
version of BCO(0) called BCO(α) which introduced such an interaction phase. However, from their
and our empirical results, it did not resolve the EKB since there remains a gap between BCO(α) and
the BC oracle when the environment is complex. Continuing training an actor-critic from offline to
online phases, as seen in recent works in Offline RL, also presents challenges, particularly regarding
combating objective shifts (Lee et al., 2022; Ball et al., 2023; Nakamoto et al., 2023). Similarly,
extending AIME from offline to online encounters issues like overfitting to newly collected datasets.

As the training progresses iteratively between data collection, model training and policy training,
in the early phase of training there are only a few new trajectories available for training the model.
Because the world model is highly expressive, it may overly favour similar trajectories in the new
data, leading to a high ELBO. Normally, this may not be a big problem since, eventually, more and
more data will be collected to combat this overfitting. But since AIME also depends on the ELBO
to train the policy, it quickly causes the policy training to diverge.

In order to address the overfitting issue, we need a regulariser for model learning. Instead of using
ad-hoc methods in the parameter space, we adopt a data-driven approach. Overfitting occurs due to a
sudden shift from a large, diverse pretraining dataset to a small, narrow replay buffer. Appending the
pretraining dataset to the replay buffer smooths this transition but reduces data efficiency. Instead,
we sample separately from both datasets and modify the objective in Equation (2) to:

ϕ∗, θ∗ = argmax
ϕ,θ

αE{o,a}∼Dbody,s∼qϕ [ELBO] + (1 − α)E{o,a}∼Donline,s∼qϕ [ELBO]. (4)

The amount of data we sample from the pretraining dataset is controlled by a hyper-parameter α,
which represents how much regularisation we put upon the model. Here we mainly consider setting
α = 0.5, so that we sample the data evenly from both datasets.

This finding contradicts Rajeswar et al. (2023) and Hansen et al. (2023a), where the pretrained
world models do not need such a data-driven regulariser. We conjecture that unlike AIME, these
approaches mainly use their world models purely as generative models to predict states and rewards
given action sequences, which is only indirectly influenced by overfitting the ELBO.
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3.2 Resolving the DKB

The straightforward way of solving the DKB is also to increase the number of demonstrations available
to the agent. However, expert demonstrations are difficult and expensive to collect. Increasing the
size of the demonstration dataset is not always feasible in real-world applications. In order to propose
a more practical solution, we need to look deeper into what is the real cause of the DKB.

The policy-learning part of the AIME algorithm is essentially behaviour cloning, conducted only on
the demonstration dataset. This provides clear guidance for covered states, but behavior is undefined
for other states. AIME solely relies on the generalisation abilities of the learned latent state and the
trained policy network to extrapolate the correct behaviour. In particular for small demonstration
datasets, this can be unreliable or even impossible. Therefore, if we can enlarge the space of the
covered states, we should reduce the DKB (Ross et al., 2011).

Based on this insight, we propose to introduce a surrogate reward providing guidance signal for the
agent on the replay buffer dataset. Due to the instability of adversarial training (Goodfellow et al.,
2014; Arjovsky et al., 2017; Ho & Ermon, 2016) and our focus on the pretraining paradigm, we opt
to adopt the VIPER algorithm (Escontrela et al., 2023). Instead of training a discriminator, VIPER
trains a video prediction model on the demonstration datasets and treats the likelihood of the video
prediction model as the reward for policy learning, i.e. rVIPER

t = log pν(ot|o<t).

Using this reward, we train the policy with an actor-critic algorithm based on imagination in the
latent space of the world model (Hafner et al., 2019a). In order to do this, we first need to modify
the reconstruction term in Equation (1) by adding an extra term for decoding the VIPER reward,
i.e. log pθ(rVIPER

t |st). Then, we further train a value estimator V λξ (st) using TD(λ)-return estimates.
Details of derivation can be found in Appendix C. Using this value estimate, we extend the policy
objective of Equation (3) to

ψ∗ = argmax
ψ

Eo∼Ddemo,s∼qϕ,θ,a∼πψ [ELBO] + βE{o,a}∼Donline,s∼qϕ,a′∼πψ,s′∼pθ [V
λ
ξ′ (s′)], (5)

where β is a hyper-parameter for balancing the two terms. We set β = 0.1 by default based on the
difference of default learning rate in AIME and Dreamer.

4 Experiments

We aim to answer the following questions: a) How does the proposed AIME-NoB compare with
state-of-the-art methods on common benchmarks? b) How well does the proposed modification
resolve the EKB and the DKB? c) How do different choices of hyper-parameters influence the results?
In order to answer these questions, we design our experiments on DMC and Meta-World benchmarks.

4.1 Datasets

For the DMC benchmark, we choose nine tasks across six embodiments following Liu et al. (2022a)
and use their published dataset as the demonstration datasets. Each dataset contains only 10
trajectories to reflect the scarcity of expert demonstrations. For the embodiment dataset, in order
not to leak the task information from the pretraining phase, we follow Rajeswar et al. (2023) and
run a Plan2Explore (Sekar et al., 2020) agent for each embodiment with 2M environments steps and
use its replay buffer as the embodiment dataset.

For Meta-World benchmark, we use the data and model from Hansen et al. (2023a). The embodiment
dataset was created from the replay buffer datasets. The open-sourced replay buffer datasets contain
40k trajectories for each of the 50 tasks with only state information. In order to fit to our image
observation setup, we render the images by resetting the environment to the initial state of each
trajectory and then executing the action sequence. The details can be found in Appendix H.

Following the idea of not leaking too much about the task information, inspired by the common
practice in offline RL benchmarks (Fu et al., 2021), we use the first 200 trajectories from each
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Figure 2: Benchmark results and 9 DMC tasks. Return are calculated by running the policy 10 times
with the environment and taking the average return. The results are averaged across 5 seeds with
the shade region representing 95% CI.

replay buffer and form a dataset with 10k trajectories in total. We call this dataset MW-mt50. To
further study the out-of-distribution transfer ability of the pretrained model, we follow the difficulty
classification of the tasks from Seo et al. (2022a) and only use the 39 easy and medium difficulty tasks
to generate the datasets and the 11 tasks hard and very hard tasks as hold-out tasks. We uniformly
sample 250 trajectories from the first 10k trajectories from each of the 39 tasks and form a dataset
with 9750 trajectories in total. We refer to this dataset as MW-mt39. Hence, MW-mt39 contains
some expert behaviour solving the tasks, while MW-mt50 consists of mostly exploratory behaviour.

As the demonstration datasets, we use the single-task policies open-sourced by TD-MPC2 and collect
50 trajectories for each tasks. We ensure that every trajectory in the demonstration dataset is
successful. Since there are 500 steps in a DMC trajectory and only 100 steps in a Meta-World
trajectory, the resulting datasets are roughly the same size.

4.2 Implementation

For the world model, we use the RSSM architecture (Hafner et al., 2019b) with the hyper-parameters
in Hafner et al. (2019a) for DMC tasks. In addition, we use the KL Balancing trick from Hafner et al.
(2020) to make the training more stable. For Meta-World, since the visual scene is more complex, we
use the M size model from Hafner et al. (2023), but still with the continuous latent variable to be
aligned with other models used in this paper. The policy network is implemented with a two-layer
MLP, with 128 neurons for each hidden layer. All the models are trained with Adam optimiser
(Kingma & Ba, 2017). More details about the hyper-parameters can be found in Appendix F.
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Figure 3: Benchmark results and 6 Meta-World tasks. Trajectories are only counted as success when
it success at the last time steps and the success rates are calculated with 10 policy rollouts. The
results are averaged across 5 seeds with the shade region representing 95% CI.

For the VIPER model, in the original paper, the authors first pretrain a VQ-GAN (Esser et al.,
2021) and then train a GPT-style auto-regressive model in the quantised space for prediction. For
simplicity of the implementation, in this paper, we consider training an unconditioned latent world
model as in Seo et al. (2022b) to model the VIPER reward. We use the same RSSM architecture of
the model learning for DMC, only removing the condition of the actions, and we train the VIPER
model for each task separately. Especially during training, we find training such a powerful model
from scratch on a small dataset can easily result in over-fitting. Thus, we empirically choose to train
the model only for 500 gradient steps for DMC models and 1000 gradient steps for Meta-World
models. We show evidence of overfitting in Appendix I. Due to the large scale of the ELBO, we also
apply symlog (Hafner et al., 2023) when computing the VIPER reward. Another difference with the
original VIPER paper is that we do not use intrinsic motivation as the exploration bonus, since the
AIME loss for policy learning already provides task-related guidance for exploration. We only apply
an entropy regulariser to the policy as is common practice. We further show the synergy between
AIME and VIPER in Appendix J.

4.3 Benchmark Results

The benchmark results of DMC are shown in Figure 2. We compare AIME-NoB with AIME (Zhang
et al., 2023), BCO(α) (Torabi et al., 2018) and PatchAIL (Liu et al., 2022a), a Generative Adversarial
Imitation Learning (GAIL) style algorithm. AIME-NoB significantly outperforms the PatchAIL
baseline in 7 out of 9 tasks in terms of sample efficiency. Benefiting from the pretrained world model,
AIME-NoB typically can reach expert performance within 200k environment steps. Compared with
BCO(α), updating the model is regularised and is benefiting more from the online interaction to
resolve the EKB. Compared with AIME, AIME-NoB reliably improves performance, especially in
hard tasks such as walker-run and hopper where offline AIME did not manage to make any progress.

However, AIME-NoB shows little progress on two tasks: cartpole-swingup and quadruped-run. For
cartpole-swingup, we observe that the policy learns to move the cart out of the scene so that the
static image yields a high likelihood from the video prediction model. A similar phenomenon was also
discussed in the original VIPER paper (Escontrela et al., 2023). For quadruped-run, we conjecture
that it is due to visual difficulties of a reconstruction-based model. When the quadruped is initialised
on the ground, due to the symmetric structure of the robot, it is impossible to figure out which action
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Figure 4: (a) Performance of AIME-NoB, MBBC, AIME w.r.t. different number of demonstrations.
For AIME-NoB, we do not show the result for more than 100 demonstrations since it is already
saturated to the expert. (b) Ablation for the choice of the regulariser ratio α. The left figure shows
the mean return over 10 trajectories while the right figure shows the MSE between the inferred
actions and the true actions. (c) Ablation for the choice of the weight of the value gradient loss β.
All results are averaged across 5 seeds with the shaded region representing a 95% CI.

corresponds to which leg, and it easily leads the action inference process to diverge. We additionally
show AIME-NoB can work on these tasks with the help of the true reward in Appendix J.

The benchmark results of Meta-World are shown in Figure 3. We choose four hard or very hard tasks
(disassemble, assembly, hand-insert and push) and two medium difficult tasks (sweep and hammer).
While PatchAIL fails on these tasks, AIME and AIME-NoB make progress. AIME-NoB using either
of the pretrained models outperforms AIME in all tasks. For hard tasks, AIME with the mt50 model
performs better than with the mt39 model due to the mt39 model’s large EKB with unseen objects.
But in the online setting of AIME-NoB, the two models are mostly on par. Moreover, using the
mt50 models is better than using the mt39 models on average, which may imply covering diverse
behaviour is more valuable than knowing the expert directly.

4.4 Ablation Results

We conduct our ablation studies on walker-run task from DMC.

How well does the proposed methods resolve knowledge barriers? In order to show how
well AIME-NoB resolves the two knowledge barriers, we the same experiment as in Figure 1 by
providing the agent with different numbers of demonstrations. The result is shown in Figure 4a. As
we discussed before, MBBC as an oracle method that circumvents the EKB is a strict upper bound
for AIME. And AIME-NoB which addresses both the EKB and DKB achieves much better results
and is an upper bound for MBBC. From AIME-NoB can achieve near-expert performance with as
few as 5 demonstrations for this challenging task.

Influence of the data regulariser ratio α. We set the regulariser ratio α from [0.0, 0.25, 0.5, 0.75]
and plot the results in Figure 4b. The results show that enabling the regularizer (α > 0) provides
reliable improvements during training. But if we disable the regulariser by setting α = 0, the learning
exhibits high variance. In some cases, it fails to work entirely, while in others, learning only begins
once sufficient new data accumulates in the replay buffer. As we discussed in Section 3.1, without the
regulariser, in the early stage of the training, the model can easily overfit to the replay buffer, and it
explains the early flattening phase of the training. As the training progresses, more and more data is
available from the replay buffer, and it can establish the regulariser on its own, which explains the
dramatic growing phase of the curves. We also plot the MSE between the inferred actions and the
true actions during the training process. From that we can see that a higher regulariser ratio offers
more stable inference of the actions in the early phase of training.

Influence of the value gradient loss weight β. We set the weight β from [0.0, 0.01, 0.05, 0.1,
0.5, 1.0] and plot the results in Figure 4c. The results show that a small β slows learning progress
toward convergence, while a larger β improves sample efficiency without causing instability. For
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the sample efficiency, since we only have 10 demonstrations, DKB dominates over EKB as shown
in Figure 4a. Thus, having a larger β will make the learning much faster. Regarding stability, as
discussed in 3.2, AIME loss and value gradient loss operate on different regions of the environment
states, making their influence on the policy independent of each other.

5 Conclusion

In this paper, we identify two knowledge barriers, namely the EKB and the DKB, which as we show
limit the performance of state-of-the-art ILfO methods using pretrained models. We thoroughly
analyse the underlying cause of each barrier and propose practical solutions. Specifically, we propose
to use online interaction with a data-driven regulariser to solve the EKB and surrogate reward
labelling to reduce the DKB. Combining these solutions, we propose AIME-NoB and showcase
its efficiency compared to state-of-the-art ILfO methods. Our ablation studies show how each
knowledge barrier is addressed by the proposed solution and how their hyper-parameters influence
the performance. We hope our work can shed some light on the future development of ILfO method
and bring more attention to the great potential of pretrained world models.
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A Related Work

Imitation Learning from Observation. ILfO (Torabi et al., 2018; 2019; DeMoss et al., 2023; Li
et al., 2023; Baker et al., 2022; Zhang et al., 2023; Liu et al., 2022a) has become more popular in
recent years due to their potential to utilise internet-scale videos for behaviour learning. Most of
the previous works (Torabi et al., 2018; 2019; Li et al., 2023) study the problem only with the true
state as observation. Recent works (DeMoss et al., 2023; Baker et al., 2022; Zhang et al., 2023; Liu
et al., 2022a) have started to shift toward image observations as a more general setting. Our work is
a continuation of this journey.

Pretrained Models for Decision-Making. Inspired by the tremendous progress made in recent
years in CV and NLP fields with the power of pretrained models, the decision-making community
is also trying to follow the trend. Most recent works focus on the use of Large Language Model
(LLM) for decision-making. A prompted model is used for producing trajectories and plans (Chen
et al., 2024; Huang et al., 2022; Ahn et al., 2022; Di Palo et al., 2023), code (Vemprala et al., 2023;
Liang et al., 2023; Singh et al., 2022; Chen et al., 2023; Huang et al., 2023) or for modifying the
reward (Ma et al., 2023; Mahmoudieh et al., 2022). There are also other people studying the benefit
of pretrained visual models for visuomotor tasks (Shah & Kumar, 2021; Majumdar et al., 2023;
Hansen et al., 2023b; Parisi et al., 2022) while others try to train large policy networks directly with
transformers (Vaswani et al., 2017) and huge datasets (Brohan et al., 2022; Brohan et al.; Reed et al.,
2022). However, there is only little attention being put on pretrained world models (Zhang et al.,
2023; Rajeswar et al., 2023; Sekar et al., 2020), which are natively developed by the model-based
decision-making community and perfectly fit into the pretraining and finetuning paradigm. Our work
explores this overlooked domain and showcases its potential.

B Limitations

First, the data-driven regulariser is not practical when the model is pretrained on huge datasets – cf.
foundation models popular in the fields of CV and NLP. Reducing the amount of data needed for the
regulariser could greatly improve the usability of the method. Second, although having pretrained
models is beneficial, having too many pretrained components can be detrimental for model selection.
Especially in AIME-NoB, the world model and the VIPER model share a very similar interface.
Designing a shared model that can serve both interfaces could ease the use of the method. Last but
not least, due to the high demand of computing resources, we only study the pretrained world model
on a very small scale. It will be an interesting direction to study these model at larger scales.

C Details for the value function update

The TD(λ) estimation V λξ (s) is computed by a weighted sum of the multi-step TD targets, i.e.

V λξ (st) = (1 − λ)
∞∑
n=1

λn−1V
(n)
ξ (st) (6)

with V (n)
ξ (st) =

t+n∑
t′=t+1

γt
′−t−1rVIPER

t′ + γnVξ(st+n).

Using this estimate, we optimise our value function by minimising the MSE, i.e.

ξ∗ = argmin
ξ

(Vξ(st) − V λξ′ (st))2. (7)

As is common practice, we use a target value network with parameters ξ′ to stabilise training, whose
parameters are updated using Polyak averaging with a learning rate τ in every iteration.
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Algorithm 1 AIME-NoB
Input: Embodiment dataset Dbody, Demonstration dataset Ddemo, Pretrained world model
parameters ϕ, θ, Pretrained VIPER model pν , regulariser ratio α, value gradient weight β, batch
size B
Initialise policy and critic parameters ψ, ξ randomly.
for i = 1 to policy pretraining iterations do

Draw a batch of demonstrations o1:T ∼ Ddemo
Update policy parameters ψ with Equation (3).

end for
Initialize Donline → ∅.
for i = 1 to Environment Interaction budget do

Collect a new episode {o1:T , a1:T } with the current policy πψ
Estimate reward using VIPER rVIPER

1:T = pν(o1:T )
Append {o1:T , a1:T , r

VIPER
1:T } to Donline

# Update world model
Draw α · B samples bbody ∼ Dbody
Draw (1 − α) · B samples bonline ∼ Donline
Define combined batch b = bbody ∪ bonline
Finetune model with batch b using Equation (4).
# Update policy
Sample a batch from Ddemo
Update policy parameters ψ with Equation (5).
Update value function parameters ξ with Equation (7).

end for

D Compute Resources

All the experiments are run on a local cluster with a few A100 and RTX8000 instances. All the
experiments are tuned to use less than 10GB of GPU memory so that they can run in A100 MIG.
World models pretraining requires about 24 GPU hours, while VIPER models require negligible time
for training. Each DMC experiment requires about 40 GPU hours while each Meta-World experiment
requires about 24 GPU hours.

E Algortihm

F Hyper-parameters

Here, we document the detailed hyper-parameters for all the trained models in Table 1.

G Source of Datasets

We use the expert trajectories from Liu et al. (2022a) at https://osf.io/4w69f/?view_only=
e29b9dc9ea474d038d533c2245754f0c. The authors didn’t provide a License for their dataset.
Besides, we use the replay buffer dataset from Hansen et al. (2023a) at https://huggingface.
co/datasets/nicklashansen/tdmpc2/tree/main/mt80. The authors provide the dataset under
the MIT License. Moreover, we use the replay buffer dataset from Zhang et al. (2023) at https:
//github.com/argmax-ai/aime/tree/main/datasets. The authors provide the dataset under the
CC BY 4.0 License.

https://osf.io/4w69f/?view_only=e29b9dc9ea474d038d533c2245754f0c
https://osf.io/4w69f/?view_only=e29b9dc9ea474d038d533c2245754f0c
https://huggingface.co/datasets/nicklashansen/tdmpc2/tree/main/mt80
https://huggingface.co/datasets/nicklashansen/tdmpc2/tree/main/mt80
https://github.com/argmax-ai/aime/tree/main/datasets
https://github.com/argmax-ai/aime/tree/main/datasets
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Table 1: AIME-NoB hyper-parameters use for each benchmark.

DMC Meta-World

World Model

CNN structure Ha & Schmidhuber (2018) Hafner et al. (2023)
CNN width 32 48

MLP hidden size 512 640
MLP hidden layer 2 3
MLP activations LayerNorm + Swish

Deterministic latent size 512 1024
Stochastic latent size 30

Free nats 1.0
KL balancing 0.8

Policy

Hidden size 128
Hidden layer 2

Activation ELU
Distribution Tanh-Gaussian

Value network

Hidden size 128
Hidden layer 2

Activation ELU
Target EMA decay 0.95

Training

Batch Size 50 16
Horizon 50 64

Total Env steps 1M 500k
Model Pretraining Gradient steps 200k

Update ratio 0.1
Gradient clip 100

Policy entropy regulariser weight 1e-4
Model learning rate 3e-4
Policy learning rate 3e-4

Value network learning rate 8e-5
Discount factor γ 0.99

TD-Lambda parameter λ 0.95
Imagine horizon 15

AIME-NoB specific

Policy pretraining iterations 2000
Data-driven regulariser ratio α 0.5

Value gradient loss weight β 0.1

H Details for Resetting Meta-World Tasks

To generate the image observation datasets from the TD-MPC2 replay buffer (Hansen et al., 2023a),
we modify the Meta-World codebase to reset the environment to the initial state of the trajectory
from the first observation. Luckily, the starting position of the robot arm is always the same for
each task, so that we do not need to apply inverse kinematics to solve for the initial pose of the
robot arm. For the object and the target position, for most of the tasks, the internal reset position
can be computed by making a constant shift on the object position and the target position in the
observations. There are, however, also a few edge cases which we handle differently.
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In button-press-topdown and button-press-topdown-wall, the object’s true position only appears in
the observation upon the second time step, presumably due to some simulator delay in the resetting
process. So for these two tasks, the initial state is reset by the second observation.

For basketball and box-close, it seems like there is some internal collision detection that will alter
the object and robot position after the task is reset, so computing the exact reset value from the
observation is not possible. For these two tasks, we instead resort to a search-based method. To be
specific, we use a gradient-free optimiser from (Liu et al., 2022b) to search over the resetting space of
the object and find the reset position that minimises the L2 distance with the true observation.

More details of the implementation can be found in the code.

I Overfitting of the VIPER Models
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Figure 5: Correlation of the VIPER reward and the real reward with models trained with different
numbers of gradient steps. Each point represents one trajectory. We can clearly see the model
gradually overfitting and losing the correlation with the real reward when training for more than
1000 gradient steps.

To better illustrate the overfitting problem for VIPER models and justify our choice of training
fewer iterations, we train the VIPER models for a varying number of gradient steps and evaluate
the correlations between the VIPER reward and the true reward on both the expert dataset from
PatchAIL, where the VIPER model is trained on, and the replay buffer dataset from Zhang et al.
(2023).

Specifically, we train the same VIPER model with {100, 500, 1000, 2000, 5000, 100000} gradient
steps and plot the result in Figure 5. As we can clearly see, when training with less than or equal
to 1000 gradient steps, VIPER reward has a very nice correlation with the true reward, with the
middle-range performance even like a linear correlation. The best model could be selected from
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Figure 6: Additional ablation on DMC tasks by exploring the synergy between AIME and VIPER
model. Return are calculated by running the policy 10 times with the environment and taking the
average return. The results are averaged across 5 seeds with the shade region representing 95% CI.

500 and 1000 gradient steps. However, as we train the model for longer, the VIPER reward for the
expert trajectories is boosted even higher, and as a side effect, it also relatively boosts up the VIPER
reward for low-performance trajectories. This is because, when overfitting the expert trajectories, the
model increases the marginal likelihood of all the observations in the expert trajectories to a higher
value, which also includes a few frames of the robot lying on the ground at the very beginning of each
trajectory after reset. For these low-performance trajectories, the robot remains mainly stuck around
the initial position and struggles on the ground. This artifact of the overfitted VIPER reward creates
a sharp local maximum in the low-performance region that the agent can hardly get away from.

J Additional Experiments

Synergy between AIME and VIPER model. We also find there is a synergy between AIME
and VIPER model. As we showed in Appendix I, one inherent problem of VIPER reward is that it
not only incentivises the expert behaviour as the optimal, but also a stationary behaviour with very
low reward as a local maxima. In order to work with the VIPER reward, the agent needs to have
the ability to escape from the local maxima region. AIME offers the IL loss to imitate the expert
demonstrations and can achieve decent performance even when pretrained offline, which helps to
escape the local maxima. To better show the synergy, we provide additional ablation results with the
VIPER reward in Figure 6. In the experiments, we include two other variants: the AIME-NoB w/o
AIME is to remove the AIME IL loss from the online policy learning, so that the policy is pretrained
by AIME loss but finetuned with only RL loss from the VIPER reward; while the VIPER is following
the implementation in the original VIPER paper with RL loss on both the VIPER reward for the
task and intrinsic reward for exploration. From the result, we can clearly see that without the help
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Figure 7: Additional benchmark results on 3 DMC tasks with an additional variant of AIME-NoB
with the true reward. Return are calculated by running the policy 10 times with the environment and
taking the average return. The results are averaged across 5 seeds with the shade region representing
95% CI.

of AIME IL loss, VIPER reward cannot reliably motivate the agent to learn good behaviours. Even
when in walker tasks, the w/o AIME variant can solve the tasks to a certain extent; it depends
strongly on the random seeds. In conclusion, the good performance of AIME-NoB cannot be achieved
by either AIME IL loss or VIPER RL loss alone but by a combination of both.

Improving AIME-NoB with better rewards. We show additional results on the 3 not-so-well-
performing DMC tasks, namely cartpole-swingup, cheetah-run and quadruped-run, in 7. In the plot
we add a new variant using the true reward from the environment to replace the VIPER reward.
As the results show, if we had a better estimation of the surrogate reward, AIME-NoB could also
achieve good performance on these tasks.


