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Abstract

Improving the accuracy-fairness frontier of deep neural network (DNN) models
is an important problem. Uncertainty-based active learning (AL) can potentially
improve the frontier by preferentially sampling underrepresented subgroups to cre-
ate a more balanced training dataset. However, the quality of uncertainty estimates
from modern DNNs tend to degrade in the presence of spurious correlations and
dataset bias, compromising the effectiveness of AL for sampling tail groups. In this
work, we propose Introspective Self-play (ISP), a simple approach to improve the
uncertainty estimation of a deep neural network under dataset bias, by adding an
auxiliary introspection task requiring a model to predict the bias for each data point
in addition to the label. We show that ISP provably improves the bias-awareness
of the model representation and the resulting uncertainty estimates. On two real-
world tabular and language tasks, ISP serves as a simple “plug-in" for AL model
training, consistently improving both the tail-group sampling rate and the final
accuracy-fairness trade-off frontier of popular AL methods.

1 Introduction

Figure 1: Example of accuracy-
fairness frontier. Under a more bal-
anced training data distribution, the
model can attain a better accuracy-
fairness frontier (Red) when com-
pared to training under an imbal-
anced distribution (Blue) at every
tradeoff level λ .

Modern deep neural network (DNN) models are commonly trained on
large-scale datasets [27, 84]. These datasets often exhibit an imbalanced
long-tail distribution with many small population subgroups, reflecting
the nature of the physical and social processes generating the data distri-
bution [128, 33]. This imbalance in training data distribution, i.e., dataset
bias, prevents DNN models from generalizing equitably to the underrep-
resented population groups [40]. In response, the existing bias mitigation
literature has focused on improving training procedures under a fixed
and imbalanced training dataset, striving to balance performance between
model accuracy and fairness (e.g., the average-case v.s. worst-group per-
formance) [3, 72, 73]. Formally, this goal corresponds to identifying an
optimal model f ∈F that attains the Pareto efficiency frontier of the
accuracy-fairness trade-off (e.g., see Figure 1), so that under the same training data D = {yi,xi}n

i=1,
we cannot find another model f ′ ∈ F that outperforms f in both accuracy and fairness. In the
literature, this accuracy-fairness frontier is often characterized by a trade-off objective [73]:

fλ = argmin
f∈F

Fλ ( f |D); Fλ ( f |D) := Racc( f |D)+λR f air( f |D), (1)

where Racc and R f air are risk functions for a model’s accuracy and fairness (modeled here-in as
worst-group accuracy), and λ > 0 a trade-off parameter. Then, fλ cannot be outperformed by any
other f ′ at the same trade-off level λ . The entire frontier under a dataset D can then be characterized
by finding fλ that minimizes the fairness-accuracy objective (1) at every trade-off level λ , and tracing
out its (Racc,R f air) performances on a 2D plane (Figure 1).
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However, the limited size of the tail-group examples restricts the DNN model’s worst-group perfor-
mance, leading to a compromised accuracy-fairness frontier [125, 31]. In this work we ask: Under a
fixed learning algorithm, can we meaningfully push the model’s accuracy-fairness frontier by improv-
ing the training data distribution using active learning? That is, denoting by Dα,n = {(yi,xi)}n

i=1 a
training dataset with K subgroups and the group size distribution α = [α1, . . . ,αK ], we study whether
a model’s accuracy-fairness performance Fλ can be improved by rebalancing the group distribution
of the training data Dα,n, i.e., we seek to optimize an outer problem:

minimize
α∈∆|G |

[
min
f∈F

Fλ ( f |Dα,n)
]
, (2)

where ∆K is the simplex of all possible group distributions [88]. Our key observation is that given
a sampling model with well-calibrated uncertainty (i.e., the model uncertainty is well-correlated
with generalization error), uncertainty-based AL has the promise to preferentially acquire tail-group
examples from unlabelled data without needing group annotations on the unlabelled set, and reach a
more balanced data distribution and improved accuracy-fairness performance of the final model[12].

However, recent work suggests that a DNN model’s uncertainty estimate is less trustworthy under
spurious correlations and distributional shift, potentially compromising the AL performance under
dataset bias [80, 77, 67, 110]. For example, Ovadia et al. [80] show that a DNN’s expected calibration
error increases as the testing data distribution deviates from the training data distribution, and
Ming et al. [77] show that a DNN’s ability in detecting out-of-distribution examples is significantly
hampered by spurious patterns. Looking deeper, Liu et al. [67], Van Amersfoort et al. [110] suggest
that this failure mode in DNN uncertainty can be caused by an issue in representation learning known
as feature collapse, where the DNN over-focuses on correlational features that help to distinguish
between output classes on the training data, but ignore the non-predictive but semantically meaningful
input features that are important for uncertainty quantification (Figure 2). In this work, we show that
this failure mode can be provably mitigated by a training procedure we term introspective training
(Section 2). Briefly, introspective training adds an auxiliary introspection task to model training,
asking the model to predict whether an example belongs to an underrepresented group. It comes with
a guarantee in injecting bias-awareness into model representation (Proposition B.1), encouraging it
to learn diverse hidden features that distinguish the minority-group examples from the majority, even
if these features are not correlated with the training labels. Hence it can serve as a simple “plug-in" to
the training procedure of any active learning method, leading to improved uncertainty quality for tail
groups (Figure 2).

In this work, we introduce Introspective Self-play (ISP), a simple training approach to improve a
DNN model’s uncertainty quality for underrepresented groups (Section 2). Using group annotations
from the training data, ISP conducts introspective training to provably improve a DNN’s representation
and uncertainty quality for the tail groups. When group annotations are not available, ISP additionally
estimates them using a cross-validation-based procedure. Under two challenging real-world tasks
(census income prediction and toxic comment detection), we empirically validate the effectiveness of
ISP in improving the performance of AL with a DNN model under dataset bias (Section 3).

2 Method
In this section, we introduce Introspective Self-play (ISP), a simple training approach to improve
model quality in representation learning and uncertainty quantification under dataset bias.

2.1 Introspective Training

We consider models of the form p(y|x) = σ
(

fy(x)
)
= σ

(
β>y h(x)

)
, where h : X → RD is a D-

dimensional embedding function, βy ∈RD the output weights, and σ(·) the activation function. Given
model fy = β>y h, introspective training adds a bias head fb = β>b h to the model, so it becomes a
multi-task architecture f = ( fy, fb) with shared embedding h(·):

p(y|x) = σ( fy(x)), p(b|x) = σsigmoid( fb(x)); where ( fy, fb) =
(
β
>
y h+by, β

>
b h+bb

)
. (3)

Given examples D = {xi,yi,gi}n
i=1, we generate the underrepresentation labels as bi = I(gi ∈B) and

train the model with the target and underrepresentation labels (yi,bi) by minimizing a multi-task
learning objective:
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L((yi,bi),xi) = L(yi, fy(xi))+Lb(bi, fb(xi)), (4)

where L is the standard loss function for the task, and Lb is the cross-entropy loss. As a result,
given training examples {xi}n

i=1, introspective training (4) not only trains the model to predict the
outcome yi, but also instructs it to recognize its potential bias bi by predicting whether xi is from an
underrepresented group.

(a) Predicted Probability
Introspective Training

(b) Predictive Variance
Introspective Training

(c) Representation Space
Introspective Training

Colored by Predicted Probability.

(d) Representation Space
Introspective Training

Colored by Predicted Underrep.

(e) Predicted Probability
ERM Training

(f) Predictive Variance
ERM Training

(g) Representation Space
ERM Training

(h) Predicted Underreprentation
Introspective Training

Figure 2: Prediction, uncertainty quantification, and representation learning behavior of introspective training v.s. ERM training in a binary
classification task under severe group imbalance (n = 5000) [90]. Here, blue and orange indicates the two classes, and each class contains
a minority group (the tiny clusters on the diagonal with n < 5) and a majority group (the large clusters on the off-diagonal). Column 1-2
depicts the models’ predictive probability and predictive uncertain surface in the data space. Column 3 depicts the models’ decision surface
in the last-layer representation space, colored by the predictive probability of the target label. Column 4 depicts the introspective-trained
model’s predicted bias probability in the representation space (fig. 2d) and in the data space (fig. 2h), colored by the predictive probability of
the underrepresentation. Appendix D.1 described further detail.

Despite its simplicity, introspective training has a significant impact on the model’s representation
learning that is particularly important for quantifying uncertainty under dataset bias. Figure 2
illustrates this on a binary classification task under severe group imbalance [90], where we compare
two dense ResNet ensemble models trained using the introspection objective (Equation (4)) v.s. the
empirical risk minimization (ERM) objective, respectively. Comparing figures 2a and 2e, we observe
that the decision boundaries for the predicted label are similar between introspective training and
ERM. However, the predictive variance (obtained via a Gaussian process (GP) layer [67]) exhibits
sizable differences. In particular, the variance estimates for introspective training are uniformly high
outside of the two clouds of underrepresented groups in the data. However, for ERM, the model
confidence is high along the decision boundary, even in the unseen regions without training data.
This is due to the fact that when training with ERM, the representation collapses in the direction
that is not correlated with training label (i.e., parallel to decision boundary) and does not retrain any
input information regarding the underrepresented groups in its representation (fig. 2g). However,
with introspective training, the representations indeed are morphed to reflect the differences between
the underrepresented examples and the majority group (as can be seen in figures fig. 2g vs fig. 2c),
helping the model to better distinguish them in the representation space, and hence lead to improved
uncertainty estimate in the neighborhood of underrepresented examples. Appendix D.1 contains
further description.
Formally, introspective training induces the below guarantee on the model’s bias-awareness in its
hidden representation and uncertainty estimates (detailed discussion in Appendix B.1):

Proposition 1 (Introspective Training induces Bias-awareness). Denote ob(x) = p(x|b = 1)/p(x|b =
0) the odds for x belongs to the underrepresented group B. For a well-trained model f = ( fy, fb)
that minimizes the introspective training objective (4), so that p(b = 1|x) = σ( fb(x)), we then have:

• (Bias-aware Embedding Distance) For two examples (x1,x2), the embedding distance
||h(x1)− h(x2)||2 is lower bounded by (up to a scaling constant) the odds ratio of whether
x1 belongs to the underrepresented groups versus that for x2: ||h(x1)− h(x2)||2 ≥ 1

||βb||2
×
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max
(

log ob(x1)
ob(x2)

, log ob(x2)
ob(x1)

)
, such that the distance between a pair of minority and majority

examples (x1,x2) is large due to the high values of the log odds ratio.

2.2 Estimating underrepresentation via Cross-validated Self-play

In this section, we consider how to estimate the underrepresentation label bi when it is absent, so that
ISP can be applied to the setting where group annotations gi is too expensive to obtain. A popular
practice in the literature is to estimate dataset bias as the predictive error of a single (biased) model.
That is, given a trained model fD, prior work [24, 42, 78, 91, 66] estimates the underrepresentation
label as the observed error L(yi, fD(xi)). To better understand this estimator for the generalization
error of the underrepresented groups, Consider the noise-bias-variance decomposition (Domingos
[28]) of the model error L(y, fD), which reveals, in the expectation of the random draws of the dataset
D∼D :

ED[L(y, fD(x))]︸ ︷︷ ︸
error

= ED
[
L(y, ỹ(x))

]︸ ︷︷ ︸
noise

+ L(ỹ(x), f̄ (x))︸ ︷︷ ︸
bias

+ ED
[
L( f̄ (x), fD(x))

]︸ ︷︷ ︸
variance

, (5)

where ỹ(x) = argminy′ Ey∼P(y|x)[L(y,y′)] is the (Bayes) optimal predictor and f̄ (x) =

argmin f ED[L( f , fD(x))] is the ‘ensemble’ predictor of the single models { fD}D∼D trained from
random data draws (see Appendix A.2 for a review). From (12), we see that for the purpose of
estimating generalization error due to dataset bias, the naive estimator b̂0 = L(y, fD) based on single-
model error suffers from two issues: (1) b̂0 conflates noise (typically arising from label noise or
feature ambiguity) with the dataset bias signal we wish to capture, potentially leading to compromised
quality in real datasets [57, 65]. (2) As b̂0 is calculated from a single model, its estimate of the
variance term (an important component of generalization error [121]) is often not stable. This is
exacerbated when b̂0 is computed from the training error, since model variance tends to be severely
underestimated by DNNs [66]. This observation motivates us to propose cross-validated self-play, a
simple method to estimate a model’s generalization gap. Briefly, given training data Dtrain divided
into K splits, we train a bootstrap ensemble of K models { fk}K

k=1 with ERM training, where each fk
sees a fraction of the training data (see Appendix Fig. 5). As a result, for each (xi,yi) ∈ Dtrain, there
exists a collection of in-sample predictions { fin,k′(xi)}Kin

k′=1 trained on data splits containing (xi,yi),
and a collection of out-of-sample predictions { fout,k(xi)}Kout

k=1 trained on data splits not containing
(xi,yi). Then, the self-play estimator of the model’s generalization gap is

b̂i = Ek[L(yi, fout,k(xi))]︸ ︷︷ ︸
estimated error

−L(yi, f̄in(xi))︸ ︷︷ ︸
estimated noise

= Ek[L( f̄in(xi), fout,k(xi))]. (6)

where f̄in is the ensemble prediction based on in-sample predictors fin,k′ , the expectation Ek is taken
with respect to the out-of-sample predictions 2. Compared to the standard alternatives in the literature
(e.g., single-model error L(y, f ) as in JTT), the self-play estimator b̂i has the appealing property of
controlling noise (by using f̄in) while more stably estimating variance (by using expectations over
f̄out,k), thereby more stably estimating a model’s generalization error due to dataset bias. Appendix C.2
contains detailed explanation in terms of the noise-bias-variance decomposition of model error [28].

Method Summary: Introspective Self-play. Combining the self-play underrepresentation estima-
tion and introspective training together, we arrive at Introspective Self-play (ISP), a simple two-stage
method that improves the representation quality and uncertainty estimates of a DNN for under-
represented population groups. ISP first (optionally) estimates underrepresentation labels using
cross-validated self-play if the group annotation is not available, and then conducts introspective
training to train the model to recognize its own bias while learning to predict the target label. For the
unlabelled data to be sampled, the resulting model generates (1) predictive probability p(y|x), (2)
uncertainty estimates v̂(x) and (3) predicted probability for underrepresentation p(b|x) = σ( fb(x)),
offering a rich collection of active learning signals for downstream applications (Figure 3 & Algo-
rithm 1).

2We apply early-stopping based on model’s cross-validation error, so that f̄in doesn’t overfit to label noise
[63, 97]. See “Practical Comments" paragraph of Appendix C.2.
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Stage I: Label Estimation Stage II: Introspective Training

Training Data

Figure 3: The two-stage Introspective Self-play (ISP) model.

3 Experiments
We consider two challenging real-world datasets: Census Income [59] and Toxicity Detection [11].
We demonstrate that for each task, ISP meaningfully improves the tail-group sampling rate and
the accuracy-fairness performance of state-of-the-art AL methods. Appendix D.2 describes full
experiment detail. Briefly, we consider two settings where group label is observed or unobserved on
the labelled set (it is never observed on unlabelled set). We train AL models using ISP, using either
the provided group labels as under-representation label b̂i (ISP-Identity), or estimate it using the
estimated generalization gap from cross-validated self-play (ISP-Gap). In each setting, we compare
to popular training methods reweighting (RWT) [46] and Just Train Twice (JTT) [66] as well as
random sampling and ERM baselines. For each AL model training method, we conduct 8 rounds
of active learning until reaching half of the full dataset, so there’s sufficient variation between the
data collected by different AL models. To evaluate the final model’s accuracy-fairness frontier given
the data collected by a AL method, we perform reweighted training using a weighted objective
∑(x,y)6∈B̂ Lce(y, f (x))+λ ∑(x,y)∈B̂ Lce(y, f (x)), with the underrepresented group B̂ defined by either
group label or by thresholding the estimated under-representation label 1b̂i>t , and tracing out the
frontier of model’s (accuracy, worst-group accracy) performances over a range of values for (λ , t).

Table 1: The tail-group sampling rate and final-model accuracy v.s. fairness performances under different AL model training methods. Here
we show the best active learning signal for each task (i.e., variance for Census Income, and margin for toxicity detection). Tail Sampling Rate:
The ratio between num. of sampled tail group examples (in final round) v.s. the total num. of tail group in population. Combined Acc: The
combined accuracy-fairness score defined as (acc + worst-group acc)/2. It is proportional to the perimeter of the rectangle defined by a point
on the accuracy-fairness curve.

AL Training
Method

Group identity label
in train set?

Census Income Toxicity Detection

Tail Sampling Rate Combined Acc. Worst-group Acc. Tail Sampling Rate Combined Acc. Worst-group Acc.

(Random) X 0.475 0.746 0.659 0.556 0.708 0.490
RWT [46] X 0.797 0.772 0.761 0.857 0.709 0.482

ISP-Identity (Ours) X 0.907 0.785 0.796 0.905 0.719 0.506

ERM × 0.791 0.736 0.658 0.852 0.735 0.539
JTT [66] × 0.839 0.752 0.695 0.866 0.747 0.571

ISP-Gap (Ours) × 0.839 0.770 0.788 0.867 0.759 0.597

Table 1 shows sampling performance and the final-model fairness-accuracy performance of each AL
model training method, and Figure 4 visualizes the full accuracy-fairness frontier of the final models.

0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86
Accuracy

0.55

0.60

0.65

0.70

0.75

W
or
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(Random)
RWT
ISP-Identity
ERM
JTT
ISP-Gap

Figure 4: Accuracy-fairness Fron-
tier for Census Income.

Our main conclusions are: (1) Effectiveness of ISP training: Compared
to non-ISP baselines, we find ISP consistently improves a AL model’s
active learning (measured by tail-group sampling rate) and accuracy-
fairness performance (measured by combined accuracy, which is defined
as (accuracy + worst-group accuracy)/2). This advantage is seen in both
settings where the group label is available or unavailable. In particular,
in Figure 4, the final model from ISP-Gap (pink dashed line, trained
on actively sampled data and using estimated underrepresentation label
for final-model re-weighted training) almost dominates Random (blue
solid line, trained on randomly sampled data and using true group label for final model training)
despite not having access to true group label in the final reweighted training, highlighting the
importance of the data distribution in the model’s accuracy-fairness performance. (2) Label Quality
Matters: Comparing the variants of ISP (Identity v.s. Gap) in Table 1, we see a clear impact of
the quality of introspection signal to the performance of the AL model. For example, for active
learning performance, we see that the sampling rate ISP-Identity is significantly better than ISP-Error.
However, for toxicity detection where the group label suffers an under-coverage issue (i.e., the group
definition excludes potentially identity-mention comments where raters disagree, see Datasets section
of Appendix D.2), we see that ISP-Error in fact strongly outperforms ISP-Identity in accuracy-fairness
performance. This validates the observation from previous literature on the failure mode of bias-
mitigation methods when the available group annotation does not cover all sources of dataset bias,
and speaks to the importance of high quality estimation methods that can detect underpresentation in
the presence of unknown sources of bias [126]. Appendix D.3 contains further ablation analysis.
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A Additional Background
A.1 Recap: Notation and Problem Setup.

Dataset with subgroups: We consider a dataset D where each example {xi,yi} (xi ∈X denotes the
features and yi ∈ Y the label) is associated with a discrete group label gi ∈ G = {1, . . . , |G |}.
Joint data distribution: We denote D = P(y,x,g) as the joint distribution of the label, feature and
groups, so that D above can be understood as a size-n set of i.i.d. samples from D . Notice that
this formulation implies a flexible noise model P(y|x,g) that depends on (x,g). It also implies a
flexible group-specific distribution P(y,x|g), where the joint distribution of (y,x) varies by group.
Note however that we assume that the group label does not have additional predictive power beyond
the features, i.e., we assume that P(y|x,g) = P(y|x).
Subgroup prevelance: We denote the prevalence of each group as γg = E(y,x,g)∼D (1G=g). As a result,
the notion of dataset bias is reflected as the imbalance in group distribution P(G) = [γ1, . . . ,γ|G |] [88].
In the applications we consider, it is often feasible to identify a subset of underrepresented groups
B ⊂ G which are not sufficiently represented in the population distribution D and have γg� 1

|G |
[89, 90]. To this end, we also specify D∗ = P(y,x|g)P∗(g) an optimal distribution, where P∗(g) is an
ideal group distribution (i.e., uniform such that P∗(g) = γ∗g = 1

|G | ) so that all groups have sufficient
representation in the data.
Loss function: We assume a loss function L(y, ŷ), that denotes the loss incurred when the predicted
label is ŷ while the actual label is y.
Hypothesis space: We consider learning a predictor from a hypothesis space F of functions
f : X 7→ Y . We assume that the hypothesis space is well-specified, i.e., that it contains the Bayes-
optimal predictor ỹ : X → Y :

ỹ(x) = argmin
y′∈Y

Ey∼P(y|x)(L
(
y,y′
)
).

We require the model class F to come with certain degree of smoothness, so that the model f ∈F
cannot arbitrarily overfit to the noisy labels during the course of training. In the case of over-
parameterized models, this usually implies F is subject to certain regularization that is appropriate
for the model class (e.g., early stopping for SGD-trained neural networks) [63].

A.2 Disentangling model error under noise and bias

Given a dataset D ∼ D and a loss function L , we consider learning the prediction function
fD = argmin f∈F L( f ,y|D), where L(y, f |D) = ∑{xi,yi}∈D L(yi, f (xi)). Following the previous work
[83], we denote the ensemble predictor f̄ = argmin f∈F ED∼D (L( fD, f )) over ensemble mem-
bers fD’s, where each fD is trained on a random draw of training dataset D ∼ D , and ỹ(x) =
argminy′∈Y Ey∼P(y|x)(L(y,y′)) the (Bayes) optimal predictor. For test example {yi,xi}, we can de-
compose the predictive error of a trained model fD(x) using a generalized bias-variance decomposition
for Bregman divergence:
Proposition A.1 (Noise-Bias-Variance Decomposition under Bregman divergence [28, 83]). Given
a loss function of the Bregman divergence family, for a test example {y,x} the expected prediction
loss L(y, fD(x)) of an empirical predictor fD can be decomposed as:

ED
[
L(y, fD(x))

]
= ED

[
L(y, ỹ(x))

]︸ ︷︷ ︸
Noise

+ L(ỹ(x), f̄ (x))︸ ︷︷ ︸
Bias

+ ED
[
L( f̄ (x), fD(x))

]︸ ︷︷ ︸
Uncertainty

(7)

Given a fixed data distribution D , the first term ED
[
L(y, f ∗(x))

]
quantifies the irreducible noise that

is due to the stochasticity in the noisy observation y. The third term ED
[
L( f̄ (x), fD(x))

]
quantifies the

variance in the prediction, which can be due to variations in the finite-size data D, the stochasticity
in the randomized learning algorithm F ×D→ fD, or the randomness in the initialization of an
overparameterized model [2]. Finally, the middle term L(ỹ(x), f̄ (x)) quantifies the bias between ỹ(x)
(i.e., the “true label") and the ensemble predictor f̄ learned from the empirical data D ∼ D . It is
inherent to the specification of the model class and cannot be eliminated by ensembling, e.g., it can
be caused by model misspecification, missing features, or regularization. To make the idea concrete,
consider a simple example where we fit a ridge regression model f (xi) = β>xi to the Gaussian
observation data yi = θ>xi+ε,ε ∼ N(0,σ2) under an imbalanced experiment design, where we have
|G | treatment groups and ng observations in each group. Here, xi = [1gi=1, ...,1gi=|G |] is a |G |×1
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one-hot indicator of the membership of gi for each group in G , and θ = [θ1, . . . ,θ|G |] is the true effect
for each group. Then, under ridge regression, the noise-bias-variance decomposition for group g is

ED(L(y, fD)) = σ2 +
(λθg)

2

(ng+λ )2 +
σ2ng

(ng+λ )2 , where the regularization parameter λ modulates a trade-off
between the bias and variance terms.

A.3 Further Decomposition

Further Uncertainty Decomposition for Probabilistic Models As an aside, when the predictive
model fD is probabilistic (e.g., the model generates a posterior predictive distribution P( f |D) rather
than a point estimate f ), the variance in Equation (7) is further decomposed as:

ED
[
L( f̄ (x), fD(x))

]
= ED

[
L( f̄ (x),µD(x))

]︸ ︷︷ ︸
Ensemble Diversity

+EDE f∼P( f |D)

[
L(µD(x), f (x))

]︸ ︷︷ ︸
Posterior Variance

(8)

where µD(x) = E f∼P( f |D)[ f (x)] is the posterior mean, and vD(x) = E f∼P( f |D)

[
L(µD(x), f (x))

]
is the

posterior variance of each ensemble member. As shown, comparing to an ensemble of deterministic
models, the ensemble of probabilistic models provides additional flexibility in quantifying model
uncertainty via the extra term of expected posterior variance.

Further Bias Decomposition for Minority Groups For the examples x coming from the under-
represented groups with γg� 1

|G | , the bias term can be further decomposed into:

L(ỹ(x), f̄ (x)) = L(ỹ(x), f̄ ∗(x))︸ ︷︷ ︸
Bias, Model

+E ( f̄ ∗(x), f̄ (x))︸ ︷︷ ︸
Excess Bias, Data

, (9)

where f̄ ∗ = argmin f∈F ED∗∼D∗(L( fD∗ , f )) is the optimal ensemble predictor based on size-n datasets
D∗ sampled from the optimal distribution D∗ where all groups have equal representation. Here,
L(ỹ(x), f̄ ∗(x)) is the bias inherent to the model class and cannot be eliminated by ensembling. It
can be caused by model misspecification, missing features, or regularization. On the other hand,
E ( f̄ ∗(x), f̄ (x)) = L(ỹ(x), f̄ (x))−L(ỹ(x), f̄ ∗(x)) indicates the “excess bias" for the underrepresented
groups caused by the imbalance in the group distribution P(G) in the data-generation distribution D .

To make the idea concrete, consider the ridge regression example from the previous section, where

the noise-bias-variance decomposition for group g is ED(L(y, fD)) = σ2+
(λθg)

2

(ng+λ )2 +
σ2ng

(ng+λ )2 , with the
regularization parameter λ modulating a trade-off between the bias and variance terms (Appendix E).

Consequently, for an underrepresented group with small size γg� 1
|G | , its predictive bias (λθg)

∗2

(ng+λ )2 is
exacerbated due to lacking sufficient statistical information to counter the regularization bias, incuring
an excessive bias of E ( f̄ ∗(x), f̄ (x))≈ λθg

nγ∗g γg
(γ∗g−γg) when compared to an optimal ensemble predictor

f̄ ∗ trained from a perfectly balanced size-n datasets with γ∗g = 1/|G |.

A.4 Modern uncertainty estimation techniques in deep learning

For a deep classifier p(x) = σ( f (x)) with logit function f (x) = β>h(x) and h(x) ∈RM the last-layer
hidden embeddings, the modern deep uncertainty methods quantifies model uncertainty by enabling
it to generate random samples from a predictive distribution. That is, for a model trained on data
D = {(xi,yi)}n

i=1, given a test data point xtest , the model can return a size-K sample:

{ fk(xtest)}K
k=1 ∼ P( f |xtest ,D).

For example, in Monte Carlo Dropout [34], the samples is generated by perturbing the dropout
mask in the learned predictive function f (·) = β>h(·)’s embedding function h(·), while in Deep
Ensemble [58], the sample comes directly from the multiple parallel-trained ensemble members.
Finally, in a neural Gaussian process model [117, 67, 111], the samples are generated from a Gaussian
process model using the hidden embedding function h(x) as the input. For example, for classification
problems, the predictive variance of the Gaussian process model v(xtest) = Var( f |xtest ,D) can be
expressed as (Williams & Rasmussen [115], Chapter 3):

v(xtest) = k(xtest)
>
1×nVn×nk(xtest)n×1;

15



where Vn×n is a fixed matrix computed from training data, and k(xtest) = [k(xtest ,x1), . . . ,k(xtest ,xn)]
is a vector of kernel distances between xtest and the training examples {xi}n

i=1. The kernel function k
is commonly defined to be a monotonic function of the hidden embedding distance, e.g., k(xtest ,xi) =
exp(−||h(xtest)−h(xi)||22) for the RBF kernel. As a result, the predictive uncertainty for a data points
xi is determined by the distance between xtest from the training data {xi}n

i=1. Consequently, a DNN
model’s quality in representation learning has non-trivial impact on its uncertainty performance.
Although first mentioned in the context of neural Gaussian process, this connection between the
quality of representation learning and the quality of uncertainty quantification also holds for state-of-
the-art techniques such as Deep Ensemble, as model averaging cannot eliminate the systematic errors
in representation learning and consequently the issue in uncertainty quantification (for example, see
Figure 6 and the corresponding ensemble uncertainty surface Figure 2f).

Neural Gaussian Process Ensemble In this work, to comprehensively investigate the effect of
different uncertainty techniques, we should to use a Deep Ensemble of neural Gaussian process as
our canonical model. That is, we parallel train K neural Gaussian process models { fk}K

k=1. Then,
given a test data point xtest , each ensemble member will return a predictive distribution with means
{µk(x)}K

k=1 and variances {vk(x)}K
k=1. Then, we can generate model prediction as Ek[µk(x)], and

quantify uncertainty in one of the two ways:

Ensemble Diversity : Vark(µk(x));
Posterior Variance : Ek(vk(x)),

where Vark, Ek are empirical means and variances over the ensemble members. As shown, they
correspond to the two components of the total model variance under squared error introduced in A.3.
We investigate the effectiveness of these two uncertainty signals in the experiments.

B Theoretical Analysis
B.1 Improving Representation Learning and Uncertainty Quantification Under Dataset

Bias

Formally, introspective training induces the below guarantee on the model’s bias-awareness in its
hidden representation and uncertainty estimates:
Proposition B.1 (Introspective Training induces Bias-awareness). Denote ob(x) = p(x|b =
1)/p(x|b = 0) the odds for x belongs to the underrepresented group B. For a well-trained model
f = ( fy, fb) that minimizes the introspective training objective (4), so that p(b = 1|x) = σ( fb(x)),
we then have:

(I) (Bias-aware Hidden Representation) The hidden representation h(x) is aware of the likelihood
ratio of whether an example x belongs to the underrepresented group b = I(g ∈ B), i.e.
p(x|b = 1)/p(x|b = 0), such that:

β
>
b h(x)+bb = log ob(x)+ log

p(b = 1)
p(b = 0)

. (10)

(II) (Bias-aware Embedding Distance) For two examples (x1,x2), the embedding distance
||h(x1)−h(x2)||2 is lower bounded by (up to a scaling constant) the odds ratio of whether x1
belongs to the underrepresented groups versus that for x2:

||h(x1)−h(x2)||2 ≥
1
||βb||2

×max
(

log
ob(x1)

ob(x2)
, log

ob(x2)

ob(x1)

)
, (11)

such that the distance between a pair of minority and majority examples (x1,x2) is large due to
the high values of the log odds ratio.

The proof is in Appendix F. Part (I) provides a consistency guarantee for the hidden representation
h(·)’s ability in expressing the likelihood of whether an example x belongs to the underrepresented
group B , i.e., bias awareness. The form of (10) is similar to the representation learning guarantee in
the noise contrastive learning literature, as it shares the same underlying principle of encouraging
feature diversity and disentanglement via contrastive comparison between groups [38, 98, 45] . Part
(II) is a corollary of (10) and provides a direct guarantee on the model’s learned embedding distance. It
states that under introspective training, the model cannot discard important input features that are not
predictive of the target label to a degree that it collapsed the representation of majority and minority
examples together (i.e., making ||h(x1)−h(x2)||2 excessively small for two examples (x1,x2) from
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the majority and minority group, respectively), creating difficulty for identifying underrepresented
groups in the feature space with uncertainty-based active learning. Empirically, we find the benefit of
introspective training extends to other uncertainty-based active learning signals as well (e.g., margin
and ensemble diversity, see Appendix D.3).

C Method Summary
C.1 Algorithm

Algorithm 1 Introspective Self-play (ISP)
Inputs: Training data Dtrain = {yi,xi}n

i=1; (Optional) Group annotation Gtrain = {gi}n
i=1;

Unlabelled data Dpool = {x j}n′
j=1.

Output: Predicted probability {p(y|x j)}n′
j=1; Bias probability {p(b|x j)}n′

j=1; Predictive variance {v(x j)}n′
j=1.

. Stage I: Label Generation
if Gtrain 6= /0 then

Btrain = {bi = I(gi ∈B)}; . Make underrepresentation label using group annotation gi.
else

B̂train = Sel f PlayBiasEstimation(Dtrain). . Estimate underrepresentation label using Algorithm 2

. Stage II: Introspective Training
Train f̂ on Dtrain with multi-task introspective objective L((yi,bi),xi). . Equation (4)
Evaluate f̂ on x j ∈ Dpool to generate sampling signals {p(y|x j), p(b|x j),v(x j)}n′

j=1. . Equation (3)

Algorithm 2 Underrepresentation Label Estimation via Cross-validated Self-play
Inputs: Training data Dtrain = {yi,xi}n

i=1.
Output: Estimate underrepresentation labels B̂train.

Train K-fold cross-validated ensemble { fk}K
k=1 with Dtrain.

Compute in-sample and out-of-sample ensemble predictions { fin,k(xi)}Kin
k=1,{ fout,k(xi)}Kout

k=1 for all xi ∈ Dtrain.
Estimate underrepresentation labels as B̂train = {bi = Ek[L( f̄in(xi), fout,k(xi))]}n

i=1. . (Equation (13))

C.2 Estimating Generalization Gap using Cross-validated Ensemble

A popular practice in the literature is to estimate dataset bias as the predictive error of a single
(biased) model. That is, given a trained model fD, prior work [24, 42, 78, 91, 66] estimates the under-
representation label as the observed error L(yi, fD(xi)). To better understand this estimator for the
generalization error of the underrepresented groups, Consider the noise-bias-variance decomposition
(Domingos [28]) of the model error L(y, fD), which reveals, in the expectation of the random draws
of the dataset D∼D :

ED[L(y, fD(x))]︸ ︷︷ ︸
error

= ED
[
L(y, ỹ(x))

]︸ ︷︷ ︸
noise

+ L(ỹ(x), f̄ (x))︸ ︷︷ ︸
bias

+ ED
[
L( f̄ (x), fD(x))

]︸ ︷︷ ︸
variance

, (12)

where ỹ(x) = argminy′ Ey∼P(y|x)[L(y,y′)] is the (Bayes) optimal predictor and f̄ (x) =

argmin f ED[L( f , fD(x))] is the ‘ensemble’ predictor of the single models { fD}D∼D trained from
random data draws (see Appendix A.2 for a review). From (12), we see that for the purpose of
estimating generalization error due to dataset bias, the naive estimator b̂0 = L(y, fD) based on single-
model error suffers from two issues: (1) b̂0 conflates noise (typically arising from label noise or
feature ambiguity) with the dataset bias signal we wish to capture, potentially leading to compromised
quality in real datasets [57, 65]. (2) As b̂0 is calculated from a single model, its estimate of the
variance term (an important component of generalization error [121]) is often not stable. This is
exacerbated when b̂0 is computed from the training error, since model variance tends to be severely
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underestimated by DNNs [66].3 This observation motivates us to propose cross-validated self-play,
a simple method to estimate a model’s generalization gap. Briefly, given training data D divided
into K splits, we train a bootstrap ensemble of K models { fk}K

k=1 with ERM training, where each fk
sees a fraction of the training data (see Appendix Fig. 5). As a result, for each (xi,yi), there exists
a collection of in-sample predictions { fin,k′(xi)}Kin

k′=1 trained on data splits containing (xi,yi), and a
collection of out-of-sample predictions { fout,k(xi)}Kout

k=1 trained on data splits not containing (xi,yi).
Then, the self-play estimator of the model’s generalization gap is 4

b̂i = Ek[L(yi, fout,k(xi))]︸ ︷︷ ︸
estimated error

−L(yi, f̄in(xi))︸ ︷︷ ︸
estimated noise

= Ek[L( f̄in(xi), fout,k(xi))]. (13)

where f̄in is the ensemble prediction based on in-sample predictors fin,k′ , the expectation Ek is taken
with respect to the out-of-sample predictions, and we are estimating the Bayes optimal predictor ỹ
using the in-domain prediction f̄in (since the model class F is subject to suitable regularization, the
f̄in’s do not arbitrarily overfit the noisy labels). Compared to the standard alternatives in the literature
(e.g., single-model error L(y, fD)), the self-play estimator b̂i has the appealing property of controlling
noise (by using f̄in) while better estimating variance (by using expectations over f̄out,k), thereby
constituting a more informative signal for the underrepresented groups under dataset bias, label noise
and feature ambiguity.

Practical Comments Note that due to its cross validation nature, the self-play bias estimator b̂i
estimates the generalization error of a weaker model (i.e., trained on a smaller data size ncv < n).
This is in fact consistent with the practice in the previous debasing literature, where the main model
is trained on the error signals from weaker and more biased models [24, 42, 78].

Further, in the context of SGD-trained neural networks, it is important to properly estimate the f̄in(xi)
so it does not overfit to the training label, via early stopping [63, 68]. This is easy to do in the
context of cross validation: during training, we collect the estimated bias b̂i,t across the training
epochs t = 1, . . . ,T , and select the optimal stopping point t as the first time the out-of-sample error
E
[
L(yi, fout,k(xi))

]
stablizes. In practice, we specify the early-stopping criteria as when the running

average (within a window T ′ = 5) of the cross validation error first stablizes below a threshold ε .
This is to prevent the situation where the errors for some hard-to-learn examples keep oscillating
throughout training and never stabilize.

C.3 Hyperparameters and Computational Complexity

Hyper-parameters The full ISP procedure contains 3 hyper-parameters: The (optional) cross-
validated self-play in Stage I contains all three hyper-parameters: (1) the number of ensemble models
K and (2) the number of examples ncv to train each model. Both are standard to the bootstrap ensemble
procedure, and we set them to K = 10 and ncv = n/K in this work to ensure the total computation
complexity is comparable to training a single model on the full dataset. (3) the early stopping criteria
ε for noise estimation (as discussed in the previous section C.2), we set it heuristically to ε = 0.1 in
this work after visual inspection of the validation learning curves. The introspective training in Stage
II does not contain additional hyperparameter other than the standard supervised learning parameters
(e.g., learning rate and training epochs). We set these parameters based on a standard supervised
learning hyperparameter sweep based on the full data.

Computation Complexity When the group annotation is available, the computation complexity
of the ISP procedure (i.e., Stage II only) should be equivalent to the standard ERM procedure. On
the other hand, the computational complexity of the full ISP procedure (Stage I + II) should be
comparable to that of a standard two-stage debiasing method that trains multiple single models on the
full dataset [109, 66, 120, 78, 26, 51].

3As an illustrative example, the generalization error of a ridge regression model under orthogonal design and

group-specific noise is ED(L(y, fD(xg))) = σ2
g +

(λθg)
2

(ng+λ )2 +
σ 2ng

(ng+λ )2 , where σg is the noise level for group g∈ G ,
ng is the sample size for group g ∈ G , and λ is the ridge regularization parameter. See Appendix E for details.

4In this work, we use mean squared error L(y, f ) =
√
(y−σsigmoid( f ))2 for the generalization gap computation,

so that b̂i ∈ [0,1].
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Figure 5: An example of 5-fold cross-validated ensemble. Each ensemble member received 60% of the data (highlighted in orange), and each
data split receives 3 in-sample fin,k and 2 out-of-sample predictions fout,k .

D Experiment Details and further discussion
D.1 2D Classification

We train a 10-member neural Gaussian process ensemble (as introduced in Appendix A.4), where
each ensemble member is based on a 6-layer Dense residual network with 512 hidden units and
pre-activation dropout mask (rate = 0.1). The model is trained using Adam optimizer ( learning
rate = 0.1) under cross entropy loss, and with a batch size 512 for 100 epochs. After training,
each ensemble member returns a tuple of predicted label probability, predicted under-representation
probability and predictive uncertainty {(pk(y|x), pk(b|x),vk(x))}10

k=1, and we compute the ensemble’s
predicted probability surface as Ek[p(y|x)], predicted underrepresentation surface as Ek[pk(b|x)], and
the predictive uncertainty surface as Ek[vk(y|x)], where Ek is the empirical average over the ensemble
member predictions. The predictive uncertainty surface of individual members is shown in Figures
6-7.

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
GP Uncertainty, Data Space (Model 0)

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
GP Uncertainty, Data Space (Model 1)

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
GP Uncertainty, Data Space (Model 2)

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
GP Uncertainty, Data Space (Model 3)

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
GP Uncertainty, Data Space (Model 4)

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
GP Uncertainty, Data Space (Model 5)

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
GP Uncertainty, Data Space (Model 6)

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
GP Uncertainty, Data Space (Model 7)

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
GP Uncertainty, Data Space (Model 8)

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
GP Uncertainty, Data Space (Model 9)

Figure 6: Uncertainty surface of individual ensemble members, ERM training
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Figure 7: Uncertainty surface of individual ensemble members, introspective training.

As shown, compared to the ERM-trained model, the introspective-trained model generates similar
label prediction decision I(p(y|x)> 0.5) (Figures 2a v.s. 2e), but with much improved uncertainty sur-
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face (Figures 2b v.s. 2f). Specifically, we compute predictive variance using the standard Gaussian pro-
cess variance formula v(xtest) = k(xtest)

>Vk(xtest), where k(xtest) = [k(xtest ,x1), . . . ,k(xtest ,xn)]n×1
is a vector of kernel distances based on the embedding distances ||h(xtest)−h(xi)||2 from the training
data (Appendix A.4). As shown, the model uncertainty under ERM model are not sufficiently sensi-
tive to directions in the data space that are irrelevant for making prediction decisions on the training
data (i.e., the directions that are parallel to the decision boundary) (Figure 2f). As a result, it did not
learn sufficiently diverse hidden features, leading to a significantly warped representation space that
is extremely stretched out in the direction that is orthogonal to the decision boundary, and extremely
compressed otherwise (Figure 2g). Consequently, the model cannot strongly distinguish the minority
examples from the majority examples in the representation space, and can become overconfident even
in unseen regions that was never covered by training data. This can be undesirable for uncertainty
quantification under data bias, especially for the purpose of identifying underrepresented minority
examples, where the distinguishing features between the minority and the majority examples are not
predictive for the target label (e.g., the image background). This issue is further exacerbated in the
single models (see Figure 6). In comparison, the uncertainty surface from an introspective-trained
model does not suffer from this failure case. As shown in Figure 2b, the model is less inclined to
become overconfident in unseen regions, especially in the neighborhood of the minority examples.
Correspondingly in the representation space, the model learned more diverse features and is able to
better distinguish the minority examples from the majority examples (Figure 2b). To understand how
introspective training induces such improvement in model behavior, Figures (2g) and (2h) visualize
the model’s underrepresentation prediction p(b|x) in the representation space and the data space,
respectively. As shown, due to the need of predicting the underrepresented examples (i.e., “introspec-
tion") during training, the model has to learn hidden features that distinguishes the minority examples
from the majority examples in its representation space, to a degree that they can be separated by a
linear decision boundary in the last layer (Figure 2h). Consequently, the model naturally learns a more
disentangled representation space through simple multi-task training, and is able to provide predicted
bias probabilities p(b|x) (Figure 2h) in addition to high-quality predictive uncertainty (Figure 2b) for
the downstream active learning applications.

D.2 Tabular and Language Experiments

Datasets. We consider two challenging real-world datasets: Census Income [59] that contains
32,561 training records from the 1994 U.S. census survey. The task is to predict whether an
individual’s income is >50K, and the tail groups are female or non-white individuals with high
income. We also consider Toxicity Detection [11] that contains 405,130 online comments from the
CivilComments platform. The goal is to predict whether a given comment is toxic, and the tail groups
are demographic identities × label class (male, female, White, Black, LGBTQ, Muslim, Christian,
other religion) × (toxic, non-toxic) following Koh et al. [54]. More specifically, we use the U.S.
Census Income data adult from the official UCI repository5. For the language task, we use the
CivilCommentsIdentity from the TensorFlow Dataset repository6. For Census Income, we define
the underrepresented groups as the union of (Female, High Income) and (Black, High Income); for
Toxicity Detection, we define the underrepresented groups as the identity × label combination (male,
female, white, black, LGBTQ, christian, muslim, other religion) × (toxic, non-toxic) (16 groups
in total) as in [54]. For CivilComments, the identity annotation is a value between (0,1) (it is the
average rating among multiple raters), and we include an example into the underrepresented group
only if the rating > 0.99 (i.e. all raters agree about the identity) following [54]. However, we do
note that this leads to a under coverage of the group membership, as many comments with plausible
identity mentions are not included into the group identity labels.

AL Baselines and Method Variations. For all tasks, we use a 10-member DNN ensemble f =
{ fk}10

k=1 as the AL model, and replace their last layers with a random-feature GP layer [67] in order
to compute posterior variance (see Appendix A.4). We compare the impact of different training
methods in two settings depending on whether the group identity label will be annotated in the
labelled set (they are never available in the unlabelled set). When group label is available, we
compare ISP-identity (i.e., ISP with group identity as training label bi = I(gi ∈ B)) to a group-

5https://archive.ics.uci.edu/ml/datasets/adult
6https://www.tensorflow.org/datasets/catalog/civil_comments
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specific reweighting (RWT) baseline [46]7. When the group label is not known, we consider ISP-Gap
using the self-play-estimated generalization gap b̂i = Ek[L( f̄in(xi), fout,k(xi))] as the representation
label (i.e., Equation (13)), and compare it to an ensemble of Just Train Twice (JTT) which uses the
ensemble training error b̂i = Ek[L(yi, fin,k(xi))] to determine the training set. We also compare to
an ERM baseline which trains the AL models with a routine ERM objective, but uses error for the
reweighted training of the final model. We consider other method combinations in the ablation study
Appendix D.3).

AL Training Group identity label Training Mechanism Underrepresentation Available Sampling Signal
Method in train set? Label bi

(Random) X - Group Identity Random
RWT [46] X Reweighting Group Identity Margin / Diversity / Variance

ISP-Identity X Introspection Group Identity Margin / Diversity / Variance / Predicted Underrep.

(ERM) × - Train Error Margin / Diversity / Variance
JTT [66] × Reweighting Train Error Margin / Diversity / Variance
ISP - Gap × Introspection Generalization Gap Margin / Diversity / Variance / Predicted Underrep.

Table 2: Training methods to be compared in the experiment study. Components proposed in this work are highlighted in red. The two baselines
(Random) & (ERM) does not use underrepresentation label to train AL model, and only use it as reweighting signal for the reweighted training
of the final model. For detailed definition of the sampling signals, see “Active Learning Signal" paragraph of Appendix D.2.

Active Learning Protocol. Figure 8 visualizes the experiment protocol. As shown, in each stage,
we first (optionally) trains a cross validated ensemble to estimate the under-representation labels,
where we split the data into 10 cross-validation splits, and train ensemble members on 1 split and
predict the rest of the 9 splits. We then use the ensemble’s in-sample and out-of-sample predictions to
compute the underrepresentation label b̂i (Equation (13)), and conduct introspective training (eq. (4))
to generate the final active sampling signals for 8 rounds to generate the final sampled data (red box).
At the end of round 8, we estimate the underrepresentation label for the final sampled data, and send it
to the final model for reweighted training to generate the full accuracy-fairness frontier. The sampling
model is always a 10-member ensemble of neural Gaussian process (introduced in Appendix A.4),
and the final model is always a single DNN with architecture identical to the sampling model (i.e.,
2-layer Dense ResNet for census income and BERTsmall for toxicity detection).

For both tasks, we randomly sample as small subset as the initial labelled dataset (2,500 out of 32,561
total training examples for census income, and 50,000 out of total 405,130 examples for toxicity
detection), and use the rest of the training set as the unlabelled set for active learning. For each
sampling round, the AL model acquires 1,500 examples for census income, and 15,000 examples for
the toxicity detection, so the total sample reaches roughly half of the total training set size after 8
rounds.

In the final model training, we use the standard re-weighting objective [66]:

∑
(x,y)6∈B̂

Lce(y, f (x))+λ ∑
(x,y)∈B̂

Lce(y, f (x))

where B̂ is the set of underrepresented examples identified by the underrepresentation label, i.e.,
(xi,yi) ∈ B̂ if b̂i > t. We vary the thresholds t and the up-weight coefficient λ over a 2D grid (t ∈
{0.05,0.1,0.15, ...,1.0} and log(λ ) ∈ {0.,0.5,1,1.5, . . . ,10.}) to get a collection of model accuracy-
fairness performances (i.e., accuracy v.s. worst-group accuracy), and use them to identify the Pareto
frontier defined by this combination of data and reweighting signal.

Active Learning Signals. In this work, we consider four types of active sampling signals. Recall
that the sampling model (neural Gaussian process ensemble) is a K-member ensemble that generates
three predictive quantities: (1) label probability {pk(y|x)}10

k=1, (2) underrepresentation probability
{pk(b|x)}10

k=1 and (3) predictive variance {v(x)}10
k=1 (recall that Ek and Vark are the empirical mean

and variance).

• Margin: The gap between the highest class probability and the second highest class probabil-
ity for the output label. In the binary prediction context, this is equivalent to 2∗|p(y|x)−0.5|,
i.e., the gap between the mean predicted probability and the null value of 0.5. We use the
mean predictive label probability of the ensemble, which leads to:

Margin(x) = 2∗ |Ek(pk(y|x))−0.5|.
7Notice we choose RWT over other recently popular alternatives (e.g., Distributionally Robust Optimization
(DRO)) since RWT corresponds better to JTT and outperforms DRO in difficult tasks such as CivilComments.
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Figure 8: Experiment Protocol. Boxes with thick outlines (Underrepresentation Label, Introspective Training Method, Sampling Signal)
indicates the experiment components where the methods differ.

• Predicted Underrepresentation: The mean predictive underrepresentation probability of
the ensemble, which leads to:

Underrep(x) = Ek(pk(b|x)).

• Diversity: i.e., Ensemble Diversity (introduced in Appendix A.4). The variance of label
predictions:

Diversity(x) =Vark(pk(y|x)).
• Variance: i.e., Predictive Variance (introduced in Appendix A.4). The mean of predictive

variances:
Variance(x) = Ek(vk(x)).

Model Architecture and Training Detail. For tabular experiments, we use a 2-layer Dense ResNet
model with 128 hidden units and pre-activation dropout rate = 0.1, using a random-feature Gaussian
process with hidden dimension 256 as the output layer [67] (In the preliminary experiments, we
tried larger models with update to 6-layers and 1024 hidden units, and did not observe significant
improvement). For language experiments, we used BERTsmall mode initialized from the official
pre-trained checkpoint released at BERT GitHub page[107]8. In each active learning round, we train
the Dense ResNet model with Adam optimizer with learning rate 0.1, batch size 256 and maximum
epoch 200; and train the BERT model with AdamW optimizer (learning rate 1e-5) for 6 epochs with
batch size 16.

D.3 Further Ablation Analysis

In the main results above, we have (1) used the same underrepresentation label for both the AL-model
introspective training and the final-model reweighted training, and (2) focused on the most effective
active sampling signal under each task. In this section, we conduct ablations by decoupling the signal
combinations along these two axes.
Impact of Data Distribution and Reweighting Signal to Accuracy-Fairness Frontier First, we
investigate the joint impact of data distribution and reweighting signal on the final models’ accuracy-
fairness performance. We train the final model under data collected by different AL policy (Random
v.s Margin v.s. Group Identity, etc), and perform reweighted training using different underrepresenta-
tion labels (Error v.s. Gap v.s. Group Identity) and compare to an ERM baseline without reweighted
training (Table 3). As shown, holding the choice of reweighted signal constant and compare across
data distributions (i.e., comparing across columns within each row), we observe that the data dis-
tribution in general has a non-trivial impact on the final model’s accuracy-fairness performance.
Specifically, under appropriate sampling signal, data collected by ISP-Gap (which has no access to
true group identity label) can lead to model performance that is competitive with data collected by
ISP-Identity (e.g., the third v.s. fourth columns). Comparing across reweighting signals within each
dataset (i.e., compare across rows within each column), we see that all underrepresentation labels
brings a meaningful improvement over the ERM baseline, with Group Identity bringing the most

8https://github.com/google-research/bert
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significant improvement when it is of high quality (i.e., Census Income), and Gap bringing the most
improvement when group annotation is imperfect (i.e., Toxicity Detection).

Table 3: Impact to final-model fairness-accuracy performance (measured by combined accuracy = acc + worst-group acc)/2) of the choice
of reweighting signal (rows), across dataset collected by different active learning methods (columns). Random: data collected via random
sampling. Margin/Variance/Diversity: data collected using introspective-trained AL model (with Gap as underrepresentation label) using the
said sampling signal. Group Identity: data collected by introspective-trained AL model with group identity as introspection signal, using the
best sampling signal for the task (Variance for census income and Margin for toxicity detection).

Final Model
Reweighting Signal

AL Method, Census Income AL Method, Toxicity Detection

Random Margin Variance Group Identity Random Diversity Margin Group Identity

(ERM) 0.692 0.669 0.719 0.720 0.698 0.699 0.702 0.703

Error 0.706 0.683 0.750 0.743 0.758 0.761 0.744 0.752
Gap 0.692 0.694 0.770 0.777 0.776 0.776 0.758 0.810

Group Identity 0.746 0.756 0.778 0.785 0.711 0.701 0.705 0.713

Impact of Underrepresentation Label on Different Sampling Signals. Finally, we evaluate the
choice of introspection signal on the sampling performance of a introspective-trained AL-model,
under different types of sampling signals (Table 4). As this evaluation is computationally expensive
(requiring multiple active learning experiments for all underrepresentation label v.s. sampling signal
combinations), here we focus on the Census Income task. As shown, we observe the introspective
training brings a consistent performance boost across different types of sampling signals (esp. when
using Group Identity), highlighting the appeal of introspective training as a “plug-in" method that
meaningfully boost the performance of a wide range of active learning methods. Interestingly,
we also observe the “Predicted Underrep." (i.e., the underrepresentation prediction in p(b|x) in
Figure 3) is exceptionally effective when the group identity is available (tail sampling rate > 0.95)
but underperforms classic active learning signals otherwise, cautioning the proper use of p(b|x) as a
sampling signal depending on the availability of group labels.

Table 4: Impact to AL performance (measured by tail sampling rate) of the choice of introspection signal (rows) across different active learning
methods (columns).

Underrep.
Label

AL Method, Census Income

Margin Diversity Variance Predicted Underrep.

Error 0.780 0.324 0.771 0.671
Gap 0.803 0.276 0.839 0.708

Group Identity 0.873 0.330 0.907 0.967
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E Noise-bias-variance decomposition in Ridge Regression
Consider fitting a ridge regression model f (xi) = β>xi to the Gaussian observation data yi = θ>xi +
ε,ε ∼ N(0,σ2) under an imbalanced experiment design, where we have |G | treatment groups and
ng observations in each group. . Here, xi = [1gi=1, ...,1gi=|G |] is a |G | × 1 one-hot indicator of
the membership of gi for each group in G , and θ = [θ1, . . . ,θ|G |] is the true effect for each group.
Then, under ridge regression, the noise-bias-variance decomposition for group g is ED(L(y, fD)) =

σ2 +
(λθg)

2

(ng+λ )2 +
σ2ng

(ng+λ )2 , where the regularization parameter λ modulates a trade-off between the bias

and variance terms. In Appendix E.3, we also treat the case of group-specific noise εi
indep∼ N(0,σ2

g ) .

E.1 Error Decomposition in a General Setting

We first derive the decomposition in a general setting with data {yi,φi}n
i=1, where φi is the d× 1

(fixed) features that follows a distribution P(φ). We consider a well-specified scenario where the data
generation mechanism as:

yi = ỹi + ε, where ỹi = θ
>

φi, ε
iid∼ N(0,σ2),

and θd×1 = [θ1, . . . ,θ|G |] is the true coefficient. Under ridge regression, we fit a linear model
f (xi) = φ>i β to the data by minimizing the following squared loss objective:

||yn×1−Φn×dβd×1||22 +λ ||β ||22,

which gives rise to the following solution:

β̂ = (Φ>Φ+λ Id)
−1

Φ
>y. (14)

notice β̂ is a random variable that depends on the data Φn×d = [φ>1 , . . . ,φ>n ]
iid∼ P(φ). Notice that

under squared loss, the ensemble predictors f̄ = argmin f EΦ[( f − β̂>xi)
2] is simply the mean of

individual predictors, i.e, f̄ = EΦ(β̂
>xi) = β̄>xi, where β̄ = EΦ(β̂ ).

Consequently, given a new observation {y,φ}, the noise-bias-variance decomposition of β̂ under
squared loss is:

E[(y−Φβ̂ )2] = Ey[(y− ỹ)2]+ (ỹ− β̄
>

φi)
2 +EΦ[β̄

>
φi− β̂

>
φi]

2

= σ
2︸︷︷︸

Noise

+φ
>
i [θ − β̄ ][θ − β̄ ]>φi︸ ︷︷ ︸

Bias

+φ
>
i Var(β̂ )φi︸ ︷︷ ︸

variance

. (15)

As shown, to obtain a closed-form expression of the decomposition, we need to first derive the
expressions of Bias(β̂ ) = [θ − β̄ ] and Var(β̂ ). Under the expression of the ridge predictor (14), we
have:

Bias(β̂ ) = [θ − β̄ ]

= θ −E[(Φ>Φ+λ Id)
−1

Φ
>

Φθ ]

= E[I− (Φ>Φ+λ Id)
−1

Φ
>

Φ]θ

= λ ∗E[(Φ>Φ+λ Id)
−1]θ ;

Var(β̂ ) = E(Var(β̂ |Φ))+Var(E(β̂ |Φ)),

with

E(Var(β̂ |Φ)) = E[(Φ>Φ+λ Id)
−1

Φ
>Var(y)Φ(Φ>Φ+λ Id)

−1]

= σ
2E[(Φ>Φ+λ Id)

−1
Φ
>

Φ(Φ>Φ+λ Id)
−1]

= σ
2 ∗E[(Φ>Φ+λ Id)

−1−λ (Φ>Φ+λ Id)
−2].

Var(E(β̂ |Φ)) = E[Sθθ
>S>]−E[S]θθ

>E[S>]

where S = (Φ>Φ+λ Id)
−1Φ>Φ.
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As shown, the above expression depends on the random-matrix moments E[(Φ>Φ + λ Id)
−1],

E[(Φ>Φ+λ Id)
−2], E[(Φ>Φ+λ Id)

−1Φ>Φ] and E[Sθθ>S>].

E.2 Error Decomposition under Orthogonal Design

The above moments are in general difficult to solve due to the involvement of matrix inverse and
product within the expectation. However, a closed-form expression is possible under an orthogonal
design where φi = [1gi=1, . . . ,1gi=|G |] is the one-hot vector of treatment group memberships. Then,
denote Diag[zg] the diagonal matrix with diagonal elements zg and [zgg′ ]gg′ the full matrix whose
(g,g′) element is zgg′ , we have:

Φ
>

Φ = diag[ng]

E[(Φ>Φ+λ Id)
−1] = diag[

1
ng +λ

],

E[(Φ>Φ+λ Id)
−2] = diag[

1
(ng +λ )2 ],

E[(Φ>Φ+λ Id)
−1

Φ
>

Φ] = diag[
ng

ng +λ
],

and

E[(Φ>Φ+λ Id)
−1

Φ
>

Φθθ
>

Φ
>

Φ(Φ>Φ+λ Id)
−1] = [

ngn′g
(ng +λ )(n′g +λ )

θgθg′ ]gg′ .

We are now ready to derive the full decomposition (16), without loss of generality, we assume φi
belongs to group g. Then:

φ
>
i Bias(β̂ ) = λ ∗φ

>
i E[(Φ>Φ+λ Id)

−1]θ =
λ

ng +λ
θg;

φ
>
i Var(β̂ )φi = σ

2 ∗φ
>
i E[(Φ>Φ+λ Id)

−1−λ (Φ>Φ+λ Id)
−2]φi;

=
σ2

ng +λ
− λσ2

(ng +λ )2 =
σ2ng

(ng +λ )2 .

Consequently, we have the noise-bias-variance decomposition in (16) as:

Noise: σ
2;

Bias: ||φ>i Bias(β̂ )||22 =
(λθg)

2

(ng +λ )2 ;

Uncertainty: φ
>
i Var(β̂ )φi =

σ2ng

(ng +λ )2 .

E.3 Error Decomposition under Orthogonal Design and Heterogeneous Noise

We now consider the case where yi ∼ N(θ>φi,σ
2
g ) follows a normal distribution with group-specific

noise. Using the same decomposition as in E.1, we see that:

E[(y−Φβ̂ )2] = Ey[(y− ỹ)2]+ (ỹ− β̄
>

φi)
2 +EΦ[β̄

>
φi− β̂

>
φi]

2

= σ
2
g︸︷︷︸

Noise

+φ
>
i [θ − β̄ ][θ − β̄ ]>φi︸ ︷︷ ︸

Bias

+φ
>
i Var(β̂ )φi︸ ︷︷ ︸

variance

. (16)

As shown, the nature of the bias and variance decomposition in fact does not change, and the noise
component is now the group-specific variance σ2

g . Therefore, by following the same derivation as in
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Appendix E.2, we have:

Noise: σ
2
g ;

Bias: ||φ>i Bias(β̂ )||22 =
(λθg)

2

(ng +λ )2 ;

Uncertainty: φ
>
i Var(β̂ )φi =

σ2ng

(ng +λ )2 .

F Proof of Proposition B.1
Through introspective training, there is a guarantee on a model’s bias-awareness based on its hidden
representation and uncertainty estimates. At convergence, a well-trained model f = ( fy, fb) should
satisfy the property that p(b = 1|x) = σ( fb(x)).

(I) (Bias-aware Hidden Representation) We denote the odds for x belonging to the underrepresented
group B as ob(x) = p(x|b = 1)/p(x|b = 0). Using Bayes’ theorem, we derive the following:

p(b|x) = σ(β T h(x)+β0)

log
p(b = 1|x)
p(b = 0|x)

= β
T h(x)+β0

log
p(x|b = 1)p(b = 1)
p(x|b = 0)p(b = 0)

= β
T h(x)+β0

β
T h(x)+β0 = logP(x|b = 1)− logP(x|b = 0)+ log

p(b = 1)
p(b = 0)

β
T h(x)+β0 = logob(x)+ log

p(b = 1)
p(b = 0)

(17)

Hence, the hidden representation is aware of the likelihood ratio of whether an example x belongs to
the underrepresented group, and the last-layer bias β0 corresponds to the marginal likelihood ratio of
the prevalence of the underrepresented groups p(b = 1)/p(b = 0) .

(II) (Bias-aware Embedding Distance) Next, we examine the embedding distance between two
examples (x1,x2), i.e., ||h(x1)−h(x2)||2.

The Cauchy-Schwarz inequality states that for two vectors u and v of the Euclidean space, |〈u,v〉| ≤
||u|| ||v||. Hence, the distance between two embeddings can be expressed as β T [h(x1)− h(x2)] ≤
||β ||2 ||h(x1)−h(x2)||2. Using this property and Equation (17), we derive the following:

β
T h(x1)−β

T h(x2) = logob(x1)− logob(x2)

β
T [h(x1)−h(x2)] = logob(x1)− logob(x2)

logob(x1)− logob(x2)≤ ||β ||2 ||h(x1)−h(x2)||2
1
||β ||2

[logob(x1)− logob(x2)]≤ ||h(x1)−h(x2)||2

1
||β ||2

log
ob(x1)

ob(x2)
≤ ||h(x1)−h(x2)||2 (18)

Since the above inequality is invariant to the relative position of (x1,x2), we also have:
1
||β ||2

log ob(x2)
ob(x1)

≤ ||h(x1)−h(x2)||2, which implies:

||h(x1)−h(x2)||2 ≥
1
||β ||2

∗max(log
ob(x1)

ob(x2)
, log

ob(x2)

ob(x1)
).

As shown, the distance between the hidden embeddings h(x1), h(x2) is lower-bounded by the log-
odds ratio that a given example is in the underrepresented group. With this guarantee on the model’s
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learned embedding distance, we expect the hidden features to be more diverse than when trained on
the main task alone, since it needs to sufficient features to distinguish the underrepresented-group
examples from those of the majority in the hidden space.

G Related Work
G.1 Supervised and semi-supervised learning under dataset bias

In recent years, there has been significant interest in studying robust generalization for long-tail popu-
lation subgroups under dataset bias. The literature is vast and encompasses topics including fairness,
debiasing, long-tail recognition, spurious correlation, distributional (i.e., domain or subpopulation)
shift, etc. In the following, we focus on notable and recent work that is highly relevant to the ISP
approach, and refer to works such as Caton & Haas [18], Mehrabi et al. [75], Hort et al. [43] for an
exhaustive survey.

Majority of the fairness and debiasing work focuses on the supervised learning setting, where the
model only have access to a fixed and imbalanced dataset. Among them, the earlier work operated
under the assumption that the source of dataset bias is completely known, and the group annotation is
available for every training example. Then these group information is use to train a robust model
by modify components of the training pipeline (e.g., training objective, regularization method, or
composition of training data). For example, Levy et al. [62], Sagawa et al. [89], Zhang et al. [122]
proposes minimizing the worst-group loss via DRO; Teney et al. [102], Idrissi et al. [46], Byrd &
Lipton [13], Xu et al. [119] studies the effect of group-weighted loss in model’s fairness-accuracy
performance, and REx [56] minimizes a combination of group-balanced and worst-case loss. Further,
the recent literature has also seen sophisticated neural-network loss that modifies gradient for the
tail-group examples. For example, LDAM [16] proposes to modify group-specific logits by an offset
factor that is associated with group size, and equalization loss [100] uses a instance-specific mask to
suppress the “discouraging gradients" from majority groups to the rare groups. On the regularization
front, the examples include Invariant Risk Minimization (IRM) [7] that appends a group-balanced loss
with a gradient norm penalty. Heteroskedastic Adaptive Regularization (HAR) [17] imposes Lipschitz
regularization in the neighborhood of tail-group examples. There also exists a large collection of
work imposing other types of fairness constraints. Finally, the third class of methods modifies the
composition of the training data by enriching the number of obsevations in the tail groups, this
includes Sagawa et al. [90], Idrissi et al. [46] that study the impact of resampling to the worst-group
performance, and Goel et al. [36] that generates synthetic examples for the minority groups. In the
setting where the group information is available, our work proposes a novel approach (introspective
training) that has both a theoretical guarantee and is empirically competitive than reweighted training.

On the other hand, there exist a separate stream of work that allows for partial group annotation,
i.e., the types of bias underlying a dataset is still completely known, but the group annotation is
only available for a subset of the data. Most work along this direction employs semi-supervised
learning techniques (e.g, confidence-threshold-based pseudo labeling), with examples include Spread
Spurious Attribute (SSA) [78], BARACK [96] and Fair-PG [48]. This setting can be considered
as a special case of ISP where we use group information as the underrepresentation label to train
the p(b|x) predictor. However, our goal is distinct that we study the efficacy of this signal as an
active learning policy, and also investigate its extension in the case where the label information is
completely unobserved in the experiments Appendix D.3.

G.2 Estimating dataset bias for model debiasing

In the situation where the source of dataset bias is not known and the group annotation is unavailable,
several techniques has been proposed to estimate proxy bias labels for the downstream debiasing
procedures. These methods roughly fall into three camps: clustering, adversarial search, and using
the generalization error from a biased model.

For clustering, GEORGE [95] and CNC [123] proposed estimating group memberships of examples
based on clustering the last hidden-layer output. For adversarial search, REPAIR [64], ARL [57],
EIIL [26], BPF [73], FAIR [82], Prepend [103] estimate the likelihood for an example to be biased
using an adversarial weighting model, which is trained by maximizing certain learning risk.

Estimating bias label using the error from a biased model is by far the most popular technique. These
include forgettable examples [120], Product of Experts (PoE) [24, 91], DRiFt [42] and Confidence
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Regularization (CR) [109, 108] that uses errors from a separate class of weak models that is different
from the main model; Neutralization for Fairness (RNF) [29] and Learning from Failure (LfF) that
trains a bias-amplified model of the same architecture using generalized cross entropy (GCE); and
Just Train Twice (JTT) that directly uses the error from a standard model trained from cross entropy
loss.

Notably, there also exists several work that estimates bias label using ensemble techniques, this
includes Gradient Alignment (GA) [124] that identifies the tail-group (i.e., bias-conflicting) examples
based on the agreement between two sets of epoch ensembles, Bias-conflicting Detection (BCD) [61]
that uses the testing error of a biased deep ensemble trained with GCE, and Learning with Biased
Committee (LWBC) uses the testing error of a bootstrap ensemble.

To this end, our work proposes a novel self-play estimator (Equation (13)) that uses bootstrap
ensembles to estimate the generalization gap due to dataset bias. self-play estimator has the appealing
property of better controlling for label noise while more stably estimating model variance, addressing
two weaknesses of the naive predictive error estimator used in the previous works.

G.3 Representation learning under dataset bias

Situated in the fairness literature, the earlier work in debiased representation learning has focused
on techniques to eliminate the information of spurious features (e.g., protected attributes) from the
model representation. This include adversarial training [10, 50, 85, 127], regularization [9, 101],
contrastive learning: [94, 81, 21] and its conditional variants [37, 105, 106, 23]. However, some later
works questions the necessity and the sufficiency of such approaches. For example, some work shows
that careful training of the output head along is sufficient to yield improved performance in fairness
and bias mitigation [49, 29, 52], and Cherepanova et al. [22] shows that models with fair feature
representations do not necessarily yield fair model behavior.

At the meantime, a separate stream of work explores the opposite direction of encouraging the model
to learn diverse hidden features. For example, Locatello et al. [70, 69] establish a connection between
the notion of feature disentanglement and fairness criteria, showing that feature disentanglement
techniques may be a useful property to encourage model fairness when sensitive variables are not
observed. However, such techniques often involves specialized models (e.g., VAE) which restricts the
broad applicability of such approaches. Some other work explores feature augmentation techniques
to learn both invariant and spurious attributes, and use them to debias the output head [60]. Finally,
a promising line of research has been focusing on using self-supervised learning to help the model
avoid using spurious features in model predictions [20, 118, 14, 39]. Our work follows this latter
line of work by proposing novel techniques to encourage model to learn diverse features that is
bias-aware, but with a distinct purpose of better uncertainty quantification.

G.4 Active learning under dataset bias

In recent years, the role of training data in ensuring the model’s fairness and bias-mitigation per-
formance has been increasing noticed. Notably, [19] presented some of the earlier theoretical and
empirical evidence that increasing training set size along is already effective in mitigating model
unfairness. Correspondingly, under the assumption that the group information in the unlabelled
set is fully known, there has been several works that studies group-based sampling strategies and
their impact on model behavior. For example, Rai et al. [86], Wang et al. [112] shows group-based
active sampling stratgy improves model performance under domain and distributional shifts, and
Abernethy et al. [1] proves a guarantee for a worst-group active sampling strategy’s ability in helping
the SGD-trained model to convergence to a solution that attains min-max fairness. A second line
of research focuses on designing better active learning objectives that incorporates fairness con-
straints, e.g., Fair Active Learning (FAL) [6] and PANDA [93]. Agarwal et al. [4] introduce a data
repair algorithm using the coefficient of variation to curate fair and contextually balanced data for
a protected class(es). Finally, there exists few active learning works formulating the objective of
their method as optimizing a fairness-aware objective. For example, Slice Tuner Tae & Whang [99]
proposes adaptive sampling strategy based on per-group learning curve to minimize fairness tradeoff,
performs numeric optimization. Cai et al. [15] which formalized the fairness learning problem as an
min-max optimization objective, however their did not conduct further theoretical analysis of their
objective, but instead proposed a per-group sampling algorithm based predicted model error using
linear regression. In comparison, our proposed method (ISP) does not require group information from
the unlabelled set.
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On the other hand, there exists active re-sampling methods that do not require the knowledge of
group information in the unlabelled set. For example, Amini et al. [5] learns the data distribution
using a VAE model under additional supervision of class / attribute labels, and then perform IPW
sampling with respect to learned model. REPAIR [64] that estimates dataset bias using prediction
error of a weak model, and then re-train model via e.g., sample re-weighting based on the estimated
bias. The bias estimation method used in this work is analogous to that of the JTT, which we compare
with in our work. A work close to our direction is Branchaud-Charron et al. [12], which shows DNN
uncertainty (i.e., BatchBALD with Monte Carlo Dropout [53]) helps the model to achieve fairness
objectives in active learning on a synthetic vision problem. Our empirical result confirms the finding
of Branchaud-Charron et al. [12] on realistic datasets, and we further propose techniques to improve
the vanilla DNN uncertainty estimators for more effective active learning under dataset bias.

As an aside, a recent work Farquhar et al. [32] studies the statistical bias in the estimation of active
learning objectives due to the non-i.i.d. nature of active sampling. This is separate from the issue of
dataset bias (i.e., imbalance in data group distribution) which we focus on in this work.

G.5 Uncertainty estimation with DNNs

In recent years, the probabilistic machine learning (ML) literature has seen a plethora of work that
study enabling calibrated predictive uncertainty in DNNss. Given a model f , the probabilistic DNN
model aims to learn a predictive distribution for the model function f , such that given training
data D = {(yi,xi)}n

i=1 and a testing point xtest , the model outputs a predictive distribution f (xtest)∼
P( f |xtest ,D) rather than a simple point prediction. To this end, the key challenge is to learn a
predictive distribution (implicitly or explicitly) during the SGD-based training process of DNN,
generating calibrated predictive uncertainty without significantly impacting the accuracy or latency
when compared to a deterministic DNN.

To this end, the classic works focus on the study of Bayesian neural networks (BNNs) [79], which
took a full Bayesian approach by explicitly placing priors to the hidden weights of the neural
network, and performance MCMC or variance inference during learning. Although theoretically
sound, BNN are delicate to apply in practice, with its performance highly dependent on prior
choice and inference algorithm, and are observed to lead to suboptimal predictive accuracy or even
poor uncertainty performance (e.g., under distributional distribution shift) [113, 47]. Although
there exists ongoing works that actively advancing the BNN practice (e.g., [30]). On the other
hand, some recent work studies computationally more approaches that implicitly learn a predictive
distribution as part of deterministic SGD training. Notable examples include Monte Carlo Dropout
[34] which generates predictive distribution by enabling the random Dropout mask during inference,
and ensemble approaches such as Deep Ensemble [58] and their later variants [71, 114, 41] that
trains multiple randomly-initialized networks to learn the modes of the posterior distribution of the
neural network weights [116]. Although generally regarded as the state-of-the-art in deep uncertainty
quantification, these methods are still computationally expensive, requiring multiple DNN forward
passes at the inference time.

At the meantime, a more recent line of research avoids probablistic inference for the hidden weights
altogether, focusing on learning a scalable probabilistic model (e.g., Gaussian process) to replace
the last dense layer of the neural network [110, 111, 67, 25]. A key important observation in this
line of work is the role of hidden representation quality in a model’s ability in obtaining high-quality
predictive uncertainty. In particular, Liu et al. [67], Van Amersfoort et al. [110] suggests that this
failure mode in DNN uncertainty can be caused by an issue in representation learning known as
feature collapse, where the DNN over-focuses on correlational features that help to distinguish
between output classes on the training data, but ignore the non-predictive but semantically meaningful
input features that are important for uncertainty quantification. [77] also observed that DNN exhibits
particular modes of failure in out-of-domain (OOD) detection in the presence of dataset bias. Later,
Tran et al. [104], Minderer et al. [76] suggests that this issue can be partially mitigated by large-scale
pre-traininig with large DNNs, where larger pre-trained DNN’s tend to exhibit stronger uncertainty
performance even under spurious correlation and subpopulational shift. In this work, we confirm this
observation in the setting of dataset bias in Figure 2), and propose simple procedures to mitigate this
failure mode in representation learning without needing any change to the DNN model, and illustrates
improvement even on top of large-scale pre-trained DNNs (BERT).

Deep uncertainty methods in active learning. Active learning with DNNs is an active field with
numerous theoretical and applied works, we refer to [74, 87] for comprehensive survey, and only
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mention here few notable methods that involves DNN uncertainty estimation techniques. Under
a classification model, the most classic approach to uncertainty-based active learning is to use the
predictive distribution’s entropy, confidence or margin as the acquisition policy [92]. Notice that
in the binary classification setting, these three acquisition policy are rank-equivalent since they are
monotonic to the distance between max[p(x),1− p(x)] and the null probability value of 0.5. On the
other hand, Batch Active learning by Diverse Gradient Embeddings (BADGE) [8] proposes to blend
diversity-based acquisition policy into uncertainty-based active learning, by applying k-means++
algorithm to the gradient embedding of the class-specific logits (which quantifies uncertainty). As a
result, BADGE may also suffer from the pathogloy in model representation under dataset bias, which
this work is attempt to address.

Finally, [44] has proposed a information-theoretic policy Bayesian active learning by disagreement
(BALD), which measures the mutual information between data points and model parameters and
is adopted in the deep uncertainty literature [35, 53, 55]. However, stable estimation of mutual
information can be delicate in practice, and we leave the investigation of these advanced acquisition
policy under dataset bias for future work.
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