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Figure 1. 360◦ videos generated by our model, Argus†. Starting from an input perspective video with arbitrary camera motion (red box),
Argus generates a full 360◦ panoramic video (visualized as environmental maps), where the red box indicates the input view in the generated
frame. The blue, orange, and purple boxes show sampled perspectives from the generated 360◦ video. Best viewed in Adobe Acrobat Reader
for the embedded videos.

Abstract

360◦ videos have emerged as a promising medium to rep-001
resent our dynamic visual world. Compared to the “tunnel002
vision” of standard cameras, their borderless field of view of-003
fers a more complete perspective of our surroundings. While004
existing video models excel at producing standard videos,005
their ability to generate full panoramic videos remains elu-006
sive. In this paper, we investigate the task of video-to-360◦007
generation: given a perspective video as input, our goal is008
to generate a full panoramic video that is consistent with009
the original video. Unlike conventional video generation010
tasks, the output’s field of view is significantly larger, and011
the model is required to have a deep understanding of both012
the spatial layout of the scene and the dynamics of objects to013
maintain spatio-temporal consistency. To address these chal-014
lenges, we first leverage the abundant 360◦ videos available015
online and develop a high-quality data filtering pipeline to016
curate pairwise training data. We then carefully design a017
series of geometry- and motion-aware operations to facil-018

itate the learning process and improve the quality of 360◦ 019
video generation. Experimental results demonstrate that 020
our model can generate realistic and coherent 360◦ videos 021
from in-the-wild perspective video. In addition, we show- 022
case its potential applications, including video stabilization, 023
camera viewpoint control, and interactive visual question 024
answering. View more high-resolution video results here*. 025

1. Introduction 026

Remarkable advances in video generation have led to im- 027
pressive capabilities, driven in part by large-scale video data 028
from the web [4, 5, 18, 20, 34]. Models can now produce 029
high-quality video clips based on an input image, allowing 030
us to step into the world behind the pixels. While these 031
models achieve impressive fidelity, they still provide us only 032

†Argus is named after a figure in Greek mythology with many eyes,
symbolizing the ability to observe from multiple perspectives.

*This file contains embedded videos best viewed in Adobe Acrobat
Reader. High-resolution results are available on our project page.
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a narrow slice of the four-dimensional scene. Unlike the real033
world where we can freely look around and observe events as034
they unfold, current video models are restricted to a narrow,035
fixed perspective. Expanding video to the 360◦ medium,036
which more faithfully captures the visual world, enables bet-037
ter understanding of spatial layout and scene dynamics while038
improving spatio-temporal coherence. For example, stan-039
dard video models commonly suffer from spatio-temporal040
inconsistency where content changes when looking back at041
previously observed parts of the scene. However, we find042
that generating 360◦ videos naturally resolves this problem043
as the entire scene is consistently visible.044

To this end, we study the task of video-to-360◦ generation,045
aiming to generate a complete 360◦ video of a dynamic scene046
from a single-view perspective video. This task is difficult047
as it poses the following challenges: the input video only048
offers a narrow range of viewpoints, while the model must049
comprehend both the spatial layout of the scene and the050
dynamics of objects, then extrapolate to the entire scene. As051
illustrated in Figure 1, when the model observes a vehicle052
entering and then existing the frame (the red box), it must053
infer both the vehicle’s previous and future trajectories and054
the progression of the surrounding scene. This prediction055
requires deep understanding of real-world constraints—for056
instance, that roads typically extend in a straight line, and057
vehicles maintain their lane at a constant pace.058

One straightforward approach would be expanding the in-059
put video using existing video outpainting models [7, 10, 13,060
43]. However, as we will show in Section 4, their generation061
quality degrades drastically as we extend further from the in-062
put viewpoint. This issue arises because current models are063
trained on videos with narrow field-of-view, which prevents064
them from learning complete scene dynamics.065

To overcome these challenges, we leverage the relatively066
untapped data source of 360° videos. The growing popularity067
of 360° cameras has created a wealth of panoramic content068
spanning sports, travel, and everyday activities—providing069
valuable insights into how scenes and actions naturally un-070
fold in our world. We formulate this task as a video out-071
painting problem from dynamic masks. Given a perspective072
video, our approach first estimates camera poses for each073
frame and projects them onto equirectangular maps within074
a shared coordinate system. We then condition a diffusion-075
based generation process on these maps and the input video.076
To facilitate model training, we propose three key techniques:077
camera motion simulation that models perspective video tra-078
jectories from 360° video, view-based frame alignment to079
ensure a fixed viewpoint in the generated panorama, and080
blended decoding to maintain boundary coherence. Our081
model, Argus, is the first to generate realistic and coherent082
360° videos from standard perspective inputs.083

Experimental results demonstrate that Argus outperforms084
existing methods in spatial coherence and visual quality.085

Our approach maintains consistency between the input and 086
the generated content while producing realistic panoramic 087
videos. The model generalizes effectively to various data 088
sources, including online clips, self-recorded videos with 089
complex dynamics, and model generated videos. Further- 090
more, Argus opens possibilities for several downstream ap- 091
plications, including video stabilization, camera viewpoint 092
control, dynamic environmental mapping, and interactive 093
visual question answering. 094

2. Related Works 095

Video Generation. Video generation aims to create high- 096
quality, temporally consistent videos from multimodal in- 097
puts. Researchers have explored various architectures, in- 098
cluding RNNs [2, 6, 11, 45], normalizing flows [3, 12], 099
GANs [17, 26, 38, 39, 41], and transformers [14, 47, 48, 50]. 100
However, these approaches suffer from resolution limita- 101
tions and poor generalization, as they primarily train on 102
small datasets designed for discriminative tasks. The recent 103
success of diffusion models [19, 32] and access to larger, 104
high-quality datasets have accelerated progress in video gen- 105
eration. While these approaches [4, 18, 20, 34, 51] produce 106
remarkably realistic videos from text or image prompts, they 107
remain constrained to narrow field-of-view outputs, prevent- 108
ing the generation of full 360° panoramic experiences. 109
Video Outpainting. While diffusion-based image outpaint- 110
ing from arbitrary mask regions has achieved satisfactory 111
results by mask conditioning [32, 33] or inference pro- 112
cess modifications [9, 27], video outpainting is limited to 113
rectangular frame extensions [7, 10, 13, 43], constraining 114
its application in panoramic content generation. Recently, 115
VidPanos [28] introduced a method for synthesizing video 116
panoramas from panning footage, but it focuses on dynamics 117
within the observed regions and cannot extrapolate beyond 118
initial viewpoints. Our approach overcomes these limitations 119
by enabling flexible outpainting across dynamic, non-linear 120
regions within a complete 360◦ panorama, generating im- 121
mersive 360◦ scenes from single-view video inputs. This ad- 122
vancement expands video outpainting capabilities, enabling 123
the generation of content that captures the full spatial and 124
temporal dynamics of environments. 125
360° Panorama Generation. Generating 360° panoramic 126
content presents unique challenges due to nonlinear distor- 127
tions in equirectangular projections. These distortions warp 128
objects and spatial layouts, complicating geometric appear- 129
ance and creating boundary discontinuities. While current 130
360° image panorama generation methods [1, 22, 29, 37, 49, 131
52] produce satisfactory results, they struggle with video 132
panoramas where temporal coherence and spatial consis- 133
tency are crucial. For video panorama generation, Wang et 134
al. [44] proposed a text-to-360° video generation framework, 135
emphasizing text alignment rather than video-to-panorama 136
transformation. Most relevant to our work is [36], where 137
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Tan et al. independently developed a video-to-360° frame-138
work based on AnimateDiff [16]. However, their approach139
assumes pitch-only camera movements, uses limited training140
data, and confines evaluation to model-generated, subject-141
less or subject-centered scenes with minimal camera move-142
ment. We address these problems through geometry- and143
motion-aware modules and larger-scale training data. Our144
method generates realistic 360° panoramic videos from per-145
spective inputs, outperforming existing approaches.146

3. Video to 360°147

Given a standard perspective video as input, our goal is to148
extrapolate beyond its limited field of view to generate a cor-149
responding 360◦ panoramic video. The generated panorama150
must maintain both content consistency and temporal dy-151
namics that align with the input frames.152

Since the problem is heavily under-constrained, we pro-153
pose to capitalize on a relatively untapped data source –154
360◦ videos – to learn the priors. We start with the 360-155
1M dataset [42], which consist of approximately 1 million156
videos of varying quality, and systematically filter down157
to 283,863 video clips (see the supp. material for details).158
Then, we build upon a diffusion-based image-to-video ar-159
chitecture [4, 23, 32] and introduce a series of geometry-160
and motion-aware design tailored for video-to-360◦ gener-161
ation (e.g., camera motion simulation, view-based frame162
alignment, etc). As we will show in Section 4, these modifi-163
cations are crucial for generating realistic panoramic videos.164

3.1. Video-Conditioned 360° Diffusion165

Our goal is to learn a diffusion mapping between an input166
perspective video Xpers ∈ RT×3×H×W and an output 360◦167

panoramic video Yequi ∈ RT×3×H′×W ′
. We represent 360◦168

video frames as equirectangular images and denote the num-169
ber of frames by T . Following Latent Diffusion Models170
[4, 23, 32], our model consists of an encoder E , a decoder D,171
an image feature extractor F , and a denoising U-Net fθ, with172
fθ as the only learnable component. We adopt the temporal173
VAE from Stable Video Diffusion [32] as our encoder and174
decoder, while the feature extractor is CLIP [31].175

Since diffusion models require the input and the output176
to have the same dimensionality, we first convert the in-177
put perspective video Xpers into an equirectangular format178
Xequi, matching the dimensions of the output Yequi. The179
unmapped areas are set to black . Next, we encode both180
equirectangular videos, Xequi and Yequi, to continuous la-181
tents, xequi = E(Xequi) and yequi = E(Yequi). Finally, we182
add time-dependent noise to yequi to produce yequi,t, con-183
catenate it with a noise-augmented [19] version of xequi, and184
feed this combination into the denoising network fθ to esti-185
mate the injected noise. The network fθ is conditioned on186
the timestamp t and the image feature sequence F(Xpers)187
through cross-attention [32]. In practice, projecting from188

Frames from input perspective video

Project onto shared coordinates (our approach) 

Naive projection

roll=0°, pitch=0°, yaw=0° roll=0°, pitch=45°, yaw=0° roll=0°, pitch=90°, yaw=0°

Figure 2. View-based frame alignment. Given input perspective
video frames (first row), we project them onto shared coordinates to
ensure a consistent viewing direction (second row). Without align-
ment, placing all video frames at the center (third row) forces the
model to learn varying scene arrangements (e.g., the sky appearing
at different heights), complicating the learning process.

Latent

Rotated latent

Rotate

Rotate 180°

Artifacts on the boundary

Artifacts in the middle

Blend

𝒟

𝒟

Figure 3. Blended decoding. We blend the video decoded from the
original and 180◦-rotated latents to ensure boundary consistency.
Zoom in to see the artifacts on the bottom-right image.

perspective to equirectangular format requires prior knowl- 189
edge of the camera’s field of view and poses. While this 190
information is known during training (determined when ex- 191
tracting perspective frames from 360◦ videos), it is unknown 192
during inference. In Section 3.3, we will describe how we 193
address this challenge. 194

3.2. Model Training 195

We train our denoising network fθ with a score matching 196
objective: 197

min
θ

E(xequi,yequi)∼pdata(E(Xequi),E(Yequi)),t,ϵ∼N (0,1) 198

λ(h)||ϵ− fθ(yequi,t; t,xequi,F(Xpers))||22.
(1)

199

Here, λ(h) = (12 − | 12 − h|)2 + δ is a re-weighting function 200
that scales the loss of each pixel based on its height h ∈ [0, 1] 201
on the equirectangular map. Intuitively, it gives greater 202
importance to regions near the equator (i.e., h closer to 1

2 ), as 203
regions near the poles (i.e., h = 0 or 1) are disproportionally 204
enlarged in the equirectangular format. δ is a small offset to 205
ensure that all regions contribute to the loss. 206
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Method Real camera trajectory Simulated camera trajectory Geometry

PSNR↑ LPIPS↓ FVD↓ Imag.↑ Aes.↑ Motion↑ PSNR↑ LPIPS↓ FVD↓ Imag.↑ Aes.↑ Motion↑ Line cons.↑

PanoDiffusion [49] 16.44 0.4138 2649.0 0.5055 0.4486 0.9426 15.28 0.4469 2622.3 0.4986 0.4533 0.9384 0.6504
Argus (ours) 21.83 0.2409 1228.6 0.4939 0.4828 0.9802 21.50 0.2602 1100.1 0.4812 0.4784 0.9805 0.8506

Table 1. Quantitative results for video-to-360◦ generation. We finetune PanoDiffusion [49] on 360◦ video frames for fair comparison.
Imag., Aes., and Motion stands for the Imaging Quality, Aesthetic Quality, and Motion Smoothness metrics from VBench [21]. Line cons.
stands for our proposed line consistency metric. Simulated trajectories are generated by our camera motion simulation technique, and
real-world trajectories are extracted from in-the-wild videos through calibration.

Input Video Argus (ours) PanoDiffusion [49]

Figure 4. Qualitative comparison with 360◦ image generation method PanoDiffusion (videos embedded). The input region is highlighted
in red, with orange and blue regions indicate extracted perspective views. Although PanoDiffusion can generate plausible 360◦ images from
perspective inputs, the generated frames are temporally inconsistent.

We optimize our model using the EDM [23] diffusion207
framework, parameterizing the denoiser fθ as:208

fθ(y;σ) = cskip(σ)y+cout(σ)Fθ(cin(σ)y; cnoise(σ)), (2)209

where Fθ is the model to be trained, σ = σ(t) indicates the210
noise schedule, and cin, cout, cskip, cnoise are scaling functions.211
During training, the noise schedule σ is sampled from a212
log-Gaussian distribution. We refer readers to [23] for more213
details on the EDM framework.214
Camera Movement Simulation. Our model aims to gener-215
ate 360◦ videos from arbitrary perspective videos. However,216
naively sampling perspective views from 360◦ videos to train217
diffusion models would be ineffective due to the complex218
patterns of camera motion in real-world footage. We thus219
design a sampling strategy that allows us to approximate220
real-world camera motion and extract realistic training pairs221
of perspective and 360◦ videos.222

Inspired by [15, 46], we introduce linear drift, oscilla-223
tory, and noise terms to mimic natural human motion [46].224
Formally, camera movement is simulated as follows:225

ϕroll(k) = N (0, ηr) + ar sin(ωk + τr),226

ϕpitch(k) = N (0, ηp) + ap sin(ωk + τp) + dpk, (3)227

ϕyaw(k) = N (0, ηy) + ay sin(ωk + τy) + dyk + ϕ0,228

where k is the frame index, ω is the oscillatory frequency,229
τr, τp, τy the initial phases, ar, ap, ay the oscillatory ampli-230
tudes, ηr, ηp, ηy the noise strengths, dp, dy the drift rates,231

and ϕ0 a random offset. The horizontal and vertical field of 232
view are randomly chosen between [30◦, 120◦]. Addition- 233
ally, since horizontal rotation preserves the 360◦ property, 234
we augment the data with random circular shifts. 235

3.3. Model Inference 236

The above framework is sufficient for training our model on 237
paired 360◦ and perspective videos. However, generating 238
outputs, especially for in-the-wild videos, presents several 239
challenges. First, as discussed in Section 3.1, projecting a 240
perspective video into an equirectangular format typically 241
requires knowledge of the camera’s field of view and poses, 242
yet in practice, the relative camera angles between frames 243
are often unknown. Another challenge is the presence of 244
boundary artifacts in equirectangular images: while the left 245
and right edges are distant in image space, they are spatially 246
adjacent in the scene. As a result, the model struggles to 247
condition the right edge based on the left and vice versa, 248
causing abrupt changes at the boundary. 249
View-Based Frame Alignment. To project the perspectives 250
videos into equirectangular format, one straightforward so- 251
lution is to always map perspectives frames to the center of 252
equirectangular maps, as shown in Figure 2 (bottom row). 253
While this approach sidesteps the need for camera pose esti- 254
mation, it forces the diffusion model to implicitly learn the 255
camera motion and handle complex distortions. For example, 256
the model must detect when the camera is panning upward, 257
as in Figure 2 (bottom row), and predict surrounding content 258
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Method FoV = 60◦ FoV = 90◦ FoV = 120◦

Imaging↑ Aesthetic↑ Motion↑ Imaging↑ Aesthetic↑ Motion↑ Imaging↑ Aesthetic↑ Motion↑

Be-Your-Outpainter [43] 0.4014 0.3461 0.9683 0.4469 0.4161 0.9649 0.4175 0.3951 0.9628
Follow-Your-Canvas [7] 0.4268 0.4750 0.9704 0.4267 0.4685 0.9679 0.4130 0.4513 0.9660
Argus (ours) 0.4760 0.4722 0.9816 0.4773 0.4785 0.9796 0.4895 0.4796 0.9777

Table 2. Quantitative comparison with video outpainting methods. Imaging, Aesthetic, and Motion stands for the Imaging Quality,
Aesthetic Quality, and Motion Smoothness metrics from VBench [21].

𝑡
=
0

𝑡
=
𝑇/
2

𝑡
=
𝑇

Argus (ours) Follow-Your-Canvas Argus (ours) Follow-Your-Canvas

Figure 5. Qualitative comparison with state-of-the-art video outpainting method. The input region is highlighted in orange. For each
generated 360◦ frame, four unwrapped perspective views are shown on the right. Video outpainting method struggles with satisfying 360◦

panoramic property and the generation quality declines as it extends further from the input viewpoint.

according to varying patterns of spherical distortion. Further-259
more, the sky may appear in different locations within the260
360◦ scene, further complicating the task. To address this261
challenge, we first estimate the relative camera poses of the262
input video using SLAM framework [24]. We then compute263
the Euler angles relative to the first frame and project them264
onto the equirectangular map. As shown in Figure 2 (middle265
row), this coordinate alignment ensures that each part of the266
equirectangular map corresponds to roughly the same scene267
region across frames, significantly improving consistency.268
For example, the sky appears consistently at the top, while269
the road remains at the bottom.270
Blended Decoding. When generating 360◦ video frames,271
inconsistencies often emerge at the boundary where the left272
and right edges of the equirectangular image meet. To ad-273
dress this, we introduce blended decoding (Figure 3).274

Previous techniques such as two-end alignment sam-275
pling [49] and circular padding [44] operate in the latent276
space, which cannot guarantee smooth boundary transitions277
after decoding, as the VAE is trained on standard perspective278
images or videos only. We propose blending in the pixel279
space instead. Specifically, we decode both the original la-280
tent and a 180◦-rotated version, creating two outputs with281
identical content but differently positioned artifacts. We282
then compute a distance-based weighted average, assigning283
greater weight to pixels farther from the boundary:284

Yk,i,j = hW (i)Yk,i,j + (1− hW (i))Y ′
k,i,j , (4)285

286

hW (x) = 1− 2

∣∣∣∣ xW − 1

2

∣∣∣∣ . (5)287

Here, i and j refer to the pixel coordinates. Yk and Y ′
k denote 288

the equirectangular frames generated at 0◦ and 180◦ offsets 289
for frame k. W represents the image width. This approach 290
allows us to blend the two videos, effectively mitigating 291
boundary artifacts. See Figure 3 for qualitative examples. 292
Long Video Generation. The method described above is 293
limited to generating 360◦ panoramas from input perspective 294
videos of exactly T frames. To accommodate longer input se- 295
quence, we extend our approach through context-aware train- 296
ing. Concretely, the model learns to predict the subsequent 297
T − S frames conditioned on S initial frames, which are 298
fully observable in the conditioning equirectangular video. 299
During training, we alternate between standard inputs (all 300
T conditioning frames masked) and context-aware inputs 301
(first S frames visible, remaining T − S frames masked). 302
For inference on extended sequences, we implement an iter- 303
ative sampling process in which recent predictions serve as 304
a context for subsequent iterations, allowing the generation 305
of longer-length panoramic videos. 306

4. Experiments 307

In this section, we first present a quantitative evaluation of Ar- 308
gus, followed by qualitative examples of 360◦ generation 309
from in-the-wild videos. Finally, we present a diverse set of 310
downstream tasks that Argus can be applied to off-the-shelf. 311

4.1. Experimental Setup 312

Our model is initialized from the Stable Video Diffusion-I2V- 313
XL model [4]. We train it in two phases: first at 384× 768 314
resolution for 100K iterations, then finetuning on a high- 315
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Input w/o view-based frame alignment w/o blended decoding Full model

Figure 6. Qualitative ablation studies. The input region is marked in red. The 360◦ images are rotated 180◦ to illustrate the panoramic
consistency. Compared to our full model, the variant without view-based frame alignment appears blurrier (orange box), while the variant
without blended decoding shows artifacts in the center (pink box). Boxes are enlarged for ease of visualization.

Figure 7. Long-term 360◦ video generation in the wild (videos embedded). The input video region is marked in red. Our generated
results maintain semantic consistency across two rounds of generation.

Variant PSNR↑ LPIPS↓ FVD↓ Imaging↑ Aesthetic↑ Motion↑

w/o frame alignment 20.42 0.3194 1349.6 0.3816 0.4604 0.9783
w/o blended decoding 22.09 0.2675 1226.3 0.4574 0.4705 0.9795
Full model 21.83 0.2409 1228.6 0.4939 0.4828 0.9802

VAE Reconstruction 24.54 0.1663 121.8 0.5272 0.4929 0.9793

Table 3. Ablation studies. Our view-based frame alignment tech-
nique significantly improves overall performance, while blended
decoding notably enhances boundary consistency despite its mini-
mal effect on quantitative scores. Results of direct reconstruction
using VAE are listed to represent the performance upper bound.

quality subset at 512× 1024 resolution for additional 20K316
iterations, both with batch size 16. The finetuning phase317
adopts context-aware training and employs a noisier distri-318
bution to enhance training effectiveness at higher resolu-319
tions [8]. We set sequence length T = 25 and context length320
S = 5. We briefly describe our data, metrics, and baselines321
below, with complete details available in the supp. material.322
Data. We evaluate our approach using a dataset of 101 360◦323
videos, captured either with Insta360 cameras or from a324
hold-out set from YouTube. The 360◦-perspective video325
pairs are created using two types of camera trajectories: (i)326
simulated trajectories generated by our camera motion sim-327
ulation technique, and (ii) real-world trajectories extracted328
through calibration. Additionally, we collected 15 videos329
featuring linear structures, such as lanes and sidewalks, to330
evaluate geometric consistency in extrapolated views.331
Metrics. We evaluate our results based on three key criteria:332
image quality, temporal coherency, and geometric consis-333
tency. For image quality, we use PSNR, LPIPS [53], Imaging334

Quality, and Aesthetic Quality metrics from VBench [21]. 335
For temporal coherency, we employ FVD [40] and Motion 336
Smoothness [21]. For geometric consistency, we introduce 337
a line consistency metric to evaluate whether straight lines 338
remain straight within extrapolated views. This metric is 339
particularly important for assessing whether our model pre- 340
serves fundamental geometric properties when generating 341
novel views. To quantitatively measure this consistency, we 342
follow [30] and use EA-score [54] to evaluate the angular 343
and Euclidean distances between line pairs. 344

Baselines. Since no existing method is explicitly designed 345
for the video-to-360◦ task, we adapt PanoDiffusion [49], a 346
360◦ image generation method, as our first baseline. Specifi- 347
cally, we re-trained their model on 360◦ video frames from 348
our dataset without the depth branch. To improve consis- 349
tency across frames, we applied identical initial noise across 350
all frames during the sampling process [35]. We also com- 351
pare Argus with video outpainting methods [7, 43]. Since 352
these baselines support only rectangular input, we center 353
square videos on the canvas and expand the vertical and hor- 354
izontal field of view (FoV) to 180◦ and 360◦, respectively. 355
For evaluation, we extracted three perspective videos from 356
each 360◦ test video, with FoVs of 60, 90, and 120 degrees. 357

4.2. Results and Analyses 358

Quantitative and Qualitative Results. We evaluate our 359
model and baselines on our curated 360◦-perspective video 360
pairs. We use GT camera trajectories for all methods to 361
isolate the impact of imperfect camera poses. As shown in 362
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Input Video Stabilization (Argus) Stabilization (reference)

Figure 8. Video stabilization results (videos embedded). Columns from left to right: input frames, result from Argus, and reference result
from [25]. Unlike cropping-based approaches, Argus maintains the full field of view due to its panoramic generation capability.

Input Video Rotate 30° clockwise Rotate 45° clockwise

Figure 9. Camera control in dynamic scenes (videos embedded).
Our model enables free camera rotation within dynamic scenes to
capture elements beyond the initial viewpoint.

Table 1 and Figure 4, Argus significantly outperforms the363
adapted PanoDiffusion. While the adapted PanoDiffusion364
generates plausible individual 360◦ frames, it struggles with365
temporal consistency. Argus , in contrast, produces tempo-366
rally smooth results, and is able to understand the geometric367
layout in the input and correctly extrapolate beyond. Com-368
paring with video outpainting baselines, our method also369
achieves better visual quality and temporal coherency (see370
Table 2 and Figure 5). Video outpainting methods notably371
fail to preserve 360◦ panoramic properties, with generation372
quality deteriorating as the distance from the original view-373
point increases. In contrast, our model produces realistic374
panoramic videos throughout the entire field of view.375

Ablation Studies. To verify the effectiveness of view-based376
frame alignment, we train a model in which perspective377
videos are always centered within the equirectangular map.378
During evaluation, we adjust the GT 360◦ videos accordingly.379
As shown in Table 3 and Figure 6, the absence of viewpoint380
alignment leads to degraded performance. This supports our381
hypothesis in Section 3.3 that without viewpoint alignment,382
the diffusion model must implicitly learn camera motion and383
manage complex distortions, making the task significantly384
more challenging. Table 3 also showcases the importance385
of blended decoding. For reference, we include results from386
direct reconstruction using the VAE, which represents the387
performance upper bound.388

360◦ Video Generation In the Wild. Besides the curated389
360◦-perspective video pairs, we test our model on in-the-390
wild perspective videos featuring a diverse range of camera391
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Figure 10. Interpreting scene dynamics. We capture a car driving
scene with 360◦ camera and provide our model with a 60◦ FoV
input of fixed viewing direction (top). The car’s ground truth
trajectory (middle) and Argus’s predicted trajectory (bottom) shows
strong alignment, demonstrating its ability to accurately predict
object dynamics beyond the visible field of view.

motions and environments. We calibrate camera poses and 392
employ iterative sampling for extended video generation. 393
Our model is able to handle fixed orientation (Figure 7, 394
left), mild motion (Figure 7, right), rapid motion (Figure 1), 395
panning and vertical movement (project page), and even 396
synthetic inputs from a text-to-video model (project page). 397
Interpreting Scene Dynamics. As we have alluded to in 398
Figure 1, our model can understand the dynamics encoded in 399
the input video (e.g., the motion of the car) and extrapolate 400
beyond. To better evaluate whether the generated dynamics 401
are reasonable, we first capture a 360◦ video of a car driving 402
by. We then crop a 60° horizontal FoV and input it into 403
Argus. Finally, we apply tracking to both the generated 360◦ 404
video and the original footage. As shown in Figure 10, the 405
predicted trajectory closely aligns with the car’s ground-truth 406
motion. See our project page for more details. 407
Scene Generation Plausibility. Beyond line consistency, 408
we evaluate the geometric plausibility of our generated 360° 409
videos through 3D reconstruction. We unwrap panning per- 410
spective videos with yaw angles ranging from 45° to -45°, 411
then calibrate using MegaSaM [24]. Testing on 48 smart- 412
phone videos, we compare predicted rotation angles with 413
unwrapping angles and observe minimal average differences 414
of (∆roll,∆pitch,∆yaw) = (0.22◦, 0.30◦, 0.34◦), confirm- 415
ing our generated content achieves high geometric realism. 416
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Question: Determine whether the red car overlaps with the crosswalk 
in the second frame of a two-frame sequence extracted from a video.
(frames from the input perspective video)

Answer: In the second frame, the red car does not overlap with the 
crosswalk. It is positioned just beyond the crosswalk line.

Answer: To verify whether the red car overlaps with the crosswalk, you 
can adjust your viewing direction by shifting slightly to the right and 
lowering the camera angle. This perspective would give you a clearer 
line of sight along the crosswalk and the red car’s position relative to it.

Question:  How should I change the viewing direction to verify your 
judgment?

Answer: In the second frame after the 30-degree clockwise rotation, the red 
car does indeed overlap with the crosswalk. The front wheels and part of 
the car’s front section extend over the crosswalk lines, making it clear that 
the vehicle intrudes into the crosswalk area from this new perspective.

Question:  These are the images captured after a 30-degree clockwise 
rotation. Re-evaluate and determine if the red car overlaps with the 
crosswalk in the second frame.

(Argus generates the 360° scene, then unwraps to perspective)

Argus

Continue on the right column →

Figure 11. Interactive visual question answering. The first image sequence shows a red vehicle approaching a crosswalk, where the
vision-language model (GPT-4o) fails to answer the question correctly because it lacks full scene comprehension. With Argus, we can freely
rotate the camera, enabling better spatial understanding and accurately revealing the vehicle’s overlap with the crosswalk.

𝑡 = 0 𝑡 = 2.5𝑠 𝑡 = 5𝑠

Figure 12. Consistent object tracking. Object detection results
comparing input video (top) versus our unwrapped panorama (bot-
tom). While the truck is identified as a separate entity when exiting
and re-entering the input frame, it remains continuously visible in
our generated panorama, resulting in consistent tracking.

4.3. Applications417

This section showcases Argus’s potential applications, in-418
cluding video stabilization, camera viewpoint control, dy-419
namic environmental mapping, and interactive VQA.420
Video Stabilization. Argus shows promising application to421
video stabilization without modifications. Traditional video422
stabilization techniques require cropping, resulting in a re-423
duced field of view and visual information loss. In contrast,424
Argus enables video stabilization while maintaining a consis-425
tent field of view, as the generated panorama preserves scene426
information across frames. To achieve higher-resolution out-427
puts, we crop regions with a smaller field of view from 360◦428
videos and finetune on them. We test our approach using the429
video stabilization dataset from [25]. As shown in Figure 8,430
our method produces visually pleasing stabilization results431
while preserving a larger field of view than the reference432
results, effectively overcoming the limitations of cropping.433
Camera Viewpoint Control. Argus enables viewpoint con-434
trol in dynamic environments by unwrapping the generated435
360° scene into perspective views. This capability allows ex-436
ploration beyond the initial field of view (Figure 9) and facil-437

itates tracking of fast-moving objects (Figure 12), enhancing 438
immersion and supporting scene understanding tasks. 439

Dynamic Environmental Mapping. Argus enables realistic 440
object relighting using the generated 360° panorama videos 441
as dynamic environment maps. Figure 1 showcases metal- 442
lic spheres rendered with these videos, exhibiting accurate 443
reflections and lighting that validate practical applications. 444

Interactive VQA. Finally, we explore how the generated 445
panorama video can help visual question answering in dy- 446
namic environments. Although generated videos might not 447
provide a solid ground of facts, we show that by enabling 448
free rotation of the camera, Argus allows for comprehensive 449
spatial understanding by seeing the scene from multiple per- 450
spectives, based on the signals fully or partially available 451
within the input perspectives. This flexibility supports in- 452
teractive visual question answering, such as verifying if a 453
vehicle overlaps with a crosswalk (Figure 11). This capabil- 454
ity overcomes the limitation of fixed-viewpoint videos and 455
enhances scene comprehension and opens new possibilities 456
for video analysis applications. 457

5. Conclusion 458

We present Argus, a video-to-360◦ generation model that 459
creates full 360◦ panoramas from single-view perspective 460
videos. Argus is trained on a relatively untapped data source, 461
360◦ videos. To enhance 360◦ video generation, we in- 462
corporate techniques such as camera movement simulation, 463
blended decoding, and view-based frame alignment. Ar- 464
gus demonstrates strong performance across varied video 465
sources, effectively capturing dynamic scenes with seamless 466
spatial continuity. Our model offers promising potential for 467
a broad range of downstream applications, marking a step 468
forward in panoramic video generation. 469
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