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Abstract

LLM-based agents can greatly extend the abili-001
ties of LLMs and thus attract sharply increased002
studies. An ambitious vision – serving users003
by manipulating massive API-based tools – has004
been proposed and explored. However, we find005
a widely accepted evaluation mechanism for006
generic agents is still missing. This work aims007
to fill this gap. We decompose tool use capa-008
bility into seven aspects and form a thorough009
evaluation schema. In addition, we design and010
release an instruction dataset and a toolset –011
the two sides that the agents bridge between –012
following the principle of reflecting real-world013
challenges. Furthermore, we evaluate multiple014
generic agents. Our findings can inspire future015
research in improving LLM-based agents and016
rethink the philosophy of API design.017

1 Introduction018

Large Language Models (LLMs) exhibit remark-019

able capabilities across a variety of tasks, such as020

language, mathematics, coding, and etc (Bubeck021

et al., 2023). However, they still face some limi-022

tations, such as having frozen knowledge, being023

bad at some specialized tasks like calculation, and024

not being able to ground their generated solution025

outlines to the real world. Meanwhile, there are026

existing systems or models that can perform very027

well on domain-specific tasks. Therefore, a mecha-028

nism that links LLMs with the existing ecosystem029

of tools can bring the ability of LLM-based AI to030

another level.031

To stretch the ability of LLMs, a sharply in-032

creasing number of works have studied LLM-based033

agents 1 which can manipulate API-based tools. A034

very ambitious vision is to build a new AI ecosys-035

tem that connects LLMs with millions of APIs,036

assessed via an API platform, for task completion.037

1The term agent denotes LLM-based agent by default in
this work.

Figure 1: Agent connecting a user with massive APIs.

As shown in Fig. 1, the agent acts like a super- 038

APP. It eases user interaction with language rather 039

than GUI, manipulates massive API-based tools 040

and thus supports a mass of functionalities. This 041

requires the agent to have, on one hand, rich knowl- 042

edge to deal with different user needs, and on the 043

other hand developer’s skills for manipulating APIs 044

given documentation and understanding the results 045

of API execution. 046

Though the research community has made an 047

effort to build up generic LLM-based agents, we 048

found that a widely accepted evaluation mechanism 049

for LLM-based agents on tool use is still lacking. 050

This prevents researchers from making fair com- 051

parisons between different agent systems, as well 052

as gaining insights into the challenges of design- 053

ing agents. In this work, we aim to narrow this 054

gap by providing an evaluation mechanism, putting 055

special emphasis on discovering the limitations of 056

existing agents as well as the problems of current 057

API design philosophy. 058

It is very challenging to evaluate an agent be- 059

cause of the complex process of an agent perform- 060

ing user tasks. Once a user issues an instruction, 061

the agent first decomposes it into solvable subtasks 062

with available tools, depending on the complex- 063

ity of the task. Then, it may need to collect user 064

needs by interacting with the user and call multiple 065

APIs. Eventually, it responds to the user as per 066

the results of APIs. The problems this complex 067
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process brings to agent evaluation are: (1) the pos-068

sible involvement of users makes the evaluation069

very hard. (2) the agent may fail in any step of the070

sequential process, making the samples in the later071

stage rare. (3) executing a complex process may072

involve multiple aspects of capability. However,073

an end-to-end performance cannot help locate the074

weaknesses of agents and gain more insights. To075

solve these problems, we dissect the whole pro-076

cess into intermediate decision behaviors to get a077

thorough view of the involved capabilities. Accord-078

ing to this anatomy, we include 7 aspects of tool079

use capability in our evaluation schema. Each as-080

pect corresponds to one separate evaluation subtask081

without involving human users.082

Under the guide of our evaluation schema, we083

build a toolset and a dataset of instructions, follow-084

ing the principle of reflecting real-world challenges.085

We construct our toolset by addressing a series of086

concerns as demonstrated below rather than assem-087

bling some random tools. (1) To ensure reflection088

of real-world challenges, we collect tools from the089

real API platform. It matters to reflect the prop-090

erties of API design and documentation. (2) We091

intentionally control the diversity of tools regard-092

ing functionalities and API structures. According093

to our observation, a tool may have a single API, a094

list of APIs, or several collections of APIs. These095

organizational structures can indicate the variety096

of functionality and expose different difficulties in097

calling. (3) We find some APIs depend on other098

APIs 2. We include this kind of dependency rela-099

tionship in our toolset. (4) To enable high-level100

tasks applied to the toolset, we take measures to in-101

crease the coherence of tools regarding application102

scenarios. (5) We noticed that the affordability of103

toolset can be one potential problem for individual104

researchers. To avoid this problem, we devoted lots105

of engineering work to make the toolset usable at106

low or even no cost.107

On top of our toolset, we construct a set of user108

instructions that may use the contained tools to109

solve. We analyze how humans ask questions and110

summarize five types of instructions, varying in111

user intentions and complexities. These different112

types of instructions can be used to produce evalua-113

tion data required by our evaluation schema. Addi-114

tionally, we emphasize that the instructions should115

be in the real way of user expression. Only by116

2This is caused by the principle of API design – being
simple and general.

this can the evaluation data imply the mismatch be- 117

tween user expression and the form of information 118

required by APIs. 119

We make our dataset and toolset publically avail- 120

able at [[placeholder of GitHub repo]] 3. 121

2 Related Works 122

2.1 LLM-based Agents 123

LLM is the core component of an LLM-based 124

agent. In the LLM domain, ChatGPT (Ouyang 125

et al., 2022) is the most typical proprietary LLM 126

and represents the SOTA LLM while many open- 127

sourced LLMs like LLaMA (Touvron et al., 2023) 128

are also very competitive. These LLMs have shown 129

impressive language ability, rich knowledge, great 130

potential in reasoning, and unbelievable generality 131

in Question Answering tasks (Bubeck et al., 2023). 132

These characteristics of LLMs naturally inspire 133

researchers to use LLMs as the brain of agents, 134

which are designed to interact with complex envi- 135

ronments and are closer to general AI. 136

In the surging literature of LLM-based agents, 137

the agents have been explored to (1) manipulate ex- 138

ternal tools to solve more complex tasks (Nakano 139

et al., 2021; Song et al., 2023; Shen et al., 2023); 140

(2) play games (Zhu et al., 2023; Xu et al., 2023b); 141

(3) form a multi-agent system which can do big 142

projects collaboratively (Qian et al., 2023; Talebi- 143

rad and Nadiri, 2023); (4) and even be embedded 144

in robots to interact with the physical world (Wang 145

et al., 2023; Ichter et al., 2022). This work focuses 146

on the tool use ability of agents. 147

Some works have explored connecting LLMs 148

with a pre-specified set of tools. By enabling LLMs 149

to manipulate tools, the LLMs can access more 150

information than that frozen in the weights (Nakano 151

et al., 2021), overcome the shortcomings of LLMs 152

like calculation (Schick et al., 2023), and complete 153

more complex tasks than QA (Zhou et al., 2023; 154

Shen et al., 2023). As proof of concept, these works 155

demonstrate that equipping LLMs with tool use 156

ability is a promising direction. 157

We distinguish between close-world settings and 158

open-world settings. The close-world settings usu- 159

ally have a few special properties: (1) the number 160

of tools is usually limited; (2) the design of APIs 161

tends to be simplified to ease the calling by LLMs. 162

(3) considering the toolset will not be updated fre- 163

quently, optimizing LLMs for the toolset is feasible, 164

3Our dataset and toolset will be released upon acceptance.
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for example, by constructing toolset-specific train-165

ing data to fine-tune the LLMs.166

On the opposite, in the open-world set-167

tings (Liang et al., 2023; Patil et al., 2023), (1) the168

number of APIs API platform can be massive and169

may keep increasing; (2) the APIs are designed in170

an LLM-agnostic way and documented by follow-171

ing a unified schema required by the API platform.172

(3) the tools available in the API platform always173

keep changing. Our work is for evaluating agents174

designed for the second setting.175

Different forms of tools have been considered in176

the literature, such as APIs (Patil et al., 2023; Qin177

et al., 2023), websites (Deng et al., 2023; Yao et al.,178

2022) and mobile APPs (Zhang et al., 2023; Hong179

et al., 2023; Rawles et al., 2023). We divide these180

tools into two categories: API-based tools and UI-181

based APPs (e.g. websites, desktop software and182

mobile APPs), as per the different challenges they183

pose to the LLMs. This work aims to serve the184

investigation of agents on manipulating API-based185

tools.186

An agent system basically consists of an LLM187

and an inference pipeline. The LLM is injected188

with the ability of manipulating tools by fine-189

tuning (Tang et al., 2023; Qin et al., 2023; Patil190

et al., 2023) or in-context learning (Shen et al.,191

2023; Xu et al., 2023a). In addition, considering192

the complexity of tool use tasks, the inference pro-193

cess is usually enhanced with more sophisticated194

reasoning (Yao et al., 2023), searching method of195

solution path (Qin et al., 2023), and etc. To fa-196

cilitate the creation of agent systems, a few open-197

sourced frameworks have been released (Li et al.,198

2023a; Qin et al., 2023).199

2.2 Evaluation of LLM-based Agents200

Many early works evaluated their agent systems201

with their own evaluation suites, making it hard to202

compare different agents. In addition, these works203

usually only report the end-to-end performance,204

which is inadequate for gaining insight into the205

tool use ability. To address these problems, more206

and more effort has been put into benchmarking207

the existing agents.208

T-Eval (Chen et al., 2023) is close to our work.209

they designed an inference process composed of210

several steps and compared the overall and step-211

wise performance of several LLMs as the back-212

bones. Our goal is to design a universal evaluation213

mechanism which is not coupled with the design214

of agents.215

AgentBoard (Ma et al., 2024) created one evalu- 216

ation toolkit to test the generality of agents across 217

different types of environments, such as Embodied 218

environments, game environments, and tool envi- 219

ronments. It is not dedicated to in-depth evaluation 220

of tool use ability. 221

3 Methodology 222

We make our evaluation schema first to make clear 223

our targets. Then, we take measures to construct 224

a toolset inheriting real-world challenges and sup- 225

porting tasks with varying complexities. Extra en- 226

gineering work makes its usage affordable. Follow- 227

ing this, we design five types of instruction data and 228

align them to the evaluation schema. Finally, we 229

determine the metrics of each evaluation sub-task. 230

3.1 Evaluation Schema 231

We go through the process of an agent performing 232

a task and point out the capabilities involved in dif- 233

ferent stages. As shown in Fig. 2, the process starts 234

with a user sending an instruction. Depending on 235

its complexity 4, the agent may need to make a 236

solution outline via planning. 237

• Planning, i.e. decomposing a complex task into 238

several simple subtasks, each of which is solv- 239

able with a single API. Considering the varying 240

complexity of user instructions as well as the 241

mismatch between user needs and the design of 242

APIs, planning would be very commonly used 243

by agents. 244

When dealing with a simple task, the agent first 245

needs to decide whether to use external tools. If 246

yes, it then retrieves a few candidates of potentially 247

useful tools and selects one of them according to 248

the documentation of tools. Otherwise, it replies to 249

the user directly. 250

• Deciding whether to use tools. Failing to trigger 251

tool use when needed makes tasks not solved, 252

while misusing tools can hurt LLM’s perfor- 253

mance in ordinary QA tasks. 254

• Selecting useful tools. If tools are required, the 255

agent should be able to figure out the useful ones. 256

• Responding with intrinsic knowledge. There 257

is a risk that fine-tuning an LLM with tool-use 258

data makes it lose its original ability. Therefore, 259

4We measure the complexity of a certain task with the
number of tools required to complete this task.
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Figure 2: The process of an agent performing a task. Seven decision behaviors can potentially be involved. We
examine the performance of an agent in each of them to gain a thorough understanding of its tool-use capability.

we also check whether LLMs still retain their260

intrinsic knowledge.261

To call a certain tool, the agent needs to parse re-262

quired parameter information from the context (i.e.263

conversation). If required information is not pro-264

vided, the agent should ask the user to make clarifi-265

cations.266

• Requesting missing parameter information.267

It’s common for users to initiate a dialogue with268

partial information. In this case, the agent should269

have the consciousness of requesting clarification270

rather than hallucinating.271

• Formulating tool calls. When sufficient infor-272

mation is provided, the agent should be able to273

parse it and convert it to a valid format as per274

the specification of APIs. Here, one challenge275

to overcome is the mismatch between the user276

expression and the required format of parameters.277

Sometimes, commonsense reasoning is required.278

Eventually, after receiving the execution results of279

tools, the agent synthesizes a final response to the280

user.281

• Responding according to the tool returns. The282

variety of tools demands the agent to have great283

generality so that it can interpret the results of284

APIs, which are usually in JSON instead of natu-285

ral language, and eventually generate a concise286

answer.287

In summary, our evaluation schema includes288

seven types of capabilities potentially involved in289

the process of tool use.290

Figure 3: The process of building our toolset. The left
side shows the steps while the right side illustrates their
corresponding details.

3.2 Toolset 291

Fig. 3 illustrates the process of developing our 292

toolset, as detailed below. 293

Determining application scenarios. To achieve 294

high coherence of tools, we start with selecting a 295

few application scenarios (e.g. travel, image pro- 296

cessing) of agents. Within each scenario, the tools 297

have a relatively high chance of being combined 298

to solve user’s needs. In addition, having different 299

scenarios helps ensure the diversity of tools. 300

Designing classes of tools. For each scenario, 301

we think about the potentially useful tools. Then, 302

instead of collecting the tools directly, we design 303

the classes of tools to provide an umbrella, under 304

which the tools from different sources and imple- 305

mented by different people can be integrated. Here, 306

each tool class is defined with a set of main func- 307
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tionalities.308

Collecting real-world tools with documentation.309

For each tool class, we look for its real-world imple-310

mentation from a well-known API platform Rap-311

idAPI 5, where massive APIs are deployed and312

documented with a unified schema. This is to make313

sure the design and documentation of APIs can314

reflect real-world problems.315

In RapidAPI, most tools do not only have a sin-316

gle API (very typical in existing works) but mul-317

tiple ones organized with a list or multiple collec-318

tions. These multi-API tools may not only make the319

documentation of different APIs entangled but also320

comprise dependencies between APIs. For exam-321

ple, an API for checking flights takes airport codes322

as input, while checking these codes given airport323

names need to use another API (see Appendix A324

for a detailed example). This raises the difficulty325

level of manipulating APIs for agents. Therefore,326

we intentionally include tools with different API327

structures.328

Complementing tools. The dependencies be-329

tween APIs occur not only within a single tool330

but also across the boundary of tools. This under-331

lying reason is that the philosophy of designing332

APIs is to make them simple and general utilities333

of many different APPs. However, for a toolset, a334

certain API’s functionality will not be usable unless335

its dependent APIs are also included. To avoid this336

problem, we analyze the dependent APIs of already337

collected APIs and collect them in our toolset.338

Additionally, we add a few basic and general-339

purpose tools (e.g. calculator, search engine, code340

interpreter).341

Development. We first wrap remote tool services342

deployed on RapidAPI and develop a few local343

tools, forming an initial toolset. The tool services344

deployed on API platforms are usually not free.345

Even though we have tried to select the tool with346

the most free quota when collecting tools, a portion347

of them provide very limited free requests. Fre-348

quent access to the tool services can cause high349

subscription fees – an obstacle for research. To350

address these problems, we take the following mea-351

sures: (1) developing free alternatives to some352

tools while reusing their documentation and API353

designs. (2) adding a caching mechanism to avoid354

repeated requests. (3) check the validity of API355

calls before sending them to the remote services.356

5https://rapidapi.com/hub

3.3 Instruction Data 357

We design five types of instructions that can be 358

used to evaluate all aspects of tool use capability in 359

our evaluation schema. 360

Types of Instructions. Our first three types are 361

low-level instructions, which can be solved mainly 362

with the functionality of a certain API. We con- 363

struct these instructions for each API in turn. 364

Type-I: Instructions that do not need tools to solve 365

but may mislead agents to call tools. For ex- 366

ample, for the question "What’s the weather 367

usually like in London", one agent may call 368

real-time weather API if they cannot understand 369

the nuance caused by "usually". This type of 370

instruction can be used to test two abilities: de- 371

ciding whether to use tool, and Responding with 372

intrinsic knowledge. 373

Type-II: Instructions that need to use tools and 374

provide sufficient information for formulating 375

function calls. With this type of instruction, 376

we can check whether an agent can parse or 377

infer parameter information correctly from user 378

questions. Also, because this type of instruction 379

is relatively easy, an agent has a higher chance 380

of getting a final assistant response (rather than 381

being interrupted by invalid function calls). We 382

thus can check whether an agent can make a 383

proper response according to the return of a 384

tool. 385

Type-III: Instructions that need to use tools but 386

provide insufficient information for filling pa- 387

rameters. For example, "Can you check the 388

weather for me?". The agents would need to ask 389

the user for his location. This type of instruc- 390

tion is very common and thus very important 391

for evaluating agents. It can be used to check 392

whether an agent can make multi-round inter- 393

actions with the user consciously to solve the 394

user’s need. 395

From the Type-II and Type-III instructions, we fil- 396

ter out the data produced for APIs having depen- 397

dencies. Then, we collect the Type-II ones from 398

them to form Type-IV instructions. 399

Type-IV: instructions that are not complex but still 400

need to use multiple APIs to solve because of 401

the dependencies of APIs. 402

Lastly, we create high-level instructions issuing 403

complex tasks: 404

5
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Table 1: Eight evaluation tasks and their used instruction data.

Type-I Type-II Type-III Type-IV Type-V
Task-1: Deciding whether to use tools ✓ ✓
Task-2: Tool selection ✓
Task-3: Requesting user to clarify missing info ✓
Task-4: Filling parameter values ✓
Task-5: Responding with intrinsic knowledge ✓
Task-6: Responding according to tool returns ✓
Task-7: Planning for resolving dependency ✓
Task-8: Planning for high-level task ✓

Type-V: instructions that require to be decom-405

posed into solvable sub-tasks by APIs. For406

example, "Plan a seven-day trip in Dubai for407

me". To complete this task, an agent would,408

for example, check the weather and search for409

interesting spots to visit.410

Generating Instructions. We generate initial in-411

struction data by prompting GPT4. Apart from the412

special requirements for each instruction type, we413

include the following general rules: (1) the instruc-414

tions should be asked in the real way of human415

speaking. (2) human users do not mention API in416

their questions.417

For each type of instruction, we use one generator418

to generate instructions first and then use one dis-419

criminator to filter out invalid ones. Additionally,420

human annotators double-check the instructions to421

ensure high quality and avoid ethical issues 6.422

Aligning instructions to evaluation schema. In423

Table 1, we enumerate the evaluation tasks and424

the corresponding types of instructions to use. In425

tasks-1,3,4,5, the agent is given an instruction and426

its corresponding API specification. In task-2, the427

agent is given an instruction, a correct API along428

with a few perturbing APIs. In task-6, the agent is429

given a conversation history including a user mes-430

sage, an assistant message containing a function431

call and a tool result. In task-7 and 8, the agent is432

given an instruction and multiple APIs, expecting433

tool use response and chat response respectively.434

3.4 Assessment & Metrics435

We assess the performance of an agent for each436

data instance as below:437

• Task-1: whether correct decision has been made438

for the two types of instruction. Overall precision,439

recall and macro-F1 score can be computed.440

6Two of our authors participate in data annotation.

• Task-2: whether the right tool is chosen from the 441

given candidates. 442

• Task-3: whether the response is to request clarifi- 443

cation of missing information. 444

• Task-4: percentage of correct function call. 445

• Task-5: whether the response is related to the 446

question. Answer quality is our concern. 447

• Task-6: whether the response is based on the tool 448

results and whether desired information in the 449

results is interpreted precisely. 450

• Task-7: the chain of function calls is compared 451

with a ground-truth order of actions. The rate of 452

progress is used as metrics. 453

• Task-8: whether the solution outline is sound – 454

the coverage of provided APIs and whether the 455

functionality of each API is correctly understood. 456

The assessing scripts, implemented by mixing rules 457

and GPT-4 usage, are included in our evaluation 458

mechanism too. 459

4 Experiment 460

In this section, we first demonstrate more details 461

of our dataset and toolset. Then, we apply our eval- 462

uation mechanism to examine several well-known 463

LLMs equipped with generic tool use ability, in- 464

cluding ChatGPT series – GPT-3.5-turbo and GPT- 465

4-8k (abbreviated as GPT-3.5 and GPT-4 below), 466

and Qwen1.5 series with sizes 7b, 14b and 72b 467

(abbreviated as Qwen-7b, Qwen-14b and Qwen- 468

72b) (Bai et al., 2023). The new findings can show 469

the value of our evaluation mechanism. 470

4.1 Dataset & Toolset 471

Dataset. The numbers of different types of in- 472

structions are shown in Tab. 2, while the size of 473

data for each evaluation task is shown in Tab. 3. 474
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Table 2: Number of each type of instruction.

Type I II III IV V
Num 372 326 195 141 50

Table 3: Data number of each evaluation task.

Task 1 2 3 4 5 6 7 8
Num 698 326 195 326 372 242 141 50

Figure 4: Comparing the performance of five generic
agents in eight evaluation tasks. Metrics values can be
found in Tab. 5.

Toolset. Our toolset consists of 66 APIs orga-475

nized into 27 tools. 83% of these APIs are im-476

plemented based on API services from RapidAPI,477

while the other 17% are developed from scratch.478

We recognize 28 pairs of (API, dependent APIs).479

In addition, we combine 9 groups of coherent APIs480

for supporting high-level tasks. See Appendix B481

for concrete tool classes, and functionalities.482

4.2 Evaluation of Generic LLM-based Agents483

In Fig. 4, we compare the performance of agents in484

8 evaluation tasks.485

Task-1: On the decision of tool utilization. (1)486

We found Qwen-7b and Qwen-14b have the prob-487

lem of misusing tools – tending to use tools once488

given. This leads to relatively low precision in their489

tool-use decision. (2) On the contrary, GPT-3.5 is490

conservative in tool use – tending not to use tools491

even needed – resulting in a low recall. (3) GPT-4492

and Qwen-72b can make proper decisions, above493

Figure 5: Performance of agents in tool-use decision:
precision, recall and macro-F1.

0.96 in macro-F1 scores. 494

Task-2: On tool selection. To check whether 495

the agents can figure out the right API to use, we 496

provide the agents with one correct API along with 497

four perturbing ones 7. 498

GPT-3.5 and Qwen-7b perform the worst in tool 499

selection, however, for different reasons. Among 500

the mistakes made by GPT-3.5, 77% is because of 501

its conservativeness again – did not call any API, 502

while only 23% are incorrect selections. Qwen-7b 503

always selects the wrong tools, showing its weak- 504

ness in understanding API specifications. 505

Compared with GPT-4, the Qwen-14b and Qwen- 506

72b achieved accuracies less than 83%, having a 507

big gap from GPT-4. 508

Task-3: On the awareness of requesting clarifi- 509

cation. It is very often that one user initiates a 510

dialogue with partial information. This requires 511

the agent to figure out the missing parameter in- 512

formation for calling a certain tool and ask the 513

user to clarify. However, we found that the three 514

open-sourced LLMs – Qwen series – are bad at 515

this, worse than both GPT-3.5 and GPT-4. GPT-4 516

performs almost perfectly while GPT-3.5 still has 517

big space for improvement. 518

In this case, some typical mistakes include: (1) 519

hallucinating parameter values (no evidence can 520

be found from the user’s questions). (2) using a 521

placeholder-like value (e.g. /path/to/image) instead 522

of a real value. (3) imprecise parameter values (e.g. 523

a location parameter requires a city name but is 524

given a country name) are used, leading to excep- 525

tions in executing APIs. (4) required parameters 526

are missing in the function calls. 527

7We select the perturbing APIs which have top-4 highest
similarities with the target API regarding sentence embeddings
encoded with gte-base-en-v1.5 (Li et al., 2023b).
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Task-4: On the correctness of function calls.528

When sufficient information is contained by the529

user’s questions, most LLMs including Qwen-14b530

have over 94% correct function calls, except Qwen-531

7b achieving around 80%. These numbers are532

pretty decent. We reckon the reason is most ex-533

isting works focus on this setting while neglecting534

the others.535

Task-5: On the utilization of intrinsic knowl-536

edge. We empirically notice that, in some exist-537

ing works (e.g. Qin et al., 2023), fine-tuning LLMs538

with tool use data makes the LLMs forget their orig-539

inal capabilities in ordinary Question Answering540

(QA) tasks. Fortunately, this did not happen in the541

generic agents we evaluated. Intuitively, it is not542

hard to achieve since QA is a more basic task for543

generic LLMs. Even though, we still consider keep-544

ing this aspect in our evaluation schema to remind545

the phenomenon of over-fitting.546

Task-6: On interpreting tool results. Overall,547

these agents are good at interpreting tool results.548

However, we still noticed a few typical errors by549

them. In some cases, the LLMs fail to locate the de-550

sired information, to some extent because of poor551

readability of results. In addition, we find LLMs552

have shortcomings in a kind of copy&paste capa-553

bility of target information. This makes some infor-554

mation that is sensitive to character-level precision555

(e.g. URLs, longitude and latitude, long decimal556

values, etc.) not useful anymore. Furthermore, we557

find some APIs, e.g. searching APIs, return very558

long results exceeding the max context length of559

LLMs.560

Task-7&8: On planning capability. We exam-561

ine the planning ability of agents with two folds of562

experiments. In the first fold of experiments, we563

examine whether an agent can complete a low-level564

task by manipulating APIs with dependencies. All565

the evaluated agents have poor performance – even566

GPT-4 has a success rate lower than 60%. We find567

the Qwen models, even Qwen-72b, rarely have the568

sense of starting with more basic APIs. It is very569

challenging for the agents to manipulate APIs with570

dependencies.571

In the second fold of experiments, we check572

whether an agent can outline a solid plan involving573

tool use for a high-level task. We find these LLMs’574

performance in decomposing a high-level task is575

always decent. Though both settings require the576

planning capability of LLMs, they impose very dif-577

ferent challenges. For LLM-based agents, talking 578

is much easier than doing. 579

Next, we discuss a bit more from other angles. 580

On scaling law. Though not a new finding any- 581

more, the scaling law still applies in API manipu- 582

lation scenarios. The performance of Qwen series 583

reveals larger LLMs have better performance re- 584

garding almost every aspect of tool use capability. 585

On API design and quality of documentation. 586

The effect of API design and documentation quality 587

deserves more attention. A few concrete examples 588

are: (1) A tool with multiple APIs may introduce 589

its functionalities in its tool-level description while 590

giving very unclear API-level descriptions. (2) The 591

execution results of APIs have poor readability or 592

are too verbose. (3) The APIs with dependencies 593

seem too complex for the LLMs to use. 594

Despite getting some insights, we believe more 595

research on the API side needs to be done. One 596

question already inspired by our observations is: in 597

the era of LLMs, should we design new standards 598

for API design and documentation? It is a complex 599

problem and deserves dedicated research. We treat 600

it as future work. 601

5 Conclusion 602

The LLM community is driving towards an ambi- 603

tious vision: building a new AI ecosystem in which 604

LLM-based agents serve users by manipulating 605

millions of APIs. However, an evaluation mech- 606

anism for such agents is still missing, preventing 607

studies from proceeding in this area. In this work, 608

we narrow this gap by proposing a new evaluation 609

mechanism for generic LLM-based agents. We de- 610

signed a thorough evaluation mechanism schema 611

aiming to examine seven different aspects of tool 612

use capability. Also, we release one dataset and 613

one toolset, both designed to reflect real-world chal- 614

lenges. These resources can support the studies 615

on improving LLM-based agents as well as a new 616

philosophy of API design. We evaluated five influ- 617

ential LLMs and shared findings and insights into 618

their tool use capability. The found weaknesses of 619

LLMs can indicate the future directions to go. 620

6 Limitations 621

When designing evaluation tasks, we did not in- 622

clude data involving multi-turn interactions with 623

users. Can the agents still formulate correct func- 624

tion calls by parsing information from multi-turn 625

8



dialogue? What the performance will be like if626

the agents need to continuously request clarifica-627

tion from the users? These problems cannot be628

answered by our evaluation mechanism. Our eval-629

uation mechanism does not provide an end-to-end630

performance or an overall performance score.631

In addition, in the landscape of generic agent632

research, API retriever is critical. We assume the633

existence of a good third-party API retriever. More634

studies dedicated to API retrievers are suggested to635

be done so that we can be closer to estimating the636

overall performance of LLM-based agent systems.637

7 Disclaimer638

The toolset released by us is only for research pur-639

poses. It is not for the usage of solving real-life640

problems (e.g. checking flight prices).641
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A An Example Illustrating Dependency846

between APIs847

Here, we show the specifications of three848

APIs from RapidAPI - skyscanner808 in List-849

ing 1,2 and 3. Only necessary information850

for showing the dependencies between APIs851

is kept in these doc examples. To use API852

flights_search_one_way, we need to first check853

API flights_auto_complete for the IDs of the854

origin and destination. Afterwards, because855

flights_search_one_way may not be able to re-856

turn all the results at one time. More requests857

to API flights_search_incomplete need to be858

done to finalize fetching all flight data.859

B Details of Toolset860

The design of application scenarios, tool classes861

and their functionalities can be found in Tab. 4.862

C Experimental settings863

We access GPT-4-8K and GPT-3.5-turobo via API864

and access Qwen1.5 series LLMs via local running.865

We only ran the experiments of evaluating866

generic agents once. The metrics values are av-867

eraged within the evaluation data for each task.868

D Performance of Agents869

Tab. 5 contains the performance of two GPT ver-870

sions and three Qwen1.5 versions in 8 evaluation871

tasks.872

8https://rapidapi.com/datastore/api/
skyscanner80
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Listing 1: Documentation of flights_auto_complete API

1 {
2 "name": "flights_auto_complete",
3 "description": "This endpoint is resposible for providing a list of

airports for the location",
4 "parameters": {
5 "query": {
6 "type": "STRING",
7 "description": "Name of the location where the Airport is

situated. Ex: New York"
8 }
9 }

10 }

Listing 2: Documentation of flights_search_one_way API

1 {
2 "name": "flights_search_one_way",
3 "description": "This API helps to get the list of one -way flights.

Note:- In the event that the status is incomplete (data ->context
->status=incomplete), you must utilize the api/v1/flights/search
-incomplete endpoint to retrieve the complete data until it 's
complete (data ->context ->status=complete).",

4 "parameters": {
5 "fromId": {
6 "type": "STRING",
7 "description": "`fromId ` can be retrieved from `

flights_auto_complete ` (data ->id) Ex:
eyJzIjoiTllDQSIsImUiOiIyNzUzNzU0MiIsImgiOiIyNzUzNzU0MiJ9 (
New York)"

8 },
9 "toId": {

10 "type": "STRING",
11 "description": "`toId ` can be retrieved from `

flights_auto_complete ` (data ->id) Ex: eyJzIjoiTE9
ORCIsImUiOiIyNzU0NDAwOCIsImgiOiIyNzU0NDAwOCJ9 (London)"

12 },
13 "departDate": {
14 "type": "Date",
15 "description": "Format: YYYY -MM-DD. Ex: 2024-06-01"
16 }
17 }
18 }
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Listing 3: Documentation of flights_search_incomplete API

1 {
2 "name": "flights_search_incomplete",
3 "description": "Obtain complete data for the endpoint of

flights_search_one_way, flights_search_roundtrip. Until the item
's status is complete (data ->context ->status=complete), you must
call the API multiple times",

4 "parameters": {
5 "sessionId": {
6 "type": "STRING",
7 "description": "sessionId can be retrieved from

flights_search_one_way or flights_search_roundtrip (data ->
context ->sessionId)"

8 }
9 }

10 }

Table 4: Design of scenarios, tool classes, and API functionalities.

Scenario Tool Class Functionalities

daily life

weather realtime weather, weather forecast, astronomy info
news news search, headlines
calendar public holidays, check month calendar
recipe search recipe

image processing

object detection recognize objects in image
ocr extract text in image
image translation translate text in image
image file processing compression, format conversion, resize
removing background remove background
web capture take image screenshot

travel

flight search one-way flights, search round-way flights,
check flight details and prices

accommodation search hotels, check hotel details, prices, and reviews
tourist attraction search attractions, check details, photos and reviews

of attractions
currency exchange rate
airport check airport info
check codes language codes, country codes,
geocoding convert between address and coordinates

basic & general-purpose

search web search, image search, video search, news search
python interpreter python interpreter
calculator math calculation
translation translation
ip lookup check ip address
access user info user profile, location
agent equipments get current time
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Table 5: Performance of generic agents on eight evaluation tasks.

Tasks \Agents GPT-4 GPT-3.5 Qwen-7b Qwen-14b Qwen-72b

Task 1
Precision 0.98 0.96 0.53 0.75 0.96
Recall 0.99 0.75 0.82 0.97 0.97
F1-score 0.98 0.84 0.65 0.85 0.96

Task 2 Accuracy 0.97 0.66 0.71 0.82 0.83
Task 3 Percentage 0.99 0.74 0.04 0.45 0.66
Task 4 Precision 0.98 0.95 0.81 0.95 0.97
Task 5 Relatedness 0.98 0.93 0.88 0.93 0.96
Task 6 Passing rate 0.93 0.85 0.85 0.81 0.85
Task 7 Progress 0.57 0.35 0.00 0.00 0.26
Task 8 Passing rate 0.99 0.98 0.94 0.95 0.98
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