

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PROOF: PERTURBATION-ROBUST NOISE FINETUNE VIA OPTIMAL TRANSPORT INFORMATION BOTTLE- NECK FOR HIGHLY-CORRELATED ASSET GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The diffusion model has provided a strong tool for implementing text-to-image (T2I) and image-to-image (I2I) generation. Recently, topology and texture control have been popular explorations. Explicit methods consider high-fidelity controllable editing based on external signals or diffusion feature manipulations. The implicit method naively conducts noise interpolation in manifold space. However, they suffer from low robustness of topology and texture under noise perturbations. In this paper, we first propose a plug-and-play **P**erturbation-**R**Obust **n**Oise **F**inetune (**PROOF**) module employed by Stable Diffusion to realize a trade-off between content preservation and controllable diversity for highly correlated asset generation. Information bottleneck (IB) and optimal transport (OT) are capable of producing high-fidelity image variations considering topology and texture alignments, respectively. We derive the closed-form solution of the optimal interpolation weight based on optimal-transported information bottleneck (OTIB), and design the corresponding architecture to fine-tune seed noise or inverse noise with around only 14K trainable parameters and 10 minutes of training. Comprehensive experiments and ablation studies demonstrate that PROOF provides a powerful unified latent manipulation module to efficiently fine-tune the 2D/3D assets with text or image guidance, based on multiple base model architectures.

1 INTRODUCTION

Controllable T2I and I2I are challenging and meaningful tasks for asset creation. Previous diffusion control models try to implement structure or appearance-aligned generation explicitly, mainly by feature-level modulation Lin et al. (2024); Mo et al. (2024); Epstein et al. (2023), adapter injection Mou et al. (2024); Zhao et al. (2023); Ye et al. (2023), and model fine-tuning based on external structure or appearance signals Zhang et al. (2023a); Gal et al. (2023); Ruiz et al. (2023; 2024). Explicit methods are dependent on cumbersome user control guidance, which hinders topological diversity and appearance robustness as well. On the contrary, we pay attention to the implicit noise-level manipulation on the inherent latent space, where we conduct a trade-off of diversity, structure, and appearance simultaneously.

Recently, test-time noise searching Ma et al. (2025); Zhou et al. (2025) has proved that golden noise plays an important role in diffusion performance for semantic alignment. Other latent manipulation methods, e.g., UnCLIP Ramesh et al. (2022), Kwon et al. (2023), also focus on generating semantic-aligned variants. These works have a fundamental task distinction compared with PROOF. We assume the noise latent has been semantic-aligned, and conduct content-aligned variants with robust structures and textures preservation. We briefly introduce our motivation as follows.

Gaussian noise inherently encodes contextual information. It is supposed to adaptively inject diverse information into the source content while adversarially preserving the original content distribution. This fidelity-diversity trade-off needs to learn a pixel-wise minimal sufficient representation of the noise latent. Inspired by information bottleneck Tishby & Zaslavsky (2015); Schulz et al. (2020), we compress the content latent for topology alignment in an implicit view of the mutual information.

Furthermore, spatial attention is important to improve the contextual perception and appearance robustness. Noise features are distributed randomly without obviously recognizable patterns. Therefore, it is supposed to distribute attention in a coordinated manner to eliminate excessive local atten-

Figure 1: Content-diversity tradeoff: given a noise latent of a content, naive noise blending with interpolation weight λ generates uncontrollable topology and appearance. PROOF finetunes noise latent where adaptively injecting the perturbation based on the optimal transported information bottleneck. The structure and appearance statistics from the content are preserved well, with concurrently controllable diversity. **Res** means the optimized area of PROOF compared with naive blending.

However, traditional QKV attention uses Softmax, which lacks this global attention distribution ability. Inspired by Sinkhorn optimal transport Cuturi (2013); Kim et al. (2024), we apply the doubly stochastic activation constraint to better model the global feature relationships in noise space. This optimally transported attention exhibits significant appearance fidelity. More remarkably, we derive the closed-form solution of the Sinkhorn-regularized IB interpolation weight, which is the theoretical foundation of the PROOF architecture. More details are represented in Sec. 4.3.

As shown in Figure 1, the mainstream implicit approach, i.e., naive noise interpolation with a per-pixel constant weight λ for original noise and $(1-\lambda)$ for another noise perturbation, fails to preserve the structure and appearance statistics of the original content. In our task definition, the assets for content and naive blending are not highly correlated due to substantial inconsistency of structure and appearance. In contrast, our PROOF adaptively blends pixel-wise perturbations via activation optimization in noise space, based on the proposed Optimal-Transported Information Bottleneck module, thereby facilitating precise asset variations. Our paper presents several significant contributions, mainly including three folds:

1. We first explore the structure and appearance-aligned 2D/3D asset generation by means of perturbation-robust noise representation learning rather than other explicit control manners, such as attention matrices, intermediate activations, or external control signals. Remarkably, test-time *PROOF* demands merely brief training while maintaining full disentanglement from the diffusion model’s forward and denoising process.
2. We present an efficient and effective Optimal-Transported Information Bottleneck module that provides a trade-off between content preservation and mode variety. IB prevents the learning from mode collapse, and OT promotes higher faithfulness of textures. Moreover, we derive the closed-form solution of the Sinkhorn-regularized IB interpolation weight. This mathematical derivation is aligned with the information flow of OTIB, which provides a solid theoretical foundation for OTIB.
3. Our proposed PROOF is capable of being adaptive for multiple asset creation tasks, base architectures, and model checkpoints. Compared with state-of-the-art structure and appearance-aligned approaches, comprehensive experimental analyses demonstrate that PROOF is the first perturbation-robust plug-and-play implicit controller for pre-trained T2I models. Furthermore, PROOF is superior to other diversity-inducing methods, such as entropy regularization and contrastive objective.

2 RELATED WORK

We briefly introduce diffusion control methods, diffusion seed manipulation, and information compression works in this section.

Diffusion control. On one hand, pre-trained T2I foundational models Rombach et al. (2022) are potentially able to generate diverse images taking advantage of the random noise initialization. On the other hand, uncertainty from the Gaussian noises makes it hard to synthesize credible images with a certain topology or texture. To address this matter, previous diffusion control methods compose different adapters independently Mou et al. (2024); Zhao et al. (2023), or conduct adaptively feature modulations Zhang et al. (2023a); Lin et al. (2024), and model finetune Gal et al. (2023); Ruiz et al. (2023) to facilitate alignment of internal diffusion knowledge and external control signals.

108 *Topology alignment* SD-based methods have demonstrated strong generalization capabilities and
 109 composability while maintaining high creation quality Li et al. (2023); Zhao et al. (2023); Yang
 110 et al. (2023); Avrahami et al. (2023b); Zheng et al. (2023); Wang et al. (2024); Zhou et al. (2024).
 111 External control signals include Canny edge, depth map, human pose, line drawing, HED edge
 112 drawing, normal map, segmentation mask (used in Zhang et al. (2023a); Zhao et al. (2023)), as
 113 well as 3d mesh, point cloud, sketch (used in Lin et al. (2024)), etc. FreeControl Mo et al. (2024)
 114 manipulates the specific-class linear semantic subspace to employ structural guidance. Semantic
 115 signal usually possesses higher freedom than low-level vision signals. Note that our PROOF does
 116 not depend on any external structure control signal.

117 *Texture alignment* methods try to realize I2I by image prior embedding or few-shot weight adap-
 118 tation. General I2I methods extract global semantic embedding from the referenced images Zhao
 119 et al. (2023); Ye et al. (2023); Mou et al. (2024). Personalized model concerning specific concept
 120 needs pretrained T2I diffusion finetuning based on a small set of image samples Ruiz et al. (2023);
 121 Gal et al. (2023); Avrahami et al. (2023a); Po et al. (2024); Ruiz et al. (2024). FreeControl Mo
 122 et al. (2024) uses intermediate activations as the appearance representation, similar to DSG Epstein
 123 et al. (2023). However, our PROOF achieves superior appearance alignment performance without
 124 personalized concept data or model fine-tuning.

125 **Diffusion seed.** Previous diffusion control methods only treat Gaussian noise as a flexible random
 126 generation seed Zhang et al. (2023a); Zhao et al. (2023); Ye et al. (2023); Zheng et al. (2023); Wang
 127 et al. (2024); Zhou et al. (2024); Ruiz et al. (2023); Gal et al. (2023); Avrahami et al. (2023a); Po et al.
 128 (2024); Ruiz et al. (2024). They constrain the pre-trained diffusion model using external structure or
 129 textural data. Nevertheless, some diffusion inversion works Yang et al. (2025); Song et al. (2020);
 130 Mokady et al. (2023) show high-fidelity image reconstruction and editing. Seed searching Ma et al.
 131 (2025) is beyond the denoising steps for high-quality image generation. These methods establish
 132 the critical role of noise representation, which is demonstrated by Figure 1 as well. Therefore, we
 133 explore the implicit structure and appearance alignment based on noise in this paper.

134 **Information bottleneck.** Information bottleneck (IB) Tishby & Zaslavsky (2015) plays a repre-
 135 sentation trade-off between information compression and information preservation for neural learn-
 136 ing tasks. Furthermore, VIB Alemi et al. (2017) leverages variational inference to facilitate the IB
 137 neural compression. IBA Schulz et al. (2020); Gao et al. (2021) polishes the attribution information
 138 based on KL divergence Csiszár (1975) to effectively disentangle relative and irrelative information
 concerning the classification task. We will introduce our information bottleneck in Section 3, 4.

139 3 PRELIMINARIES

140 3.1 PROBLEM SETTING

141 Given source noise N_{Orig} and injected noise N_{Div} are from a consistent distribution $\mathcal{N}(\mu_G, \sigma_G^2)$,
 142 where μ_G and σ_G represent the means and standard deviations. Then, the modulated manifold of
 143 2D/3D asset can be formulated as follows Schulz et al. (2020):

$$144 N_{Out} = \lambda N_{Orig} + (1 - \lambda) N_{Div}, \quad (1)$$

145 where λ is the blending weight as the hyperparameter or learned prior, N_{Div} is the noise pertur-
 146 bation. Given N_{Out} as z_t , the latent diffusion model Rombach et al. (2022) conducts a denoising
 147 process on the compressed latent from the Gaussian noise distribution. The denoised manifold of
 148 the pre-trained diffusion model is calculated as follows:

$$149 \tilde{z}_0 = \frac{z_t}{\sqrt{\bar{\alpha}_t}} - \frac{\sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(z_t, c, t)}{\sqrt{\bar{\alpha}_t}}. \quad (2)$$

150 where ϵ_θ is the denoising propagation parameter, t is the diffusion timestep, c means prompt, α_t
 151 means the noise scheduling parameter at timestep t , while $\bar{\alpha}_t$ indicates the cumulative product of α
 152 from step 1 to t . Given \tilde{z}_0 , we obtain highly correlated assets via the Decoder of VAE.

153 Naive noise interpolation based on a constant λ and other diversity-inducing methods (e.g., entropy
 154 regularization, contrastive objective) are not robust to perturbation from N_{Div} . Our PROOF learns
 155 the adaptive interpolation weight based on the closed-form solution of OTIB. We define our noise
 156 finetuning as:

$$157 \theta^* = \operatorname{argmin}_\theta \mathbb{E}_{N_{Orig}, N_{Div}} [\mathcal{L}_{noise}(PROOF_\theta(N_{Orig}, N_{Div}), N_{Orig}) + \mathcal{L}_{info}(PROOF_\theta(N_{Orig}), \lambda)], \quad (3)$$

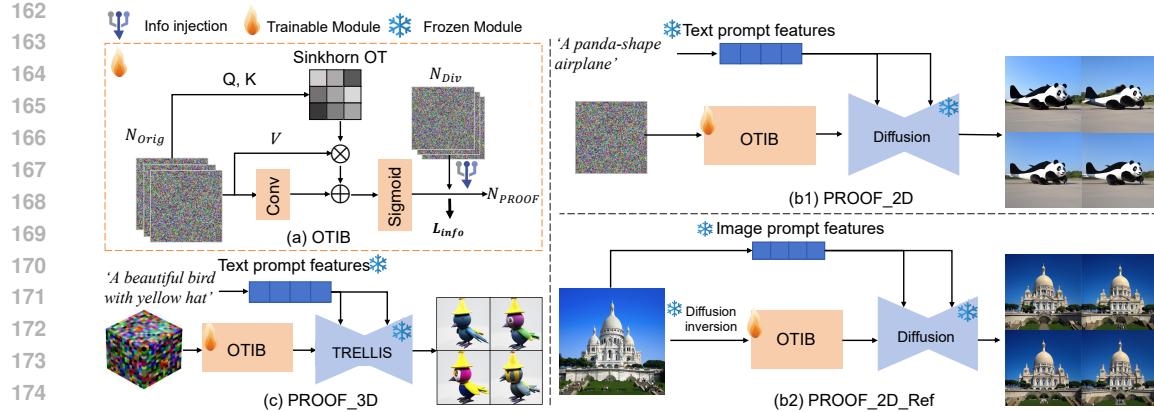


Figure 2: Method overview: as a plug-and-play content controller, PROOF can be employed for 2D/3D generation tasks, different architectures and model checkpoints. OTIB consists of a Sinkhorn Attention module and an information bottleneck module. We obtain N_{PROOF} by information compression of N_{Orig} and information modulation of N_{Div} . More details are introduced in Section 4.

where $PROOF_\theta$ is the generator of PROOF, \mathcal{L}_{noise} aims to provide pixel-level regularization for structure and appearance alignment with N_{Orig} , and \mathcal{L}_{info} explores controlling appropriate neural feature leakage with consideration of contextual preservation, which learns the minimal sufficient representation to avoid the diversity collapse.

3.2 INFORMATION BOTTLENECK REVISITING

Let's denote the original input data, the corresponding label, and compressed information by X , Y , and Z . The information compression principle Tishby & Zaslavsky (2015) is a trade-off between task-related information preservation and the minimal sufficient information compression, by maximizing the sharable information of Z and Y while minimizing that of Z and X :

$$\max_Z \mathbb{I}(Y; Z) - \beta \mathbb{I}(X; Z), \quad (4)$$

where \mathbb{I} means the mutual information and β is a trade-off weight. Let R denote the feature representations of X , and the information loss is formulated as:

$$\mathbb{I}(X; Z) \triangleq \mathbb{I}(R; Z) \triangleq \mathcal{D}_{KL}[p(Z|R) \| q(Z)], \quad (5)$$

where $q(Z)$ with Gaussian distribution is a variational approximation of $p(Z)$ Schulz et al. (2020). \mathcal{D}_{KL} is the KL divergence Csiszár (1975) used to represent the distance between two distributions.

In our problem setting, R is the noise latent N_{Orig} and Z is the compressed latent N_{Out} .

3.3 OPTIMAL TRANSPORT REVISITING

We revisit the Optimal Transport that provides a mathematical framework for transporting probability distributions from the source to the target. Given discrete distributions as:

$$\mu = \sum_{i=1}^M \mu_i \delta_{x_i}, \quad \nu = \sum_{j=1}^N \nu_j \delta_{y_j} \quad (6)$$

where μ, ν are discrete probability measures, $\mu_i \geq 0, \nu_j \geq 0$ are probability masses ($\sum_i \mu_i = \sum_j \nu_j = 1$), δ_x denotes the Dirac delta function centered at point x , M and N are the number of support points. The original OT problem finds a transport plan \mathbf{T}^* that minimizes the total transportation cost, which is computationally intensive. The Sinkhorn algorithm Cuturi (2013); Kim et al. (2024) equips OT with an entropy regularization term:

$$\mathbf{T}^* = \arg \min_{\mathbf{T} \in \Pi(\mu, \nu)} \langle \mathbf{T}, \mathbf{C} \rangle_F - \epsilon H(\mathbf{T}), \quad (7)$$

where $\mathbf{T} \in \mathbb{R}^{M \times N}$ is the transport matrix with \mathbf{T}_{ij} specifying how much mass moves from x_i to y_j , $\mathbf{C} \in \mathbb{R}^{M \times N}$ is the cost matrix where $\mathbf{C}_{ij} = d(x_i, y_j)$, $\Pi(\mu, \nu) = \{\mathbf{T} \geq 0 \mid \mathbf{T} \mathbf{1}^N =$

$\mu, \mathbf{T}^\top \mathbf{1}^M = \nu\}$ defines the set of admissible transport plans, $\langle \cdot, \cdot \rangle_F$ denotes the Frobenius inner product. Moreover, $\epsilon > 0$ is the regularization strength, $H(\mathbf{T}) = -\sum_{ij} \mathbf{T}_{ij} \log \mathbf{T}_{ij}$ is the entropy of the transport plan.

4 APPROACH

In this section, we provide a detailed introduction to our proposed PROOF, including the overall pipeline in Section 4.1, OTIB module architecture in Section 4.2, the closed-form theoretical solution in Section 4.3, along with the training loss in Section 4.4.

4.1 OVERALL PIPELINE

As shown in Fig. 2, PROOF can manipulate random noise with text or image conditions in 2D Rombach et al. (2022); Esser et al. (2024) or 3D data Xiang et al. (2025) distribution.

4.1.1 PROOF_2D

As for none-referenced PROOF_2D, given a text prompt denoted by 'S', diverse images can be synthesized based on:

$$I_{PROOF} = G_\phi^{2D*}(PROOF_\theta^{2D}(N_{Orig}, N_{Div}), 'S'), \quad (8)$$

where G_ϕ^{2D*} is the frozen generator of diffusion model Rombach et al. (2022).

As for referenced PROOF_2D, given a reference image I_{Ref} , we extract the image prompt using IP-Adapter Ye et al. (2023) for consistent appearance transfer. Furthermore, we utilize the diffusion inversion method Mokady et al. (2023) to recover the corresponding contextual latent of I_{Ref} . $PROOF_\theta^{2D}$ perturbs the inverted noise to generate diverse images:

$$I_{PROOF} = G_\phi^{2D*}(PROOF_\theta^{2D}(Inv(I_{Ref}), N_{Div}), I_{Ref}) \quad (9)$$

4.1.2 PROOF_3D

TRELLIS Xiang et al. (2025) compresses the 3D asset representation into a structured 3D latent similar to Latent Diffusion Rombach et al. (2022). It's possible for $PROOF_\theta^{3D}$ to implement the 3D tradeoff considering structural and textural preservation, along with the distribution diversity of 3D models and neural rendering Mildenhall et al. (2021); Kerbl et al. (2023); Lu et al. (2024):

$$M_{PROOF} = G_\phi^{3D*}(PROOF_\theta^{3D}(N_{Orig}, N_{Div}), 'S'), \quad (10)$$

where G_ϕ^{3D*} is the frozen generator of TRELLIS Xiang et al. (2025).

4.2 OTIB ARCHITECTURE

As mentioned in Section 3, implicit neural compression of information can be formulated as follows:

$$\min_Z \beta \mathbb{I}(N_{Orig}; Z), \quad (11)$$

where \mathbb{I} denotes the mutual information function, Z is the manipulated latent derived from N_{Orig} via Equ. 1. To realize high-fidelity content preservation and generation diversity, we adaptively learn a neural information filter λ of OTIB.

$$\lambda = Sigmoid(Conv(N_{Orig}) + \mathcal{F}_{SA}(N_{Orig})), \quad (12)$$

where \mathcal{F}_{SA} is a Sinkhorn Attention module, as shown in Figure 2. The intent of PROOF is to improve representation diversity while implicitly adhering to the global content attributes of a certain scenario. If λ is 0, the whole manifold will be replaced by N_{Div} , which results in entire structure and appearance leakages. If λ is 1, Z excludes any form of diversity-inducing perturbations, which results in mode collapse. Qualitative analyses are illustrated in Sec. 5.

270 4.3 CLOSED-FORM SINKHORN-IB SOLUTION
271272 We impose a Sinkhorn Attention module \mathcal{F}_{SA} in a spatial-OT view to improve contextual preserva-
273 tion of PROOF. The Sinkhorn Attention algorithm is as follows:
274275 **Algorithm 1** Sinkhorn-Attention Forward Pass

 276 1: **Input:** Feature map $X \in \mathbb{R}^{B \times C \times H \times W}$
 277 2: $Q = \text{Conv_Nd}(X)$, $K = \text{Conv_Nd}(X)$, $V = \text{Conv_Nd}(X)$ ▷ Learnable projections
 278 3: $A = QK^\top / \sqrt{C}$ ▷ Attention logits
 279 4: **for** $k = 1$ to n_{iters} **do**
 280 5: $A = A - \text{LogSumExp}(A, \text{dim} = 2)$ ▷ Row normalization
 281 6: $A = A - \text{LogSumExp}(A, \text{dim} = 1)$ ▷ Column normalization
 282 7: **end for**
 283 8: $\mathbf{T} = \exp(A)$ ▷ Optimal attention weights
 284 9: **return** $\mathbf{T}V$ ▷ Transport applied to values

285
286 where $Q, K, V \in \mathbb{R}^{B \times (HW) \times C}$ are Query, Key, Value tensors, respectively. $A \in \mathbb{R}^{B \times (HW) \times (HW)}$
287 is Attention logits matrix, $\text{LogSumExp}(A)_i = \log \sum_j \exp(A_{ij})$, and \mathbf{T} is Doubly-stochastic attention
288 matrix. Our transport solution is established through:
289

290
$$\mathbf{T}_{ij} = \exp\left(\underbrace{\frac{q_i^\top k_j}{\sqrt{C}}}_{\text{Transport cost}} - \underbrace{\alpha_{OT}^i - \beta_{OT}^j}_{\text{Sinkhorn scalars}}\right) \quad (13)$$

291
292

293 where α_{OT} and β_{OT} are row and column normalization factors, respectively. The division by \sqrt{C}
294 stabilizes gradient flow. We consider the joint optimization objective of OTIB:
295

296
$$\min_{\lambda} \underbrace{I(R; Z)}_{\text{IB term}} + \gamma \underbrace{\langle A^*, \mathbf{C} \rangle}_{\text{Sinkhorn OT term}} + \epsilon H(A^*), \quad (14)$$

297

298 where $Z = \lambda \odot N_{Orig} + (1 - \lambda) \odot N_{Div}$, $A^* = \text{Sinkhorn}(\mathbf{C})$, where $\mathbf{C}_{ij} = \frac{\langle q_i, k_j \rangle}{\sqrt{d}}$, $d = C$.
299300 We assume that: $N_{Orig} \sim \mathcal{N}(0, \sigma_R^2 I)$, $N_{Div} \sim \mathcal{N}(0, \sigma_{N_{Div}}^2 I)$. N_{Orig} and N_{Div} are independent.
301302 **Step 1:** Information Bottleneck Term Simplification. Under Gaussian assumptions, the mutual
303 information and the gradient calculation are formulated as:
304

305
$$I(R; Z) = \frac{1}{2} \log \left(1 + \frac{\lambda^2 \sigma_R^2}{(1 - \lambda)^2 \sigma_{N_{Div}}^2} \right), \frac{\partial I}{\partial \lambda} = \frac{\lambda \sigma_R^2 - (1 - \lambda) \sigma_{N_{Div}}^2}{\lambda^2 \sigma_R^2 + (1 - \lambda)^2 \sigma_{N_{Div}}^2} \quad (15)$$

306 **Step 2:** Sinkhorn Term Gradient. Using the Envelope Theorem and chain rule:
307

308
$$\frac{\partial \mathcal{L}_{OT}}{\partial \lambda} = \left\langle \frac{\partial A^*}{\partial \lambda}, \mathbf{C} \right\rangle + \left\langle A^*, \frac{\partial \mathbf{C}}{\partial \lambda} \right\rangle \approx \left\langle A^*, \frac{\partial \mathbf{C}}{\partial \lambda} \right\rangle, \quad (16)$$

309

310 where $A^* = \text{diag}(u)K\text{diag}(v)$ with $K = e^{-\mathbf{C}/\epsilon}$. $\frac{\partial \mathbf{C}_{ij}}{\partial \lambda} = \frac{\partial}{\partial \lambda} \left(\frac{\langle q_i, k_j \rangle}{\sqrt{d}} \right) = \frac{1}{\sqrt{d}} \langle q_i, \frac{\partial k_j}{\partial Z_j} \cdot \frac{\partial Z_j}{\partial \lambda} \rangle \approx$
311 $\frac{1}{\sqrt{d}} \langle q_i, \frac{\partial k_j}{\partial N_{Orig}^j} \cdot \frac{\partial Z_j}{\partial \lambda} \rangle = \frac{1}{\sqrt{d}} \langle q_i, W_K(N_{Orig}^j - N_{Div}^j) \rangle$.
312313 **Step 3:** First-Order Optimality Condition Setting. The total gradient to zero:
314

315
$$\frac{\lambda \sigma_R^2 - (1 - \lambda) \sigma_{N_{Div}}^2}{\lambda^2 \sigma_R^2 + (1 - \lambda)^2 \sigma_{N_{Div}}^2} + \gamma \mathbb{E}_{A^*} \left[\frac{\partial \mathbf{C}_{ij}}{\partial \lambda} \right] = 0 \quad (17)$$

316

317 **Step 4:** Closed-Form OTIB Solution. The optimal weights take the form (More details are in Ap-
318 pendix A):
319

320
$$\lambda^* = \sigma \left(\frac{1}{\eta} \left(\gamma \cdot \text{Align}(N_{Orig}, N_{Div}) - \frac{\sigma_{N_{Div}}^2}{\sigma_R^2} \right) \right), \quad (18)$$

321

322 where $\text{Align}(\cdot) = \mathbb{E}_{A^*} \left[\frac{\partial \mathbf{C}_{ij}}{\partial \lambda} \right]$, $\sigma(\cdot)$ is the sigmoid function, and η is a hyperparameter. The closed-
323 form solution is aligned with Equ. 12, where Conv approximates σ^2 ratio, and \mathcal{F}_{SA} approximates
324 Align term.
325

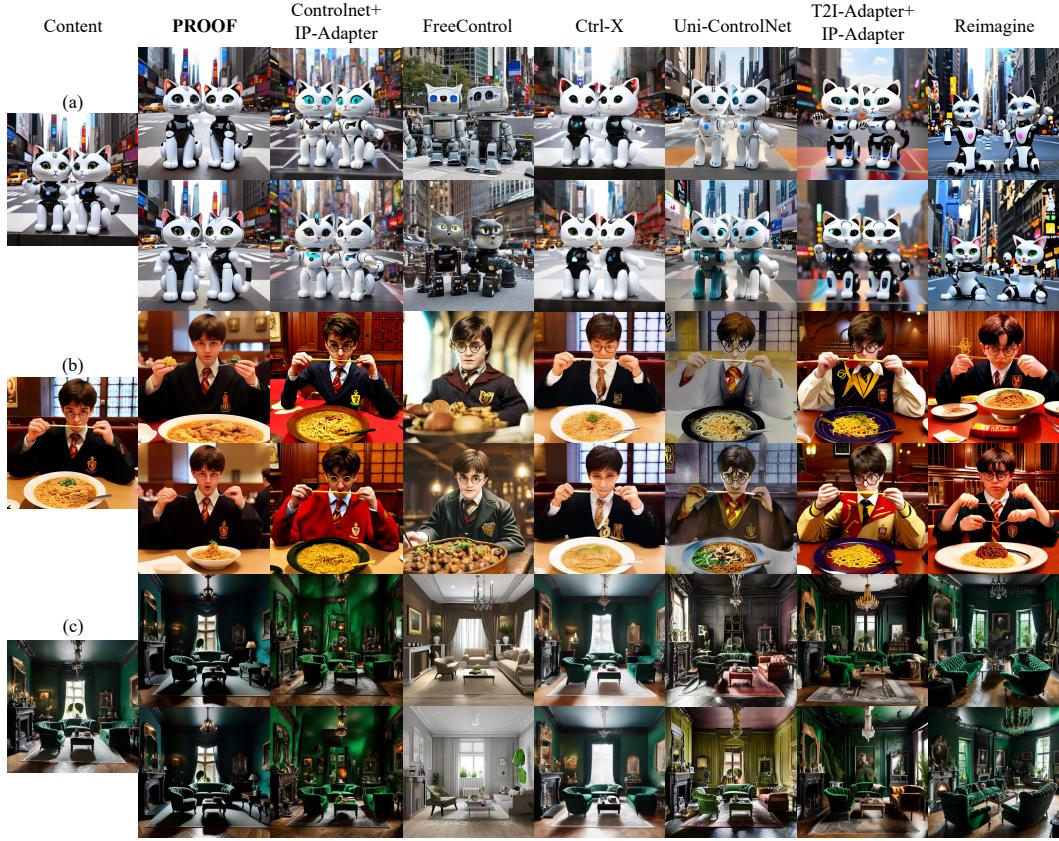


Figure 3: Qualitative results of PROOF_2D, ControlNet + IP Adapter Zhang et al. (2023a); Ye et al. (2023), FreeControl Mo et al. (2024), Ctrl-X Lin et al. (2024), Uni-ControlNet Zhao et al. (2023), T2I-Adapter + IP Adapter Mou et al. (2024); Ye et al. (2023), and Reimagine AI (2023). Zoom in for better observation. PROOF realizes more controllable image variations with high-fidelity content.

4.4 TRAINING LOSS

Training losses contain pixel-level reconstruction loss and manifold-level information compression loss. As for noise consistency loss, the pixel-level supervision for N_{PROOF} is MSE loss that demonstrates a powerful content preservation function Rombach et al. (2022); Ruiz et al. (2023):

$$\mathcal{L}_{noise} = \|N_{PROOF} - N_{Orig}\|_2^2. \quad (19)$$

For Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ and $\mathcal{N}(0, 1)$, KL divergence is formulated as:

$$\mathcal{D}_{KL}[N(\mu, \sigma^2) \| N(0, 1)] = -\frac{1}{2}[\log(\sigma)^2 - (\sigma)^2 - (\mu)^2 + 1]. \quad (20)$$

Our framework eliminates the need for feature mean/variance pre-calculation by leveraging the pre-defined properties of Gaussian noise ($\mu_G=0$, $\sigma_G=1$). As for our case mentioned in Equ. 5, the distribution of $p(Z|R)$ is accessed as $\mathcal{N}[\lambda R, (1 - \lambda)^2]$ according to Equ. 1. We normalize $p(Z|R)$ along with $q(Z)$ using μ_G and σ_G , then the information compression metric of PROOF is:

$$\mathcal{L}_{info} = \mathbb{I}(Z; R) = KL[p(Z|R) \| q(Z)] = -\frac{1}{2}[\log(1 - \lambda)^2 - (1 - \lambda)^2 - (\lambda R)^2 + 1], \quad (21)$$

Finally, the total loss of PROOF is formulated as:

$$\mathcal{L}_{PROOF} = \beta \mathcal{L}_{info} + \mathcal{L}_{noise}, \quad (22)$$

where β is the content-diversity tradeoff weight (Fig. 10a). Higher β usually intentionally relaxes contextual constraints but boosts the diversity (Fig. 13, Fig. 19).

378
 379 Table 1: PROOF outperforms other SOTA methods in structure and appearance alignments and
 380 robustness, measured by DINO ViT self-similarity and DINO-I. We report the inference time of
 381 PROOF_2D_Ref, where diffusion inversion Mokady et al. (2023) is time-consuming. We assess
 382 image quality (PickScore, HPSv2, AES) and diversity (LPIPS, L1).

Methods	Training	Inference time (s)	self-sim ↓	DINO-I ↑	PickScore↑	HPSv2↑	AES↑	L1	LPIPS
Uni-ControlNet Zhao et al. (2023)	✓	10.6	0.045	0.555	6.49	25.33	6.26	56.41	0.5500
ControlNet + IP Adapter Zhang et al. (2023a)	✓	8.1	0.068	0.656	15.08	25.02	6.29	46.06	0.4334
T2I-Adapter + IP Adapter Mou et al. (2024)	✓	4.2	0.055	0.603	12.39	25.45	6.28	50.45	0.4436
Ctrl-X Lin et al. (2024)	✗	14.9	0.057	0.686	11.65	24.63	6.27	37.07	0.4812
FreeControl Mo et al. (2024)	✗	21.5	0.058	0.572	18.13	26.13	6.19	85.45	0.636
Reimagine AI (2023)	✓	10.1	0.073	0.753	15.14	25.27	6.34	64.12	0.6192
RIVAL Zhang et al. (2023b)	✗	13.91	0.035	0.826	56.64	21.12	6.22	47.50	0.5431
Prompt-Free Diffusion Xu et al. (2024)	✓	10.91	0.025	0.824	22.35	19.92	6.21	40.36	0.4671
PROOF (ours)	✓	27.2	0.038	0.841	16.61	25.67	6.29	41.58	0.4342

436
 437 Figure 4: Robust inference performance of PROOF across distinct latent resolutions. We set β of
 438 PROOF as 0.2, which is aligned with $\lambda = 0.8$. It's efficient for Sinkhorn attention and information
 439 bottleneck to finetune on low-resolution noise space while inferring on high-resolution latent.
 440

5 EXPERIMENTS

441 Comprehensive qualitative and quantitative evaluations validate PROOF's dual capability in main-
 442 taining content fidelity while enhancing generation diversity for digital asset creation. Training
 443 protocol and baselines are presented in Appendix B and C. Additional results, e.g., golden noise
 444 Zhou et al. (2025) finetune (Fig. 18), are shown in Appendix F.

5.1 QUANTITATIVE EVALUATION

445 Tab. 1 shows a quantitative comparison of natural images of datasets Lin et al. (2024). The content
 446 alignment metrics include DINO ViT self-similarity Tumanyan et al. (2022), DINO-I Ruiz et al.
 447 (2023) (details are explained in Appendix D). Note that PROOF shows consistent superiority on
 448 self-sim and DINO-I scores. As for image quality, we utilize PickScore Kirstain et al. (2023), HPSv2
 449 Wu et al. (2023), and Aesthetic Score (AES) Schuhmann (2023). We assess the diversity via LPIPS
 450 Zhang et al. (2018) between the source image and the generated image. Note that PROOF_2D using
 451 SD-3 takes around 7s, which is more efficient for variant generation. Meanwhile, the subjective
 452 metrics consist of quality, fidelity, and diversity without compromising fidelity. PROOF achieves
 453 comparable user preference (Tab. 4).

5.2 QUALITATIVE RESULT

454 PROOF only learn noise representation supervised by itself based on OTIB. Visually comparable
 455 results demonstrate that our implicit PROOF is a better workbench for highly correlated asset editing
 456 (Fig. 3, Fig. 18, more examples in Appendix F), based on robust noise representation learning.
 457

458 **Content transformation** Although PROOF applies intrinsic interpolation to manipulate noise, the
 459 latent space compressed by VAE is already a high-dimensional manifold where nonlinear content
 460 transformations are represented to some extent. That means the change of a specific noise point with
 461 a certain channel and position is capable of imposing contextual transformation on several image-
 462 level areas, therefore leading to visually object deformation or novel-view rendering (Fig. 14).

Figure 5: Robust local editing visualization. PROOF preserves local content layout and synthesizes controllable and diverse inpainting results with highly faithful details.

Figure 6: PROOF sufficiently preserves the global structure and appearance based on OTIB, e.g., the word 'SHOP', no-man's land on the left of Row 2, and the far-distance face of Row 3, while other variants show lower content fidelity. More results are illustrated in Fig. 8.

Train-Test resolution discrepancy We conduct experiments concerning the latent resolution discrepancy between the fine-tuning and inference phases (Fig. 4). The overall contents of different finetuning models are consistent. However, the finetuning model employing 32-resolution data (Col 5) hardly captures local topological and textural details when dealing with 128-resolution inference.

Local variation PROOF can be employed by generation models equipped with the inpainting function to implement local content variation. As shown in Fig. 5, it's also important to provide uniform attention distribution based on optimal transport in the local editing scenario. PROOF synthesizes higher-fidelity and higher-quality human components. Furthermore, we evaluate PROOF on the edge controller (Fig. 11) and semantic editing (Fig. 12), which significantly strengthens PROOF's generalizability to broader applications.

DiT-based model generalization Whether PROOF can be applied to more advanced diffusion models featuring distinct architectural frameworks, e.g., Flux or SD3.5 based on Diffusion Transformer, has been further investigated. Conducting empirical validations on such state-of-the-art models substantially reinforces PROOF's ability to generalize and amplify its broader applicability across scenarios. Note that Figures 4, 5, 7 are all based on Flux Labs et al. (2025). Additionally, Fig. 17 shows robust variant results using SD-3.5 Esser et al. (2024). We report the computational complexity comparison of OTIB for different models in Tab. 3.

486

487
488
489
Table 2: Quantitative validation for PROOF_2D generation with random noise initialization on the
dataset Lin et al. (2024). PROOF outperforms other ablation configurations and diversity-inducing
methods in structure and appearance alignments. w is the loss weight aligned with λ .

Configuration	self-sim ↓	DINO-I ↑	PickScore↑	HPSv2↑	AES↑	LPIPS
w/o IB \triangleq Content	0	0.9999	20.95	34.64	5.50	0
Full PROOF $\beta=0.05$	0.0314	0.9026	18.43	33.38	5.43	0.4551
w/ IB, w/o OT	0.0333	0.8974	18.20	33.35	5.36	0.4562
w/ IB, w/ AttentionBlock	0.0331	0.8968	18.81	33.80	5.37	0.4590
Naive interpolation $\lambda=0.9536$	0.0423	0.8650	14.83	33.15	5.39	0.4549
Entropy regularization $w=0.45$	0.0947	0.6299	12.30	31.20	5.76	0.6790
Contrast objective $w=0.085$	0.0320	0.9012	17.38	33.45	5.41	0.4565

490
491
492
493
494
495
Table 3: Computational complexity comparison of OTIB for different models.

Models	Spatial latent	MACs	Params	Inference time
SD-1.4, SD-1.5, SD-2	(B, 4, 64, 64)	134.64 MMac	100	0.1579s
SD-3, SD-3.5, Flux	(B, 16, 128, 128)	8.61 GMac	1.36 k	0.2185s

500
501
502
503
504
505
506
507
Figure 7: Comparison of naive blending and PROOF over a wide parameter range. Naive blending
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
75100
75101
75102
75103
75104
75105
75106
75107
75108
75109
75110
75111
75112
75113
75114
75115
75116
75117
75118
75119
75120
75121
75122
75123
75124
75125
75126
75127
75128
75129
75130
75131
75132
75133
75134
75135
75136
75137
75138
75139
75140
75141
75142
75143
75144
75145
75146
75147
75148
75149
75150
75151
75152
75153
75154
75155
75156
75157
75158
75159
75160
75161
75162
75163
75164
75165
75166
75167
75168
75169
75170
75171
75172
75173
75174
75175
75176
75177
75178
75179
75180
75181
75182
75183
75184
75185
75186
75187
75188
75189
75190
75191
75192
75193
75194
75195
75196
75197
75198
75199
75200
75201
75202
75203
75204
75205
75206
75207
75208
75209
75210
75211
75212
75213
75214
75215
75216
75217
75218
75219
75220
75221
75222
75223
75224
75225
75226
75227
75228
75229
75230
75231
75232
75233
75234
75235
75236
75237
75238
75239
75240
75241
75242
75243
75244
75245
75246
75247
75248
75249
75250
75251
75252
75253
75254
75255
75256
75257
75258
75259
75260
75261
75262
75263
75264
75265
75266
75267
75268
75269
75270
75271
75272
75273
75274
75275
75276
75277
75278
75279
75280
75281
75282
75283
75284
75285
75286
75287
75288
75289
75290
75291
75292
75293
75294
75295
75296
75297
75298
75299
75300
75301
75302
75303
75304
75305
75306
75307
75308
75309
75310
75311
75312
75313
75314
75315
75316
75317
75318
75319
75320
75321
75322
75323
75324
75325
75326
75327
75328
75329
75330
75331
75332
75333
75334
75335
75336
75337
75338
75339
75340
75341
75342
75343
75344
75345
75346
75347
75348
75349
75350
75351
75352
75353
75354
75355
75356
75357
75358
75359
75360
75361
75362
75363
75364
75365
75366
75367
75368
75369
75370
75371
75372
75373
75374
75375
75376
75377
75378
75379
75380
75381
75382
75383
75384
75385
75386
75387
75388
75389
75390
75391
75392
75393
75394
75395
75396
75397
75398
75399
75400
75401
75402
75403
75404
75405
75406
75407
75408
75409
75410
75411
75412
75413
75414
75415
75416
75417
75418
75419
75420
75421
75422
75423
75424
75425
75426
75427
75428
75429
75430
75431
75432
75433
75434
75435
75436
75437
75438
75439
75440
75441
75442
75443
75444
75445
75446
75447
75448
75449
75450
75451
75452
75453
75454
75455
75456
75457
75458
75459
75460
75461
75462
75463
75464
75465
75466
75467
75468
75469
75470
75471
75472
75473
75474
75475
75476
75477
75478
75479
75480
75481
75482
75483
75484
75485
75486
75487
75488
75489
75490
75491
75492
75493
75494
75495
75496
75497
75498
75499
75500
75501
75502
75503
75504
75505
75506
75507
75508
75509
75510
75511
75512
75513
75514
75515
75516
75517
75518
75519
75520
75521
75522
75523
75524
75525
75526
75527
75528
75529
75530
75531
75532
75533
75534
75535
75536
75537
75538
75539
75540
75541
75542
75543
75544
75545
75546
75547
75548
75549
75550
75551
75552
75553
75554
75555
75556
75557
75558
75559
75560
75561
75562
75563
75564
75565
75566
75567
75568
75569
75570
75571
75572
75573
75574
75575
75576
75577
75578
75579
75580
75581
75582
75583
75584
75585
75586
75587
75588
75589
75590
75591
75592
75593
75594
75595
75596
75597
75598
75599
75600
75601
75602
75603
75604
75605
75606
75607
75608
75609
75610
75611
75612
75613
75614
75615
75616
75617
75618
75619
75620
75621
75622
75623
75624
75625
75626
75627
75628
75629
75630
75631
75632
75633
75634
75635
75636
75637
75638
75639
75640
75641
75642
75643
75644
75645
75646
75647
75648
75649
75650
75651
75652
75653
75654
75655
75656
75657
75658
75659
75660
75661
75662
75663
75664
75665
75666
75667
75668
75669
75670
75671
75672
75673
75674
75675
75676
75677
75678
75679
75680
75681
75682
75683
75684
75685
75686
75687
75688
75689
75690
75691
75692
75693
75694
75695
75696
75697
75698
75699
75700
75701
75702
75703
75704
75705
75706
75707
75708
75709
75710
75711
75712
75713
75714
75715
75716
75717
75718
75719
75720
75721
75722
75723
75724
75725
75726
75727
75728
75729
75730
75731
75732
75733
75734
75735
75736
75737
75738
75739
75740
75741
75742
75743
75744
75745
75746
75747
75748
75749
75750
75751
75752
75753
75754
75755
75756
75757
75758
75759
75760
75761
75762
75763
75764
75765
75766
75767
75768
75769
75770
75771
75772
75773
75774
75775
75776
75777
75778
75779
75780
75781
75782
75783
75784
75785
75786
75787
75788
75789
75790
75791
75792
75793
75794
75795
75796
75797
75798
75799
75800
75801
75802
75803
75804
75805
75806
75807
75808
75809
75810
75811
75812
75813
75814
75815
75816
75817
75818
75819
75820
75821
75822
75823
75824
75825
75826
75827
75828
75829
75830
75831
75832
75833
75834
75835
75836
75837
75838
75839
75840
75841
75842
75843
75844
75845
75846
75847
75848
75849
75850
75851
75852
75853
75854
75855
75856
75857
75858
75859
75860
75861
75862
75863
75864
75865
75866
75867
75868
75869
75870
75871
75872
75873
75874
75875
75876
75877
75878
75879
75880
75881
75882
75883
75884
75885
75886
75887
75888
75889
75890
75891
75892
75893
75894
75895
75896
75897
75898
75899
75900
75901
75902
75903
75904
75905
75906
75907
75908
75909
75910
75911
75912
75913
75914
75915
75916
75917
75918
75919
75920
75921
75922
75923
75924
75925
75926
75927
75928
75929
75930
75931
75932
75933
75934
75935
75936
75937
75938
75939
75940
75941
75942
75943
75944
75945
75946
75947
75948
75949
75950
75951
75952
75953
75954
75955
75956
75957
75958
75959
75960
75961
75962
75963
75964
75965
75966
75967
75968
75969
75970
75971
75972
75973
75974
75975
75976
75977
75978
75979
75980
75981
75982
75983
75984
75985
75986
75987
75988
75989
75990
75991
75992
75993
75994
75995
75996
75997
75998
75999
75100
75101
75102
75103
75104
75105
75106
75107
75108
75109
75110
75111
75112
75113
75114
75115
75116
75117
75118
75119
75120
75121
75122
75123
75124
75125
75126
75127
75128
75129
75130
75131
75132
75133
75134
75135
75136
75137
75138
75139
75140
75141
75142
75143
75144
75145
75146
75147
75148
75149
75150
75151
75152
75153
75154
75155
75156
75157
75158
75159
75160
75161
75162
75163
75164
75165
75166
75167
75168
75169
75170
75171
75172
75173
75174
75175
75176
75177
75178
75179
75180
75181
75182
75183
75184
75185
75186
75187
75188
75189
75190
75191
75192
75193
75194
75195
75196
75197
75198
75199
75200
75201
75202
75203
75204
75205
75206
75207
75208
75209
75210
75211
75212
75213
75214
75215
75216
75217
75218
75219
75220
75221
75222
75223
75224
75225
75226
75227
75228
75229
75230
75231
75232
75233
75234
75235
75236
75237
75238
75239
75240
75241
75242
75243
75244
75245
75246
75247
75248
75249
75250
75251
75252
75253
75254
75255
75256
75257
75258
75259
75260
75261
75262
75263
75264
75265
75266
75267
75268
75269
75270
75271
75272
75273
75274
75275
75276
75277
75278
75279
75280
75281
75282
75283
75284
75285
75286
75287
75288
75289
7

540 REFERENCES
541

542 Stability AI. Clipdrop reimagine. Web Service, 2023. URL <https://clipdrop.co/reimagine>. AI-powered image regeneration tool.

543

544 Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
545 bottleneck. *ICLR*, 2017.

546

547 Omri Avrahami, Kfir Aberman, Ohad Fried, Daniel Cohen-Or, and Dani Lischinski. Break-a-scene:
548 Extracting multiple concepts from a single image. In *SIGGRAPH Asia 2023 Conference Papers*,
549 pp. 1–12, 2023a.

550

551 Omri Avrahami, Thomas Hayes, Oran Gafni, Sonal Gupta, Yaniv Taigman, Devi Parikh, Dani
552 Lischinski, Ohad Fried, and Xi Yin. Spatext: Spatio-textual representation for controllable im-
553 age generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
554 Recognition*, pp. 18370–18380, 2023b.

555

556 Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. *The
557 annals of probability*, pp. 146–158, 1975.

558

559 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural
560 information processing systems*, 26, 2013.

561

562 Dave Epstein, Allan Jabri, Ben Poole, Alexei A. Efros, and Aleksander Holynski. Diffusion self-
563 guidance for controllable image generation. In *NeurIPS*, 2023.

564

565 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
566 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
567 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
2024.

568

569 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel
570 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual in-
571 version. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
2023.

572

573 Gege Gao, Huaibo Huang, Chaoyou Fu, Zhaoyang Li, and Ran He. Information bottleneck dis-
574 entanglement for identity swapping. In *Proceedings of the IEEE/CVF conference on computer
575 vision and pattern recognition*, pp. 3404–3413, 2021.

576

577 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
578 for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:
52132–52152, 2023.

579

580 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
581 ting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

582

583 Kwanyoung Kim, Yujin Oh, and Jong Chul Ye. Otseg: Multi-prompt sinkhorn attention for zero-
584 shot semantic segmentation. In *European Conference on Computer Vision*, pp. 200–217. Springer,
585 2024.

586

587 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
588 arXiv:1412.6980*, 2014.

589

590 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
591 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in neural
592 information processing systems*, 36:36652–36663, 2023.

593

Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent
space. In *ICLR*, 2023.

594 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 595 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey,
 596 Yam Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini,
 597 Axel Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and
 598 editing in latent space, 2025. URL <https://arxiv.org/abs/2506.15742>.

599 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
 600 and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Proceedings of the*
 601 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 22511–22521, 2023.

602 Kuan Heng Lin, Sicheng Mo, Ben Klingher, Fangzhou Mu, and Bolei Zhou. Ctrl-x: Controlling
 603 structure and appearance for text-to-image generation without guidance. In *Advances in Neural*
 604 *Information Processing Systems*, 2024.

605 Tao Lu, Mulin Yu, Lining Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
 606 Structured 3d gaussians for view-adaptive rendering. In *Proceedings of the IEEE/CVF Conference*
 607 *on Computer Vision and Pattern Recognition*, pp. 20654–20664, 2024.

608 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
 609 Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond
 610 scaling denoising steps. *arXiv preprint arXiv:2501.09732*, 2025.

611 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, and et al. Nerf: Representing scenes as neural
 612 radiance fields for view synthesis. *Communications of the ACM*, 65(1):99–106, 2021.

613 Sicheng Mo, Fangzhou Mu, Kuan Heng Lin, Yanli Liu, Bochen Guan, Yin Li, and Bolei Zhou.
 614 Freecontrol: Training-free spatial control of any text-to-image diffusion model with any condi-
 615 tion. In *CVPR*, 2024.

616 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 617 editing real images using guided diffusion models. In *Proceedings of the IEEE/CVF conference*
 618 *on computer vision and pattern recognition*, pp. 6038–6047, 2023.

619 Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan, and Xiaohu Qie.
 620 T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
 621 models. In *AAAI*, 2024.

622 Ryan Po, Guandao Yang, Kfir Aberman, and Gordon Wetzstein. Orthogonal adaptation for modular
 623 customization of diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer*
 624 *Vision and Pattern Recognition*, pp. 7964–7973, 2024.

625 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 626 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 627 synthesis. In *International Conference on Learning Representations*, 2024.

628 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 629 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

630 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 631 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

632 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 633 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 634 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–
 635 22510, 2023.

636 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Wei Wei, Tingbo Hou, Yael Pritch, Neal Wadhwa,
 637 Michael Rubinstein, and Kfir Aberman. Hyperdreambooth: Hypernetworks for fast personaliza-
 638 tion of text-to-image models. In *Proceedings of the IEEE/CVF conference on computer vision*
 639 *and pattern recognition*, pp. 6527–6536, 2024.

640 Christoph Schuhmann. Improved aesthetic predictor. 2023.

648 Karl Schulz, Leon Sixt, Federico Tombari, and Tim Landgraf. Restricting the flow: Information
 649 bottlenecks for attribution. In *ICLR*, 2020.

650

651 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International*
 652 *Conference on Learning Representations*, 2020.

653 Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
 654 *2015 ieee information theory workshop (itw)*, pp. 1–5. IEEE, 2015.

655 Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Splicing vit features for semantic
 656 appearance transfer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 657 *Recognition*, pp. 10748–10757, 2022.

658

659 Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instancedif-
 660 fusion: Instance-level control for image generation. In *Proceedings of the IEEE/CVF Conference*
 661 *on Computer Vision and Pattern Recognition*, pp. 6232–6242, 2024.

662 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 663 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 664 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.

665 Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen,
 666 Xin Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. In
 667 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2025.

668

669 Xingqian Xu, Jiayi Guo, Zhangyang Wang, Gao Huang, Irfan Essa, and Humphrey Shi. Prompt-free
 670 diffusion: Taking “text” out of text-to-image diffusion models. In *Proceedings of the IEEE/CVF*
 671 *conference on computer vision and pattern recognition*, pp. 8682–8692, 2024.

672 Xiaofeng Yang, Chen Cheng, Xulei Yang, Fayao Liu, and Guosheng Lin. Text-to-image rectified
 673 flow as plug-and-play priors. In *The Thirteenth International Conference on Learning Representa-
 674 tions*, 2025. URL <https://openreview.net/forum?id=SzPZK856iI>.

675 Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin Lin, Chenfei Wu, Nan Duan, Zicheng
 676 Liu, Ce Liu, Michael Zeng, et al. Reco: Region-controlled text-to-image generation. In *Pro-
 677 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14246–
 678 14255, 2023.

679

680 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 681 adapter for text-to-image diffusion models. *arXiv:2308.06721*, 2023.

682

683 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 684 diffusion models. In *ICCV*, 2023a.

685

686 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 687 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 688 *computer vision and pattern recognition*, pp. 586–595, 2018.

689

690 Yuechen Zhang, Jinbo Xing, Eric Lo, and Jiaya Jia. Real-world image variation by aligning diffusion
 691 inversion chain. *Advances in Neural Information Processing Systems*, 36:30641–30661, 2023b.

692

693 Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, and Kwan-
 694 Yee K. Wong. Uni-controlnet: All-in-one control to text-to-image diffusion models. *Advances in*
 695 *Neural Information Processing Systems*, 2023.

696

697 Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion:
 698 Controllable diffusion model for layout-to-image generation. In *Proceedings of the IEEE/CVF*
 699 *Conference on Computer Vision and Pattern Recognition*, pp. 22490–22499, 2023.

700

701 Dewei Zhou, You Li, Fan Ma, Xiaoting Zhang, and Yi Yang. Migc: Multi-instance generation
 702 controller for text-to-image synthesis. In *Proceedings of the IEEE/CVF Conference on Computer*
 703 *Vision and Pattern Recognition*, pp. 6818–6828, 2024.

704

705 Zikai Zhou, Shitong Shao, Lichen Bai, Shufei Zhang, Zhiqiang Xu, Bo Han, and Zeke Xie. Golden
 706 noise for diffusion models: A learning framework. In *International Conference on Computer*
 707 *Vision*, 2025.

702 A APPENDIX A: DETAILED DERIVATION OF CLOSED-FORM SOLUTION

704 **1. Initial optimality condition:** Based on step 3 of Section 4.3, the optimization problem of OTIB
 705 gives us:

$$706 \quad \frac{\lambda\sigma_R^2 - (1 - \lambda)\sigma_{N_{Div}}^2}{\lambda^2\sigma_R^2 + (1 - \lambda)^2\sigma_{N_{Div}}^2} + \gamma\text{Align} = 0 \quad (23)$$

709 This equation balances the information bottleneck term with the optimal transport term.

710 **2. Rearrange optimality condition:** We multiply both sides by the denominator to eliminate the
 711 fraction:

$$712 \quad \lambda\sigma_R^2 - (1 - \lambda)\sigma_{N_{Div}}^2 = -\gamma\text{Align}(\lambda^2\sigma_R^2 + (1 - \lambda)^2\sigma_{N_{Div}}^2) \quad (24)$$

713 This form removes the denominator but introduces quadratic terms in λ .

714 **3. Auxiliary function definition:** To analyze this equation, we define:

$$716 \quad f(\lambda) = \lambda\sigma_R^2 - (1 - \lambda)\sigma_{N_{Div}}^2 + \gamma\text{Align} [\lambda^2\sigma_R^2 + (1 - \lambda)^2\sigma_{N_{Div}}^2] \quad (25)$$

718 The optimal solution occurs when $f(\lambda) = 0$.

719 **4. Taylor expansion at $\lambda = 0.5$:** We linearize around $\lambda = 0.5$ because:

- 721 • It's the midpoint of possible λ values
- 722 • The function is most linear in this region
- 723 • Higher-order terms are minimized here

725 4.1. Function value at $\lambda = 0.5$:

$$726 \quad f(0.5) = 0.5(\sigma_R^2 - \sigma_{N_{Div}}^2) + 0.25\gamma\text{Align}(\sigma_R^2 + \sigma_{N_{Div}}^2) \quad (26)$$

728 This combines the linear difference and quadratic alignment terms.

729 4.2. First derivative:

$$731 \quad f'(\lambda) = \sigma_R^2 + \sigma_{N_{Div}}^2 + \gamma\text{Align} [2\lambda\sigma_R^2 - 2(1 - \lambda)\sigma_{N_{Div}}^2] \quad (27)$$

$$732 \quad f'(0.5) = \sigma_R^2 + \sigma_{N_{Div}}^2 + \gamma\text{Align}(\sigma_R^2 - \sigma_{N_{Div}}^2) \quad (28)$$

734 The derivative shows how sensitive the function is to λ changes.

735 **4.3. Linear approximation solution:** Using Taylor expansion:

$$737 \quad \lambda \approx 0.5 - \frac{f(0.5)}{f'(0.5)} = 0.5 - \frac{0.5(\sigma_R^2 - \sigma_{N_{Div}}^2) + 0.25\gamma\text{Align}(\sigma_R^2 + \sigma_{N_{Div}}^2)}{\sigma_R^2 + \sigma_{N_{Div}}^2 + \gamma\text{Align}(\sigma_R^2 - \sigma_{N_{Div}}^2)} \quad (29)$$

739 This gives us a first-order approximation of the optimal λ .

740 **4.4. Simplified linear expression:** When γAlign is relatively small compared to the variance terms:

$$743 \quad \lambda \approx \underbrace{\frac{\sigma_{N_{Div}}^2}{\sigma_R^2 + \sigma_{N_{Div}}^2}}_C + \underbrace{0.25\gamma \cdot \text{Align}}_K, \quad (30)$$

746 where C represents the baseline compression ratio, and K determines how strongly alignment af-
 747 fects the result.

748 **5. Identify limitations of the linear form:** The linear expression has two critical flaws:

- 750 • When Align is too large, λ may exceed 1
- 751 • When Align is too small, λ may be less than 0

753 However, λ must be a weight coefficient strictly between 0 and 1. Therefore, we need a function
 754 that constrains the output to (0,1) while preserving the positive correlation between λ and Align.

755 **6. Choose sigmoid function for constraint:** The sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$ is ideal because:

756 • Its output is strictly bounded between (0,1)
 757 • It's monotonically increasing, preserving the positive correlation
 758 • It provides smooth, differentiable transitions

760 **7. Match the baseline value at Align = 0:** When there's no alignment (Align = 0), the linear
 761 expression gives $\lambda \approx C$. To maintain consistency:

$$\sigma(x_0) = C \quad \text{where } x_0 = \sigma^{-1}(C) \quad (31)$$

764 Using the inverse of the sigmoid function (logit function) $\sigma^{-1}(y) = \ln\left(\frac{y}{1-y}\right)$, we get:
 765

$$\sigma^{-1}(C) = \ln\left(\frac{\sigma_{N_{Div}}^2}{\sigma_R^2}\right) \quad (32)$$

766 This ensures the sigmoid preserves the baseline behavior when Align = 0.
 767

770 **8. Final sigmoid parameterization:** To maintain the positive correlation while adding flexibility,
 771 we introduce:

$$x = \frac{1}{\eta} \left(\gamma \cdot \text{Align} - \frac{\sigma_{N_{Div}}^2}{\sigma_R^2} \right), \quad (33)$$

774 where $\eta > 0$ controls the steepness of the transition. The final solution becomes:
 775

$$\lambda^* = \sigma\left(\frac{1}{\eta} \left(\gamma \cdot \text{Align} - \frac{\sigma_{N_{Div}}^2}{\sigma_R^2} \right)\right) \quad (34)$$

778 This closed-form solution is presented in step 4 of Section 4.3, and satisfies all our requirements:
 779

- Strictly bounded output (0,1)
- Preserves positive correlation
- Matches baseline when Align = 0
- Allows tuning via η and γ

785 B TRAINING PROTOCOL

788 We train our PROOF on Gaussian noise tensors with corresponding dimension shape of different
 789 architectures, e.g., 4*64*64 Rombach et al. (2022), 16*128*128 Esser et al. (2024), 8*16*16*16
 790 Xiang et al. (2025). N_{Orig} and N_{Div} are random noises in each training step. As for PROOF_3D,
 791 we utilize 3D convolutions for SA and IB modules. We train PROOF for 20k iterations with one
 792 NVIDIA RTX 4090 GPU. The training batch size is set to 1. During training, we employ Adam
 793 Kingma & Ba (2014) with $2 * 10^{-3}$ learning rate. We set $\beta = 0.01$ for mild diversity (Figure
 794 3a), $\beta = 0.1$ for substantial diversity (Fig. 3b, Fig. 13), and $\beta = 1$ for diversity with reference
 795 constraints (Fig. 3c).

796 C BASELINES

797 There are several state-of-the-art controllable synthesis methods based on diffusion models. ControlNet Zhang et al. (2023a) and T2I-Adapter Mou et al. (2024) align diffusion priors to the external
 798 control structures. We further apply IP-Adapter Ye et al. (2023) to them for better textural transfer.
 799 These methods present low topological flexibility with restriction by the explicit structure alignment,
 800 and limited textural fidelity with global appearance control. FreeControl Mo et al. (2024)
 801 has large-scale content variance due to imprecise structure and appearance representations (col 4
 802 in Fig. 3). Ctrl-X Lin et al. (2024) provides too-strict structure and appearance alignments, and
 803 there are texture distortions. Uni-ControlNet Zhao et al. (2023) also suffers from the global appear-
 804 ance representation (col 6 in Fig. 3). Reimagine AI (2023) produces uncontrollable content layout,
 805 despite high image quality and diversity (col 8 in Fig. 3). RIVAL Zhang et al. (2023b) conducts
 806 distribution alignment between the generative and inverse paths to realize semantic and structural
 807 fidelity. Prompt-free Diffusion Xu et al. (2024) discards the text encoder and text prompts, which
 808 may bring about semantic degradation. We evaluate all methods on SDXL v1.0 Podell et al. (2024)
 809 when workable and on their pre-configured base models otherwise.

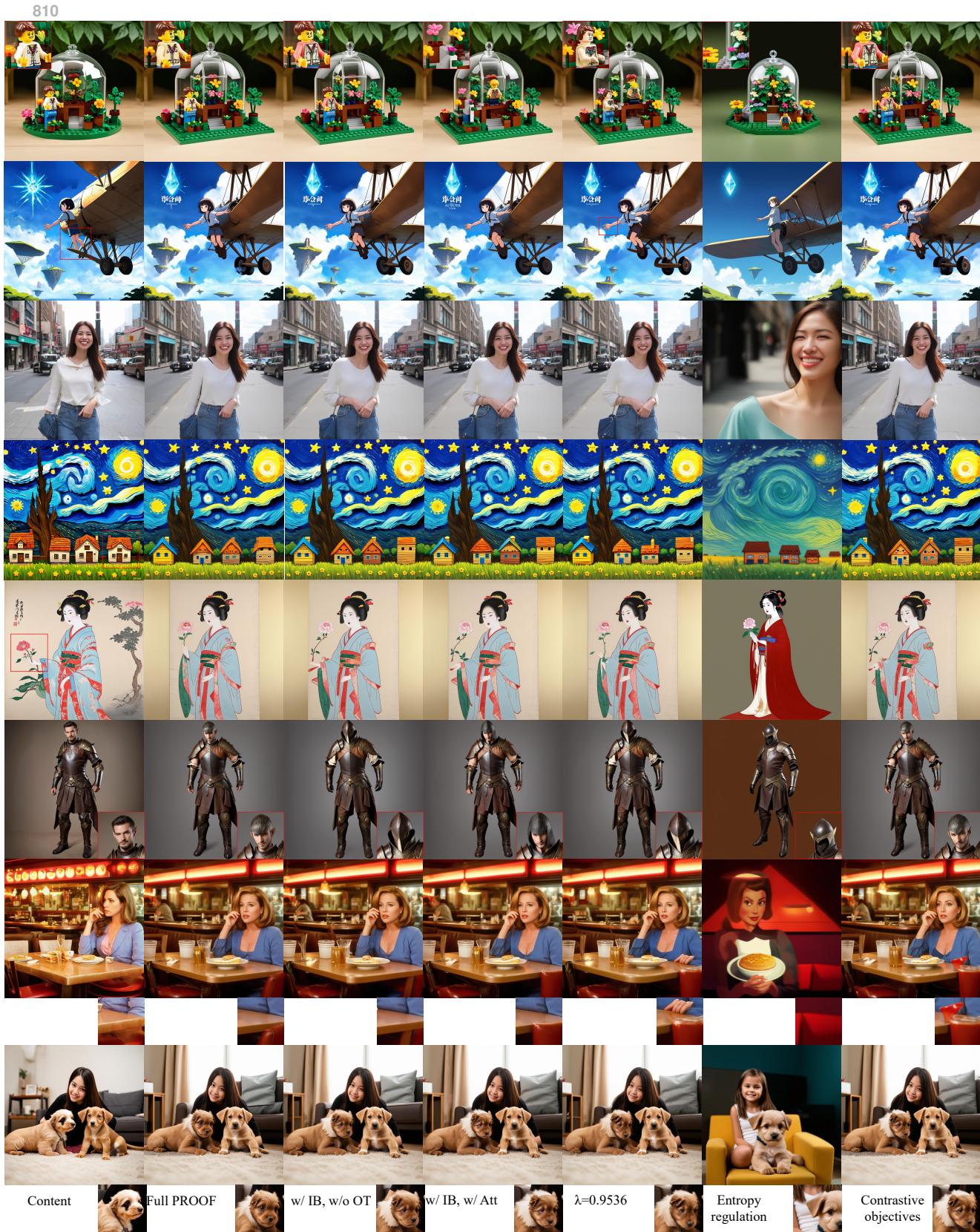


Figure 8: PROOF sufficiently preserves the global structure and appearance based on OTIB, while other variants show lower content fidelity. Zoom in for better observation.

864 **D EVALUATION METRIC**
865866 Below is the explicit explanation of how DINO ViT self-similarity and DINO-I are calculated:
867868 1. The structural consistency is quantified as:
869

870
$$\text{Self-sim} = \frac{1}{N} \sum_{i=1}^N \|\phi_{\text{DINO}}(I_{\text{Ref}})_i - \phi_{\text{DINO}}(I_{\text{Out}})_i\|_2^2, \quad (35)$$

871

872 where ϕ_{DINO} : DINO-ViT base model (patch size=8) feature extractor, I_{Ref} : Reference input image,
873 I_{Out} : Generated output image, N : Number of feature vectors (layer_num=11).
874875 2. The appearance similarity is computed as:
876

877
$$\text{DINO-I} = \frac{\mathbf{v}_{\text{ref}} \cdot \mathbf{v}_{\text{out}}}{\|\mathbf{v}_{\text{ref}}\|_2 \|\mathbf{v}_{\text{out}}\|_2}, \quad (36)$$

878 where $\mathbf{v}_{\text{ref}} = \phi_{\text{DINO}}^{[\text{CLS}]}(I_{\text{ref}})$: DINO-ViT [CLS] token embedding of reference image, $\mathbf{v}_{\text{out}} =$
879 $\phi_{\text{DINO}}^{[\text{CLS}]}(I_{\text{out}})$: DINO-ViT [CLS] token embedding of output image, ϕ_{DINO} : DINO-ViT small model
880 (patch size=16) feature extractor, \cdot denotes dot product.
881882 **E DIVERSITY-BOOSTING METHODS**
883884 In these diversity-inducing settings, we maintain the $\mathcal{L}_{\text{noise}}$ of Equ. 22 to conduct global content
885 preservation.
886887 **E.1 CONTRASTIVE OBJECTIVE**
888889 Given $\text{flat_Z} = \text{flatten}(Z) \in \mathbb{R}^{N \times d}$, $\text{flat_h} = \text{flatten}(R) \in \mathbb{R}^{N \times d}$, $\text{flat_l} = \text{flatten}(N_{\text{Div}}) \in \mathbb{R}^{N \times d}$,
890 we calculate the cross-modal cosine similarity explicitly as $\text{sim_zh} = \cos(\text{flat_Z}, \text{flat_h})$, $\text{sim_zl} =$
891 $\cos(\text{flat_Z}, \text{flat_l})$, $\text{sim_hl} = \cos(\text{flat_h}, \text{flat_l})$. Then the contrastive objective loss is indicated as:
892

893
$$\mathcal{L}_{\text{contrast}} = w * (\text{MSE}(\text{sim_zh}, \text{sim_hl}) + \text{MSE}(\text{sim_zl}, 1 - \text{sim_hl})), \quad (37)$$

894 where w is the loss weight.
895896 Note that the contrastive objective has some limitations as follows:
897898 1. Exhibits significantly weaker robustness compared to PROOF under strong perturbations.
899 2. Fails to perform effective representation learning at the manifold distribution level.
900 3. Demonstrates notable scalability constraints in real-world applications.
901 4. Generates structural and appearance artifacts (Fig. 6, Fig. 8).
902903 **E.2 ENTROPY REGULARIZATION**
904905 1. Input tensor flattening (flatten the i -th sample of Z from multi-dimensional to a vector)
906

907
$$Z_i^{\text{flat}} = \text{view}(Z_i, -1) \quad (38)$$

908 (i.e., flattened into a $1 \times D$ vector, where D is the flattened dimension)
909910 2. Softmax probability calculation of the j -th class for the i -th sample (compute class probabilities
911 for each flattened sample)
912

913
$$p_{i,j} = \text{Softmax}(Z_i^{\text{flat}})_j = \frac{\exp((Z_i^{\text{flat}})_j)}{\sum_{k=1}^D \exp((Z_i^{\text{flat}})_k)} \quad (39)$$

914

915 3. Entropy calculation for a single sample (ϵ is added to avoid meaningless logarithm)
916

917
$$H(Z_i) = - \sum_{j=1}^D p_{i,j} \cdot \log(p_{i,j} + \epsilon) \quad (40)$$

918
 919 Table 4: PROOF exhibits competitive human preference percentages. Preference consistency is
 920 87%, std. deviation is $\pm 3.0\%$, and the p-value of Wilcoxon is 0.016, which demonstrates the results
 921 are statistically significant.

Methods	Quality \uparrow	Fidelity \uparrow	Diversity (subject to Fidelity) \uparrow
Uni-ControlNet Zhao et al. (2023)	78%	71%	75%
ControlNet + IP Adapter Zhang et al. (2023a); Ye et al. (2023)	57%	64%	75%
T2I-Adapter + IP Adapter Mou et al. (2024); Ye et al. (2023)	67%	65%	78%
Ctrl-X Lin et al. (2024)	81%	90%	74%
FreeControl Mo et al. (2024)	76%	51%	66%
Reimagine AI (2023)	91%	37%	51%
PROOF (ours)	89%	89%	90%

922
 923 Therefore, the function definition of Entropy regularization is:
 924
 925

$$\text{Entropy}(Z, w, \epsilon = 10^{-8}) = -w \cdot \frac{1}{N} \sum_{i=1}^N H(Z_i) \quad (41)$$

926 Note that entropy regularization has some limitations as follows (Fig. 6, Fig. 8):
 927
 928

1. Complete loss of background information.
2. Fails to ensure a minimal sufficient representation learning.
3. Poor robustness in structure and appearance preservation.

929 F ADDITIONAL RESULTS

930 In this section, we provide additional qualitative results of 2D (Figure 20, 22) or 3D asset (Figure
 931 21) creation based on PROOF. Figure 19 indicates the workable function of OTIB to conduct
 932 controllable diversity implicitly. Note that the detailed differences for small β are not obvious. Please
 933 zoom in sufficiently and observe patiently.

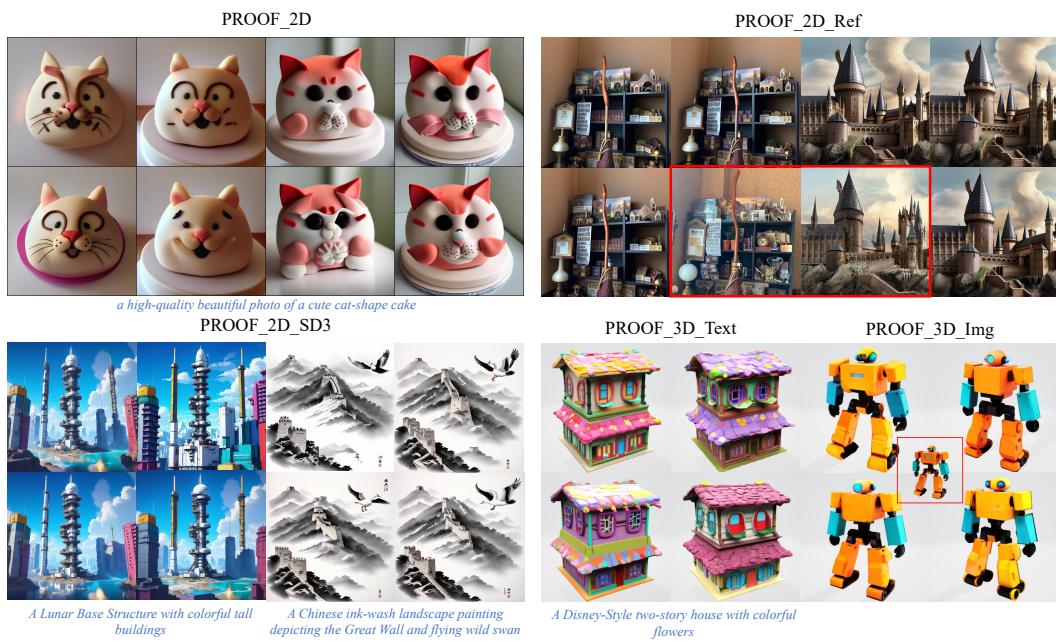
934 **Model select** As for PROOF_2D_Ref, we use Realistic_Vision_V4.0_noVAE for diffusion
 935 inversion and denoising, with ip-adapter-plus_sd15 for appearance transfer. The VAE module is from
 936 stabilityai-stable-diffusion-2-1-base. In Figure 22, iRFDS+Instantx uses the checkpoint of InstantX-
 937 SD3.5-Large-IP-Adapter. In Figure 9, images of PROOF_2D are synthesized based on the check-
 938 point of Stable Diffusion v2-1_512-ema-pruned. In Figure 18, we use stabilityai-stable-diffusion-xl-
 939 base-1.0.

940 Note that because of the strong constraints from the image condition of TRELLIS Xiang et al.
 941 (2025), there is little diverse space for direct PROOF_3D_Img. Therefore, we first synthesize the
 942 image variants based on PROOF_2D and then conduct 3D modeling based on the trellis-image-large
 943 model. Text-based PROOF_3D uses the trellis-text-xlarge model, as shown in Figure 21.

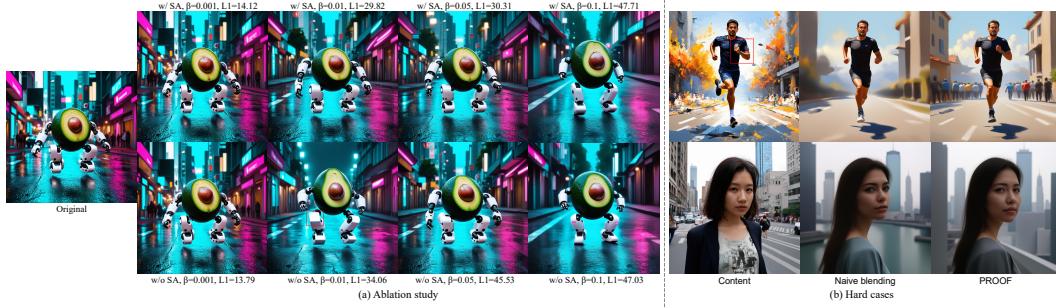
944 **User Study** We invite 100 domain experts to conduct the user study. First, we briefly explain the
 945 highly correlated asset creation task. We suggest that users carefully observe the original content
 946 and generated image variants obtained by 6 state-of-the-art methods and our proposed PROOF.
 947 Each observed algorithm has 20 samples. These observers need to select the better image variant
 948 set from 3 aspects: (a) overall quality, (b) overall fidelity considering structure and appearance,
 949 (c) controllable diversity subject to the fidelity. The interface of our user study is shown in Figure 23.

950
 951 Table 5: GENEVAL Ghosh et al. (2023) scores of different models. Robust PROOF preserves the
 952 semantic content well and exhibits higher text-image correctness v.s. naive noise interpolation.

Model	Overall	Single object	Two object	Counting	Colors	Position	Color attribution
CLIP retrieval	0.35	0.89	0.22	0.37	0.62	0.03	0
minDALL-E	0.23	0.73	0.11	0.12	0.37	0.02	0.01
Stable Diffusion v1.5	0.43	0.97	0.38	0.35	0.76	0.04	0.06
Stable Diffusion v2.1	0.5	0.98	0.51	0.44	0.85	0.07	0.17
Stable Diffusion XL	0.55	0.98	0.74	0.39	0.85	0.15	0.23
IF-XL	0.61	0.97	0.74	0.66	0.81	0.13	0.35
Naive $\lambda=0.85$	0.61	0.96	0.67	0.54	0.80	0.23	0.46
PROOF $\beta=0.1$	0.70	0.98	0.80	0.65	0.91	0.32	0.55
PROOF $\beta=0.01$	0.72	0.98	0.83	0.67	0.92	0.35	0.57



993 Figure 9: Our proposed PROOF is an effective learning framework to synthesize highly correlated
994 assets where variants exhibit consistent structure and appearance. Test-time PROOF facilitates high-
995 quality 2D assets Esser et al. (2024) and 3D assets Xiang et al. (2025) with high contextual fidelity
996 and controllable diversity, under any text or image condition (red boxes).



1007 Figure 10: (a) PROOF variants show that methods w/ SA preserve better appearance statistics than
1008 those w/o SA. Higher β usually intentionally relaxes contextual constraints but boosts the diversity.
1009 (b) The background lacks abundant details for large-scale information compression (e.g., $\lambda=0.8$),
1010 while the human identity and pose are maintained well.

Figure 11: Integration of PROOF and a structure-guided controller. Despite being constrained by edge conditions, PROOF maintains structure and texture fidelity in local areas while still generating diverse variations. Under large-scale perturbation, PROOF performs robust variant generation.

Figure 12: PROOF with semantic editing Mokady et al. (2023) produces high-quality editing results considering structure and appearance preservation.

Comparision with DSG While achieving similar editing effects to DSG Epstein et al. (2023) in Figure 13, our *PROOF* doesn't require any explicit guidance, e.g., position, size, shape.

Figure 13: Feature workbench provided by DSG Epstein et al. (2023) is fine-grained but cumbersome. Our PROOF gives another efficient and diverse workbench to change the properties of objects.

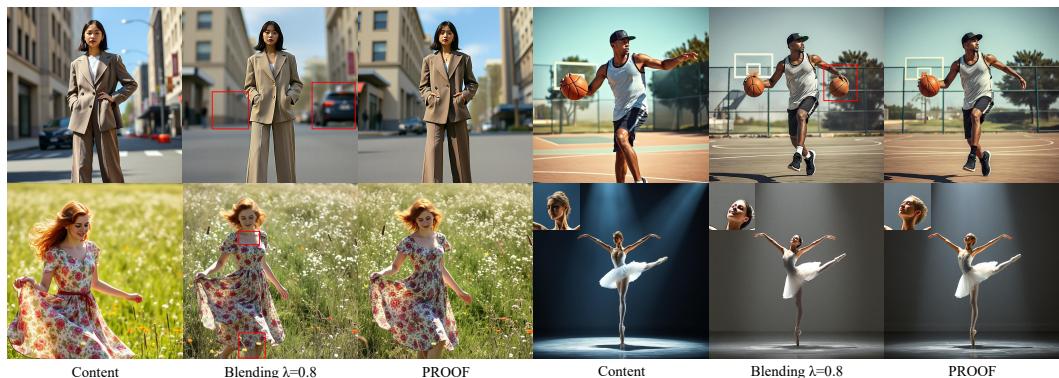


Figure 14: Content transformations based on FLUX.1-schnell with PROOF. We show some examples of human deformation with different poses and novel perspectives, which demonstrate that intrinsic interpolation to manipulate noise is efficient to model complex nonlinear transformation patterns. PROOF outperforms naive blending, as the latter often leads to noticeable content distortion and undesirable artifacts.

Figure 15: PROOF w/ $\beta = 0.1$ (Row 1) and $\beta = 0.05$ (Row 2) are corresponding with naive blending w/ $\lambda = 0.8589$ and $\lambda = 0.9536$, based on the mean value across the channel and spatial dimensions of PROOF’s neural λ . PROOF preserves fine-grained structure and appearance features.

Figure 16: Variant comparison of PROOF and other image variation works. Zhang et al. (2023b) maintains alignment between the latent distributions of the generative and inverse paths to improve semantic and structural fidelity. Xu et al. (2024) eliminates the text encoder and text prompts, which may result in semantic degradation (e.g., face and teddy bear in Row 3). PROOF leveraging robust manifold manipulation preserves fine-grained structure and appearance features (Row 2). Moreover, adaptive interpolation via OTIB efficiently produces diverse high-fidelity image variants.

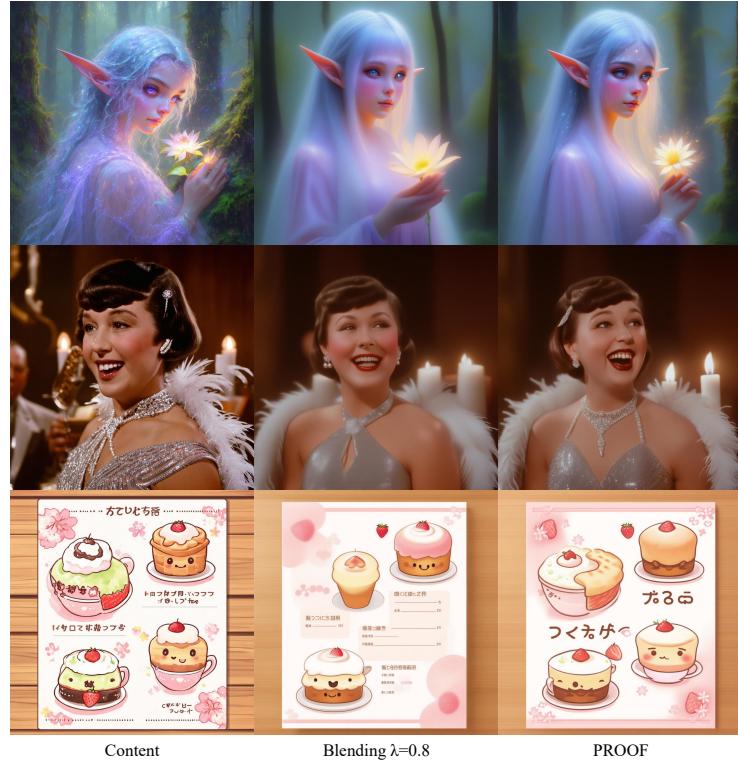


Figure 17: Additional visual results of PROOF_2D based on Stability AI SD3.5 Medium. PROOF is more robust to defend against noise perturbation.

1134
 1135 **Comparison with Golden Noise** Task Differentiation of Golden Noise Zhou et al. (2025) and
 1136 PROOF: Golden Noise focuses on text-embedding alignment in noise space and embeds semantic
 1137 information into noise for semantic fidelity. PROOF targets content-aligned variation generation by
 1138 modifying local structure and appearance distributions for contextual fidelity with diversity. We pro-
 1139 vide some comparative results in Fig. 18, which demonstrates that PROOF is powerful to synthesize
 1140 high-fidelity and high-quality assets.

1140 Specifically, given standard noise as N_{Orig} , we obtain golden noise $N_{Gold} = NPNet(N_{Orig}, c)$.
 1141 Moreover, standard PROOF and golden PROOF are implemented based on N_{Orig} and N_{Gold} , where
 1142 the same N_{Div} is adaptively interpolated via OTIB. Note that both NPNet and PROOF leverage
 1143 SDXL as the pretrained base model.

1185 Figure 18: Standard PROOF and Golden PROOF are based on the standard noise and golden noise,
 1186 respectively. PROOF seems to produce more high-fidelity golden noise (col 3), and Zhou et al.
 1187 (2025) exhibits low perturbation robustness (col 4).

Figure 19: PROOF effectively controls the structure and appearance of the content. Smaller tradeoff weight β puts content on a slight adjustment workbench, while larger β changes the content more obviously, but maintains the scene layout.

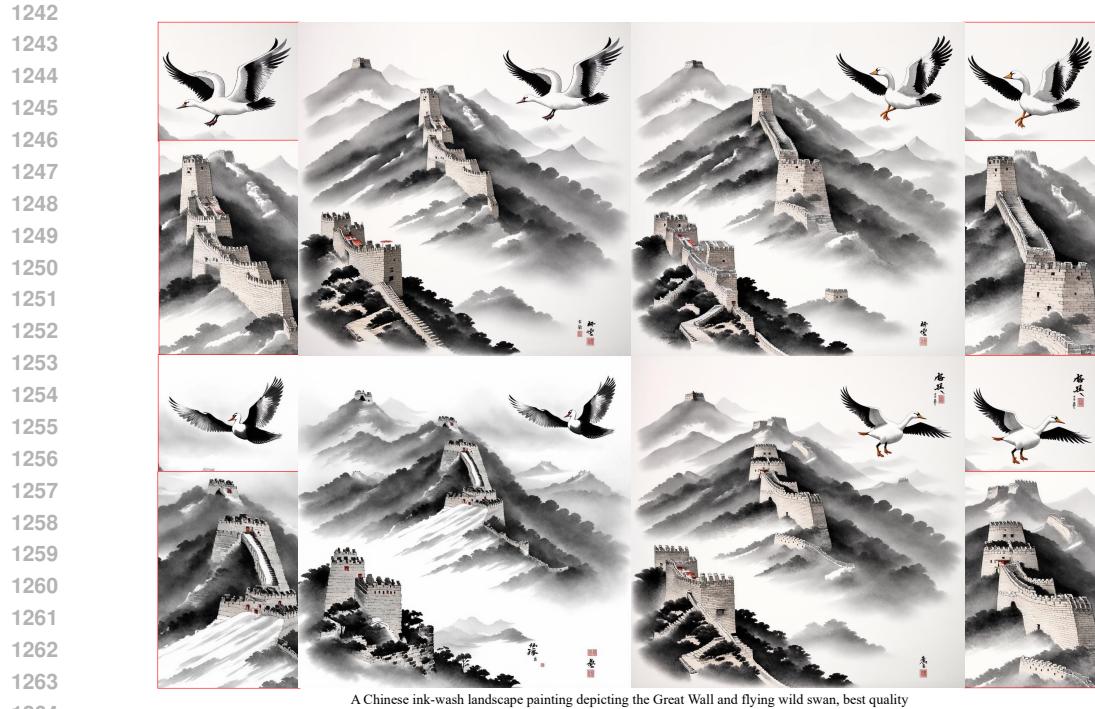


Figure 20: Image variants of the teaser figure 9 under magnified observation.

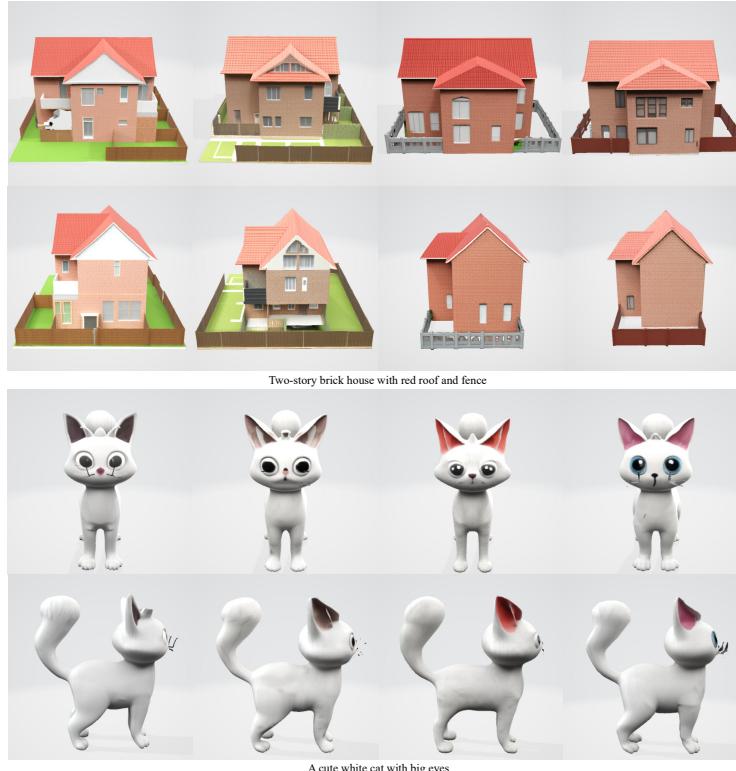


Figure 21: More qualitative results of PROOF_3D based on TRELLIS Xiang et al. (2025).

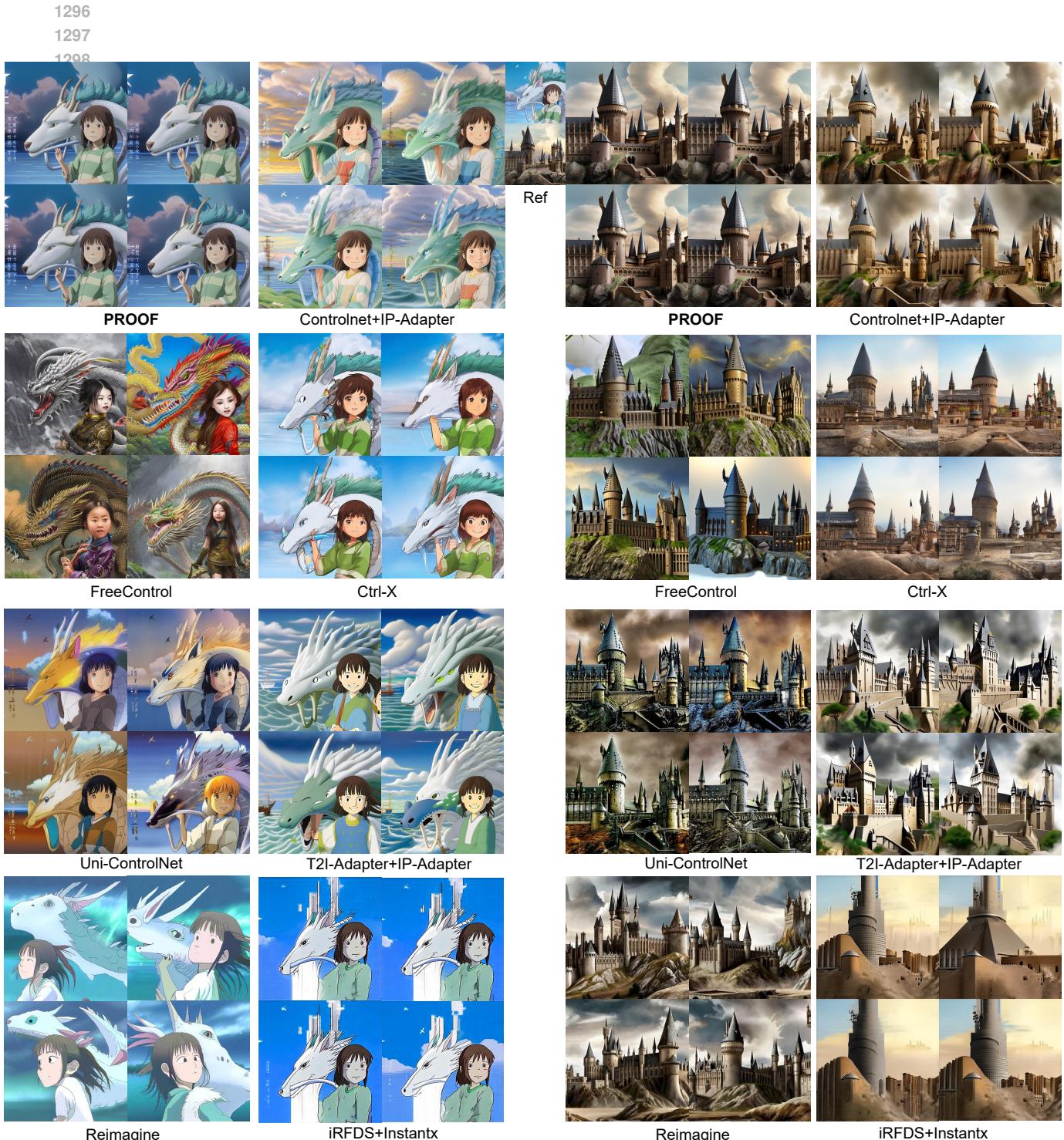


Figure 22: Qualitative results of PROOF_2D_Ref, ControlNet Zhang et al. (2023a); Ye et al. (2023), FreeControl Mo et al. (2024), Ctrl-X Lin et al. (2024), Uni-ControlNet Zhao et al. (2023), T2I-Adapter Mou et al. (2024); Ye et al. (2023), Reimagine AI (2023) and iRFDS Yang et al. (2025) on the wild images.

1350
1351

Content

PROOF

Controlnet+
IP-Adapter

FreeControl

Ctrl-X

Uni-
ControlNetT2I-Adapter+
IP-Adapter

Reimagine

1398
1399
1400
1401
1402
1403

Figure 23: (a) Additional qualitative results of PROOF_2D_Ref, ControlNet Zhang et al. (2023a); Ye et al. (2023), FreeControl Mo et al. (2024), Ctrl-X Lin et al. (2024), Uni-ControlNet Zhao et al. (2023), T2I-Adapter Mou et al. (2024); Ye et al. (2023), and Reimagine AI (2023). (b) The interface of our user study.

Back

1/100

Next