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ABSTRACT

The diffusion model has provided a strong tool for implementing text-to-image
(T2I) and image-to-image (I2I) generation. Recently, topology and texture con-
trol have been popular explorations. Explicit methods consider high-fidelity con-
trollable editing based on external signals or diffusion feature manipulations. The
implicit method naively conducts noise interpolation in manifold space. However,
they suffer from low robustness of topology and texture under noise perturba-
tions. In this paper, we first propose a plug-and-play Perturbation-RObust nOise
Finetune (PROOF) module employed by Stable Diffusion to realize a trade-off
between content preservation and controllable diversity for highly correlated as-
set generation. Information bottleneck (IB) and optimal transport (OT) are capa-
ble of producing high-fidelity image variations considering topology and texture
alignments, respectively. We derive the closed-form solution of the optimal inter-
polation weight based on optimal-transported information bottleneck (OTIB), and
design the corresponding architecture to fine-tune seed noise or inverse noise with
around only 14K trainable parameters and 10 minutes of training. Comprehensive
experiments and ablation studies demonstrate that PROOF provides a powerful
unified latent manipulation module to efficiently fine-tune the 2D/3D assets with
text or image guidance, based on multiple base model architectures.

1 INTRODUCTION

Controllable T2I and I2I are challenging and meaningful tasks for asset creation. Previous diffusion
control models try to implement structure or appearance-aligned generation explicitly, mainly by
feature-level modulation Lin et al. (2024); Mo et al. (2024); Epstein et al. (2023), adapter injection
Mou et al. (2024); Zhao et al. (2023); Ye et al. (2023), and model fine-tuning based on external
structure or appearance signals Zhang et al. (2023a); Gal et al. (2023); Ruiz et al. (2023; 2024).
Explicit methods are dependent on cumbersome user control guidance, which hinders topological
diversity and appearance robustness as well. On the contrary, we pay attention to the implicit noise-
level manipulation on the inherent latent space, where we conduct a trade-off of diversity, structure,
and appearance simultaneously.

Recently, test-time noise searching Ma et al. (2025); Zhou et al. (2025) has proved that golden noise
plays an important role in diffusion performance for semantic alignment. Other latent manipulation
methods, e.g., UnCLIP Ramesh et al. (2022), Kwon et al. (2023), also focus on generating semantic-
aligned variants. These works have a fundamental task distinction compared with PROOF. We
assume the noise latent has been semantic-aligned, and conduct content-aligned variants with robust
structures and textures preservation. We briefly introduce our motivation as follows.

Gaussian noise inherently encodes contextual information. It is supposed to adaptively inject diverse
information into the source content while adversarially preserving the original content distribution.
This fidelity-diversity trade-off needs to learn a pixel-wise minimal sufficient representation of the
noise latent. Inspired by information bottleneck Tishby & Zaslavsky (2015); Schulz et al. (2020), we
compress the content latent for topology alignment in an implicit view of the mutual information.

Furthermore, spatial attention is important to improve the contextual perception and appearance ro-
bustness. Noise features are distributed randomly without obviously recognizable patterns. There-
fore, it is supposed to distribute attention in a coordinated manner to eliminate excessive local atten-
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Figure 1: Content-diversity tradeoff: given a noise latent of a content, naive noise blending with in-
terpolation weight λ generates uncontrollable topology and appearance. PROOF finetunes noise la-
tent where adaptively injecting the perturbation based on the optimal transported information bottle-
neck. The structure and appearance statistics from the content are preserved well, with concurrently
controllable diversity. Res means the optimized area of PROOF compared with naive blending.

tion. However, traditional QKV attention uses Softmax, which lacks this global attention distribution
ability. Inspired by Sinkhorn optimal transport Cuturi (2013); Kim et al. (2024), we apply the dou-
bly stochastic activation constraint to better model the global feature relationships in noise space.
This optimally transported attention exhibits significant appearance fidelity. More remarkably, we
derive the closed-form solution of the Sinkhorn-regularized IB interpolation weight, which is the
theoretical foundation of the PROOF architecture. More details are represented in Sec. 4.3.

As shown in Figure 1, the mainstream implicit approach, i.e., naive noise interpolation with a per-
pixel constant weight λ for original noise and (1-λ) for another noise perturbation, fails to preserve
the structure and appearance statistics of the original content. In our task definition, the assets for
content and naive blending are not highly correlated due to substantial inconsistency of structure
and appearance. In contrast, our PROOF adaptively blends pixel-wise perturbations via activation
optimization in noise space, based on the proposed Optimal-Transported Information Bottleneck
module, thereby facilitating precise asset variations. Our paper presents several significant contri-
butions, mainly including three folds:

1. We first explore the structure and appearance-aligned 2D/3D asset generation by means of
perturbation-robust noise representation learning rather than other explicit control manners, such
as attention matrices, intermediate activations, or external control signals. Remarkably, test-time
PROOF demands merely brief training while maintaining full disentanglement from the diffusion
model’s forward and denoising process.

2. We present an efficient and effective Optimal-Transported Information Bottleneck module that
provides a trade-off between content preservation and mode variety. IB prevents the learning from
mode collapse, and OT promotes higher faithfulness of textures. Moreover, we derive the closed-
form solution of the Sinkhorn-regularized IB interpolation weight. This mathematical derivation is
aligned with the information flow of OTIB, which provides a solid theoretical foundation for OTIB.

3. Our proposed PROOF is capable of being adaptive for multiple asset creation tasks, base archi-
tectures, and model checkpoints. Compared with state-of-the-art structure and appearance-aligned
approaches, comprehensive experimental analyses demonstrate that PROOF is the first perturbation-
robust plug-and-play implicit controller for pre-trained T2I models. Furthermore, PROOF is supe-
rior to other diversity-inducing methods, such as entropy regularization and contrastive objective.

2 RELATED WORK

We briefly introduce diffusion control methods, diffusion seed manipulation, and information com-
pression works in this section.
Diffusion control. On one hand, pre-trained T2I foundational models Rombach et al. (2022) are
potentially able to generate diverse images taking advantage of the random noise initialization. On
the other hand, uncertainty from the Gaussian noises makes it hard to synthesize credible images
with a certain topology or texture. To address this matter, previous diffusion control methods com-
pose different adapters independently Mou et al. (2024); Zhao et al. (2023), or conduct adaptively
feature modulations Zhang et al. (2023a); Lin et al. (2024), and model finetune Gal et al. (2023);
Ruiz et al. (2023) to facilitate alignment of internal diffusion knowledge and external control signals.
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Topology alignment SD-based methods have demonstrated strong generalization capabilities and
composability while maintaining high creation quality Li et al. (2023); Zhao et al. (2023); Yang
et al. (2023); Avrahami et al. (2023b); Zheng et al. (2023); Wang et al. (2024); Zhou et al. (2024).
External control signals include Canny edge, depth map, human pose, line drawing, HED edge
drawing, normal map, segmentation mask (used in Zhang et al. (2023a); Zhao et al. (2023)), as
well as 3d mesh, point cloud, sketch (used in Lin et al. (2024)), etc. FreeControl Mo et al. (2024)
manipulates the specific-class linear semantic subspace to employ structural guidance. Semantic
signal usually possesses higher freedom than low-level vision signals. Note that our PROOF does
not depend on any external structure control signal.

Texture alignment methods try to realize I2I by image prior embedding or few-shot weight adap-
tation. General I2I methods extract global semantic embedding from the referenced images Zhao
et al. (2023); Ye et al. (2023); Mou et al. (2024). Personalized model concerning specific concept
needs pretrained T2I diffusion finetuning based on a small set of image samples Ruiz et al. (2023);
Gal et al. (2023); Avrahami et al. (2023a); Po et al. (2024); Ruiz et al. (2024). FreeControl Mo
et al. (2024) uses intermediate activations as the appearance representation, similar to DSG Epstein
et al. (2023). However, our PROOF achieves superior appearance alignment performance without
personalized concept data or model fine-tuning.
Diffusion seed. Previous diffusion control methods only treat Gaussian noise as a flexible random
generation seed Zhang et al. (2023a); Zhao et al. (2023); Ye et al. (2023); Zheng et al. (2023); Wang
et al. (2024); Zhou et al. (2024); Ruiz et al. (2023); Gal et al. (2023); Avrahami et al. (2023a); Po et al.
(2024); Ruiz et al. (2024). They constrain the pre-trained diffusion model using external structure or
textural data. Nevertheless, some diffusion inversion works Yang et al. (2025); Song et al. (2020);
Mokady et al. (2023) show high-fidelity image reconstruction and editing. Seed searching Ma et al.
(2025) is beyond the denoising steps for high-quality image generation. These methods establish
the critical role of noise representation, which is demonstrated by Figure 1 as well. Therefore, we
explore the implicit structure and appearance alignment based on noise in this paper.
Information bottleneck. Information bottleneck (IB) Tishby & Zaslavsky (2015) plays a repre-
sentation trade-off between information compression and information preservation for neural learn-
ing tasks. Furthermore, VIB Alemi et al. (2017) leverages variational inference to facilitate the IB
neural compression. IBA Schulz et al. (2020); Gao et al. (2021) polishes the attribution information
based on KL divergence Csiszár (1975) to effectively disentangle relative and irrelative information
concerning the classification task. We will introduce our information bottleneck in Section 3, 4.

3 PRELIMINARIES

3.1 PROBLEM SETTING

Given source noise NOrig and injected noise NDiv are from a consistent distribution N (µG, σ
2
G),

where µG and σG represent the means and standard deviations. Then, the modulated manifold of
2D/3D asset can be formulated as follows Schulz et al. (2020):

NOut = λNOrig + (1− λ)NDiv, (1)
where λ is the blending weight as the hyperparameter or learned prior, NDiv is the noise pertur-
bation. Given NOut as zt, the latent diffusion model Rombach et al. (2022) conducts a denoising
process on the compressed latent from the Gaussian noise distribution. The denoised manifold of
the pre-trained diffusion model is calculated as follows:

z̃0 =
zt√
αt

−
√
1− αtϵθ(zt, c, t)√

αt
. (2)

where ϵθ is the denoising propagation parameter, t is the diffusion timestep, c means prompt, αt

means the noise scheduling parameter at timestep t, while ᾱt indicates the cumulative product of α
from step 1 to t. Given z̃0, we obtain highly correlated assets via the Decoder of VAE.

Naive noise interpolation based on a constant λ and other diversity-inducing methods (e.g., entropy
regularization, contrastive objective) are not robust to perturbation from NDiv. Our PROOF learns
the adaptive interpolation weight based on the closed-form solution of OTIB. We define our noise
finetuning as:
θ∗ = argminθENOrig,NDiv

[Lnoise(PROOFθ(NOirg, NDiv), NOrig)+Linfo(PROOFθ(NOrig), λ)],
(3)

3
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Figure 2: Method overview: as a plug-and-play content controller, PROOF can be employed for
2D/3D generation tasks, different architectures and model checkpoints. OTIB consists of a Sinkhorn
Attention module and an information bottleneck module. We obtain NPROOF by information com-
pression of NOrig and information modulation of NDiv. More details are introduced in Section 4.

where PROOFθ is the generator of PROOF, Lnoise aims to provide pixel-level regularization for
structure and appearance alignment with NOrig, and Linfo explores controlling appropriate neural
feature leakage with consideration of contextual preservation, which learns the minimal sufficient
representation to avoid the diversity collapse.

3.2 INFORMATION BOTTLENECK REVISITING

Let’s denote the original input data, the corresponding label, and compressed information by X ,
Y , and Z. The information compression principle Tishby & Zaslavsky (2015) is a trade-off be-
tween task-related information preservation and the minimal sufficient information compression, by
maximizing the sharable information of Z and Y while minimizing that of Z and X:

max
Z

I(Y ;Z)− βI(X;Z), (4)

where I means the mutual information and β is a trade-off weight. Let R denote the feature repre-
sentations of X , and the information loss is formulated as:

I(X;Z) ≜ I(R;Z) ≜ DKL[p(Z|R)∥q(Z)], (5)

where q(Z) with Gaussian distribution is a variational approximation of p(Z) Schulz et al. (2020).
DKL is the KL divergence Csiszár (1975) used to represent the distance between two distributions.

In our problem setting, R is the noise latent NOrig and Z is the compressed latent NOut.

3.3 OPTIMAL TRANSPORT REVISITING

We revisit the Optimal Transport that provides a mathematical framework for transporting probabil-
ity distributions from the source to the target. Given discrete distributions as:

µ =

M∑
i=1

µiδxi , ν =

N∑
j=1

νjδyj (6)

where µ, ν are discrete probability measures, µi ≥ 0, νj ≥ 0 are probability masses (
∑

i µi =∑
j νj = 1), δx denotes the Dirac delta function centered at point x, M and N are the number

of support points. The original OT problem finds a transport plan T∗ that minimizes the total
transportation cost, which is computationally intensive. The Sinkhorn algorithm Cuturi (2013); Kim
et al. (2024) equips OT with an entropy regularization term:

T∗ = arg min
T∈Π(µ,ν)

⟨T,C⟩F − ϵH(T), (7)

where T ∈ RM×N is the transport matrix with Tij specifying how much mass moves from xi

to yj , C ∈ RM×N is the cost matrix where Cij = d(xi, yj), Π(µ, ν) = {T ≥ 0 | T1N =

4
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µ,T⊤1M = ν} defines the set of admissible transport plans, ⟨·, ·⟩F denotes the Frobenius inner
product. Moreover, ϵ > 0 is the regularization strength, H(T) = −

∑
ij Tij logTij is the entropy

of the transport plan.

4 APPROACH

In this section, we provide a detailed introduction to our proposed PROOF, including the overall
pipeline in Section 4.1, OTIB module architecture in Section 4.2, the closed-form theoretical solu-
tion in Section 4.3, along with the training loss in Section 4.4.

4.1 OVERALL PIPELINE

As shown in Fig. 2, PROOF can manipulate random noise with text or image conditions in 2D
Rombach et al. (2022); Esser et al. (2024) or 3D data Xiang et al. (2025) distribution.

4.1.1 PROOF 2D

As for none-referenced PROOF 2D, given a text prompt denoted by ’S’, diverse images can be
synthesized based on:

IPROOF = G2D∗
ϕ (PROOF 2D

θ (NOirg, NDiv), ’S’), (8)

where G2D∗
ϕ is the frozen generator of diffusion model Rombach et al. (2022).

As for referenced PROOF 2D, given a reference image IRef , we extract the image prompt using
IP-Adapter Ye et al. (2023) for consistent appearance transfer. Furthermore, we utilize the diffu-
sion inversion method Mokady et al. (2023) to recover the corresponding contextual latent of IRef .
PROOF 2D

θ perturbs the inversed noise to generate diverse images:

IPROOF = G2D∗
ϕ (PROOF 2D

θ (Inv(IRef ), NDiv), IRef ) (9)

4.1.2 PROOF 3D

TRELLIS Xiang et al. (2025) compresses the 3D asset representation into a structured 3D latent
similar to Latent Diffusion Rombach et al. (2022). It’s possible for PROOF 3D

θ to implement the
3D tradeoff considering structural and textural preservation, along with the distribution diversity of
3D models and neural rendering Mildenhall et al. (2021); Kerbl et al. (2023); Lu et al. (2024):

MPROOF = G3D∗
ϕ (PROOF 3D

θ (NOirg, NDiv), ’S’), (10)

where G3D∗
ϕ is the frozen generator of TRELLIS Xiang et al. (2025).

4.2 OTIB ARCHITECTURE

As mentioned in Section 3, implicit neural compression of information can be formulated as follows:

min
Z

βI(NOrig;Z), (11)

where I denotes the mutual information function, Z is the manipulated latent derived from NOrig

via Equ. 1. To realize high-fidelity content preservation and generation diversity, we adaptively
learn a neural information filter λ of OTIB.

λ = Sigmoid(Conv(NOrig) + FSA(NOrig)), (12)

where FSA is a Sinkhorn Attention module, as shown in Figure 2. The intent of PROOF is to
improve representation diversity while implicitly adhering to the global content attributes of a certain
scenario. If λ is 0, the whole manifold will be replaced by NDiv, which results in entire structure
and appearance leakages. If λ is 1, Z excludes any form of diversity-inducing perturbations, which
results in mode collapse. Qualitative analyses are illustrated in Sec. 5.

5
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4.3 CLOSED-FORM SINKHORN-IB SOLUTION

We impose a Sinkhorn Attention module FSA in a spatial-OT view to improve contextual preserva-
tion of PROOF. The Sinkhorn Attention algorithm is as follows:

Algorithm 1 Sinkhorn-Attention Forward Pass
1: Input: Feature map X ∈ RB×C×H×W

2: Q = Conv Nd(X), K = Conv Nd(X), V = Conv Nd(X) ▷ Learnable projections
3: A = QK⊤/

√
C ▷ Attention logits

4: for k = 1 to niters do
5: A = A− LogSumExp(A, dim = 2) ▷ Row normalization
6: A = A− LogSumExp(A, dim = 1) ▷ Column normalization
7: end for
8: T = exp(A) ▷ Optimal attention weights
9: return TV ▷ Transport applied to values

where Q,K, V ∈ RB×(HW )×C are Query, Key, Value tensors, respectively. A ∈ RB×(HW )×(HW )

is Attention logits matrix, LogSumExp(A)i = log
∑

j exp(Aij), and T is Doubly-stochastic atten-
tion matrix. Our transport solution is established through:

Tij = exp(
q⊤i kj√

C︸ ︷︷ ︸
Transport cost

−αi
OT − βj

OT︸ ︷︷ ︸
Sinkhorn scalars

) (13)

where αOT and βOT are row and column normalization factors, respectively. The division by
√
C

stabilizes gradient flow. We consider the joint optimization objective of OTIB:
min
λ

I(R;Z)︸ ︷︷ ︸
IB term

+γ < A∗,C >︸ ︷︷ ︸
Sinkhorn OT term

+ϵH(A∗), (14)

where Z = λ⊙NOrig + (1− λ)⊙NDiv, A∗ = Sinkhorn(C), where Cij =
⟨qi,kj⟩√

d
, d = C.

We assume that: NOrig ∼ N (0, σ2
RI), NDiv ∼ N (0, σ2

NDiv
I). NOrig and NDiv are independent.

Step 1: Information Bottleneck Term Simplification. Under Gaussian assumptions, the mutual
information and the gradient calculation are formulated as:

I(R;Z) =
1

2
log

(
1 +

λ2σ2
R

(1− λ)2σ2
NDiv

)
,
∂I

∂λ
=

λσ2
R − (1− λ)σ2

NDiv

λ2σ2
R + (1− λ)2σ2

NDiv

(15)

Step 2: Sinkhorn Term Gradient. Using the Envelope Theorem and chain rule:
∂LOT

∂λ
=

〈
∂A∗

∂λ
,C

〉
+

〈
A∗,

∂C

∂λ

〉
≈

〈
A∗,

∂C

∂λ

〉
, (16)

where A∗ = diag(u)Kdiag(v) with K = e−C/ϵ. ∂Cij

∂λ = ∂
∂λ (

<qi,kj>√
d

) = 1√
d
⟨qi, ∂kj

∂Zj
· ∂Zj

∂λ ⟩ ≈
1√
d
⟨qi, ∂kj

∂Nj
Orig

· ∂Zj

∂λ ⟩ = 1√
d
⟨qi,WK(N j

Orig −N j
Div)⟩.

Step 3: First-Order Optimality Condition Setting. The total gradient to zero:
λσ2

R − (1− λ)σ2
NDiv

λ2σ2
R + (1− λ)2σ2

NDiv

+ γEA∗

[
∂Cij

∂λ

]
= 0 (17)

Step 4: Closed-Form OTIB Solution. The optimal weights take the form (More details are in Ap-
pendix A):

λ∗ = σ

(
1

η

(
γ · Align(NOrig, NDiv)−

σ2
NDiv

σ2
R

))
, (18)

where Align(·) = EA∗

[
∂Cij

∂λ

]
, σ(·) is the sigmoid function, and η is a hyperparameter. The closed-

form solution is aligned with Equ. 12, where Conv approximates σ2 ratio, and FSA approximates
Align term.

6
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Figure 3: Qualitative results of PROOF 2D, ControlNet + IP Adapter Zhang et al. (2023a); Ye et al.
(2023), FreeControl Mo et al. (2024), Ctrl-X Lin et al. (2024), Uni-ControlNet Zhao et al. (2023),
T2I-Adapter + IP Adapter Mou et al. (2024); Ye et al. (2023), and Reimagine AI (2023). Zoom in for
better observation. PROOF realizes more controllable image variations with high-fidelity content.

4.4 TRAINING LOSS

Training losses contain pixel-level reconstruction loss and manifold-level information compression
loss. As for noise consistency loss, the pixel-level supervision for NPROOF is MSE loss that demon-
strates a powerful content preservation function Rombach et al. (2022); Ruiz et al. (2023):

Lnoise = ||NPROOF −NOrig||22. (19)

For Gaussian distribution N (µ, σ2) and N (0, 1), KL divergence is formulated as:

DKL[N(µ, σ2)∥N(0, 1)] = −1

2
[log(σ)2 − (σ)2 − (µ)2 + 1]. (20)

Our framework eliminates the need for feature mean/variance pre-calculation by leveraging the pre-
defined properties of Gaussian noise (µG=0, σG=1). As for our case mentioned in Equ. 5, the
distribution of p(Z|R) is accessed as N [λR, (1 − λ)2] according to Equ. 1. We normalize p(Z|R)
along with q(Z) using µG and σG, then the information compression metric of PROOF is:

Linfo = I(Z;R) = KL[p(Z|R)∥q(Z)] = −1

2
[log(1− λ)2 − (1− λ)2 − (λR)2 + 1], (21)

Finally, the total loss of PROOF is formulated as:

LPROOF = βLinfo + Lnoise, (22)

where β is the content-diversity tradeoff weight (Fig. 10a). Higher β usually intentionally relaxes
contextual constraints but boosts the diversity (Fig. 13, Fig. 19).
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Table 1: PROOF outperforms other SOTA methods in structure and appearance alignments and
robustness, measured by DINO ViT self-similarity and DINO-I. We report the inference time of
PROOF 2D Ref, where diffusion inversion Mokady et al. (2023) is time-consuming. We assess
image quality (PickScore, HPSv2, AES) and diversity (LPIPS, L1).

Methods Training Inference time (s) self-sim ↓ DINO-I ↑ PickScore↑ HPSv2↑ AES↑ L1 LPIPS

Uni-ControlNet Zhao et al. (2023) 10.6 0.045 0.555 6.49 25.33 6.26 56.41 0.5500
ControlNet + IP Adapter Zhang et al. (2023a) 8.1 0.068 0.656 15.08 25.02 6.29 46.06 0.4334
T2I-Adapter + IP Adapter Mou et al. (2024) 4.2 0.055 0.603 12.39 25.45 6.28 50.45 0.4436
Ctrl-X Lin et al. (2024) 14.9 0.057 0.686 11.65 24.63 6.27 37.07 0.4812
FreeControl Mo et al. (2024) 21.5 0.058 0.572 18.13 26.13 6.19 85.45 0.636
Reimagine AI (2023) 10.1 0.073 0.753 15.14 25.27 6.34 64.12 0.6192
RIVAL Zhang et al. (2023b) 13.91 0.035 0.826 56.64 21.12 6.22 47.50 0.5431
Prompt-Free Diffusion Xu et al. (2024) 10.91 0.025 0.824 22.35 19.92 6.21 40.36 0.4671
PROOF (ours) 27.2 0.038 0.841 16.61 25.67 6.29 41.58 0.4342resolution discrepancy between the fine-tuning and inference phases

PROOF Train128*128/ Test 128*128 PROOF Train 64*64/ Test 128*128 PROOF Train 32*32/ Test 128*128Naive blending λ=0.8Content

Figure 4: Robust inference performance of PROOF across distinct latent resolutions. We set β of
PROOF as 0.2, which is aligned with λ = 0.8. It’s efficient for Sinkhorn attention and information
bottleneck to finetune on low-resolution noise space while inferring on high-resolution latent.

5 EXPERIMENTS

Comprehensive qualitative and quantitative evaluations validate PROOF’s dual capability in main-
taining content fidelity while enhancing generation diversity for digital asset creation. Training
protocol and baselines are presented in Appendix B and C. Additional results, e.g., golden noise
Zhou et al. (2025) finetune (Fig. 18), are shown in Appendix F.

5.1 QUANTITATIVE EVALUATION

Tab. 1 shows a quantitative comparison of natural images of datasets Lin et al. (2024). The content
alignment metrics include DINO ViT self-similarity Tumanyan et al. (2022), DINO-I Ruiz et al.
(2023) (details are explained in Appendix D). Note that PROOF shows consistent superiority on
self-sim and DINO-I scores. As for image quality, we utilize PickScore Kirstain et al. (2023), HPSv2
Wu et al. (2023), and Aesthetic Score (AES) Schuhmann (2023). We assess the diversity via LPIPS
Zhang et al. (2018) between the source image and the generated image. Note that PROOF 2D using
SD-3 takes around 7s, which is more efficient for variant generation. Meanwhile, the subjective
metrics consist of quality, fidelity, and diversity without compromising fidelity. PROOF achieves
comparable user preference (Tab. 4).

5.2 QUALITATIVE RESULT

PROOF only learn noise representation supervised by itself based on OTIB. Visually comparable
results demonstrate that our implicit PROOF is a better workbench for highly correlated asset editing
(Fig. 3, Fig. 18, more examples in Appendix F), based on robust noise representation learning.

Content transformation Although PROOF applies intrinsic interpolation to manipulate noise, the
latent space compressed by VAE is already a high-dimensional manifold where nonlinear content
transformations are represented to some extent. That means the change of a specific noise point with
a certain channel and position is capable of imposing contextual transformation on several image-
level areas, therefore leading to visually object deformation or novel-view rendering (Fig. 14).
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Content PROOFNaive blending λ=0.5Mask

Figure 5: Robust local editing visualization. PROOF preserves local content layout and synthesizes
controllable and diverse inpainting results with highly faithful details.

Content Entropy 
regulation

Contrastive 
objectives

λ=0.9536Full PROOF w/ IB, w/o OT w/ IB, w/ Att

Figure 6: PROOF sufficiently preserves the global structure and appearance based on OTIB, e.g.,
the word ’SHOP’, no-man’s land on the left of Row 2, and the far-distance face of Row 3, while
other variants show lower content fidelity. More results are illustrated in Fig. 8.
Train-Test resolution discrepancy We conduct experiments concerning the latent resolution dis-
crepancy between the fine-tuning and inference phases (Fig. 4). The overall contents of different
finetuning models are consistent. However, the finetuning model employing 32-resolution data (Col
5) hardly captures local topological and textural details when dealing with 128-resolution inference.

Local variation PROOF can be employed by generation models equipped with the inpainting
function to implement local content variation. As shown in Fig. 5, it’s also important to provide
uniform attention distribution based on optimal transport in the local editing scenario. PROOF syn-
thesizes higher-fidelity and higher-quality human components. Furthermore, we evaluate PROOF
on the edge controller (Fig. 11) and semantic editing (Fig. 12), which significantly strengthens
PROOF’s generalizability to broader applications.

DiT-based model generalization Whether PROOF can be applied to more advanced diffusion
models featuring distinct architectural frameworks, e.g., Flux or SD3.5 based on Diffusion Trans-
former, has been further investigated. Conducting empirical validations on such state-of-the-art
models substantially reinforces PROOF’s ability to generalize and amplify its broader applicability
across scenarios. Note that Figures 4, 5, 7 are all based on Flux Labs et al. (2025). Additionally,
Fig. 17 shows robust variant results using SD-3.5 Esser et al. (2024). We report the computational
complexity comparison of OTIB for different models in Tab. 3.
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Table 2: Quantitative validation for PROOF 2D generation with random noise initialization on the
dataset Lin et al. (2024). PROOF outperforms other ablation configurations and diversity-inducing
methods in structure and appearance alignments. w is the loss weight aligned with λ.

Configuration self-sim ↓ DINO-I ↑ PickScore↑ HPSv2↑ AES↑ LPIPS

w/o IB ≜ Content 0 0.9999 20.95 34.64 5.50 0
Full PROOF β=0.05 0.0314 0.9026 18.43 33.38 5.43 0.4551
w/ IB, w/o OT 0.0333 0.8974 18.20 33.35 5.36 0.4562
w/ IB, w/ AttentionBlock 0.0331 0.8968 18.81 33.80 5.37 0.4590
Naive interpolation λ=0.9536 0.0423 0.8650 14.85 33.15 5.39 0.4549
Entropy regularization w=0.45 0.0947 0.6299 12.30 31.20 5.76 0.6790
Contrast objective w=0.085 0.0320 0.9012 17.38 33.45 5.41 0.4565

Table 3: Computational complexity comparison of OTIB for different models.
Models Spatial latent MACs Params Inference time

SD-1.4, SD-1.5, SD-2 (B, 4, 64, 64) 134.64 MMac 100 0.1579s
SD-3, SD-3.5, Flux (B, 16, 128, 128) 8.61 GMac 1.36 k 0.2185s

β parameters for generation diversity

Content λ=0.99 λ=0.95 λ=0.9 λ=0.8 λ=0.7 λ=0.6 λ=0.5

β=0.01 β=0.053 β=0.105 β=0.2 β=0.3 β=0.414 β=0.56

N
ai

ve
 b

le
nd

in
g

PR
O

O
F

Figure 7: Comparison of naive blending and PROOF over a wide parameter range. Naive blending
method leads variants with lower λ to suffer from significant structure and appearance distortions.
Whereas PROOF preserves content more robustly under strong perturbation injection.

5.3 ABLATION STUDY

Fig. 6 demonstrates substantial benefits of PROOF over other alternatives, e.g., naive interpola-
tion, entropy regularization, contrastive objective (loss details in Appendix E). PROOF exhibits best
structure and appearance fidelity, and comparative perceptual quality in Tab. 2. Without the In-
formation Bottleneck, the model will suffer from mode collapse due to a lack of mode diversity.
Moreover, as shown in Fig. 10 (a), the PROOF variants without Sinkhorn Attention fail to capture
local structure and appearance patterns (red boxes in col 3&4).

Tradeoff weight β The context-diversity tradeoff weight β controls the structure and appearance
leakage in an adaptive way (Fig. 19). As illustrated in Fig. 7, lower λ brings up more changes for
variants. Nevertheless, PROOF exhibits better perturbation robustness compared with naive blend-
ing, which demonstrates the effectiveness of the closed-form solution and architecture of OTIB.

5.4 LIMITATIONS

Large-scale compression with small weight λ may result in background leakage to a certain extent,
as shown in Figure 10 (b). Nevertheless, the pose and identity of the original content are preserved
as much as possible.

6 CONCLUSION

Our proposed PROOF conducts perturbation-robust asset creation with a trade-off of fidelity and
diversity. We derive the closed-form solution of the optimal transported information bottleneck and
design an efficient and effective OTIB module. Compared with explicit content alignment meth-
ods, along with other diversity-inducing alternatives, PROOF preserves topology and texture better.
Comprehensive experimental analyses demonstrate that PROOF is promising to be the first plug-
and-play implicit controller for pre-trained conditional 2D/3D generation models with remarkable
context consistency and controllable diversity.

Broader impacts. Our method provides a robust editor for both images and 3D models. While
its primary advantage lies in assisting designers, animators, and 3D modelers in asset creation,
the potential for malicious manipulation of visual assets necessitates mandatory watermarking in
practical applications.
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A APPENDIX A: DETAILED DERIVATION OF CLOSED-FORM SOLUTION

1. Initial optimality condition: Based on step 3 of Section 4.3, the optimization problem of OTIB
gives us:

λσ2
R − (1− λ)σ2

NDiv

λ2σ2
R + (1− λ)2σ2

NDiv

+ γAlign = 0 (23)

This equation balances the information bottleneck term with the optimal transport term.

2. Rearrange optimality condition: We multiply both sides by the denominator to eliminate the
fraction:

λσ2
R − (1− λ)σ2

NDiv
= −γAlign(λ2σ2

R + (1− λ)2σ2
NDiv

) (24)
This form removes the denominator but introduces quadratic terms in λ.

3. Auxiliary function definition: To analyze this equation, we define:

f(λ) = λσ2
R − (1− λ)σ2

NDiv
+ γAlign

[
λ2σ2

R + (1− λ)2σ2
NDiv

]
(25)

The optimal solution occurs when f(λ) = 0.

4. Taylor expansion at λ = 0.5: We linearize around λ = 0.5 because:

• It’s the midpoint of possible λ values
• The function is most linear in this region
• Higher-order terms are minimized here

4.1. Function value at λ = 0.5:

f(0.5) = 0.5(σ2
R − σ2

NDiv
) + 0.25γAlign(σ2

R + σ2
NDiv

) (26)

This combines the linear difference and quadratic alignment terms.

4.2. First derivative:

f ′(λ) = σ2
R + σ2

NDiv
+ γAlign

[
2λσ2

R − 2(1− λ)σ2
NDiv

]
(27)

f ′(0.5) = σ2
R + σ2

NDiv
+ γAlign(σ2

R − σ2
NDiv

) (28)

The derivative shows how sensitive the function is to λ changes.

4.3. Linear approximation solution: Using Taylor expansion:

λ ≈ 0.5− f(0.5)

f ′(0.5)
= 0.5−

0.5(σ2
R − σ2

NDiv
) + 0.25γAlign(σ2

R + σ2
NDiv

)

σ2
R + σ2

NDiv
+ γAlign(σ2

R − σ2
NDiv

)
(29)

This gives us a first-order approximation of the optimal λ.

4.4. Simplified linear expression: When γAlign is relatively small compared to the variance terms:

λ ≈
σ2
NDiv

σ2
R + σ2

NDiv︸ ︷︷ ︸
C

+0.25γ︸ ︷︷ ︸
K

·Align, (30)

where C represents the baseline compression ratio, and K determines how strongly alignment af-
fects the result.

5. Identify limitations of the linear form: The linear expression has two critical flaws:

• When Align is too large, λ may exceed 1
• When Align is too small, λ may be less than 0

However, λ must be a weight coefficient strictly between 0 and 1. Therefore, we need a function
that constrains the output to (0,1) while preserving the positive correlation between λ and Align.

6. Choose sigmoid function for constraint: The sigmoid function σ(x) = 1
1+e−x is ideal because:
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• Its output is strictly bounded between (0,1)
• It’s monotonically increasing, preserving the positive correlation
• It provides smooth, differentiable transitions

7. Match the baseline value at Align = 0: When there’s no alignment (Align = 0), the linear
expression gives λ ≈ C. To maintain consistency:

σ(x0) = C where x0 = σ−1(C) (31)

Using the inverse of the sigmoid function (logit function) σ−1(y) = ln
(

y
1−y

)
, we get:

σ−1(C) = ln

(
σ2
NDiv

σ2
R

)
(32)

This ensures the sigmoid preserves the baseline behavior when Align = 0.

8. Final sigmoid parameterization: To maintain the positive correlation while adding flexibility,
we introduce:

x =
1

η

(
γ · Align −

σ2
NDiv

σ2
R

)
, (33)

where η > 0 controls the steepness of the transition. The final solution becomes:

λ∗ = σ

(
1

η

(
γ · Align −

σ2
NDiv

σ2
R

))
(34)

This closed-form solution is presented in step 4 of Section 4.3, and satisfies all our requirements:

• Strictly bounded output (0,1)
• Preserves positive correlation
• Matches baseline when Align = 0

• Allows tuning via η and γ

B TRAINING PROTOCOL

We train our PROOF on Gaussian noise tensors with corresponding dimension shape of different
architectures, e.g., 4∗64∗64 Rombach et al. (2022), 16∗128∗128 Esser et al. (2024), 8∗16∗16∗16
Xiang et al. (2025). NOrig and NDiv are random noises in each training step. As for PROOF 3D,
we utilize 3D convolutions for SA and IB modules. We train PROOF for 20k iterations with one
NVIDIA RTX 4090 GPU. The training batch size is set to 1. During training, we employ Adam
Kingma & Ba (2014) with 2 ∗ 10−3 learning rate. We set β = 0.01 for mild diversity (Figure
3a), β = 0.1 for substantial diversity (Fig. 3b, Fig. 13), and β = 1 for diversity with reference
constraints (Fig. 3c).

C BASELINES

There are several state-of-the-art controllable synthesis methods based on diffusion models. Con-
trolNet Zhang et al. (2023a) and T2I-Adapter Mou et al. (2024) align diffusion priors to the external
control structures. We further apply IP-Adapter Ye et al. (2023) to them for better textural transfer.
These methods present low topological flexibility with restriction by the explicit structure align-
ment, and limited textural fidelity with global appearance control. FreeControl Mo et al. (2024)
has large-scale content variance due to imprecise structure and appearance representations (col 4
in Fig. 3). Ctrl-X Lin et al. (2024) provides too-strict structure and appearance alignments, and
there are texture distortions. Uni-ControlNet Zhao et al. (2023) also suffers from the global appear-
ance representation (col 6 in Fig. 3). Reimagine AI (2023) produces uncontrollable content layout,
despite high image quality and diversity (col 8 in Fig. 3). RIVAL Zhang et al. (2023b) conducts
distribution alignment between the generative and inverse paths to realize semantic and structural
fidelity. Prompt-free Diffusion Xu et al. (2024) discards the text encoder and text prompts, which
may bring about semantic degradation. We evaluate all methods on SDXL v1.0 Podell et al. (2024)
when workable and on their pre-configured base models otherwise.
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Content Entropy 
regulation

Contrastive 
objectives

λ=0.9536Full PROOF w/ IB, w/o OT w/ IB, w/ Att

Figure 8: PROOF sufficiently preserves the global structure and appearance based on OTIB, while
other variants show lower content fidelity. Zoom in for better observation.
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D EVALUATION METRIC

Below is the explicit explanation of how DINO ViT self-similarity and DINO-I are calculated:

1. The structural consistency is quantified as:

Self-sim =
1

N

N∑
i=1

∥ϕDINO(IRef)i − ϕDINO(IOut)i∥22, (35)

where ϕDINO: DINO-ViT base model (patch size=8) feature extractor, IRef: Reference input image,
IOut: Generated output image, N : Number of feature vectors (layer num=11).

2. The appearance similarity is computed as:

DINO-I =
vref · vout

∥vref∥2∥vout∥2
, (36)

where vref = ϕ[CLS]
DINO(Iref): DINO-ViT [CLS] token embedding of reference image, vout =

ϕ[CLS]
DINO(Iout): DINO-ViT [CLS] token embedding of output image, ϕDINO: DINO-ViT small model

(patch size=16) feature extractor, ’·’ denotes dot product.

E DIVERSITY-BOOSTING METHODS

In these diversity-inducing settings, we maintain the Lnoise of Equ. 22 to conduct global content
preservation.

E.1 CONTRASTIVE OBJECTIVE

Given flat Z = flatten(Z) ∈ RN×d, flat h = flatten(R) ∈ RN×d, flat l = flatten(NDiv) ∈ RN×d,
we calculate the cross-modal cosine similarity explicitly as sim zh = cos(flat Z,flat h), sim zl =
cos(flat Z,flat l), sim hl = cos(flat h,flat l). Then the contrastive objective loss is indicated as:

Lcontrast = w ∗ (MSE(sim zh, sim hl) + MSE(sim zl, 1− sim hl)), (37)

where w is the loss weight.

Note that the contrastive objective has some limitations as follows:

1. Exhibits significantly weaker robustness compared to PROOF under strong perturbations.

2. Fails to perform effective representation learning at the manifold distribution level.

3. Demonstrates notable scalability constraints in real-world applications.

4. Generates structural and appearance artifacts (Fig. 6, Fig. 8).

E.2 ENTROPY REGULARIZATION

1. Input tensor flattening (flatten the i-th sample of Z from multi-dimensional to a vector)

Zflat
i = view(Zi,−1) (38)

(i.e., flattened into a 1 × D vector, where D is the flattened dimension)

2. Softmax probability calculation of the j-th class for the i-th sample (compute class probabilities
for each flattened sample)

pi,j = Softmax(Zflat
i )j =

exp((Zflat
i )j)∑D

k=1 exp((Z
flat
i )k)

(39)

3. Entropy calculation for a single sample (ϵ is added to avoid meaningless logarithm)

H(Zi) = −
D∑

j=1

pi,j · log(pi,j + ϵ) (40)
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Table 4: PROOF exhibits competitive human preference percentages. Preference consistency is
87%, std. deviation is ±3.0%, and the p-value of Wilcoxon is 0.016, which demonstrates the results
are statistically significant.

Methods Quality ↑ Fidelity ↑ Diversity (subject to Fidelity)↑

Uni-ControlNet Zhao et al. (2023) 78% 71% 75%
ControlNet + IP Adapter Zhang et al. (2023a); Ye et al. (2023) 57% 64% 75%
T2I-Adapter + IP Adapter Mou et al. (2024); Ye et al. (2023) 67% 65% 78%
Ctrl-X Lin et al. (2024) 81% 90% 74%
FreeControl Mo et al. (2024) 76% 51% 66%
Reimagine AI (2023) 91% 37% 51%
PROOF (ours) 89% 89% 90%

Therefore, the function definition of Entropy regularization is:

Entropy(Z,w, ϵ = 10−8) = −w · 1

N

N∑
i=1

H(Zi) (41)

Note that entropy regularization has some limitations as follows (Fig. 6, Fig. 8):

1. Complete loss of background information.

2. Fails to ensure a minimal sufficient representation learning.

3. Poor robustness in structure and appearance preservation.

F ADDITIONAL RESULTS

In this section, we provide additional qualitative results of 2D (Figure 20, 22) or 3D asset (Figure
21) creation based on PROOF. Figure 19 indicates the workable function of OTIB to conduct con-
trollable diversity implicitly. Note that the detailed differences for small β are not obvious. Please
zoom in sufficiently and observe patiently.

Model select As for PROOF 2D Ref, we use Realistic Vision V4.0 noVAE for diffusion inver-
sion and denoising, with ip-adapter-plus sd15 for appearance transfer. The VAE module is from
stabilityai-stable-diffusion-2-1-base. In Figure 22, iRFDS+Instantx uses the checkpoint of InstantX-
SD3.5-Large-IP-Adapter. In Figure 9, images of PROOF 2D are synthesized based on the check-
point of Stable Diffusion v2-1 512-ema-pruned. In Figure 18, we use stabilityai-stable-diffusion-xl-
base-1.0.

Note that because of the strong constraints from the image condition of TRELLIS Xiang et al.
(2025), there is little diverse space for direct PROOF 3D Img. Therefore, we first synthesize the
image variants based on PROOF 2D and then conduct 3D modeling based on the trellis-image-large
model. Text-based PROOF 3D uses the trellis-text-xlarge model, as shown in Figure 21.
User Study We invite 100 domain experts to conduct the user study. First, we briefly explain the
highly correlated asset creation task. We suggest that users carefully observe the original content
and generated image variants obtained by 6 state-of-the-art methods and our proposed PROOF.
Each observed algorithm has 20 samples. These observers need to select the better image variant
set from 3 aspects: (a) overall quality, (b) overall fidelity considering structure and appearance, (c)
controllable diversity subject to the fidelity. The interface of our user study is shown in Figure 23.

Table 5: GENEVAL Ghosh et al. (2023) scores of different models. Robust PROOF preserves the
semantic content well and exhibits higher text-image correctness v.s. naive noise interpolation.

Model Overall Single object Two object Counting Colors Position Color attribution

CLIP retrieval 0.35 0.89 0.22 0.37 0.62 0.03 0
minDALL-E 0.23 0.73 0.11 0.12 0.37 0.02 0.01
Stable Diffusion v1.5 0.43 0.97 0.38 0.35 0.76 0.04 0.06
Stable Diffusion v2.1 0.5 0.98 0.51 0.44 0.85 0.07 0.17
Stable Diffusion XL 0.55 0.98 0.74 0.39 0.85 0.15 0.23
IF-XL 0.61 0.97 0.74 0.66 0.81 0.13 0.35
Naive λ=0.85 0.61 0.96 0.67 0.54 0.80 0.23 0.46
PROOF β=0.1 0.70 0.98 0.80 0.65 0.91 0.32 0.55
PROOF β=0.01 0.72 0.98 0.83 0.67 0.92 0.35 0.57
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a high-quality beautiful photo of a cute cat-shape cake

A Lunar Base Structure with colorful tall 
buildings

PROOF_2D

PROOF_2D_SD3

PROOF_2D_Ref

PROOF_3D_Text PROOF_3D_Img

A Disney-Style two-story house with colorful 
flowers

A Chinese ink-wash landscape painting 
depicting the Great Wall and flying wild swan

Figure 9: Our proposed PROOF is an effective learning framework to synthesize highly correlated
assets where variants exhibit consistent structure and appearance. Test-time PROOF facilitates high-
quality 2D assets Esser et al. (2024) and 3D assets Xiang et al. (2025) with high contextual fidelity
and controllable diversity, under any text or image condition (red boxes).

w/ SA, β=0.001, L1=14.12 w/ SA, β=0.01, L1=29.82 w/ SA, β=0.05, L1=30.31 w/ SA, β=0.1, L1=47.71

w/o SA, β=0.1, L1=47.03w/o SA, β=0.05, L1=45.53w/o SA, β=0.01, L1=34.06w/o SA, β=0.001, L1=13.79

Original

(a) Ablation study (b) Hard cases
PROOFNaive blendingContent

Figure 10: (a) PROOF variants show that methods w/ SA preserve better appearance statistics than
those w/o SA. Higher β usually intentionally relaxes contextual constraints but boosts the diversity.
(b) The background lacks abundant details for large-scale information compression (e.g., λ=0.8),
while the human identity and pose are maintained well.

1.flux_controlnet

Content Blending λ=0.6 PROOFReference Edge

Figure 11: Integration of PROOF and a structure-guided controller. Despite being constrained by
edge conditions, PROOF maintains structure and texture fidelity in local areas while still generating
diverse variations. Under large-scale perturbation, PROOF performs robust variant generation.
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1.semantic

Content Blending λ=0.95 PROOF

"a dog sitting next to a sunflower"

Figure 12: PROOF with semantic editing Mokady et al. (2023) produces high-quality editing results
considering structure and appearance preservation.

Comparision with DSG While achieving similar editing effects to DSG Epstein et al. (2023) in
Figure 13, our PROOF doesn’t require any explicit guidance, e.g., position, size, shape.
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Figure 13: Feature workbench provided by DSG Epstein et al. (2023) is fine-grained but cumber-
some. Our PROOF gives another efficient and diverse workbench to change the properties of objects.
Person Image Generation

Content Blending λ=0.8 PROOF Content Blending λ=0.8 PROOF

Figure 14: Content transformations based on FLUX.1-schnell with PROOF. We show some ex-
amples of human deformation with different poses and novel perspectives, which demonstrate that
intrinsic interpolation to manipulate noise is efficient to model complex nonlinear transformation
patterns. PROOF outperforms naive blending, as the latter often leads to noticeable content distor-
tion and undesirable artifacts.

PROOFNaive blendingContent PROOFNaive blendingContent

λ=
0.
95
36

(1)

(2)

Content PROOFNaive blending

λ=
0.
85
89

λ=
0.
95
36

Res=PROOF-Naive blending

Res Res

Figure 15: PROOF w/ β = 0.1 (Row 1) and β = 0.05 (Row 2) are corresponding with naive
blending w/ λ = 0.8589 and λ = 0.9536, based on the mean value across the channel and spatial
dimensions of PROOF’s neural λ. PROOF preserves fine-grained structure and appearance features.
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1.sd1-5 var

Content RIVAL w/ t_align=t_early=100

Blending λ=0.9 PROOF Blending λ=0.7 PROOF

RIVAL w/ t_align=t_early=600

Prompt-Free Diffusion w/ SD 1.5 Prompt-Free Diffusion w/ Deliberate-v2-0

RIVAL w/ ControlNet

Figure 16: Variant comparison of PROOF and other image variation works. Zhang et al. (2023b)
maintains alignment between the latent distributions of the generative and inverse paths to improve
semantic and structural fidelity. Xu et al. (2024) eliminates the text encoder and text prompts, which
may result in semantic degradation (e.g., face and teddy bear in Row 3). PROOF leveraging robust
manifold manipulation preserves fine-grained structure and appearance features (Row 2). Moreover,
adaptive interpolation via OTIB efficiently produces diverse high-fidelity image variants.

1.sd1-5 var

Content Blending λ=0.8 PROOF

Figure 17: Additional visual results of PROOF 2D based on Stability AI SD3.5 Medium. PROOF
is more robust to defend against noise perturbation.
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Comparison with Golden Noise Task Differentiation of Golden Noise Zhou et al. (2025) and
PROOF: Golden Noise focuses on text-embedding alignment in noise space and embeds semantic
information into noise for semantic fidelity. PROOF targets content-aligned variation generation by
modifying local structure and appearance distributions for contextual fidelity with diversity. We pro-
vide some comparative results in Fig. 18, which demonstrates that PROOF is powerful to synthesize
high-fidelity and high-quality assets.

Specifically, given standard noise as NOrig, we obtain golden noise NGold = NPNet(NOrig, c).
Moreover, standard PROOF and golden PROOF are implemented based on NOrig and NGold, where
the same NDiv is adaptively interpolated via OTIB. Note that both NPNet and PROOF leverage
SDXL as the pretrained base model.

Standard noise Golden noise Standard PROOF Golden PROOF

Figure 18: Standard PROOF and Golden PROOF are based on the standard noise and golden noise,
respectively. PROOF seems to produce more high-fidelity golden noise (col 3), and Zhou et al.
(2025) exhibits low perturbation robustness (col 4).
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Blocky, orange and teal robot with articulated limbs

A little princess is playing with a tiny panda on the bench
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A meticulously detailed oil painting in the style of Jan van Eyck, depicting a crowned prince gently holding his princess's hand in a 
Gothic palace chamber. Sunlight streams through stained glass windows, casting jewel-toned reflections on their embroidered velvet 
robes. A small dog sleeps at their feet, symbolizing loyalty, while oranges on the windowsill hint at royal wealth. Ultra-realistic textures: 
the princess's pearl headdress, the prince's gold-threaded doublet, and aged parchment-like varnish cracks

Content

Content

Figure 19: PROOF effectively controls the structure and appearance of the content. Smaller tradeoff
weight β puts content on a slight adjustment workbench, while larger β changes the content more
obviously, but maintains the scene layout.
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A Chinese ink-wash landscape painting depicting the Great Wall and flying wild swan, best quality

Figure 20: Image variants of the teaser figure 9 under magnified observation.

Two-story brick house with red roof and fence

A cute white cat with big eyes

Figure 21: More qualitative results of PROOF 3D based on TRELLIS Xiang et al. (2025).
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Reimagine

Uni-ControlNet

iRFDS+Instantx

T2I-Adapter+IP-Adapter

PROOF Controlnet+IP-Adapter

FreeControl Ctrl-X

Ref

Reimagine

Uni-ControlNet

iRFDS+Instantx

T2I-Adapter+IP-Adapter

PROOF Controlnet+IP-Adapter

FreeControl Ctrl-X

Figure 22: Qualitative results of PROOF 2D Ref, ControlNet Zhang et al. (2023a); Ye et al. (2023),
FreeControl Mo et al. (2024), Ctrl-X Lin et al. (2024), Uni-ControlNet Zhao et al. (2023), T2I-
Adapter Mou et al. (2024); Ye et al. (2023), Reimagine AI (2023) and iRFDS Yang et al. (2025) on
the wild images.
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Content

PROOF

Controlnet+
IP-Adapter

FreeControl

Ctrl-X

Uni-
ControlNet

T2I-Adapter+
IP-Adapter

Reimagine

Figure 23: (a) Additional qualitative results of PROOF 2D Ref, ControlNet Zhang et al. (2023a);
Ye et al. (2023), FreeControl Mo et al. (2024), Ctrl-X Lin et al. (2024), Uni-ControlNet Zhao et al.
(2023), T2I-Adapter Mou et al. (2024); Ye et al. (2023), and Reimagine AI (2023). (b) The interface
of our user study.
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