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ABSTRACT

Category-agnostic pose estimation (CAPE) aims to localize keypoints on query
images from arbitrary categories, using only a few annotated support examples
for guidance. Recent approaches either treat keypoints as isolated entities or
rely on manually defined skeleton priors, which are costly to annotate and in-
herently inflexible across diverse categories. Such oversimplification limits the
model’s capacity to capture instance-wise structural cues critical for accurate
pixel-level localization. To overcome these limitations, we propose GenCape,
a Generative-based framework for CAPE that infers keypoint relationships solely
from image-based support inputs, without additional textual descriptions or prede-
fined skeletons. Our framework consists of two principal components: an iterative
Structure-aware Variational Autoencoder (i-SVAE) and a Compositional Graph
Transfer (CGT) module. The former infers soft, instance-specific adjacency ma-
trices from support features through variational inference, embedded layer-wise
into the Graph Transformer Decoder for progressive structural priors refinement.
The latter adaptively aggregates multiple latent graphs into a query-aware struc-
ture via Bayesian fusion and attention-based reweighting, enhancing resilience
to visual uncertainty and support-induced bias. This structure-aware design fa-
cilitates effective message propagation among keypoints and promotes semantic
alignment across object categories with diverse keypoint topologies. Experimen-
tal results on the MP-100 dataset show that our method achieves substantial gains
over graph-support baselines under both 1- and 5-shot settings, while maintaining
competitive performance against text-support counterparts.

1 INTRODUCTION

Category-Agnostic Pose Estimation (CAPE) | Xu et al.[(2022a));[Shi et al.|(2023); Hirschorn & Avidan
(2024); Rusanovsky et al.| (2025); |[Ren et al.| (2024); |Chen et al.| (2025a) has emerged as a funda-
mental yet challenging task in computer vision, aiming to localize semantic keypoints on arbitrary
object categories using only a handful of annotated support samples. Unlike conventional 2D pose
estimation task |Sun et al.| (2019); Xu et al.| (2022b)); |Yuan et al.| (2021)); [Rao et al.| (2025)), which
depends heavily on predefined templates or class-specific priors, CAPE requires robust general-
ization across semantically diverse and structurally heterogeneous object classes. This capability
extends the applicability of pose estimation from closed-world scenarios to open-world scenarios,
enabling scalable deployment in domains such as human motion analysis [Zheng et al.|(2023); [Yang
et al.| (2023)), cross-species behavior understanding |Ye et al.| (2024)); |Stoffl et al.| (2024), and robotic
manipulation [Zheng et al.|(2025); Ma et al.|(2024) in dynamic environments.

In the CAPE paradigm, the objective is to estimate keypoints for objects from novel categories,
conditioned on a few annotated support images. Despite recent advancements, existing CAPE ap-
proaches are hindered by two critical limitations. On the one hand, many existing approaches either
treat keypoints as isolated semantic entities, neglecting the latent spatial dependencies essential for
accurate pixel-level localization, or rely heavily on external priors such as manually pre-defined
skeleton connections or auxiliary textual descriptions. These external priors not only incur high
annotation overhead but also restrict the model’s adaptability to novel instances with large pose
variations, non-rigid deformation, or diverse structural characteristics.
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Figure 1: Left: Existing CAPE frameworks rely on additional structured priors within the support set, such
as @ keypoint identifiers, @ fixed skeleton graphs, or @ textual descriptions with skeleton graphs, to enhance
structural reasoning. Right: In contrast, our framework directly infers latent keypoint relationships solely from
support images, learning instance-specific adjacency matrices without relying on handcrafted priors.

On the other hand, the stochastic nature of support sets selection in a few-shot setting makes CAPE
methods particularly vulnerable to the low quality support examples. In real-world scenarios, sup-
port images may contain severe occlusions, incomplete annotations, or structural discrepancies
relative to the query, which can misguide structural inference and significantly impair prediction
accuracy and generalization. Together, these limitations underscore the need for a more flexible,
data-driven approach to structure modeling and robust support-query adaptation.

To address the limitations of fixed priors and structural rigidity in CAPE, we propose GenCape, a
generative latent structure learning framework that automatically infers keypoint relationships, rep-
resented as latent adjacency matrices, exclusively from image-based support inputs, without any
external priors, as illustrated in Figure [T} At its core of, GenCape integrates two complementary
components: an iterative Structure-aware Variational Autoencoder (i-SVAE) and a Compositional
Graph Transfer (CGT) module. Specifically, the i-SVAE leverages variational inference to learn
a distribution over instance-specific graph structures, iteratively generating and refining latent ad-
jacency matrices that serve as flexible and data-driven structural priors. Compared to the recently
related deterministic approach SDPNet |Ren et al.| (2024), this generative formulation captures the
epistemic uncertainty in sparse and ambiguous support signals, allowing for more expressive and
robust message passing within the Graph Transformer Decoder. The progressive refinement enables
the model to propagate contextual cues across spatially correlated keypoints and adapt to complex
object configurations. In parallel, the CGT module dynamically aggregates multiple latent graph
hypotheses into a query-conditioned representation through a principled Bayesian fusion and an
attention-based re-weighting strategy. This dynamic compositional mechanism explicitly accounts
for support-query inconsistencies and mitigates the adverse impact of noisy or misleading support
examples caused by occlusion, deformation, or pose variation. Together, these modules enhance
structural generalization and resilience to support noise, setting a new direction for few-shot key-
point reasoning under the CAPE paradigm. Remarkably, our approach surpasses the performance
of existing CAPE methods, showcasing a new state-of-the-art performance.

In summary, our contributions are as follows:

* We introduce GenCape, a novel generative framework for category-agnostic pose estima-
tion, which incorporates an iterative Structure-aware Variational Autoencoder (i-SVAE) to
infer latent, instance-specific skeletons solely from image-based support sets, eliminating
the need for predefined anatomical priors or textual descriptions.

* We propose a Compositional Graph Transfer (CGT) mechanism that dynamically ag-
gregates multiple structural hypotheses into a unified, query-conditioned graph through
attention-guided fusion, significantly enhancing robustness under ambiguous, noisy, or
structurally mismatched support scenarios.

* Our framework achieves new state-of-the-art results on the representative and challenging
MP-100 benchmark under both 1-shot and 5-shot settings, surpassing existing methods
by a substantial margin of +1.59% mPCK averaged across evaluation thresholds, without
relying on any external structural or textual annotations.
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2 RELATED WORK

2.1 CATEGORY-AGNOSTIC POSE ESTIMATION

Category-agnostic pose estimation (CAPE) [Xu et al.|(2022a)) has emerged as a compelling general-
ization of conventional pose estimation Sun et al.| (2019);|Yu et al.[(2021); Xu et al.| (2022bj; [2025));
Rao et al.| (2025) by localizing keypoints for arbitrary category objects with only a few annotated
support images. The pioneering POMNet|Xu et al.|(2022a) employed a metric-learning paradigm to
match support and query features in latent space, while CapeFormer [Shi et al.| (2023), a two-stage
refinement framework that first produces initial keypoint proposals and then refines their positions
in a second stage. Recent efforts Hirschorn & Avidan| (2024)); Liang et al.| (2024)) further extended
this paradigm by integrating fixed skeleton priors into graph reasoning modules to capture latent
keypoint relations. However, it remains limited by the rigidity of manually defined structures, which
constrains adaptability to novel categories with topological variation. WeakShot|Chen et al.|(2025b)
learns category-agnostic keypoints via diffusion-based keyness prediction and correspondence trans-
fer. Another line of works |Yang et al.|(2024)); [Kim et al.|(2024); [Lu et al.[(2024); Rusanovsky et al.
(2025) also leverage textual descriptions for guidance, enhancing category-agnostic generalization
but still depending on auxiliary language priors. Most relevant to our work, SDPNetRen et al.|(2024)
adopts a discriminative approach by predicting a fixed adjacency matrix from support features. How-
ever, it lacks mechanisms to model structural uncertainty, limiting robustness under support-query
mismatch. In contrast, we propose a generative framework that infers flexible, instance-specific
graphs from support images, enabling more adaptive and resilient structure modeling.

2.2 LATENT STRUCTURE LEARNING FOR POSE ESTIMATION

Latent structure learning has been widely adopted to reason inter-keypoint dependencies in pose
estimation. Early approaches|Wang et al.[(2020); [Hassan & Hamzal (2023) leverage graph convolu-
tional networks to refine keypoint predictions by modeling predefined skeletal connections, which
restrict applicability to human- or hand-specific topologies. Generative models, particularly vari-
ational frameworks like the Variational Graph Autoencoder (VGAE) Kipf & Welling| (2016) and
CVAM-Pose Zhao et al|(2024) have demonstrated promise in capturing structural variability and
uncertainty, but typically remain tied to specific classes or predefined topologies. More recently,
V-VIPE |Levy & Shrivastaval (2024)) leverages a variational autoencoder framework to learn a view-
invariant latent pose representation. ProPose Han et al.| (2025) reformulates 3D human pose es-
timation as a probabilistic generative task by modeling instance-level pose distributions, enabling
uncertainty-aware and sample-efficient inference. Following these advancements, we explore a gen-
erative formulation to learn instance-level latent structures, aiming to enhance generalization and
move beyond the reliance on predefined priors. While learning latent structures improves flexibil-
ity, it remains insufficient under the CAPE setting, where support sets are sampled stochastically.
This insight suggests a mechanism that aggregates multiple latent graphs into a query-conditioned
structure, dynamically emphasizing support information most aligned with the query.

3 METHOD

To effectively learn optimal keypoint structural dependencies and eliminate the adverse effects of in-
appropriate support sets, we propose a generative-based framework tailored for Category-Agnostic
Pose Estimation (CAPE). This method is grounded in GraphCape Hirschorn & Avidan|(2024) frame-
work without reliance on skeleton priors. We begin by presenting a concise overview of the pipeline
before introducing our generative graph learning module and query-aware fusion technique.

3.1 OVERALL PIPELINE

The goal of CAPE is to estimate the locations of semantic keypoints K, € RM<*2 for a query
image I, given a small set of annotated exemplars from an unseen category, where M. denotes
the maximum possible number of keypoints. In the N-shot setting, we are provided with a set of
N support pairs {(If,K?)}Y |, where each support image I3 is annotated with a set of keypoints
K; € RMex2 for category ¢ (which may vary in keypoint count M,). Initially, a shared backbone
¢(-) extracts visual features F;, = ¢(I,) and F, = ¢(I°). The support features are then aggregated
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Figure 2: Architecture Overview. Our approach utilizes a pre-trained backbone to extract image features,
which are refined by a transformer encoder through self-attention. A proposal generator is employed along-
side a graph transformer decoder. Subsequently, we employ iterative StructureVAE to generate probabilistic
adjacency matrices, and integrates them to a query-aware graph in the graph transformer decoder, improving
localization accuracy by graph-oriented decoding.

Loffset

with their corresponding keypoint targets to produce keypoint-aware embeddings F, € RM*D,
where M represents the maximum number of potential keypoints, and D is the embedding size.
Then, a similarity-aware proposal generator computes correlations between F and F,, yielding po-
sition proposals P € RM*2, As shown in Figure to model inter-keypoint dependencies and learn
flexible skeleton knowledge, we introduce an iterative Structure-aware Variational Autoencoder (i-
SVAE) that infers a latent adjacency matrix A € RM*M conditioned on F,. This probabilistic
graph captures instance-specific keypoint relations and is fused with visual cues in the graph trans-
former decoder. We further mitigate visual uncertainty and reduce the adverse effects of improper
support images through a Compositional Graph Transfer (CGT) strategy, which aggregates multiple
latent hypotheses into a query-aware graph. This composition is injected into the graph transformer
decoder to guide self- and cross-attention, progressively refining keypoint predictions.

3.2 ITERATIVE STRUCTURE LEARNING

In CAPE, the support and query mismatch in visibility, poses and topologies, making structural
alignment essential. Our framework addresses this discrepancy jointly with i-SVAE that learns layer-
wise, instance-specific graphs from support features,, and CGT that adapts them to the query. Most
CAPE methods make oversimplified assumptions: either modeling keypoints as independent en-
tities or relying on manually defined priors. Such assumptions hinder the capture of topological
consistency and pose variability across instances. To this end, we reformulate structure inference as
a graph learning problem: keypoints are nodes, and their relationships are encoded in a latent ad-
jacency matrix. Instead of using static, category-specific graphs, we propose an i-SVAE that learns
and refines instance-specific keypoint graphs across decoding stages.

Graph Formulation. Let the graph G = (V, £) consist of M keypoint nodes v; € V with initial
node feature matrix X € RM*P and an initial noisy adjacency matrix A € RM™*M encoding
edge set £. Our goal is to learn a function f : Fy — A that maps support keypoint embeddings F
to a soft adjacency matrix .4, capturing latent inter-keypoint dependencies. We formulate this within
the principled Variational Graph Autoencoder (VGAE) Kipf & Welling| (2016), wherein the graph
structure is treated as a latent variable: ¢4 (z|Fs), z € RY=, with ¢4 denoting the approximate
posterior and z the latent code. The code is decoded into a soft adjacency matrix that models
probabilistic keypoint connectivity.

Iterative StructureVAE. The i-SVAE consists of two components: a probabilistic encoder that
parameterizes a latent graph distribution, and a decoder that constructs the adjacency matrix from
this latent space. A detailed figure is shown in the supplementary material. At each layer [, given
support node embeddings F! 5@ € RM*D from the previous graph transformer decoder layer, we
first perform variational inference to estimate the latent structural embeddings:

[1®,log(e )] = Enc(F), p® loga™ € RP=,

. (1)
1oz | FO) = N3 ), diag(o V),
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where Enc denotes the graph encoder that produces the approximate posterior distribution over the
latent graph codes z. We then employ the reparameterization trick to sample z(") € RP=:

2V =pu® 4+ 06V oe e~N(OI), 2)

Next, the latent code z is passed through a fully connected decoder to construct the adjacency matrix
A = Dec(z) € RM*M where Dec represents the graph decoder. To ensure the undirectionality and
interpretability of the adjacency matrix, we symmetrize and normalize it row-wise:

Ay = S(AD 4 A7), A = norm(AWDy), 3)

Then, we take the CGT strategy to fuse multiple sampled adjacency matrices into a unified, query-
aware graph, which is introduced in the next subsection. This fusion strategy is performed via
Bayesian averaging, reweighted by graph-level uncertainty and relevance to the query features:

AL

final — CGT({AS)}v {I‘Lg)}a Fq) (4)
To ensure meaningful latent representations and regulate structural uncertainty, we minimize the
Kullback-Leibler divergence between the approximate posterior ¢,(z | X) and a Gaussian prior
p(z) = N(0,1). Besides, we impose an {5 sparsity constraint on the learned adjacency to encourage
minimal and interpretable connectivity. The total i-SVAE loss at the [-th decoder layer is defined as:

! ! B\ qt
LRk = L8+ B Lohe = Dia [as@VIFD) | )] + 1A ANF. )

Prior Regularization Sparse Matrix

where the hyper-parameter 5 = 0.1. To leverage the learned structural priors, we follow the Graph-

Cape and incorporate a graph convolutional layer conditioned on the final matrix jléln)dl

FID = o (Wag FOAR, + Wear ) (©)

where Wgj, Weeir € RPouxD are learnable weights, and o(-) denotes ReLU activation. The first
term aggregates features from semantically or spatially connected neighbors, while the second term
retains individual node semantics via self-transformation.

The final skeleton Atglnll serves as the structural guidance for message passing:
FHD = GEN(FD, AR,), - PIHY = o (07 (P) + MLP(F(D) ) (7)

where Pq(l) € RE*2 js the predicted keypoint locations at [-th layer used for intermediate supervi-
sion, with the output from the final layer as the final keypoint prediction. And ¢ and o~ are the
sigmoid and its inverse function.

By embedding i-SVAE within each decoder layer, our method performs iterative structural refine-
ment, progressively updating latent pose graphs in response to evolving visual semantics and local-
ization cues. This layer-wise iterative design enables the model to capture diverse structural patterns
and encode high-order keypoint dependencies, thereby strengthening relational reasoning and im-
proving generalization to novel categories. See Appendix [A.T|for further details.

3.3 COMPOSITIONAL GRAPH TRANSFER

While i-SVAE enables layer-wise modeling of instance-specific pose graphs, its stochastic sampling
process introduces uncertainty across multiple latent graphs. To this end, we propose Compositional
Graph Transfer (CGT), a query-aware graph fusion mechanism that aggregates multiple sampled
adjacency matrices into a robust and expressive structural representation. Specifically, given a set

of N, latent graphs sampled from i-SVAE at the [-th decoder layer, denoted as {AS )};V;l, each
associated with a latent distribution parameterized by (1", (")), our goal is to construct a matrix
Agna € RM*M that best reflects the robust structure relationships among keypoints conditioned on

the query context, while simultaneously alleviating over-reliance on the support-driven guidance.
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To achieve this, we adopt a Bayesian confidence-weighted aggregation strategy. Firstly, we define
the confidence of each sampled graph as the inverse of the total variance:

1 W,
Wp=—F5 73 WUn= N (3)
Zz 1 U(l) + 6 2%:1 Wm

where € = 1e7% is a small constant to ensure numerical stability. These normalized weights 0, re-
flect the epistemic uncertainty of each latent sample and serve to guide the fusion process. The fused
adjacency is then computed via a weighted average: Afused Zﬁ;l Wy, - AV To further align the
fuse structure with query-specific evidence, we incorporate query-guided gating. Let F, € RAwxD
denote the query feature, where [h,w] denotes the patch size in image backbone. We compute
attention-based gating scores ") by comparing global query descriptors with each means ;!

Q) — sim(Pool (£, ), u(")

7 9
S La sim(Pool(F,), p(®) )

where sim(-, -) denotes cosine similarity and Pool is a global average pooling operator. The final

fused graph becomes Aﬁ Al = Elf‘:l a® -Agzed, where L € [1, Ly is the current decoder layer. The
fusion process enhances robustness against sampling stochasticity and grounds structural reasoning

in the visual context of the query. The resulting graph Aﬁnal is propagated into the GCN layer,
enabling structure-aware refinement of keypoint predictions. See Appendix for CGT details.

3.4 TRAINING AND INFERENCE

For the category-agnostic pose estimation task, we employ the commonly used loss|Shi et al.[(2023));
Hirschorn & Avidan|(2024); Rusanovsky et al.| (2025) £, cq:

‘Cpred = )\heatm,ap . Ehcatmap + Eoffseta

1 & (10)
Lheatmap mz H Hz ’ offset ZZ ’Kl

where H; denotes the output similarity heatmap and H; is the ground-truth heatmap. I&i is the
output keypoint location from the Graph Transformer layer [ and K; is the ground-truth location.
By our framework [3]and internal modules [3.2] our overall training objective is as follow:

L= Lprea + 7 Lvag, (11)

where ¥ = 1e~3 is the hyper-parameter. During inference, our model uses the final layer output Kf 4
as the predicted location. Within the i-SVAE variational inference process, the latent code z is equal
to the mean p of the approximate posterior, effectively collapsing the stochastic sampling. This
deterministic substitution ensures stable and consistent structural priors, aligning with the learned
feature distribution while eliminating inference-time uncertainty.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We train and evaluate our method on a machine with an NVIDIA A100 GPU with 40 GB of memory.
The architecture is implemented within the MMPose framework |Contributors| (2020). To ensure a
fair comparison, the configuration settings remain consistent with GraphCape Hirschorn & Avidan
(2024) and CapeFormer [Xu et al.| (2022a). During training, we use 256 x 256 input images and
apply data augmentation including random scaling in the range ([-0.15, 0.15]) and random rotation
within ([—15°, 15°]) for fair comparisons. All models are trained for 200 epochs with a step-wise
learning rate scheduler that decreases by a factor of 10 at the 160th and 180th epochs. We use Adam
optimizer to train the model for 200 epochs with a batch size of 16. See Section for details.
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Table 1: Comparisons on MP-100: PCK@0(.2 performance under the 1-shot setting. GenCape
achieves the best average performance on the average of all splits, outperforming state-of-the-art
methods under all three support sets types.

Type | Method | Support | Split I Split2 Split3 Split4 Split5 | Avg.
POMNet|Xu et al.|(2022a) Image 8423 7825 78.17 78.68 79.17 | 79.70
CapeFormer|Shi et al. |(2023) Image 89.45 84.88 8359 83.53 85.09 | 8531
ESCAPE |Nguyen et al.|(2024) Image 86.89 8255 81.25 81.72 81.32 |82.74
Image-support MetaPoint+|Chen et al.|(2024) Image 9043 85.59 84.52 8434 8596 |86.17
CapeFormer-T |Shi et al.|(2023) Image 89.48 86.69 8531 84.79 8497 |86.25
SDPNet (HRNet-32)|Ren et al.|(2024) Image 91.54 86.72 8549 8577 87.26 |87.36
SCAPE [Liang et al.|(2024) Image 91.67 86.87 8729 85.01 86.92 |87.55
CLAMP|Zhang et al.|(2023) Text 72.37 - - - - -
Text-support X-Pose|Yang et al.|(2024) Image\ Text 89.07 85.05 8526 8552 85.79 |86.14
PPM+CPT |Peng et al.|(2024) Image + Text 91.03 88.06 8448 86.73 87.40 |87.54
CapeX-S|Rusanovsky et al.|(2025) Image + Text + Graph | 95.17 88.88 87.72 88.24 91.81 | 90.37
GraphCape-T [Hirschorn & Avidan |(2024) Image + Graph 91.19 87.81 85.68 85.87 85.61 |87.23
Graph-support GenCape-T (Ours) Image (Graph) 92.05 88.69 86.89 85.88 87.02 |88.09
GraphCape-S Hirschorn & Avidan |(2024) Image + Graph 9473 89.79 90.69 88.09 90.11 | 90.68
GenCape-S (Ours) Image (Graph) 95.23 90.60 89.46 89.32 90.43 | 91.01

Table 2: Performance comparisons under 5-shot  Table 3: Performance comparison of

setting with SwinV2-small as image backbone. CAPE methods under stricter thresholds.
Method ‘Splitl Split 2 Split 3 Split 4 SplitS‘ Avg. Method ‘Th0.0S Th0.1 Th0.15 Th0.2 mPCK
Fine-tune 71.67 57.84 66.76 66.53 60.24 |64.61 POMNet | 4439 68.87 79.39 84.23 69.22
POMNet 8472 79.61 78.00 80.38 80.85 |80.71 CapeFormer | 51.03 75.17 84.87 89.45 75.13
CapeFormer | 91.94 8892 89.40 88.01 88.25 89.30 ESCAPE | 4824 7225 8230 86.89 72.42
SDPNet 93.68 90.23 89.67 89.08 89.46 |90.42 MetaPoint | 55.08 77.12 8581 9043 77.11
PPM+CPT | 93.64 9271 9176 92.85 91.94 |92.58 GraphCape | 48.55 7343 8371 88.19 7347
SCAPE 95.18 9125 91.78 90.74 91.10 |92.01 SCAPE | 5409 7734 87.02 91.67 77.53
GraphCape | 96.67 91.48 92.62 90.95 92.41 |92.83 FMMP 5730 7848 8728 91.82 78.72
GenCape (Ours) | 97.19  92.94 9226 91.93 93.34 [93.53 GenCape-R50 | 58.91 80.63 88.97 9274 80.31

4.2 DATASET AND METRIC

We train and evaluate our method on the MP-100 Xu et al.| (2022a)) dataset, which is currently the
only public dataset for CAPE tasks. MP-100 contains 100 sub-categories and 8 supercategories,
with a total of 18K images and 20K annotations. The number of annotated keypoints covers a wide
range, from 8 to 68. To ensure and identify performance stability on unseen categories, following
previous methods | Xu et al.| (2022a), the dataset is divided into 5 splits. In each split, these categories
are split into train, validation, and test sets in a 70/10/20 ratio without any category overlap. We use
the Probability of Correct Keypoint (PCK) as the evaluation metric. We follow the standard metric
PCK@0.2 as the default metric for performance reporting. And we further evaluate model perfor-
mance under stricter threshold conditions ([0.05, 0.1, 0.15, 0.2]) for comprehensive comparisons.

4.3 BENCHMARK RESULTS

We conduct a comparative analysis of our approach with SwinV2 [Liu et al.| (2022) as backbone,
against the graph-support method: GraphCape Hirschorn & Avidan|(2024) as our baseline; image-
support methods: POMNet Xu et al.| (2022a), CapeFormer [Shi et al.| (2023), ESCAPE [Nguyen
et al.| (2024])), MetaPoint [Chen et al.| (2024), SDPNet [Ren et al.| (2024), FMMP |Chen et al.| (2025a);
text-support methods: CLAMP Zhang et al.| (2023)), XPose |Yang et al.| (2024), PPM+CPT Peng
et al.[(2024)), CapeX |Rusanovsky et al.|(2025). Our evaluation is conducted on the MP-100 dataset,
considering the 1- and 5-shot settings. We denote our models as GenCape-T and GenCape-S for ab-
breviation, corresponding to employing SwinV2-tiny and small as the image backbone, respectively.

1-shot results. As reported in Table [T} GenCape-T achieves an average PCK of 88.09%, surpassing
the strong graph-based GraphCape-T baseline (87.23%) by +0.86%. Remarkably, without relying
on class-level text, our method still outperforms multimodal CAPE models such as XPose (86.14%)
and PPM+CPT (87.54%), indicating that the learned structure-aware representation serves as an
effective surrogate for external semantic cues. Moreover, GenCape-S attains 91.01% PCK, exceed-
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ing CapeX-S (90.37%), which leverages both textual and skeleton support. 5-shot results. Under
the 5-shot setting (Table[2), GenCape-S further improves, achieving an average PCK of 93.53% and
outperforming all representative CAPE methods, including PPM+CPT (92.58%), SCAPE (91.01%),
and GraphCape (92.83%). The model delivers consistent gains across all splits except Split 3, with
a maximum of 97.19% on Split 1 and a minimum of 91.93% on Split 4.

More detailed comparisons. Table E]presents results under stricter thresholds (0.2, 0.15, 0.1, 0.05)
on Split-1 with ResNet-50 as backbone. Threshold choice strongly affects relative gaps: GenCape-
R50 outperforms FMMP by 0.92% at PCK@0.2, and the margin increases to 1.61% at PCK@0.05,
showing that coarse thresholds may mask fine-grained discriminative ability. GenCape achieves the
highest accuracy at all thresholds and improves mPCK by +1.59% over FMMP.

4.4 ABLATION STUDY

In this section, we conduct all of the ablation studies of our proposed method on the MP-100 dataset
Split-1 using the SwinV2-Tiny backbone, unless otherwise specified. We now present key ablation
experiments. Additional ablations can be found in Appendix

Effects of Different Components. To rigorously quan- Table 4: Ablation studies on different
tify the contribution of each module in our framework, components (Split-1).
we conduct a comprehensive ablation study under 1-shot

setting. We isolate and examine the effects of variational =, - Lowme CGT | PCK A

regularization (Lky), sparsity penalization (Lgparse), and

the CGT module. Table {4 reports the results. Starting 9119 0
. Ve 91.43 +0.24
from the baseline that excludes all components, we ob-
serve a base PCK of 91.19%. Introducing the KL diver- v v o175 +0.56
170, g v v v 92.05 +0.86

gence term L i ;, yields a modest improvement (+0.24%),

suggesting its stabilizing role by constraining posterior distributions with the Gaussian prior. Com-
bining both constraints, the performance improves substantially to 91.75%, confirming their syn-
ergistic effect in enforcing informative and interpretable structural cues. Further incorporating the
CGT mechanism yields 0.86% gains, underscoring the importance of compositional graph fusion in
consolidating uncertainty-aware structural hypotheses and enhancing query-specific robustness.

Effects of Hyper-parameter. We in- Table 5: Ablation studies on hyper-parameters, includ-
vestigate the influence of four key hy- ing latent dimension D, number of posterior samples NV,
perparameters: latent dimensionality and weighting factors 3 and +y for the training objectives.
D, sample count N, and loss weights

B and vy (Eq Eq- As shown Hyper-parameters of i-SVAE

in Table [5] the model achieves opti-  Parameter D, (N, = 3) 32 64 96 128

mal performance at D, = 32, with  pcK 92.05 91.89 91.54 91.40
larger dimensions leading to perfor- ~Parameter N, (D, = 32) 2 3 4 5
mance degradation (e.g., 92.05% at 32 pcK 91.60 92.05 9147 91.63
vs. lower at 64/128), indicating that Objective weighting factor

excessive latent capacity introduces re-  pyrameter 5 (y = le—3) 1 le=! 1e=2 1e-3
dundancy and weakens structural com-  pcg 9143 92.05 9165 91.74
pactness. Fixing D, = 32, we vary N,

and observe the best results at N, = 3,  Parameter v (5 = 0.1) 1 le! 1le7? le?
while both smaller (/V; = 2) and larger PCK 90.99 9114  91.71  92.05

(Ns = 5) values slightly reduce accu-

racy. This suggests a trade-off between uncertainty modeling and variance over-smoothing. For loss
weights, we separately tune v (KL loss) and 3 (sparsity loss). The model peaks at ¥ = 10~2 when 3
is fixed, balancing reconstruction and regularization. Likewise, 5 = 0.1 yields the best PCK, high-
lighting its role in regulating structure sparsity without over-penalizing connectivity. These results
confirm that our framework remains robust across hyperparameter variations, with optimal settings
jointly promoting expressiveness and structural regularity.

Effects of Cross-Category Generalization. To assess structural generalization beyond cat-
egory boundaries, we conduct three cross-supercategory pairs experiments: Person<>Felidae,
Felidae<+Ursidae, and Person<>AnimalFace. These settings cover diverse appearance and topology
gaps, including upright-to-quadruped transfers and full-body to face shifts. As shown in Table [6}
GenCape consistently outperforms GraphCape across all pairs, with margins up to +11.8 points (Fe-
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Figure 3: Comparisons on adjacency matrices inferred by i-SVAE and Figure 4: Comparisons of qualitative
predefined graph. The Predict* is the predicted locations with the prior visualization. The red boxes high-
connections, while the Predict is with learned connections. light the differences.

lidae— Person), demonstrating the robustness of compositional latent graphs under structural shifts.
We further evaluate in the challenging cross-species setting, where models trained on human bodies
and tested on morphologically distinct animal bodies. GraphCape suffers substantial performance
drops, e.g., 31.09 on Rabbit Body, due to the rigidity of static priors. In contrast, GenCape main-
tains strong transferability, achieving +21.05 improvement and scaling effectively across species
with varying skeletons on Squirrel Body. These results validate that generative, instance-specific
graphs better capture structural uncertainty and enable robust pose reasoning across categories.

Qualitative Analysis. To intuitively un- Table 6: Cross category evaluation comparing Graph-
derstand how our model mines effective Cape and GenCape based on SwinV2-small backbone.
skeletons, we visualize the pre-normalized

adjacency matrices across decoder layers — u.in Test
with the inferred skeletons in Figure [3]
Compared with fixed skeletons, whose

GraphCape Ours

Cross super-category

Person Felidae 58.46 58.82
inag‘“auy Cht‘.’seﬁ edges are ngt g“ara.n;eeg Felidae Person 56.26 68.08
0 be semantically correct and can misiead — pejiq,e Ursidae 73.10 74.10
message passing, the .g.raph 1nfeqed by i-  Ursidae Felidae 73.83 7776
SVAE are query-conditioned and instance-  ApimalFace Person 65.49 77.93
specific. So pose, viewpoint and other  Person AnimalFace 65.08 68.41
changes are directly reflected in the ad- -
. . Cross species
Jacency matrix. The learned structures 5 - "o 0 dy  Fox Body 46.65 57.47
are clearly task-driven, emphasizing high- gy man Body  Rabbit Body 31.09 52:14
influence keypoints that most contribute to Hyman Body ~ Squirrel Body ~ 54.30 73.37

accurate localization, e.g., nose and eyes
as anchors for klipspringer face, four corners for bed, and central torso for long sleeved outwear.
They receive denser and stronger connections and thus provide more effective geometric constraints.
Figure [ highlights GenCape’s superior adaptability when exposed to varying support-query pairs
in 1-shot setting. Compared to GraphCape, which fails under pose misalighment and occlusion
(e.g., bison and swivelchair), our model consistently localizes keypoints accurately by leveraging its
uncertainty-aware graph. Interestingly, we further visualize the impact of varying support images
for the same query instance, as shown in the fourth and fifth rows. When the fox undergoes different
forms of occlusion, GraphCape suffers from inconsistent errors, while GenCape maintains stable
predictions. These results suggest that our method is significantly less susceptible to the adverse
effects introduced by suboptimal support sets. Additional analyzes are provided in Appendix [C]

5 CONCLUSION

In this paper, we introduce GenCape, a generative framework for CAPE that infers keypoint rela-
tionships solely from visual inputs. GenCape integrates an iterative Structure-aware Variational Au-
toencoder to progressively infer instance-specific keypoint relationships, alongside a Compositional
Graph Transfer module that aggregates multiple latent graph hypotheses into query-aware structural
cues. Extensive experiments on MP-100 demonstrate that GenCape achieves the state-of-the-art
performance. These results demonstrate the effectiveness of our framework.
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APPENDIX

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 DETAILS OF NETWORK STRUCTURE

Algorithm 1 Compositional Graph Transfer (CGT)

Require: Support keypoint embedding F, query feature F}

1: forl=1,...,Lsdo
2: StructureVAE encoding:
(1", log(o"))] = Enc(F{)
3: Random sampling (N5 turns)
Z(l)|£lvil — MU) + O'(l) ®e€
4: StructureVAE decoding:
{AD = Dec(z”|): )
5: Computing confidence:
w. — 1 By = W,
n = _~_ (N n = “N.
Ez 1 agl)l te ZTJYLS:I Wm
6:  Bayesian aggregation: Amed SN w n - AP
7: Update support keypoint embedding:
F{Y = GON(F, Af)
. . L) sim(Pool (F, ),,u.(l))
8: Compute Gating Scores: o' = ST Sim(POO;’(Fq)M(”), L e [1, L4
9:  Fusion across Layers: A{) « S el Aﬁjzed
10: end for
In Table []] we provide
Compositional Graph Transfer detailed architecture con-
e N figurations for i-SVAE

-

Adj. matrices {Jlm} L
: F, A
i u® @ W

~. [ Query-guided Gating )

Bayesian Aggregation S

A

(1) (2) (L)
‘ﬂfused 'ﬂfnsed ‘ﬂ'usad
€ J

Figure 5: The pipeline of Compositional Graph Transfer.

the [-th decoder layer outputs sampled adjacencies {.Aﬂ )}
O}

mate A"

M([)

The i-SVAE in
2, with posterior
Bayesian aggregation fuses samples into a single adjacency esti-
and query-guided gating reweights layers using the query embed-

fused?

ding F. The result is the final graph Ahnal in that layer.

adjacency matrices {fl,P}N , together with their posterior statistics p® and o,

module. M denotes the
maximum  number of
keypoints, D is the node
feature embedding size,
and hidden_-dim = 256
refers to the hidden dimen-
sionality of the VAE en-
coder. The latent_dim
used for graph sampling is
denoted by D,, consistent
with the main manuscript.
Figure [ illustrates the
pipeline of Compositional
Graph Transfer. In the [-th
decoder layer, the i-SVAE
produces multiple sampled

Bayesian

aggregation fuses these samples into a single adjacency estimate, and query- gu1ded gating further

reweights the fused graphs using the query embedding F7,. The resulting matrix Aﬁndl serves as the
final structure used for message passing in that layer. The details can be found in Section[3.3]

The complete pipelines of our two proposed modules are outlined in Algorithm[T] Due to the limited
structural cues present in raw keypoint features, the iterative learning paradigm faces challenges in

capturing meaningful latent graph structures. The resulting graphs FS(HD serve as refined structural

13
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Table 7: Architecture details of the iterative StructureVAE, including graph encoder, latent sampling,
and graph decoder in the Figure |Z| (main manuscript).

Norm & Activation Output Shape

Graph Encoder (for posterior distribution)

Input node feature - [B, M, D]
Reshape © — ' - B, M - D]
Linear ReLU B, hidden_dim]
Linear - B, 2 - latent_dim]
Split — (p, log o%) - [B, latent_dim] x 2
Latent Sampling (Reparameterization)
If training: z =p+e-0 - B, latent_dim]
Else: z = - B, latent_dim)]
Graph Decoder (to soft adjacency matrix)
Linear Sigmoid B, M - M]
Reshape - B, M, M]
Symmetrization A=L1(A+AT) [B, M, M)

priors, facilitating the downstream reasoning module to learn more expressive and structure-aware
keypoint representations.

A.2 DETAILED TRAINING CONFIGURATIONS

Table [§] summarizes the training and evaluation settings for the GenCape-T/S models. We adopt the
Adam [Kingma & Bal (2015 optimizer with a base learning rate of 1.0 x 10~5, scheduled linearly
and warmed up over 1,000 iterations with a warmup ratio of 0.001. Training is performed for
175,000 epochs with a batch size of 16 in float32 precision, ensuring stable convergence. For few-
shot evaluation, the model is assessed under both 1-shot and 5-shot settings, with each episode
comprising 15 query samples and a total of 200 episodes to ensure statistical reliability.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ABLATIONS ON DIFFERENT STRATEGIES

To further assess the effectiveness of our proposed Table 8: Training configuration used for
framework, we investigate the impact of different GenCape-T/S.

graph construction methods and different composi-

tional graph transfer strategies. Table [9] compares Training recipe:

different methods for constructing adjacency matrix. optimizer Adam

Random initialization results in a significantly per-
formance drop, confirming the importance of struc-

Learning hyper-parameters:

tural priors. Learnable graphs consistently outper- base learning rate 1.OE-05
L . learning rate schedule linear
form static counterparts, and removing the symme- batch size 16
try constraint leads to only a slight decrease, sug- training steps 175,000
gesting that bidirectionality is more critical than di- Ir warmup iters 1,000
rectional specificity. We replace our layer-wise i- warmup ratio 0.001
SVAE updates with the first-layer adjacency matrix warmup schedule linear
predicted only once from the encoder output. we ob- data type float32
serve: iter (92.05) vs. non-iter (91.48). This +0.57 norm epsilon 1.0E-06
improvement demonstrates that iterative refinement Few-shot testing hyper-parameters:
is indeed beneficial. A fixed adjacency estimated shots 1/5
once from static support features cannot adapt to the num_query 15
evolving decoder representations. Furthermore, we num_episodes 200

conducted an experiment that directly used the self-
attention weights from Figure[2]as the adjacency matrix. This variant achieves only 89.33 PCK@0.2
(2.72 drop vs. 92.05), indicating that attention-induced “connectivity” fails to provide meaningful
structure. This is expected: self-attention mainly captures appearance-driven correlations, lacks
uncertainty modeling, especially when support features are ambiguous. Table[I0]investigates com-
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positional graph transfer strategies. The combination of query weighting at the layer level and
Bayesian fusion at the sampling level achieves the highest 92.05% PCK. In contrast, using the same
strategy at both levels (e.g., query weighting for both) yields suboptimal results. We attribute this
improvement to the complementary strengths of the two mechanisms: query weighting enables dy-
namic alignment of structural importance across layers based on the semantic context of the query,
while Bayesian fusion effectively mitigates uncertainty introduced by latent graph sampling. Con-
versely, a mismatch between Bayesian fusion across layers and query weighting across samples
performs worse (91.55%). These findings highlight the importance of hybrid fusion strategies that
jointly consider semantic relevance and structural reliability. Layer-wise representations encode
semantically distinct structural abstractions that benefit from query-adaptive weighting rather than
confidence-based averaging. Applying Bayesian fusion at this level can obscure semantically salient
but uncertain layers, effectively flattening meaningful hierarchical distinctions.

Table 9: Comparisons of different adjacency

matrix construction strategies under 1-shot Table 10: Comparisons on compositional
setting with SwinV2-Tiny backbone. graph transfer strategies under 1-shot setting
with SwinV2-Tiny backbone.
Type Symmetric PCK
Static Graph v 91.19 Layer-wise Sampling-wise = PCK
Learnable Graph v 92.05 Bayesian Fusion ~ Bayesian Fusion  91.36
Learnable Graph X 91.71 Query Weighting  Query Weighting  91.74
Random Initialized Graph v 84.39 Bayesian Fusion = Query Weighting  91.55
Non-iter v 91.48 Query Weighting  Bayesian Fusion ~ 92.05
Self-attention v 89.33

B.2 ADDITIONAL CROSS-SUPERCATEGORY RESULTS

Table 11: Cross-supercategory results. PCK@0.2 performance under the 1-shot setting on Split-1.
Following the standard super-category partitioning protocol, our method achieves the best perfor-
mance across all splits, demonstrating its strong generalization.

Method HumanBody HumanFace Vehicle Furniture
ProtoNet 37.61 57.80 28.35 42.64
MAML 51.93 25.72 17.68 20.09
Fine-tune 52.11 25.53 17.46 20.76
POMNet 73.82 79.63 34.92 47.27
CapeFormer 83.44 80.96 45.40 52.49
GraphCape 88.38 83.28 44.06 45.56
GenCape 89.69 93.76 47.74 66.63

We follow prior works [Liang et al.[ (2024); Hirschorn & Avidan| (2024); Rusanovsky et al.| (2025)
and perform a cross—supercategory evaluation to rigorously assess the generalization ability of our
model across semantically diverse object classes. Concretely, in Table [1 1| we treat one of the four
MP-100 supercategories—HumanBody, HumanFace, Vehicle, Furniture—as the test domain and
train on the remaining three, creating four disjoint train—test splits. GenCape consistently achieves
the highest accuracy across all cross—supercategory splits. These improvements highlight the strong
generalization of our generative structural modeling, which captures keypoint dependencies that
remain robust under large variations.

We further evaluate a more challenging setting: training on one category and testing on a differ-
ent, structurally mismatched category. Across all Train—Test pairs, Table [I2] shows that Gen-
Cape consistently surpasses GraphCape, indicating stronger resilience to cross-category discrep-
ancies. Notably, GenCape achieves substantial gains in HumanBody—HumanFace (+11.36), Vehi-
cle—HumanBody (+8.40), and Chair—HumanBody (+4.23), showing its ability to adapt to entirely
different topologies. Overall, these results highlight that GenCape learns transferable, generative
keypoint relations that generalize reliably across heterogeneous object categories.
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Table 12: Cross domain transfer evaluation. PCK@0.2 performance under the 1-shot setting on
Split-1. Training on one super-category and testing on the other.

Train Test GraphCape GenCape
HumanBody = HumanFace 33.87 45.23
HumanFace =~ HumanBody 55.90 56.43
Furniture HumanBody 73.79 73.09
HumanBody Furniture 31.11 50.47
Vehicle HumanBody 50.13 58.53
HumanBody Vehicle 28.52 32.64
Chair HumanBody 49.10 53.33

B.3 ADDITIONAL METRICS RESULTS

Table 13: Additional Metrics. AUC, EPE and NME performance under 1-shot setting.

Method AUC % (1) EPE({) NME({) PCK % (1)
GraphCape-T 89.10 41.04 0.08 91.19
GenCape-T 89.50 39.65 0.08 92.05
GraphCape-S 91.16 30.05 0.06 94.73
GenCape-S 91.37 29.62 0.06 95.23

We further evaluate our model using three standard keypoint localization metrics, as summarized
in Table T3] AUC measures the area under the PCK curve and reflects overall accuracy across a
range of distance thresholds. EPE computes the Euclidean distance between predicted and ground-
truth keypoints. NME reports the mean localization error normalized by object scale. These metrics
provide a comprehensive assessment of both absolute and scale-invariant localization performance.

B.4 COMPARISONS ON COMPUTATIONAL COMPLEXITY

Table 14: Comparison of computational complexity and accuracy across methods.

Method GFLOPs Params FPS PCK
POMNet 38.01 4821M  6.80  46.05
One-Stage 22.65 26.86M  36.90

CapeFormer 23.68 31.14M  26.09 89.45

GraphCape-T 15.48 43.68M 1536 91.19
GenCape-T 15.66 4447 1489  92.05

GraphCape-S 27.75 65.06M 1045 94.73
GenCape-S 27.93 65.85M 1044 95.23

To further clarify computational efficiency, we provide a comparison of GFLOPs, parameter counts,
and inference speed. GraphCape and GenCape are tested on A100, while the results of POMNet,
One-Stage, and CapeFormer are taken from CapeFormer Shi et al.| (2023 where all measurements
were obtained on a RTX 3090. As shown in Table [T4] despite this hardware discrepancy, the com-
parison still reveals a clear trend: GenCape introduces negligible computational overhead relative to
GraphCape (e.g., +0.18 GFLOPs and +0.8M params for the Tiny variant), while consistently deliv-
ering higher accuracy. This confirms that our generative structural modeling improves performance
without sacrificing efficiency.

C ADDITIONAL VISUALIZATION RESULTS

In this section, we present more qualitative results. As shown in the first row of Figure[6] the support
image depicts an inverted top-view of a dog, where GraphCape Hirschorn & Avidan|(2024) exhibits
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Figure 6: Comparative qualitative results. We compare more keypoint predictions with GraphCape
(2024)) under the 1-shot setting. The red boxes highlight the regions with significant differences.

noticeable prediction drift on the left hind leg and right foreleg, while our method achieves more ac-
curate localization. In the second and third rows, GraphCape overly relies on support instances with
dissimilar poses, resulting in incorrect keypoint predictions. The fourth row presents a challenging
case involving a swivel chair, where structural reasoning becomes critical for precise keypoint infer-
ence. Despite preserving the overall skeleton shape, GraphCape relies solely on manually defined
connections and fails to localize the seat correctly, producing an upward shift as highlighted by the
red box. A similar issue is observed in the fifth row, where the predicted seat location is misaligned
to the edge of the cat. Figure [7] provides additional category-agnostic pose estimation examples to
further illustrate the effectiveness of our approach.

Figure 8] shows more visualizations between predefined skeletons and the latent adjacency matrices
inferred across different decoder layers. In the first example (giraffe), the learned adjacency matrices
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[ Flickr.com/spotky

GT Predict Predefined Layer #1 Layer #2 Layer #3
Figure 8: Adjacency matrix visualization. We visualize more latent graph structures across different splits.

progressively capture long-range dependencies critical for reasoning along the elongated neck and
legs, outperforming the sparse predefined skeleton. The second case (monkey) presents occlusion
challenges from tree branches, where the model adaptively strengthens cross-limb connections in
deeper layers to improve structural consistency, though minor prediction drift remains. For the bird,
although predefined structures already offer reasonable symmetry, latent graphs further refine bilat-
eral dependencies, enhancing accuracy. The trouser case represents a particularly challenging case
due to its dense, repetitive keypoints and weak structural cues. These visualizations also enhance
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the interpretability of our GenCape. However, from Figure f]and 0] we observe that localization er-
rors are primarily caused by visual feature ambiguity. Predictions on the swivelchair category show
large structural deviations, suggesting that the weak and homogeneous textures of this class hinder
the transfer of support-driven structural priors. We further evaluate robustness by randomly masking
the query image. When 25% of the image is masked, GenCape-S shows only a mild drop (93.05),
but performance collapses at 50% masking (76.81), showing that heavy occlusion severely disrupts
the visual evidence required for localization. This sharp degradation reinforces the need for gen-
erative, uncertainty-aware structural modeling to cope with missing keypoints and support—query
mismatch.

GT Predict* Predict Predefined Layer #1 Layer #2 Layer #3
Figure 9: Additional adjacency matrix and skeleton visualization. We visualized samples from two cate-
gories (bed and klipspringer face) in Split-1 for a more comprehensive illustration. The Predict* column is the
predicted locations with the prior connections, while the Predict column is with learned connections.

More qualitative analysis of the adjacency matrix of the same category. Figure [0] presents ad-
ditional adjacency-matrix and skeleton visualizations for two same categories in Figure §] Each
row corresponds to the layer-wise adjacency matrices progression produced and finally the skeleton.
Brighter colors in the matrices indicate stronger relational dependencies between corresponding key-
points. We observe that adjacency patterns remain similar across samples of the same category. For
instance, in first 3 rows of bed category, the adjacency matrices consistently shows a core keypoint
showing strong influence on the others. From left to right: initially the core keypoint fires broadly,
then adjacent points start to dominate local neighborhoods, and the final layer produces localized
high-response clusters and suppressed irrelevant edges, indicating a confident and discriminative
dependency graph. For the klipspringer face category in the last three rows, the progression follows
a different pattern: early layers emphasize local smoothness among neighboring keypoints, then the
model increasingly attends to the central nose region as an anchor, and the final layer converges to
a distinct pattern. These differences across categories reflect that the layer-wise graphs represent a
coarse-to-fine refinement of functional dependencies. The evidences that the learned graphs encode
structural dependencies useful for CAPE, rather than merely aiding optimization convergence.
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