
3D Gaussian Rendering Can Be Sparser:
Efficient Rendering via Learned Fragment Pruning

Zhifan Ye, Chenxi Wan, Chaojian Li, Jihoon Hong, Sixu Li,
Leshu Li, Yongan Zhang, Yingyan (Celine) Lin

Georgia Institute of Technology
{zye327, celine.lin}@gatech.edu

Abstract

3D Gaussian splatting has recently emerged as a promising technique for novel
view synthesis from sparse image sets, yet comes at the cost of requiring millions
of 3D Gaussian primitives to reconstruct each 3D scene. This largely limits its
application to resource-constrained devices and applications. Despite advances in
Gaussian pruning techniques that aim to remove individual 3D Gaussian primitives,
the significant reduction in primitives often fails to translate into commensurate
increases in rendering speed, impeding efficiency and practical deployment. We
identify that this discrepancy arises due to the overlooked impact of fragment
count per Gaussian (i.e., the number of pixels each Gaussian is projected onto). To
bridge this gap and meet the growing demands for efficient on-device 3D Gaussian
rendering, we propose fragment pruning, an orthogonal enhancement to existing
pruning methods that can significantly accelerate rendering by selectively pruning
fragments within each Gaussian. Our pruning framework dynamically optimizes
the pruning threshold for each Gaussian, markedly improving rendering speed
and quality. Extensive experiments in both static and dynamic scenes validate the
effectiveness of our approach. For instance, by integrating our fragment pruning
technique with state-of-the-art Gaussian pruning methods, we achieve up to a
1.71× speedup on an edge GPU device, the Jetson Orin NX, and enhance rendering
quality by an average of 0.16 PSNR on the Tanks&Temples dataset. Our code is
available at https://github.com/GATECH-EIC/Fragment-Pruning.

1 Introduction

Novel view synthesis, which aims to generate photo-realistic images of a 3D scene from unseen
viewpoints given a set of posed multi-view images as input, has been crucial for many virtual reality
(VR) and augmented reality (AR) applications [1, 2, 3]. In recent years, Neural Radiance Field [4]
(NeRF) and its variants [5, 6, 7] have shown promise in delivering high-quality rendering. However,
the volume rendering approach [8] adopted in NeRF requires expensive sampling (e.g., more than
100 times neural network inference per emitted ray [4]) in 3D space, leading to slow rendering speeds.
To mitigate this problem, subsequent works have attempted to enhance rendering performance by:
(1) storing radiance in explicit 3D representations such as voxel grids [9, 10, 11], octrees [12],
and hash grids [13]; and (2) converting pre-trained NeRFs into meshes [14, 15]. However, these
methods still rely on the aforementioned costly volume rendering and often lead to increased storage
consumption and decreased rendering fidelity. Recently, 3D Gaussian Splatting [16], which adopts a
rasterization-based rendering pipeline to avoid the costly point sampling required in volume rendering,
has emerged as a promising solution for achieving a superior trade-off between rendering speed and
quality. Nevertheless, 3D Gaussian Splatting [16] requires millions of 3D Gaussian primitives to
reconstruct a 3D scene (e.g., an average of 3 million per scene in the Mip-NeRF 360 dataset [6]),
which still hinders real-time rendering on resource-constrained devices. For instance, as illustrated in

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/GATECH-EIC/Fragment-Pruning


Figure 1: (a) The number of fragments per pixel and the total number of fragments in a bicycle scene
from the Mip-NeRF 360 dataset. The bottom left figure corresponds to the vanilla 3D Gaussian
Splatting approach (3DGS) [16] while the upper right figure illustrates that of our approach on top of
3DGS. (b) The rendering speed in FPS (Frames Per Second) and image quality in PSNR (Peak Signal-
Noise Ratio) of SOTA approaches (including Mip-NeRF 360 [5], INGP-Big [13], Plenoxels [9],
3DGS [16], and Mini-Splatting [18]) and our proposed one.

Sec. 6.3, it achieves only 35 FPS on the Mip-NeRF 360 dataset [6] with a an edge GPU device [17],
which is below the required speed for real-time rendering (e.g., 60 FPS).

To further enhance the rendering speed of 3D Gaussian Splatting on edge devices, prior works have
proposed pruning individual Gaussian primitives. However, as shown in our profiling results in
Sec. 4, these prior works do not accelerate the rendering process proportionally to the reduction in
the number of primitives, limiting their achievable efficiency. Our further analysis of the rendering
process statistics reveals that these existing efforts overlook a critical opportunity, fragment pruning,
which operates at the fragment, i.e., pixel, granularity. Specifically, we identify that although these
methods significantly reduce the number of Gaussian primitives, they do not proportionally
reduce the number of rendered fragments, as the number of fragments per Gaussian increases.
This increase directly impacts computational cost during the bottleneck rasterization stage of 3D
Gaussian’s rendering pipeline. To the best of our knowledge, we are the first to investigate and
develop fragment pruning for 3D Gaussian Splatting.

Based on insights from the aforementioned profiling and analysis, we propose an adaptive fragment
pruning framework that learns each Gaussian’s fragment pruning threshold as a post-processing
step for pre-trained 3D Gaussian Splatting models. Specifically, we use the sigmoid function to
approximate the non-differentiable truncation function of a 3D Gaussian projected onto the 2D pixel
grid (i.e., the image plane), enabling a differentiable fine-tuning pipeline. This approach enables each
Gaussian primitive to learn an independent truncation threshold, thereby reducing the number of
pixels it projects onto and, consequently, decreasing the fragment count per Gaussian. This process
significantly enhances the rendering efficiency of the truncated Gaussian function. Fig. 1 illustrates
the fragment count before and after applying the proposed fragment pruning framework, along with
its impact on rendering efficiency and image quality. In summary, our proposed fragment pruning
framework makes the following contributions:

• We profile the 3D Gaussian rendering process before and after applying prior Gaussian
pruning techniques and derive the following insights: (1) the rasterization stage of the
entire rendering pipeline is the bottleneck in terms of runtime, regardless of whether the
Gaussian pruning techniques are applied or not; (2) prior works do not reduce the runtime of
the bottleneck rasterization stage in proportion to the reduction of the number of Gaussian
primitives; (3) this inefficiency arises because prior methods do not proportionally reduce the
fragment count, which is a key factor determining the computational cost in the bottleneck
rasterization stage.

• Motivated by the insights described above, we propose fragment pruning, which prunes 3D
Gaussian primitives at the 2D fragment granularity instead of the raw 3D Gaussian primitive.
Specifically, we develop an adaptive fragment pruning framework by making the truncation

2



function for each Gaussian primitive differentiable when projecting it onto the 2D pixel grid.
We then fine-tune the pre-trained 3D Gaussian Splatting model using a fully differentiable
pipeline, allowing each Gaussian to automatically learn the optimal truncation threshold.

• Extensive experiments and ablation studies on both static and dynamic scenes demon-
strate the effectiveness of our proposed fragment pruning. For instance, it is orthogonal
to prior Gaussian pruning techniques and can further boost the FPS of state-of-the-art
(SOTA) Gaussian pruning works by 1.71 × without decreasing the rendering quality on the
Tanks&Temples [19] dataset.

2 Related Works

Novel View Synthesis. Novel view synthesis aims to render photorealistic images from novel
viewpoints, given a set of sparsely sampled images of a specific scene. Toward this goal, early
efforts in this field employed classical computer vision techniques such as structure-from-motion [20]
and multi-view stereo [21]. More recently, the adoption of deep learning methods has significantly
enhanced rendering quality [22, 23, 24, 25]. Specifically, NeRF [4] has emerged as a standout among
these deep learning-based novel view synthesis techniques. It models the radiance field of the target
scene using implicit neural representations (i.e., multi-layer perceptrons) and achieves unprecedented
rendering fidelity. However, NeRF relies on volume rendering [8] with costly sampling of its implicit
neural representation along each emitted ray, resulting in slow rendering speeds. To enhance the
rendering speeds of NeRF, subsequent research has incorporated explicit geometric structures or more
efficient positional encodings to reduce the capacity of the multi-layer perceptron [12, 10, 11, 13], or
even eliminated neural networks entirely [9]. Nevertheless, these approaches still adopt the volume
rendering pipeline, and the corresponding rendering speeds are limited by the expensive sampling
along each emitted ray.

3D Gaussian Splatting. Unlike the novel view synthesis works mentioned previously that rely on
volume rendering, 3D Gaussian Splatting [16] parametrizes a scene using a set of 3D Gaussian primi-
tives and utilizes a GPU-friendly rasterization-based rendering pipeline. This approach circumvents
the need for expensive sampling along each emitted ray. In addition to improvements in rendering
speed, the use of continuous and anisotropic Gaussian primitives also enables faster convergence and
higher reconstruction fidelity compared to the aforementioned NeRF-based methods. Consequently,
this approach has inspired numerous follow-up works that extend its application to dynamic scene
reconstruction [26, 27, 28] and 3D content generation [29, 30], demonstrating superior performance
across various domains.

3D Gaussian Splatting Pruning. Despite the impressive rendering quality and efficiency achieved
by 3D Gaussian Splatting [16], high redundancy in the reconstructed 3D Gaussian models adversely
affects rendering speeds, as identified by [31, 18]. To further boost rendering speeds by compressing
this identified redundancy, various techniques have been proposed to prune the redundant Gaussian
primitives, drawing parallels to prior deep neural network pruning efforts [32, 33]. For example,
Compact 3D Gaussian [31] learns a binary mask to remove unnecessary Gaussians. LightGaus-
sian [34] introduces an importance measure to eliminate insignificant Gaussians below a certain
threshold. Mini-Splatting [18] uses importance-based sampling rather than a strict pruning threshold
to mitigate excessive culling in local regions. Similarly, [35] proposes a redundancy-based sampling
method for Gaussian removal. However, all the aforementioned 3D Gaussian Splatting pruning
techniques only address pruning at the granularity of individual Gaussian primitives, neglecting the
impact of the number of fragments, produced after projecting 3D Gaussians onto the 2D image plane,
on rendering speeds. In contrast, our work explores an orthogonal direction at the granularity of
fragments, significantly enhancing the trade-offs between rendering speeds and quality in both static
and dynamic scenes, as validated in Sec. 6.

NeRF to Mesh Convertion In addition to 3D Gaussians, polygon meshes also offer an efficient 3D
scene representation with a rendering pipeline that is well-optimized on commercial devices. Previous
works [14, 15, 36] have proposed converting pre-trained NeRFs into opaque polygon meshes to
enhance rendering speed in novel view synthesis tasks. After conversion, a pixel’s color depends
solely on the closest projected polygon, which reduces per-pixel computational costs but makes it
challenging to faithfully reconstruct complex geometry and translucent objects. Consequently, the

3



converted mesh often struggles to achieve high rendering quality in real-world scenes. For instance,
on the Mip-NeRF 360 dataset [6], the prior works on converting NeRF to mesh [14, 15, 36] achieved
PSNR scores of 21.95 ∼ 23.59, lower than the vanilla NeRF [4], which reached a PSNR of 23.85 [6].
In contrast, our approach, which adaptively reduces computational cost per pixel (i.e., fragment count
per pixel, as shown in Fig. 1 (a)) based on learned truncation thresholds, preserves the rendering
quality of pre-trained 3D Gaussian models.

3 Preliminary
3.1 Gaussian Primitives of 3D Gaussian Splatting

3D Gaussian Splatting [16] represents a scene with a collection of anisotropic Gaussian primitives.
Each primitive is parameterized by a 3D Gaussian function G(x), with a covariance matrix Σ ∈ R3×3,
centered at a mean value (center point) µ ∈ R3:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

The covariance matrix Σ can be further decomposed into a rotation matrix R and a scaling matrix
S: Σ = RSSTRT . Besides storing the aforementioned geometry information, each Gaussian is
also assigned a learnable opacity factor o and a set of spherical harmonics (SH) coefficients for
view-dependent colors, following previous practices [9, 13].

3.2 Rendering Pipeline of 3D Gaussian Splatting

Given the aforementioned 3D Gaussian primitives and a specific viewpoint (camera), the rendering
pipeline for 3D Gaussian Splatting can be divided into three stages:

Projection First, each 3D Gaussian primitive is projected onto the 2D image plane to be rendered
by taking the marginal distribution of the 3D Gaussian function. This stage results in a set of 2D
Gaussian primitives [37]. Specifically, using a viewing transformation W and a Jacobian matrix J,
which approximates the local projective transformation with an affine mapping, the covariance matrix
Σ′ of the 2D primitive can be derived as follows:

Σ′ = JWΣWTJT . (2)

Sorting Second, all Gaussian primitives are sorted by their depth values d, i.e., the distance from
their centers to the camera origin. As a result, the Gaussian primitives are ranked in order from
nearest to farthest relative to the viewpoint:

d1 < d2 < d3 < ... < d#G, (3)

where #G is the total number of Gaussian primitives.

Rasterization Finally, for each pixel on the 2D image plane to be rendered, the color and opacity
of the sorted 2D Gaussian primitives are rasterized and accumulated through α-blending:

C(p) =

#G∑
i=1

ciαi(p)

i−1∏
j=1

(1− αi(p)), (4)

where p is the pixel center and the opacity value αi(p) is determined by sampling a weighted 2D
Gaussian function at location p:

αi(p) = oie
− 1

2 (p−µi)
TΣ′−1

i (p−µi). (5)

In practice, it is computationally infeasible to sample Eq. 5 at all pixels for all Gaussian primitives,
which involves multiple vector-matrix multiplications. Therefore, 3D Gaussian Splatting [16]
truncates each 2D Gaussian function at a predetermined α threshold T = 1

255 and ignores the impact
of 2D Gaussian primitives on the pixels falling outside the truncation range. This approach essentially
replaces opacity value αi with α′

i in Eq. 4:

α′
i(p) = αi(p)I{αi(p) > T}, (6)

where I is an indicator function that equals 1 if and only if the condition is met, and equals 0 otherwise.

4



Table 1: Per-scene rendering time breakdown for vanilla [16] and pruned [18] 3D Gaussian Splat-
ting. Rendering times are measured in milliseconds, based on the first camera pose in the test set.
The latency at each stage is stable for this fixed pose, with fluctuations below 0.02 milliseconds.
Specifically, #G and #F represent the number of Gaussians and the number of fragments for the
corresponding scene.

Scene Pruned Projection Sorting Rasterization #G #F #F / #G

Bicycle ✗ 7.64 6.61 42.57 5,991,553 56,788,756 9.5
✓ 1.32 0.90 18.00 533,288 34,633,815 64.9

Garden ✗ 9.92 8.08 45.50 5,742,553 58,067,106 10.1
✓ 1.58 1.45 20.69 575,510 33,342,349 57.9

Room ✗ 2.37 2.43 47.20 1,535,973 83,986,935 54.7
✓ 1.10 0.87 32.39 393,991 76,513,014 194.2

Kitchen ✗ 6.28 4.71 59.44 1,809,084 99,977,477 55.3
✓ 1.41 1.01 36.88 432,212 82,708,870 191.4

4 Profiling and Analysis of 3D Gaussian Rendering Pipeline

To understand the bottlenecks of the aforementioned 3D Gaussian Splatting rendering pipeline, we
perform profiling on an OpenGL-accelerated Gaussian Splatting renderer [38] using the Jetson Orin
NX edge GPU system [17]. Specifically, in the profiling experiments, we adopt two outdoor scenes,
“Garden” and “Bicycle”, and two indoor scenes, “Room” and “Kitchen”, from the Mip-NeRF 360
dataset [6]. To quantify the impact of prior 3D Gaussian Splatting pruning on rendering speeds, we
profile both the vanilla 3D Gaussian Splatting and Mini-Splatting [18], a SOTA method that reduces
Gaussian primitives by 85.4% while achieving higher rendering quality compared to the vanilla one.

4.1 Understanding the Efficiency Bottleneck in the Rendering Pipeline

As summarized in Tab. 1, the Rasterization stage is the major bottleneck in rendering speed for both
the vanilla and pruned 3D Gaussian Splatting. Specifically, this stage accounts for 71.66% to 94.25%
of the overall rendering runtime.

The runtime is dominated by the Rasterization stage because: (1) for the Projection and Sorting
stages, which perform per Gaussian projection and sort all the Gaussians based on depth order,
respectively, the computational complexity is determined by the number of Gaussians (#G) to be
rendered; (2) in contrast, the Rasterization stage’s computational time is dominated by per fragment
computation (i.e., Eq. 4), whose complexity is mainly determined by the number of fragments (i.e.,
the sum of pixels covered by truncated 2D Gaussian primitives):

#F =

#G∑
i=1

∑
p∈P

I{αi(p) > T}. (7)

Based on the summary in Tab. 1, the number of fragments (#F ) is one to two orders of magnitude
larger than the number of Gaussians (#G) under all experimental settings, which results in higher
computational complexity and longer rendering latency. This is why Rasterization is the primary
bottleneck among the three stages.

4.2 Understanding the Effect of Pruning 3D Gaussian Primitives

As summarized in Tab. 1, we observe that pruning 3D Gaussian primitives with SOTA pruning
techniques [18] results in varying degrees of speedup across the three stages of the rendering pipeline.
Specifically, when the number of Gaussians (#G) is reduced by 7.79× by [18], the Projection and
Sorting stages experience speedups of 4.85× and 5.16×, respectively, while the Rasterization
stage only gains a speedup of 1.81×. This implies that prior 3D Gaussian pruning efforts do not
proportionally reduce the runtime of the bottleneck stage relative to the reduction in the number of
Gaussian primitives.

5



Original Gaussian with
Fixed Truncation Threshold - T

3

3 3

3

33

30

0

0

High
Cutoff

Low
Cutoff

Medium
Cutoff

Sigmoid Function with
Learnable Threshold / Cutoff

1

1

1

0

1

0

1

T

Learnable

Gaussian with
Learned Truncation Threshold

Large Truncation

Medium
Truncation

0

1

Learnable

Small
Truncation

×
Gaussian
Renderer

Gradient

Images

Gradient

Fixed
T

Figure 2: The overall pipeline of our proposed fragment pruning framework. We apply a learnable
truncation threshold for each Gaussian to reduce the number of pixels (i.e., fragments) covered by
each Gaussian primitive.

Leveraging the aforementioned analysis on computational complexity across the three different stages,
and considering the number of Gaussian primitives (#G) and fragments (#F ) before and after pruning
as summarized in Tab. 1, we can conclude the following: The less-than-expected reduction in runtime
is primarily because the number of fragments (#F ) only decreases by 1.13× after pruning, which is
caused by an increased average number of fragments per Gaussian primitive (#F / #G). This leads to
a limited reduction in the computational complexity at the bottleneck Rasterization stage.

5 The Proposed Fragment Pruning Framework

Motivated by the profiling and analysis in Sec. 4, which reveals that prior 3D Gaussian Splatting
pruning efforts overlooked the impact of the number of fragments, we propose fragment pruning.
This approach performs pruning at the granularity of fragments rather than at the raw 3D Gaussian
primitive level, as shown in Fig. 2. Specifically, we detail the pruning mechanism via adaptive
Gaussian truncation in Sec. 5.1 and describe the differentiable learning pipeline for determining the
optimal truncation threshold in Sec. 5.2.

5.1 Fragment Pruning through Adaptive Gaussian Truncation

Based on the insights summarized in Sec. 4, we propose pruning the number of fragments covered by
the i-th 3D Gaussian primitive, i.e.,

#Fi =
∑
p∈P

I{αi(p) > T}, (8)

by increasing the threshold T as compared to the default value used in the vanilla 3D Gaussian
Splatting. Specifically, to accommodate the size variations of different 3D Gaussian primitives, we
propose learning a per Gaussian truncation threshold Ti, rather than adopting a global threshold T .
Thus, the opacity value for the i-th 3D Gaussian primitive, as shown in Eq. 6, can be formulated as
follows:

α′
i(p) = αi(p)I{Ei(p) > Ti}. (9)

It is worth noting that to avoid the computational workload associated with calculating exponentials
for Eq. 5, we truncate Gaussian primitives based on the exponent term in Eq. 5 (denoted as Ei)1,
instead of directly on αi.

5.2 Differentiable Learning of Truncation Thresholds

To locate the optimal truncation threshold Ti for each Gaussian primitive, our proposed fragment
pruning framework starts with a pre-trained 3D Gaussian model and fine-tunes it using a fully
differentiable pipeline.

1Truncating based on Ei is mathematically equivalent to truncating based on αi. The equivalent truncation
threshold for αi is oieTi .

6



During fine-tuning, the key barrier to building a fully differentiable pipeline is the non-differentiable
indicator function I. Thus, we propose approximating I with the differentiable Sigmoid function:

I{Ei(x) > Ti} ≈ Sigmoid(
Ei(x)− Ti

t
), (10)

where t is a positive constant. We set Ti and oi as trainable during fine-tuning and freeze all other
parameters, including R, S, and the SH coefficients. This is because we empirically find that
fine-tuning the entire model can lead to overfitting issues.

After fine-tuning, we discard the approximation and directly adopt Eq. 9 for rendering with a reduced
number of fragments. Therefore, there is no need to compute the Sigmoid function during rendering,
and no extra rendering time is incurred due to the approximation in Eq. 10.

6 Experiments

6.1 Experiment Setup

Datasets. We evaluate our proposed techniques on both static and dynamic scenes. For static scenes,
we adopt the five outdoor scenes and four indoor scenes from the Mip-NeRF 360 dataset [6], two
scenes (“Train” and “Truck”) from the Tanks&Temples dataset [19] and two scenes (“DrJohnson”
and “Playroom”) from the Deep Blending dataset [22]. For dynamic scenes, we select the Plenoptic
Video Dataset [39], which is composed of six real-world video sequences.

Devices. To validate the effectiveness of the proposed approach, we benchmark the rendering speed
of our method and the baselines on a consumer hardware device, Nvidia’s edge GPU, the Jetson
Orin NX [17]. The rendering resolution for all scenes is fixed at 1080P (1920 × 1080) to match the
minimal requirements of AR/VR applications [40, 41, 42].

6.2 Implementation Details

Pre-training and Initialization. We use the official implementations and the default hyperparame-
ters of 3D Gaussian Splatting [16], Mini-Splatting [16], and 4D Gaussian Splatting [28] to obtain
pre-trained models. Before fine-tuning, we initialize the truncation threshold Ti for each Gaussian
based on its opacity:

Ti = log(
1

64 · oi
), (11)

so that after initialization, the effective threshold on αi is 1
64 .

Fine-tuning on Static Scenes. To validate the robustness of the proposed techniques, we use the
same set of hyperparameters to fine-tune all scenes across different datasets. Specifically, we fine-tune
each scene for 5,000 epochs, utilizing a batch size of 1. In particular, we adopt the Adam optimizer
with a learning rate of 0.01, β1 = 0.9, and β2 = 0.99 during the fine-tuning process. We adopt the
same L1 Loss and SSIM Loss as the pre-training process [16].

Fine-tuning on Dynamic Scenes. In dynamic scenes, we maintain the same hyperparameters,
optimization strategies and loss functions as those used in static scenes. However, we adjust our
training batch size to 4, adhering to the default batch size as specified in the 4D Gaussian Splatting
training [28].

Renderer Implementation. To fully leverage the hardware-accelerated graphics pipeline of con-
sumer GPUs, we conducted performance benchmarks for vanilla 3D Gaussian Splatting [16] and
Mini-Splatting [18] using an OpenGL-based renderer [38]. Additionally, we have enhanced this
renderer to incorporate our adaptive Gaussian truncation technique and to facilitate the rendering of
dynamic scenes using 4D Gaussian Splatting [28].

6.3 Quantative Results on Static Scenes

Tab. 2 presents a quantitative comparison of the proposed approach and baseline methods on the
static scenes. We report the average Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index

7



Table 2: Quantitative comparison of our method and previous works on the Plenoptic Video Dataset.
Frame rates (FPS) of our method and 4DGS [28] are measured on Jetson Orin NX [17]. *: Frame
rates capped at 60 FPS. In the Mip-NeRF 360 dataset, Mini Splatting + Ours achieved 60 FPS on 5 out of the 9
scenes. In the Tanks&Temples and Deep Blending dataset, all scenes achieved at 60 FPS.

Dataset Mip-NeRF 360 Tanks&Temples Deep Blending
Method | Metric PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑
Plenoxels [9] 23.08 0.626 0.436 - 21.08 0.719 0.379 - 23.06 0.795 0.510 -
INGP-Big [13] 25.59 0.699 0.331 - 21.92 0.745 0.305 - 24.96 0.817 0.390 -
Mip-NeRF 360 [6] 27.69 0.792 0.331 - 21.92 0.745 0.305 - 24.96 0.817 0.390 -

3D Gaussian [16] 27.21 0.815 0.214 20 23.14 0.841 0.183 16 29.41 0.903 0.243 18
3D Gaussian [16]* 27.44 0.813 0.218 20 23.71 0.848 0.177 16 29.55 0.904 0.244 18
+ Ours 27.48 0.812 0.209 37 23.75 0.845 0.176 36 29.60 0.899 0.243 44

Mini-Splatting [18] 27.34 0.822 0.217 35 23.18 0.835 0.202 35 29.98 0.908 0.253 39
+ Ours 27.38 0.822 0.209 54* 23.34 0.835 0.200 60* 30.04 0.905 0.252 60*

Measure (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and Frames per Second (FPS)
on the Mip-NeRF-360, Tanks&Temples, and Deep Blending datasets.

Our proposed fragment pruning consistently enhances rendering speed while maintaining or improv-
ing rendering quality across various datasets. When applied to pre-trained 3D Gaussian Splatting
models, this technique significantly increases FPS, with gains of +17, +20, and +26 across three
different datasets, effectively more than doubling the rendering frame rates. Concurrently, it also
boosts the PSNR by +0.04, +0.04, and +0.05, respectively, across the three datasets.

Furthermore, the data presented in Tab. 2 illustrate that the proposed fragment pruning approach
outperforms the SOTA Gaussian primitive pruning technique, i.e., Mini-Splatting [18], in terms
of the rendering speed vs. quality trade-offs. Across all three real-world datasets, the proposed
fragment pruning consistently achieves higher FPS than Mini-Splatting, while maintaining superior
or comparable rendering quality. For example, on the Tanks&Temples dataset [19], applying our
fragment pruning technique to a pre-trained 3D Gaussian Splatting model achieves a 0.57 PSNR
improvement and a 1 FPS increase over Mini-Splatting [18].

Most importantly, our experimental findings, as shown in Tab. 2, demonstrate that the proposed
fragment pruning technique complements the SOTA Gaussian primitive pruning approach [18].
By integrating our fragment pruning method with Mini-Splatting [18], we achieved significant
enhancements in rendering efficiency. Specifically, the application of fragment pruning in conjunction
with Mini-Splatting resulted in increases in rendering speeds by +19, +25, and +21 FPS, equating
to improvements of +54%, +71%, and +54% on the Mip-NeRF-360, Tanks&Temples, and Deep
Blending datasets, respectively, while maintaining or even enhancing rendering quality. Notably, on
the Tanks&Temples and Deep Blending datasets, the combined use of fragment pruning and Gaussian
primitive pruning achieved the maximum screen refresh rate of 60 FPS, underscoring the efficacy of
these combined techniques in practical scenarios.

6.4 Quantative Results on Dynamic Scenes

Tab. 3 summarizes the quantitative improvements achieved by integrating fragment pruning into 4D
Gaussian Splatting [27]. In real-world dynamic scenes, the implementation of this pruning method

Table 3: Quantitative comparison of our method and previous works on the Plenoptic Video Dataset.
1: numbers from 4DGS paper; 2: FPS only measured on four scenes, i.e. without Coffeer Martini and Flame
Salmon, which run out of memory on Jetson NX.

Method PSNR↑ SSIM↑ LPIPS↓ FPS↑

K-Planes-explicit [43]1 30.88 0.020 - 0.23
K-Planes-hybrid [43]1 31.63 0.018 - -
MixVoxels-L [44]1 30.80 0.020 0.126 16.7
NeRFPlayer [45]1 30.69 0.035 0.111 0.045
HexPlane [46]1 31.70 0.014 0.075 0.56
HyperReel [47]1 31.10 0.037 0.096 2.00

4DGS [48]2 32.01 0.030 0.055 14
+ Ours2 32.04 0.030 0.053 22

8



3D Gaussian (18 fps) Mini-Splatting (39 fps) Mini-Splatting + Ours(60 fps)

3D Gaussian (16 fps) Mini-Splatting (35 fps) Mini-Splatting + Ours(60 fps)

3D Gaussian + Ours(44 fps)

3D Gaussian + Ours(36 fps)

Mini-Splatting (35 fps)3D Gaussian (16 fps) Mini-Splatting + Ours(60 fps)3D Gaussian + Ours(36 fps)

Ground Truth

Ground Truth

Ground Truth

Figure 3: Qualitative comparison of 3D Gaussian Splatting and different Gaussian pruning methods.
Zoom in for a better view.

results in an average increase in rendering speed of +8 FPS, maintaining the same quality of rendering.
This enhancement is facilitated by the direct application of hyperparameters optimized for static
scenes, demonstrating the robustness and versatility of the fragment pruning strategy.

6.5 Qualitative Results

Fig. 3 qualitatively compares the rendering output from vanilla 3D Gaussian Splatting [16], 3D
Gaussian Splatting with the proposed fragment pruning approach, Mini-Splatting [18] and Mini-
Splatting with the proposed fragment pruning approach. Based on the first row of Fig. 3, we can
observe that prior Gaussian primitive pruning approaches like Mini-Splatting result in severe artifacts
in some distant regions (e.g., the leaves). In contrast, the proposed fragment pruning approach better
preserves the rendering quality in such areas while achieving similar or better rendering efficiency.
From the second row of Fig. 3, we can conclude that although Mini-Splatting removes the blurry
reconstruction, it can results in new artifacts on reconstructing the dotted line. Additionally, as shown
in the last column of the second row, learning per Gaussian truncation threshold in our proposed
fragment pruning can partially recover the rendering quality. Similarly, on the last row of Fig. 3,
Mini-Splatting can result in a drop in rendering quality (a less clear number “1” as compared to the
vanilla 3D Gaussian Splatting), while our proposed fragment pruning can recover the reconstruction
quality. More qualitative results are presented in the appendix.

7 Discussion
7.1 Limitation

Table 4: Comparison of pre-training and fine-tuning times on an A5000
GPU (in minutes).

Dataset On 3D Gaussian [16] On Mini-Splatting [18]
Pre-training Fine-tuning Pre-training Fine-tuning

Mip-NeRF 360 [6] 45.2 7.7 17.2 3.4
Tanks&Temples [19] 27.2 4.4 11.4 2.2
Deep Blending [22] 37.4 7.1 16.2 3.4

One limitation of this work
is the additional fine-tuning
time required, since we de-
signed fragment pruning as
a post-training fine-tuning
technique. As shown in
Tab. 4, the fine-tuning stage
incurs an overhead of 16% -
21% relative to the pre-training time. Integrating threshold learning into the original pre-training
process is a potential solution, which we leave for future work.

7.2 Future Works
There is a plethora of downstream tasks that leverage the benefits of 3D Gaussian Splatting models
including the generation of 3D contents and dynamic scene construction. In order to generate 3D
objects from a single image of text prompt, DreamGaussian [29] and GSGen [49] combine score
distillation sampling with 3D Gaussian primitives while LGM [50] utilize an asymmetric UNet

9



architecture to predict the parameters of Gaussian features. On the other hand, multiple works have
extended 3D Gaussian Splatting models to incorporate time by introducing time-variant opacity [51]
or directly including time as a 4D Gaussian parameter [27], [28] to generate dynamic scenes. Our
work has focused on the efficiency of our algorithm on dynamic scene generation using 4D Gaussian
features, and we leave the application of fragment pruning to other tasks as future research.

8 Conclusion
In this work, we propose a novel fragment pruning algorithm that effectively improves the rendering
speed of 3D Gaussian Splatting models. We show through rigorous profiling that the main bottleneck
of the rendering process is the rasterization stage whose computational complexity is determined by
number of fragments. Building on this finding, we suggest an algorithm that learns the truncation
threshold for each Gaussian instead of using a predetermined heuristic threshold, which allows to
truncate Gaussians in a more aggressive manner and thereby reduce the number of fragments. As
a result, our method has achieved significant rendering speed improvements over the original 3D
Gaussian model with negligible deterioration or even an improvement of quality. While our algorithm
alone demonstrates superior performance gains over SOTA Gaussian primitive pruning techniques, it
can be used in conjunction with SOTA primitive pruning algorithms to further boost the rendering
speed of 3D Gaussian models.

Acknowledgments and Disclosure of Funding

This work is supported by the NSF Computing and Communication Foundations (CCF) program
(Award ID: 2312758), and the CoCoSys, one of the seven centers in JUMP 2.0, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA. Furthermore, we extend our gratitude
towards the reviewers of this paper for their insightful comments and suggestions.

References
[1] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann, and Yaser Sheikh.

Neural volumes: learning dynamic renderable volumes from images. ACM Transactions on Graphics,
38(4):1–14, July 2019.

[2] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and
Daniel Duckworth. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. In
CVPR, 2021.

[3] Nianchen Deng, Zhenyi He, Jiannan Ye, Budmonde Duinkharjav, Praneeth Chakravarthula, Xubo Yang, and
Qi Sun. Fov-nerf: Foveated neural radiance fields for virtual reality. IEEE Transactions on Visualization
and Computer Graphics, 28(11):3854–3864, 2022.

[4] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[5] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P.
Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields, 2021.

[6] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf 360:
Unbounded anti-aliased neural radiance fields. CVPR, 2022.

[7] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. ICCV, 2023.

[8] James T Kajiya and Brian P Von Herzen. Ray tracing volume densities. ACM SIGGRAPH computer
graphics, 18(3):165–174, 1984.

[9] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa.
Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

[10] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast convergence for
radiance fields reconstruction. In CVPR, 2022.

[11] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. In
European Conference on Computer Vision (ECCV), 2022.

[12] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees for real-time
rendering of neural radiance fields. In ICCV, 2021.

10



[13] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15, July 2022.

[14] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploiting
the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In The
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[15] Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Errui Ding, Jingdong Wang, and Gang Zeng. Del-
icate textured mesh recovery from nerf via adaptive surface refinement. arXiv preprint arXiv:2303.02091,
2022.

[16] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023.

[17] Jetson_orin_nx_ds-10712-001_v0.5.pdf. https://developer.download.nvidia.com/assets/
embedded/secure/jetson/orin_nx/docs/Jetson_Orin_NX_DS-10712-001_v0.5.pdf. (Ac-
cessed on 05/18/2024).

[18] Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number of
gaussians. arXiv preprint arXiv:2403.14166, 2024.

[19] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

[20] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo collections in 3d. In
ACM siggraph 2006 papers, pages 835–846. ACM, 2006.

[21] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and Steven M. Seitz. Multi-view stereo for
community photo collections. In 2007 IEEE 11th International Conference on Computer Vision, pages
1–8, 2007.

[22] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Brostow. Deep
blending for free-viewpoint image-based rendering. ACM Transactions on Graphics (ToG), 37(6):1–15,
2018.

[23] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael Zollhofer.
Deepvoxels: Learning persistent 3d feature embeddings. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2437–2446, 2019.

[24] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering: Image synthesis using
neural textures. Acm Transactions on Graphics (TOG), 38(4):1–12, 2019.

[25] Gernot Riegler and Vladlen Koltun. Free view synthesis. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIX 16, pages 623–640. Springer, 2020.

[26] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.

[27] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Wang Xinggang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528, 2023.

[28] Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene representation
and rendering with 4d gaussian splatting. In International Conference on Learning Representations (ICLR),
2024.

[29] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

[30] Huan Ling, Seung Wook Kim, Antonio Torralba, Sanja Fidler, and Karsten Kreis. Align your gaussians:
Text-to-4d with dynamic 3d gaussians and composed diffusion models. arXiv preprint arXiv:2312.13763,
2023.

[31] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. arXiv preprint arXiv:2311.13681, 2023.

[32] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In Proceedings of the IEEE international
conference on computer vision, pages 2736–2744, 2017.

[33] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

[34] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps, 2023.

[35] Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and George Drettakis.
Reducing the memory footprint of 3d gaussian splatting. Proceedings of the ACM on Computer Graphics
and Interactive Techniques, 7(1):1–17, 2024.

11

https://developer.download.nvidia.com/assets/embedded/secure/jetson/orin_nx/docs/Jetson_Orin_NX_DS-10712-001_v0.5.pdf
https://developer.download.nvidia.com/assets/embedded/secure/jetson/orin_nx/docs/Jetson_Orin_NX_DS-10712-001_v0.5.pdf


[36] Marie-Julie Rakotosaona, Fabian Manhardt, Diego Martin Arroyo, Michael Niemeyer, Abhijit Kundu, and
Federico Tombari. Nerfmeshing: Distilling neural radiance fields into geometrically-accurate 3d meshes.
In 2024 International Conference on 3D Vision (3DV), pages 1156–1165. IEEE, 2024.

[37] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa volume splatting. In Proceedings Visualization,
2001. VIS ’01., pages 29–538, 2001.

[38] Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting for
accelerated novel view synthesis. arXiv preprint arXiv:2401.02436, 2023.

[39] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim, Tanner
Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3d video synthesis
from multi-view video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5521–5531, 2022.

[40] Mikko Pitkänen, Marko Viitanen, Alexandre Mercat, and Jarno Vanne. Remote vr gaming on mobile
devices. In Proceedings of the 27th ACM International Conference on Multimedia, pages 2191–2193,
2019.

[41] Xueshi Hou, Yao Lu, and Sujit Dey. Wireless vr/ar with edge/cloud computing. In 2017 26th International
Conference on Computer Communication and Networks (ICCCN), pages 1–8. IEEE, 2017.

[42] Marko Viitanen, Jarno Vanne, Timo D Hämäläinen, and Ari Kulmala. Low latency edge rendering scheme
for interactive 360 degree virtual reality gaming. In 2018 IEEE 38th international conference on distributed
computing systems (ICDCS), pages 1557–1560. IEEE, 2018.

[43] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo Kanazawa.
K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12479–12488, 2023.

[44] Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, and Huaping Liu. Mixed neural voxels for
fast multi-view video synthesis. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 19706–19716, 2023.

[45] Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu, and Andreas
Geiger. Nerfplayer: A streamable dynamic scene representation with decomposed neural radiance fields.
IEEE Transactions on Visualization and Computer Graphics, 29(5):2732–2742, 2023.

[46] Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 130–141, 2023.

[47] Benjamin Attal, Jia-Bin Huang, Christian Richardt, Michael Zollhoefer, Johannes Kopf, Matthew O’Toole,
and Changil Kim. Hyperreel: High-fidelity 6-dof video with ray-conditioned sampling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16610–16620, 2023.

[48] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic dynamic scene
representation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642, 2023.

[49] Zilong Chen, Feng Wang, and Huaping Liu. Text-to-3d using gaussian splatting. arXiv preprint
arXiv:2309.16585, 2023.

[50] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm: Large
multi-view gaussian model for high-resolution 3d content creation. arXiv preprint arXiv:2402.05054,
2024.

[51] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time dynamic
view synthesis. arXiv preprint arXiv:2312.16812, 2023.

12



A More Rendering Output Visualization

Fig. 4 provides more visualization on the rendering output from vanilla 3D Gaussian Splatting [16],
3D Gaussian Splatting + the proposed fragment pruning approach, Mini-Splatting and Mini-Splatting
+ the proposed fragment pruning approach.

3D Gaussian (20 fps) Mini-Splatting (35 fps) Mini-Splatting + Ours(54 fps)

3D Gaussian (16 fps) Mini-Splatting (35 fps) Mini-Splatting + Ours(60 fps)

Mini-Splatting (35 fps)3D Gaussian (20 fps) Mini-Splatting + Ours(54 fps)

Ground Truth

Ground Truth

Ground Truth

3D Gaussian + Ours(37 fps)

3D Gaussian + Ours(36 fps)

3D Gaussian + Ours(37 fps)

Mini-Splatting (35 fps)3D Gaussian (20 fps) Mini-Splatting + Ours(54 fps)Ground Truth 3D Gaussian + Ours(37 fps)

Mini-Splatting (35 fps)3D Gaussian (20 fps) Mini-Splatting + Ours(54 fps)Ground Truth 3D Gaussian + Ours(37 fps)

Mini-Splatting (35 fps)3D Gaussian (20 fps) Mini-Splatting + Ours(54 fps)Ground Truth 3D Gaussian + Ours(37 fps)

Mini-Splatting (35 fps)3D Gaussian (20 fps) Mini-Splatting + Ours(54 fps)Ground Truth 3D Gaussian + Ours(37 fps)

Figure 4: Qualitative comparison between vanilla 3D Gaussian Splatting, state-of-the-art (SOTA)
Gaussian primitive pruning work, Mini-Splatting [18], and our proposed Fragment Pruning.

13



B More Fragment Density Visualization

Fig. 5 compares the rendering quality and per-pixel fragment density before and after applying the
proposed fragment pruning technique on pre-trained 3D Gaussian models [16]. As observed in
column (c), the object borders exhibit the highest fragment density. By reducing the fragment density
at these borders, as shown in column (d), our method enhances rendering quality, especially along
object edges (illustrated in column (b)).

Figure 5: Visualizing of rendering quality improvement and fragment density reduction. (a) Ground
truth image. (b) Regions where fragment pruning improves rendering fidelity, measured by a reduction
in per-pixel L1 error. (c) Fragment density before fragment pruning. (d) Fragment density after
fragment pruning.

14



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are justified by the following sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Having a separate section to discuss the limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15



Justification: No theoretical results in the papers.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Code will be provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [Yes]
Justification: Code will be provided.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details provided in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: No significant statistical instability, therefore error bards not provided,
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Provided in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This work mainly enhances the rendering efficiency, therefore is not directly
tied to negative applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work mainly enhances the rendering efficiency, therefore is not directly
tied to negative applications.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20


	Introduction
	Related Works 
	Preliminary 
	Gaussian Primitives of 3D Gaussian Splatting
	Rendering Pipeline of 3D Gaussian Splatting

	Profiling and Analysis of 3D Gaussian Rendering Pipeline
	Understanding the Efficiency Bottleneck in the Rendering Pipeline
	Understanding the Effect of Pruning 3D Gaussian Primitives

	The Proposed Fragment Pruning Framework 
	Fragment Pruning through Adaptive Gaussian Truncation
	Differentiable Learning of Truncation Thresholds

	Experiments
	Experiment Setup
	Implementation Details
	Quantative Results on Static Scenes
	Quantative Results on Dynamic Scenes
	Qualitative Results

	Discussion
	Limitation
	Future Works

	Conclusion
	More Rendering Output Visualization
	More Fragment Density Visualization

