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Abstract
Most differentiable causal discovery approaches
constrain or regularize an optimization problem
using a continuous relaxation of the acyclicity
property. The cost of computing the relaxation is
cubic on the number of nodes and thus affects the
scalability of such techniques. In this work, we in-
troduce COSMO, the first quadratic and constraint-
free continuous optimization scheme. COSMO
represents a directed acyclic graph as a priority
vector on the nodes and an adjacency matrix. We
prove that the priority vector represents a differen-
tiable approximation of the acyclic orientation of
the graph, and we demonstrate the existence of an
upper bound on the orientation acyclicity. In addi-
tion to being asymptotically faster, our empirical
analysis highlights how COSMO performs compa-
rably to constrained methods for graph discovery.

1. Introduction
Graphical approaches, such as Structural Causal Models
(SCMs), emerged as the dominant framework to represent
causal information about the world (Pearl, 2009). A funda-
mental problem in this context concerns the discovery of
causal relations between a set of variables, i.e., the problem
of identifying which arcs exist between nodes associated to
the variables of interest (Spirtes et al., 2000). Continuous
causal discovery techniques approach the problem by op-
timizing an acyclic causal graph (Vowels et al., 2022). In
this context, a well-established methodology (Zheng et al.,
2018) defines a smooth relaxation of the acyclicity property
and frames causal discovery as a constrained optimization
problem. Despite their widespread adoption, exact acyclic-
ity constraints impose a cubic number of operations in the
number of nodes that severely affects scalability.

Motivated by such limitation, we propose the first uncon-
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strained optimization scheme to learn acyclic causal graphs
from data in quadratic time. We represent Directed Acyclic
Graphs (DAGs) as a differentiable function of a directed
graph and a priority vector. By applying a tempered sigmoid
to the pair-wise priority differences, we define a smooth re-
laxation of an acyclic orientation matrix where each node
has an outgoing arc to all nodes with higher priority. In par-
ticular, our smooth orientation matrix is equal to the discrete
orientation whenever the sigmoid temperature tends to zero.
Thus, by annealing the temperature during training, the solu-
tion of the optimization problem is acyclic by construction.
Further, since our approach only requires a quadratic num-
ber of operations per optimization step, its constraint-free
scheme is significantly faster than existing methods. Overall,
we refer to our approach as COSMO, for Causal Ordering
Discovery with SMooth Acyclic Orientations.

2. Background and Related Works
Graphical causal models represents causal relations between
d variables as a DAG. In the linear case, a Structural Causal
Model (SCM) consists of a weighted acyclic adjacency ma-
trix W ∈ Rd×d such that, for any random vector x ∈ Rd,
it holds x = W⊤x+ z, given an unobserved noise vector z.
NOTEARS (Zheng et al., 2018) formalizes causal discovery
as the constrained optimization problem

min
W∈Rd×d

L(X,W⊤X) + λ∥W∥1 (1)

s.t. tr(eW◦W)− d = 0 (2)

where L is the Mean Squared Loss (MSE). In particular, the
constraint equals zero if and only if the weighted adjacency
matrix W is acyclic. The authors propose to solve the
problem using the Augmented Lagrangian method (Nocedal
& Wright, 1999), which in turn requires to solve multiple
unconstrained problems and to compute the constraint value
at each optimization step. Because of the matrix exponential,
computing the constraint requires O(d3) operations.

Subsequent works mostly tried to tackle the computational
cost of NOTEARS by either: (i) replacing the matrix expo-
nential with theoretically cubic but practically faster oper-
ations,(ii) approximating the constraint,or (iii) defining an
unconstrained problem that starts from the solution of a
shorter constrained problem.We report the relevant related
works along with their computational complexity in Table 1.
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Table 1. Summary comparison of our proposal with related works.
To express computational complexity, we define d as the number
of nodes and k as the maximum length of iterative approaches.
[†]: NOCURL requires a preliminary solution obtained from a cubic-
expensive constrained optimization problem.

Method Complexity Constraint

NOTEARS (Zheng et al., 2018) O(d3) Exact
DAGMA (Bello et al., 2022) O(d3) Exact
NOBEARS (Lee et al., 2019) O(kd2) Approximated
TMPI (Zhang et al., 2022) O(kd2) Approximated
NOCURL (Yu et al., 2021) O(d2)† Partial
COSMO (Ours) O(d2) None

Notably, while recent literature disputes the relevance of
plainly minimizing MSE to uncover causal relations in real-
world scenarios (Reisach et al., 2021; Kaiser & Sipos, 2022).
NOTEARS-like formulations still have a relevant role as
a building block in more complex continuous discovery
approaches (Lachapelle et al., 2020; Brouillard et al., 2020).

3. Learning Acyclic Orientations with COSMO

To continuously represent the space of d-dimensional DAGs,
we introduce a priority vector p ∈ Rd. on its vertices V .
Consequently, given a strictly positive threshold ε > 0, we
define the strict partial order ≺p,ε as

u ≺p,ε v ⇐⇒ pv − pu ≥ ε (3)

for any u, v ∈ V . In other terms, a vertex u precedes
another vertex v if and only if the priority of v is sufficiently
larger than the priority of the vertex u. Notably, with a zero
threshold ε = 0, the relation would be symmetric and thus
not a strict order. On the other hand, whenever ε is strictly
positive, we can represent a subset of all strict partial orders
sufficient to express all possible DAGs.

Lemma 3.1. Let W ∈ Rd×d be a real matrix. Then, for
any ε > 0, W is the weighted adjacency matrix of a DAG
if and only if it exists a priority vector p ∈ Rd and a real
matrix H ∈ Rd×d such that

W = H ◦T≺p,ε
, (4)

where T≺p,ε
∈ {0, 1}d×d is a binary orientation matrix

such that

T≺p,ε
[uv] =

{
1 if u ≺p,ε v

0 otherwise,
(5)

for any u, v ∈ V .

Proof. We report the proof in Appendix A.1.
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Figure 1. (left) With infinite temperature, the sigmoid function
is constant and connects all vertices. (center) Given two nodes,
for positive temperatures the smooth orientation matrix has larger
values on the arcs respecting the priority ordering. (right) In the
limit of the temperature to zero, the smooth orientation matrix
contains non-zero entries if and only if the arc respects the order,
i.e., it directs a node to another with sufficiently higher priority.

While priority vectors enable the representation of strict
partial orders in a continuous space, the construction of
the orientation matrix still requires the non-differentiable
evaluation of the inequality in Equation 3. To this end,
we approximate the comparison of the difference against
the threshold ε, using a tempered sigmoidal function. We
refer to such approximation of the orientation matrix as the
smooth orientation matrix.
Definition 3.2 (Smooth Orientation Matrix). Let p ∈ Rd be
a priority vector, ε > 0 be a strictly positive threshold, and
t > 0 be a strictly positive temperature. Then, the smooth
orientation matrix of the strict partial order ≺p,ε is the real
matrix St,ε(p) ∈ Rd×d such that, for any u, v ∈ V , it holds

St,ε(p)uv = σt,ε(pv − pu), (6)

where σt,ε is the ε-centered tempered sigmoid, defined as

σt,ε(x) =
1

1 + e−(x−ε)/t
. (7)

Intuitively, the threshold ε shifts the center of the sigmoid
and breaks the symmetry whenever two variables approxi-
mately have the same priority. The temperature parameter
t > 0 regulates instead the steepness of the sigmoid. Be-
cause of the asymmetry introduced by the threshold, in the
limit of the temperature to zero, the zero-entries of a smooth
orientation matrix coincide with the zero-entries of the cor-
responding orientation matrix (Figure 1). Therefore, we
prove that any directed acyclic graph can be represented as
the element-wise product of a directed adjacency matrix and
a smooth orientation. Further, any directed graph resulting
from this decomposition is acyclic.
Theorem 3.3. Let W ∈ Rd×d be a real matrix. Then, for
any ε > 0, W is the weighted adjacency matrix of a DAG
if and only if it exists a priority vector p ∈ Rd and a real
matrix H ∈ Rd×d such that

W = H ◦ lim
t→0

St,ε(p), (8)
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where St,ε(p) is the smooth orientation matrix of ≺p,ε.

Proof. We report the proof in Appendix A.2.

Given our definition of smooth acyclic orientation, we can
effectively parameterize the space of DAGs as a continuous
function of a weighted adjacency matrix and a priority vec-
tor. Formally, we propose to decompose the weight matrix
as the product

W = H ◦ St,ε(p), (9)

where H ∈ Rd×d and p ∈ Rd. In line with previous work,
we propose to address causal discovery as a score-based
method minimizing a loss function on the observations. By
jointly learning adjacencies and priorities, we avoid the
use of acyclicity constraints and reduce to a unique uncon-
strained problem. Therefore, the computational complexity
of our solution reduces to the construction of the weighted
matrix W, which can be achieved in O(d2) time and space
per optimization step.

Notably, the smooth orientation matrix St,ε(p) represents an
acyclic orientation only in the limit of the temperature t → 0.
Nonetheless, the gradient loss vanishes whenever the tem-
perature tends to zero. In fact, for a given loss function L,
the gradient of the priority vector p has form

∂L(X;W⊤X)

∂pu

=
∑
v∈V

∂L(X;W⊤X)

∂Wuv
· ∂Wuv

∂pu

+
∂L(X;W⊤X)

∂Wvu
· ∂Wvu

∂pu

,

(10)

and, for each partial derivative ∂Wuv/∂pu, it holds that

lim
t→0

∂Wuv

∂pu

= lim
t→0

−Huv

t
σt,ε(pv − pu)

· (1− σt,ε(pv − pu))

= 0,

(11)

and, similarly, ∂Wvu/∂pu tends to zero.

To handle this issue, we tackle the optimization problem by
progressively reducing the temperature during training. In
practice, we perform cosine annealing from an initial posi-
tive value tstart to a significantly lower target value tend ≈ 0.
Further, we prove the existence of an upper bound on the
acyclicity of the orientation matrix that is a monotone in-
creasing function of the temperature t. Therefore, annealing
the temperature during training decreases the upper bound
on the smooth orientation acyclicity.

Theorem 3.4. Let p ∈ Rd be a priority vector, ε > 0 be a
strictly positive threshold, and t > 0 be a strictly positive

temperature. Then, given the smooth orientation matrix
St,ε(p) ∈ Rd×d, it holds

h(St,ε(p)) ≤ edα − 1, (12)

where h(St,ε(p)) = tr(eSt,ε(p)) − d is the NOTEARS
acyclicity constraint and α = σt,ε(0) = σ(−ε/t).

Proof. We report the proof in Appendix B.

To contrast the discovery of spurious causal relations, we
apply L1 regularization on the adjacency matrix H in order
to perform feature selection. Further, during the anneal-
ing procedure, even if a vertex u precedes v in the partial
order ≺p,ε, the weight of the opposite arc v → u in the
smooth orientation matrix will only be approximately zero.
Therefore, sufficiently large values of the weighted adja-
cency matrix H, might still lead to cyclic paths during train-
ing. To avoid this issue, we regularize the L2-norm of the
non-oriented adjacency matrix.

Further, we also observe that the partial derivative
∂Wuv/∂pu tends to zero whenever the priorities differ-
ence |pv − pu| tends to infinity. Therefore, we regular-
ize the L2-norm of the priority vector. For the same rea-
son, we initialize each component from the normal distribu-
tion pu ∼ N (0, ε2/2), so that each difference follows the
normal distribution pv − pu ∼ N (0, ε2).

Overall, we formalize COSMO as the differentiable and un-
constrained problem

min
H∈Rd×d,p∈Rd

L(X, (H ◦ St,ε(p))
⊤X)

+ λ1∥H∥1 + λ2∥H∥2 + λp∥p∥2,
(13)

where λ1, λ2, λp are the regularization coefficients for the
adjacencies and the priorities. As the regularization coef-
ficients λ = {λ1, λ2, λp}, the initial temperature tstart, the
target temperature tend, and the shift ε are hyperparameters
of our proposal. Nonetheless, Theorem 3.4 can guide the
choice of the final temperature value and the shift to guaran-
tee a maximum tolerance on acyclicity. We delineate a pos-
sible strategy to model nonlinear relations in Appendix C.3.

4. Experiments
We discuss the experimental comparison of COSMO against
related state-of-the-art approaches that optimize a DAG
from data. Namely, we confront with the graph discovery
performance and execution time of NOTEARS (Zheng et al.,
2020), NOCURL (Yu et al., 2021), and DAGMA (Bello et al.,
2022). NOCURL consists of two phases: firstly it solves
a constrained and cubic-expensive optimization problem,
then it improves the solution with a further unconstrained
problem. We also compare with NOCURL-U, i.e., an enterely
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Table 2. Experimental results on linear Erdős–Rényi simulated DAGs with different noise terms and sizes. For each algorithm, we report
mean and standard deviation over five independent runs. We highlight in bold the best result and in italic bold the second best result.

Gauss Exp Gumbel

d Algorithm AUC Time (s) AUC Time (s) AUC Time (s)

30

COSMO 0.984 ± 0.02 88 ± 2 0.989 ± 0.01 89 ± 3 0.914 ± 0.10 87 ± 2
DAGMA 0.985 ± 0.01 781 ± 192 0.986 ± 0.02 744 ± 75 0.973 ± 0.02 787 ± 86
NOCURL 0.967 ± 0.01 822 ± 15 0.956 ± 0.02 826 ± 24 0.915 ± 0.04 826 ± 17
NOCURL-U 0.694 ± 0.06 226 ± 5 0.694 ± 0.05 212 ± 5 0.678 ± 0.05 212 ± 5
NOTEARS 0.973 ± 0.02 5193 ± 170 0.966 ± 0.03 5579 ± 284 0.981 ± 0.01 5229 ± 338

100

COSMO 0.961 ± 0.03 99 ± 2 0.985 ± 0.01 99 ± 2 0.973 ± 0.01 98 ± 1
DAGMA 0.982 ± 0.01 660 ± 141 0.986 ± 0.01 733 ± 109 0.986 ± 0.01 858 ± 101
NOCURL 0.962 ± 0.01 1664 ± 14 0.950 ± 0.02 1655 ± 28 0.962 ± 0.01 1675 ± 34
NOCURL-U 0.682 ± 0.05 267 ± 10 0.693 ± 0.05 242 ± 4 0.663 ± 0.04 247 ± 9
NOTEARS 0.963 ± 0.01 11000 ± 339 0.972 ± 0.01 10880 ± 366 0.969 ± 0.00 11889 ± 343

500
COSMO 0.933 ± 0.01 436 ± 81 0.986 ± 0.00 390 ± 102 0.982 ± 0.01 410 ± 106
DAGMA 0.980 ± 0.00 2485 ± 365 0.984 ± 0.01 2575 ± 469 0.980 ± 0.00 2853 ± 218
NOCURL-U 0.683 ± 0.05 1546 ± 304 0.715 ± 0.03 1488 ± 249 0.728 ± 0.05 1342 ± 209

unconstrained variant of the latter that skips the preliminary
constrained phase.

For each method, we perform causal discovery by minimiz-
ing the Mean Squared Error (MSE) of a model on observa-
tional data using the Adam optimizer (Kingma & Ba, 2015).
Then, we measure the Area under the ROC Curve (AUC) be-
tween the absolute value of the weighted adjacency matrix
and the ground truth graph (Heinze-Deml et al., 2018).

By looking at the AUC of the identified causal graphs, we
observe that COSMO consistently achieves results compara-
ble with constrained-optimization solutions such as DAGMA
or NOTEARS (Table 2). Furthermore, COSMO performs bet-
ter than NOCURL on most datasets. As pointed out by its
authors, we also observe that the discovery performance
of NOCURL drops when optimizing the variable ordering
instead of inferring it from a preliminary solution. The
fact that COSMO outperforms NOCURL-U on all datasets
highlights the substantial role and effect of our smooth ori-
entation formulation for learning the topological ordering
of variables from data in an unconstrained way.

Unsurprisingly, due to its quadratic computational complex-
ity, COSMO is significantly faster than constrained meth-
ods on all datasets, especially for increasing graph sizes.
Other than requiring multiple optimization problems, all
competing methods incur in an higher computational cost
per step (Figure 2). Therefore, already for graphs with
500 nodes, only COSMO, DAGMA, and NOCURL-U return a
solution before hitting our wall time limit.

5. Conclusion
We introduced COSMO, an unconstrained and continuous
approach for learning an acyclic causal graph from obser-
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Figure 2. Average duration of a training epoch for an increasing
number of nodes. We compute the optimization time on a random
ER-4 graph for five iterations over five independent repetitions.

vational data. Our novel definition of a smooth orientation
matrix ensures acyclicity of the solution without requiring
the evaluation of computationally expensive constraints. We
prove that annealing the temperature of our smooth acyclic
orientation corresponds to decreasing an upper bound on
the widely adopted acyclicity relaxation from NOTEARS.
Our empirical analysis showed that COSMO performs com-
parably to constrained methods in significantly less time.
Furthermore, the analysis highlights the role of our param-
eterization, which does not incur the necessity of prelimi-
nary solutions and solves a unique unconstrained problem.
Overall, COSMO opens up more scalable and more causally
grounded continuous causal discovery strategies, without
sacrificing — as demonstrated in this work — the theoretical
guarantees on DAGs approximation capabilities.
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A. Deferred Proofs
A.1. Proof of Lemma 3.1

Lemma 3.1 Let W ∈ Rd×d be a real matrix. Then, for any ε > 0, W is the weighted adjacency matrix of a DAG if and
only if it exists a priority vector p ∈ Rd and a real matrix H ∈ Rd×d such that

W = H ◦T≺p,ε , (14)

where T≺p,ε ∈ {0, 1}d×d is a binary orientation matrix such that

T≺p,ε
[uv] =

{
1 if u ≺p,ε v

0 otherwise,
(15)

for any u, v ∈ V .

Proof. Firstly, we prove the existence of a priority vector p and an adjacency matrix H for each weighted acyclic matrix W
of a directed acyclic graph D = (V,A). Being a DAG, the arcs follow a strict partial order ≺ on the vertices V = {1, . . . , d}.
Therefore, it holds that

A ⊆ {(u, v) | u ≺ v}. (16)

Consequently, for an arbitrary topological ordering of the variables π : V → {1, . . . , d}, which always exists on DAGs, we
define the vector p ∈ Rd such that

pu = επ(u). (17)

Given the following implications

u ≺ v =⇒ π(v) > π(u) (18)
=⇒ pv − pu = ε(π(v)− π(u)) ≥ ε (19)
⇐⇒ u ≺p,ε v, (20)

it holds that the order ≺p,ε contains the order ≺. Finally, we can define the adjacency matrix as H = W, where
W = H ◦T≺p,ε

holds since T≺p,ε
[u, v] = 0 only if (u, v) ̸∈ A.

To prove that any priority vector p and adjacency matrix H represent a DAG, we first notice that, since the arcs follow a
strict partial order, the orientation T≺p,ε

is acyclic. Then, by element-wise multiplying any matrix H we obtain a sub-graph
of a DAG, which is acyclic by definition.

A.2. Proof of Theorem 3.3

Theorem 3.3 Let W ∈ Rd×d be a real matrix. Then, for any ε > 0, W is the weighted adjacency matrix of a DAG if and
only if it exists a priority vector p ∈ Rd and a real matrix H ∈ Rd×d such that

W = H ◦ lim
t→0

St,ε(p), (21)

where St,ε(p) is the smooth orientation matrix of ≺p,ε.

Proof. By Lemma 3.1, we know that for any acyclic weighted adjacency matrix W there exist a priority vector p and a real
matrix H such that W = H ◦T≺p,ε

. Further, by Definition 3.2, the inner limit of Equation 21 solves to

lim
t→0

St,ε(p)uv =


1 pv − pu > ε

1/2 pv − pu = ε

0 pv − pu < ε.

(22)
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Therefore, we can define H′ ∈ Rd×d such that

Huv =

{
2H′

uv pv − pu = ε,

H′
uv otherwise.

, (23)

from which

W = H ◦T≺p,ε = H′ ◦ lim
t→0

St,ε(p). (24)

Then, to prove the counter-implication of Theorem 3.3, we notice that

lim
t→0

St,ε(p)uv = 0 ⇐⇒ pv − pu < ε ⇐⇒ u ̸≺p,ε v. (25)

Therefore, since the smooth orientation contains an arc if and only if the vertex respect the strict partial order ≺p,ε, it is
acyclic. Consequently, as in Lemma 3.1, the element-wise product with an acyclic matrix results in a sub-graph of a DAG,
which is also acyclic by definition.

A.3. Priority Vector Initialization

By independently sampling each priority component from a Normal distribution N (µ, s2/2), each difference is consequently
sampled from the distribution N (0, s2). Therefore, we seek a value for the standard deviation s that maximizes the partial
derivative

∂Wuv

∂pu

=
Huv

t
σt,ε(pv − pu)(1− σt,ε(pv − pu)). (26)

for arbitrary vertices u, v. Given the definition of the tempered-shifted sigmoid function, this object has maximum
in pv − pu = ε. Therefore, by setting the variance as s2 = ε2, we maximize the density function of the point pv − pu = ε
in the distribution N (0, s2).

B. Smooth Acyclic Orientations and the Acyclicity Constraint
In this section, we present the proof for the upper bound on the acyclicity of a smooth acyclic orientation matrix. To this
end, we introduce two auxiliary and novel lemmas. Firstly, we introduce a lemma which binds the product of a sigmoid on a
sequence of values with zero sum (Lemma B.1). Then, we introduce another lemma on the sum of the priority differences in
a cyclic path (Lemma B.2). Finally, we are able to prove the acyclicity upper bound from Theorem 3.4.

Lemma B.1. (Sigmoid Product Upper Bound) Let {xi} be a sequence of n real numbers such that

n∑
i=1

xi = 0.

Then, for any temperature t > 0 and shift ε ≥ 0, it holds that
n∏

i=1

σt,ε(xi) ≤ αn,

where α = σ(−ε/t) is the value of the tempered and shifted sigmoid in zero.

Proof. Before starting, we invite the reader to notice that, for any temperature t > 0, if the sum of the sequence {xi} is
zero, then also the sequence {xi/t} sums to zero. Therefore, we omit the temperature in the following proof, and assume to
divide beforehand all elements of the sequence by the temperature t. Further, we explicitly denote the shifted sigmoid by
using the notation σ(xi − ε).

Firstly, we formulate the left-side of the inequality as
n∏

i=1

σ(xi − ε) =

n∏
i=1

exi−ε

1 + exi−ε
=

∏n
i=1 e

xi−ε∏n
i=1 1 + exi−ε

=
e
∑n

i=1 xi−ε∏n
i=1 1 + exi−ε

=
e−nε∏n

i=1 1 + exi−ε
.
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Similarly, we rewrite the right side as

αn = σ(−ε)n =

(
e−ε∏n

i=1 1 + e−ε

)n

=
e−nε

(1 + e−ε)n
.

Therefore, proving the left-side smaller or equal than the right-side, reduces to proving the left-denominator is larger than
the right-denominator. Formally,

n∏
i=1

1 + exi−ε ≥
(
1 + e−ε

)n
,

or equivalently, by applying the logarithmic function,

n∑
i=1

log(1 + exi−ε) ≥ n log(1 + e−ε). (27)

To further ease the notation, we refer to the left side of inequality 27, as the target function

T (x) =

n∑
i=1

log(1 + exi−ε).

In particular, to prove 27, we show that

min
x

T (x) = n log(1 + e−ε), (28)

for x = 0⃗, which is the only stationary point due to the convexity of the target function.

Without loss of generality, we derive the partial derivative of the component x1 on the target function T (x). To constraint the
components sum to zero, we consider the components {xi} for i > 2 as free, and then x2 = −x1 −

∑n
i=3 xi as a function

of the remaining. The choice of x1, x2 is independent from the components ordering, and thus applies to any possible pair.
Consequently,

∂T (x)

∂x1
=

∂(log(1 + ex1−ε) + log(1 + e−x1−
∑n

i=3 xi−ε) +
∑n

i=3 log(1 + exi−ε))

∂x1
(29)

=
∂(log(1 + ex1−ε) + log(1 + e−x1−

∑n
i=3 xi−ε)

∂x1
(30)

= σ(x1 − ε)− σ(−x1 −
n∑

i=3

xi − ε). (31)

Since σ(−ε) = σ(−ε), the equation is satisfied, for any component xi, by x = 0⃗,

We finally prove Inequality 27, by showing that the value of the target function T (x), in its only stationary point x = 0⃗,
equals the bound. Formally,

T (⃗0) =

n∑
i=1

log(1 + e−ε) (32)

= n log(1 + e−ε). (33)

Lemma B.2. (Sum of Differences in Cycle) Let {pi} be a sequence of n+ 1 real numbers such that p1 = pn+1. Then, let
{δi} be a sequence of n numbers such that δi = pi+1 − pi. Then,

n∑
i=1

δi = 0. (34)
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Proof. The proof is immediate from the following sequence of equations:

n∑
i=1

δi =

n∑
i=1

pi+1 − pi = −p1 +

n∑
i=2

pi − pi + pn+1 = 0.

Theorem B.3. (Orientation Acyclicity Upper Bound) Let W ∈ Rd×d be a real matrix. Then, for any ε > 0, W is the
weighted adjacency matrix of a DAG if and only if it exists a priority vector p ∈ Rd and a real matrix H ∈ Rd×d such that

W = H ◦ lim
t→0

St,ε(p), (35)

where St,ε(p) is the smooth orientation matrix of ≺p,ε.

Proof. The left side of Inequality 35 corresponds to the following infinite series

tr(eP)− d =

∞∑
k=0

1

k!
tr(P(k))− d

=

∞∑
k=1

1

k!
tr(P(k))

where P(k) is the matrix power defined as P(k) = P(k−1)P and P0 = I.

By definition of matrix power, the u-th element on the diagonal of P(k) equals to

P(k)
uu =

∑
v1∈V

P(k−1)
v1,u Pu,v1

=
∑
v1∈V

· · ·
∑

vk−1∈V

Pu,v1

(
k−2∏
i=1

Pvi,vi+1

)
Pvk−1,u.

Intuitively, the u-th element on the diagonal of P(k) amounts to the sum of all possible paths starting and ending in the
variable Xu. Therefore, being the same node, the priority of the first and the last node in the path are equal by definition.
Consequently, by Lemma B.2, the difference between the priorities sums to zero. For this reason, given Lemma B.1, it holds
that the product of the corresponding sigmoids is smaller or equal than αk. Therefore,

P(k)
uu =

∑
v1∈V

· · ·
∑

vk−1∈V

Pu,v1

(
k−2∏
i=1

Pvi,vi+1

)
Pvk−1,u

≤
∑
v1∈V

· · ·
∑

vk−1∈V

αk

= dk−1αk.

Consequently, we upper bound the trace of the orientation matrix power as

tr(P(k)) =

d∑
u=1

P(k)
uu ≤ dkαk.
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Finally, we are able to prove the Theorem as

tr(eP)− d =

∞∑
k=0

1

k!
tr(P(k))− d

=

∞∑
k=1

1

k!
tr(P(k))

≤
∞∑
k=1

1

k!
dkαk

= −1 + edα,

where the last passage is due to the Taylor series of the exponential function.

C. Implementation Details
We run all the experiments on our internal cluster of Intel(R) Xeon(R) Gold 5120 processors, totaling 56 CPUs per machine.
We report details on the evaluation (C.1), the data generation procedure (C.2), and the models (C.3).

C.1. Evaluation Procedure

We ensure a fair comparison by selecting the best hyperparameters for each implemented method on each dataset. We
describe the hyperparameter space for each algorithm in the following subsections. Firstly, we sample fifty random
configurations from the hyperparameter space. Since the hyperparameter space of COSMO also includes temperature and
shift values, we extract more hyperparameters (200 – 800). Due to the significant speedup of COSMO, hyperparameter
searches take a comparable amount of time, with NOTEARS being significantly longer on small graphs as well. Then, we test
each configuration on five randomly sampled causal DAGs. We select the best hyperparameters according to the average
AUC value. Finally, we perform a validation step by running the best configuration on five new random graphs.

Following previous work, we recover the binary adjacency matrix A of the retrieved causal graph by thresholding the
learned weights W with a small constant ω = 0.3. Formally, A = |W| > ω.

C.2. Synthetic Data

As we remarked in the main body, continuous approaches are particularly susceptible to data normalization and might
exploit variance ordering between variables (Reisach et al., 2021). Therefore, empirical results on simulated datasets that do
not explicitly control this condition might not generalize to real-world scenarios. Nonetheless, our proposal aims at defining
a faster parameterization that could replace existing continuous approaches as a building block in more complex discovery
solutions. Therefore, as initially done by Zheng et al. (2018) and subsequent work, we tested COSMO and the remaining
baselines in the usual synthetic testbed without normalizing the variance.

We include in our code the exact data generation process from the original implementation of NOTEARS.1 Therefore, the
dataset generation procedure firstly produces a DAG with either the Erdős–Rényi (ER) or the scale-free Barabási-Albert (SF)
models. Then, it samples 1000 independent observations. In the linear case, the generator simulates equations of the form

fi(x) = W⊤
i x+ zi, (36)

where we sample each weight Wij from the uniform distribution U(−2,−0.5)∪ (0.5, 2) and each noise term zi from either
the Normal, Exponential (λ = 1), or Gumbel (µ = 0, β = 1) distributions. In the non-linear case, we simulate an additive
noise model with form

fi(x) = gi(x) + zi, (37)

where gi is a randomly initialized Multilayer Perceptron (MLP) with 100 hidden units and the noise term zi is sampled from
the Normal Distribution N (0, 1).

1NOTEARS implementation is published with Apache license at https://github.com/xunzheng/notears.
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Table 3. Hyperparameter ranges and values for COSMO.

Hyperparameter Range/Value

Learning Rate (1e-3, 1e-2)
λ1 (1e-4, 1e-3)
λ2 (1e-3, 5e-3)
λp (1e-3, 3e-3)
tstart 0.45
tend (5e-4, 1e-3)
ε (5e-3, 2e-2)

C.3. Models

Since we focus on the role of acyclic learners as a building block within more comprehensive discovery solutions, we slightly
detach from experimental setups considering such algorithms as standalone structure learners. Therefore, instead of dealing
with full-batch optimization, we perform mini-batch optimization with batch size B = 64. Similarly, instead of explicitly
computing the gradient of the loss function, we implement all methods in PyTorch to exploit automatic differentiation. By
avoiding differentiation and other overhead sources, the time expenses results are not directly comparable between our
implementations and the results reported in the original papers. However, our implementation choices are common to works
that employed NOTEARS et similia to ensure the acyclicity of the solution (Lachapelle et al., 2020; Brouillard et al., 2020;
Lopez et al., 2022).

For the non-linear setting, similarly to NOTEARS (Zheng et al., 2020), we model the outcome of each variable Xu with a
neural network fu : R

d → R, where we represent first-layer weights as a tensor H ∈ Rd×d×h. Intuitively, each entry Huvi

stands for the weight from the variable Xu to the i-th first-layer neuron in the MLP fv . Then, the weighted adjacency matrix
results from the summation on the hidden dimension. Formally, Wuv =

∑h
i=1 Huvi.

By checking the convergence of the model, both NOTEARS, DAGMA, and NOCURL can dynamically stop the optimization
procedure. On the other hand, COSMO requires a fixed number of epochs in which to anneal the temperature value. For
a fair comparison, while we stop optimization problems after a maximum of 5000 training iterations, we do not disable
early-stopping conditions on the baselines. Therefore, when sufficiently large, the maximum number of epochs should
not affect the overall execution time of the methods. For COSMO, we interrupt the optimization after 2000 epochs. For
the non-linear version of DAGMA, we increased the maximum epochs to 7000. Overall, we interrupt the execution of an
algorithm whenever it hits a wall time limit of 20000 seconds.

As previously discussed in Subsection C.1, we perform a hyperparameter search on each model for each dataset. In particular,
we sampled the learning rate from the range (1e-4, 1e-2) and the regularization coefficients from the interval (1e-4, 1e-1).
For the specific constrained optimization parameters, such as the number of problems or decay factors, we replicated the
baseline parameters, for which we point the reader to the original papers or our implementation. For COSMO, we sample
hyperparameters from the ranges in Table 3, given our theoretical findings on the relation between acyclicity and temperature
(Theorem 3.4), we ensure sufficiently small acyclicity values. In the non-linear variant, we employ Multilayer Perceptrons
with h = 10 hidden units for each variable.

D. Additional Results
In this section, we report further results on simulated causal DAGs with different noise terms, graph types, and increasing
numbers of nodes. For each algorithm, we present the mean and standard deviation of each metric on five independent runs.
We report the Area under the ROC Curve (AUC), the True Positive Ratio (TPR), and the Structural Hamming Distance
normalized by the number of nodes (NHD). The reported duration of NOCURL includes the time to retrieve the necessary
preliminary solution through two optimization problems regularized with the NOTEARS acyclicity constraint. We denote as
NOCURL-U the variation of NOCURL that solves a unique unconstrained optimization problem without preliminary solution.
When not immediate, we highlight in bold the best result and in italic bold the second best result. We do not report methods
exceeding our wall time limit of 20000 seconds.
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D.1. ER4 - Gaussian Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 0.867 ± 1.01 0.953 ± 0.04 0.984 ± 0.02 88 ± 3
DAGMA 0.707 ± 0.57 0.940 ± 0.04 0.985 ± 0.01 781 ± 193
NOCURL 1.653 ± 0.17 0.942 ± 0.02 0.967 ± 0.01 822 ± 15
NOCURL-U 5.623 ± 0.92 0.492 ± 0.08 0.694 ± 0.06 227 ± 5
NOTEARS 0.913 ± 0.60 0.940 ± 0.05 0.973 ± 0.02 5193 ± 170

100

COSMO 1.388 ± 0.69 0.917 ± 0.04 0.961 ± 0.03 99 ± 2
DAGMA 1.026 ± 0.40 0.876 ± 0.02 0.982 ± 0.01 661 ± 142
NOCURL 5.226 ± 1.34 0.921 ± 0.02 0.962 ± 0.01 1664 ± 15
NOCURL-U 10.108 ± 4.11 0.427 ± 0.05 0.682 ± 0.05 267 ± 10
NOTEARS 2.380 ± 2.10 0.898 ± 0.03 0.963 ± 0.01 11001 ± 340

500
COSMO 4.149 ± 1.14 0.819 ± 0.02 0.933 ± 0.01 437 ± 81
DAGMA 2.246 ± 0.40 0.882 ± 0.01 0.980 ± 0.00 2485 ± 366
NOCURL-U 27.675 ± 16.52 0.410 ± 0.04 0.683 ± 0.05 1546 ± 304

D.2. ER4 - Exponential Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 0.600 ± 0.54 0.970 ± 0.02 0.989 ± 0.01 89 ± 3
DAGMA 0.613 ± 0.91 0.958 ± 0.05 0.986 ± 0.02 744 ± 75
NOCURL 2.300 ± 0.97 0.918 ± 0.04 0.956 ± 0.02 826 ± 24
NOCURL-U 5.313 ± 0.17 0.423 ± 0.05 0.694 ± 0.05 212 ± 5
NOTEARS 1.320 ± 0.67 0.880 ± 0.10 0.966 ± 0.03 5579 ± 284

100

COSMO 1.642 ± 0.26 0.952 ± 0.02 0.985 ± 0.01 99 ± 2
DAGMA 1.294 ± 0.52 0.944 ± 0.02 0.986 ± 0.01 733 ± 109
NOCURL 5.652 ± 1.35 0.854 ± 0.03 0.950 ± 0.02 1655 ± 28
NOCURL-U 11.642 ± 4.34 0.478 ± 0.05 0.693 ± 0.05 242 ± 4
NOTEARS 1.156 ± 0.44 0.904 ± 0.03 0.972 ± 0.01 10880 ± 366

500
COSMO 2.342 ± 0.86 0.944 ± 0.02 0.986 ± 0.00 390 ± 102
DAGMA 2.147 ± 1.08 0.902 ± 0.04 0.984 ± 0.01 2575 ± 469
NOCURL-U 20.183 ± 7.43 0.437 ± 0.03 0.715 ± 0.03 1488 ± 249

D.3. ER4 - Gumbel Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 2.220 ± 1.65 0.862 ± 0.14 0.914 ± 0.10 87 ± 2
DAGMA 1.680 ± 0.73 0.937 ± 0.03 0.973 ± 0.02 787 ± 86
NOCURL 3.873 ± 1.26 0.853 ± 0.08 0.915 ± 0.04 826 ± 17
NOCURL-U 5.260 ± 0.57 0.475 ± 0.08 0.678 ± 0.05 212 ± 5
NOTEARS 0.587 ± 0.38 0.962 ± 0.03 0.981 ± 0.01 5229 ± 338

100

COSMO 2.398 ± 0.70 0.936 ± 0.02 0.973 ± 0.01 98 ± 1
DAGMA 1.132 ± 0.79 0.921 ± 0.04 0.986 ± 0.01 858 ± 101
NOCURL 4.714 ± 1.77 0.905 ± 0.03 0.962 ± 0.01 1675 ± 34
NOCURL-U 6.914 ± 0.80 0.383 ± 0.04 0.663 ± 0.04 247 ± 9
NOTEARS 1.402 ± 0.40 0.869 ± 0.04 0.969 ± 0.00 11889 ± 343

500
COSMO 3.574 ± 1.44 0.932 ± 0.02 0.982 ± 0.01 410 ± 106
DAGMA 1.737 ± 0.64 0.871 ± 0.03 0.980 ± 0.00 2853 ± 218
NOCURL-U 18.182 ± 9.28 0.462 ± 0.06 0.728 ± 0.05 1342 ± 209
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D.4. SF4 - Gaussian Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 0.300 ± 0.09 0.973 ± 0.01 0.997 ± 0.00 89 ± 5
DAGMA 0.360 ± 0.30 0.973 ± 0.02 0.996 ± 0.01 653 ± 198
NOCURL 0.967 ± 0.43 0.893 ± 0.03 0.983 ± 0.01 828 ± 23
NOCURL-U 4.410 ± 0.72 0.566 ± 0.11 0.741 ± 0.08 226 ± 7
NOTEARS 0.553 ± 0.54 0.944 ± 0.06 0.984 ± 0.02 5292 ± 261

100

COSMO 0.482 ± 0.31 0.962 ± 0.02 0.991 ± 0.01 99 ± 3
DAGMA 0.712 ± 0.33 0.951 ± 0.02 0.995 ± 0.00 479 ± 75
NOCURL 2.030 ± 0.46 0.883 ± 0.03 0.982 ± 0.01 1667 ± 25
NOCURL-U 5.521 ± 0.61 0.596 ± 0.09 0.788 ± 0.06 269 ± 9
NOTEARS 0.280 ± 0.35 0.972 ± 0.04 0.993 ± 0.01 10112 ± 492

500
COSMO 1.566 ± 0.68 0.953 ± 0.02 0.989 ± 0.01 541 ± 15
DAGMA 1.343 ± 0.46 0.915 ± 0.04 0.992 ± 0.00 1345 ± 33
NOCURL-U 7.146 ± 3.19 0.504 ± 0.08 0.780 ± 0.07 1394 ± 217

D.5. SF4 - Exponential Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 0.613 ± 0.39 0.965 ± 0.02 0.985 ± 0.02 87 ± 2
DAGMA 0.127 ± 0.20 0.991 ± 0.01 0.999 ± 0.00 592 ± 200
NOCURL 0.887 ± 0.21 0.845 ± 0.02 0.985 ± 0.01 824 ± 25
NOCURL-U 4.067 ± 0.73 0.460 ± 0.15 0.685 ± 0.09 212 ± 7
NOTEARS 0.513 ± 0.30 0.962 ± 0.03 0.984 ± 0.01 5189 ± 271

100

COSMO 0.724 ± 0.71 0.963 ± 0.04 0.985 ± 0.02 100 ± 2
DAGMA 0.586 ± 0.56 0.969 ± 0.03 0.995 ± 0.00 395 ± 108
NOCURL 1.998 ± 0.40 0.907 ± 0.03 0.980 ± 0.00 1670 ± 28
NOCURL-U 5.912 ± 1.54 0.575 ± 0.06 0.783 ± 0.04 245 ± 7
NOTEARS 0.910 ± 0.43 0.962 ± 0.02 0.991 ± 0.01 10243 ± 723

500
COSMO 1.445 ± 0.58 0.950 ± 0.03 0.990 ± 0.01 517 ± 108
DAGMA 1.653 ± 0.91 0.873 ± 0.08 0.988 ± 0.01 1466 ± 247
NOCURL-U 12.140 ± 7.84 0.482 ± 0.08 0.727 ± 0.06 1205 ± 257

D.6. SF4 - Gumbel Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 0.467 ± 0.51 0.962 ± 0.05 0.990 ± 0.02 88 ± 2
DAGMA 0.487 ± 0.20 0.956 ± 0.03 0.990 ± 0.01 754 ± 179
NOCURL 0.747 ± 0.19 0.938 ± 0.02 0.989 ± 0.00 826 ± 32
NOCURL-U 3.107 ± 0.64 0.460 ± 0.06 0.737 ± 0.04 213 ± 5
NOTEARS 0.860 ± 0.76 0.924 ± 0.06 0.975 ± 0.02 5199 ± 130

100

COSMO 0.864 ± 0.24 0.968 ± 0.01 0.992 ± 0.01 98 ± 2
DAGMA 0.388 ± 0.30 0.975 ± 0.02 0.997 ± 0.00 422 ± 103
NOCURL 1.806 ± 0.40 0.898 ± 0.03 0.982 ± 0.01 1676 ± 31
NOCURL-U 8.756 ± 2.65 0.550 ± 0.05 0.757 ± 0.03 245 ± 7
NOTEARS 1.134 ± 0.81 0.894 ± 0.08 0.989 ± 0.01 11618 ± 1309

500
COSMO 1.426 ± 0.53 0.951 ± 0.03 0.994 ± 0.00 524 ± 22
DAGMA 1.384 ± 0.38 0.849 ± 0.04 0.991 ± 0.00 1359 ± 34
NOCURL-U 8.931 ± 7.05 0.430 ± 0.10 0.741 ± 0.08 1193 ± 229

13



D.7. ER6 - Gaussian Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 4.087 ± 1.12 0.838 ± 0.06 0.921 ± 0.04 89 ± 4
DAGMA 2.367 ± 0.63 0.847 ± 0.03 0.958 ± 0.01 665 ± 249
NOCURL 4.480 ± 0.92 0.869 ± 0.03 0.908 ± 0.03 909 ± 18
NOCURL-U 7.490 ± 1.18 0.459 ± 0.08 0.672 ± 0.06 226 ± 6
NOTEARS 3.327 ± 1.65 0.840 ± 0.07 0.922 ± 0.04 5239 ± 427

100

COSMO 9.476 ± 3.01 0.771 ± 0.08 0.911 ± 0.05 98 ± 2
DAGMA 10.740 ± 2.83 0.709 ± 0.13 0.902 ± 0.04 761 ± 134
NOCURL 15.044 ± 1.60 0.785 ± 0.04 0.888 ± 0.02 1687 ± 26
NOCURL-U 30.719 ± 5.20 0.435 ± 0.03 0.580 ± 0.04 268 ± 9
NOTEARS 6.556 ± 3.10 0.842 ± 0.05 0.944 ± 0.02 12053 ± 940

500
COSMO 25.443 ± 4.47 0.736 ± 0.01 0.937 ± 0.01 526 ± 100
DAGMA 15.952 ± 1.67 0.553 ± 0.05 0.925 ± 0.01 3207 ± 271
NOCURL-U 165.465 ± 20.86 0.433 ± 0.02 0.558 ± 0.03 1226 ± 293

D.8. ER6 - Exponential Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 3.300 ± 0.95 0.897 ± 0.05 0.947 ± 0.03 89 ± 2
DAGMA 3.480 ± 1.42 0.861 ± 0.06 0.945 ± 0.03 672 ± 177
NOCURL 4.573 ± 0.78 0.846 ± 0.05 0.902 ± 0.03 897 ± 13
NOCURL-U 8.700 ± 0.89 0.426 ± 0.07 0.615 ± 0.06 226 ± 9
NOTEARS 2.313 ± 1.55 0.881 ± 0.09 0.953 ± 0.04 5516 ± 652

100

COSMO 10.170 ± 2.74 0.768 ± 0.09 0.919 ± 0.04 99 ± 3
DAGMA 8.118 ± 3.10 0.793 ± 0.11 0.934 ± 0.04 681 ± 149
NOCURL 14.860 ± 4.67 0.685 ± 0.10 0.863 ± 0.06 1735 ± 39
NOCURL-U 30.600 ± 4.34 0.450 ± 0.04 0.591 ± 0.04 267 ± 8
NOTEARS 5.208 ± 2.54 0.796 ± 0.09 0.943 ± 0.03 12663 ± 1555

500
COSMO 25.854 ± 4.28 0.741 ± 0.04 0.943 ± 0.01 460 ± 123
DAGMA 16.417 ± 4.45 0.571 ± 0.11 0.925 ± 0.02 4069 ± 580
NOCURL-U 152.336 ± 31.97 0.425 ± 0.02 0.567 ± 0.03 1363 ± 306

D.9. ER6 - Gumbel Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 2.840 ± 1.08 0.906 ± 0.04 0.954 ± 0.03 89 ± 3
DAGMA 2.727 ± 0.83 0.906 ± 0.02 0.964 ± 0.02 634 ± 194
NOCURL 5.003 ± 0.72 0.811 ± 0.04 0.891 ± 0.03 902 ± 9
NOCURL-U 8.153 ± 0.96 0.422 ± 0.07 0.629 ± 0.04 226 ± 6
NOTEARS 2.740 ± 1.61 0.791 ± 0.10 0.938 ± 0.04 5416 ± 446

100

COSMO 10.048 ± 3.15 0.780 ± 0.07 0.899 ± 0.06 100 ± 3
DAGMA 7.910 ± 3.05 0.805 ± 0.09 0.935 ± 0.04 715 ± 203
NOCURL 11.932 ± 2.68 0.742 ± 0.04 0.894 ± 0.03 1688 ± 34
NOCURL-U 27.401 ± 4.42 0.431 ± 0.05 0.600 ± 0.04 266 ± 4
NOTEARS 4.884 ± 0.45 0.833 ± 0.05 0.951 ± 0.01 12634 ± 639

500
COSMO 26.148 ± 4.86 0.740 ± 0.04 0.941 ± 0.02 418 ± 106
DAGMA 16.358 ± 4.94 0.563 ± 0.07 0.921 ± 0.02 3527 ± 241
NOCURL-U 125.858 ± 36.61 0.367 ± 0.06 0.571 ± 0.02 1612 ± 27
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D.10. SF6 - Gaussian Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 1.273 ± 1.07 0.907 ± 0.10 0.963 ± 0.06 89 ± 2
DAGMA 1.107 ± 0.37 0.930 ± 0.03 0.985 ± 0.01 456 ± 39
NOCURL 1.573 ± 0.46 0.864 ± 0.04 0.973 ± 0.01 823 ± 14
NOCURL-U 4.997 ± 0.98 0.506 ± 0.05 0.732 ± 0.05 226 ± 8
NOTEARS 0.933 ± 0.71 0.919 ± 0.05 0.984 ± 0.02 5313 ± 184

100

COSMO 4.478 ± 2.88 0.776 ± 0.15 0.874 ± 0.11 99 ± 2
DAGMA 2.024 ± 0.71 0.914 ± 0.02 0.987 ± 0.00 396 ± 53
NOCURL 2.824 ± 0.39 0.818 ± 0.02 0.980 ± 0.00 1679 ± 27
NOCURL-U 10.556 ± 6.00 0.542 ± 0.07 0.751 ± 0.08 266 ± 5
NOTEARS 1.412 ± 0.59 0.939 ± 0.03 0.990 ± 0.01 11156 ± 170

500
COSMO 4.670 ± 1.99 0.912 ± 0.02 0.984 ± 0.00 460 ± 70
DAGMA 3.825 ± 0.19 0.746 ± 0.03 0.982 ± 0.00 1418 ± 54
NOCURL-U 19.793 ± 11.03 0.368 ± 0.04 0.698 ± 0.04 1137 ± 231

D.11. SF6 - Exponential Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 1.393 ± 1.24 0.926 ± 0.05 0.975 ± 0.03 88 ± 1
DAGMA 1.147 ± 0.48 0.943 ± 0.03 0.982 ± 0.01 578 ± 173
NOCURL 1.987 ± 0.54 0.757 ± 0.08 0.967 ± 0.01 820 ± 8
NOCURL-U 4.787 ± 0.99 0.534 ± 0.07 0.761 ± 0.06 227 ± 7
NOTEARS 0.753 ± 0.49 0.943 ± 0.04 0.986 ± 0.01 5312 ± 258

100

COSMO 3.836 ± 2.75 0.864 ± 0.09 0.944 ± 0.05 98 ± 2
DAGMA 1.532 ± 0.61 0.887 ± 0.04 0.988 ± 0.00 373 ± 88
NOCURL 2.890 ± 0.61 0.910 ± 0.02 0.977 ± 0.00 1692 ± 28
NOCURL-U 6.607 ± 1.05 0.474 ± 0.06 0.760 ± 0.06 266 ± 2
NOTEARS 1.784 ± 0.52 0.939 ± 0.02 0.988 ± 0.00 11369 ± 519

500
COSMO 3.144 ± 0.47 0.919 ± 0.02 0.989 ± 0.00 457 ± 81
DAGMA 3.854 ± 0.34 0.750 ± 0.01 0.977 ± 0.01 1384 ± 33
NOCURL-U 13.763 ± 8.79 0.389 ± 0.05 0.728 ± 0.06 1436 ± 230

D.12. SF6 - Gumbel Noise

d Algorithm NHD TPR AUC Time (s)

30

COSMO 1.047 ± 0.42 0.938 ± 0.03 0.984 ± 0.01 88 ± 1
DAGMA 1.347 ± 0.63 0.933 ± 0.02 0.981 ± 0.01 528 ± 67
NOCURL 1.787 ± 0.52 0.898 ± 0.02 0.969 ± 0.01 822 ± 29
NOCURL-U 5.577 ± 0.43 0.549 ± 0.06 0.733 ± 0.05 225 ± 4
NOTEARS 1.053 ± 0.59 0.911 ± 0.04 0.978 ± 0.02 5429 ± 251

100

COSMO 3.486 ± 2.62 0.879 ± 0.10 0.947 ± 0.06 99 ± 2
DAGMA 1.418 ± 0.34 0.910 ± 0.03 0.990 ± 0.00 424 ± 90
NOCURL 3.074 ± 0.50 0.893 ± 0.02 0.976 ± 0.00 1682 ± 22
NOCURL-U 9.643 ± 4.59 0.464 ± 0.08 0.712 ± 0.10 267 ± 9
NOTEARS 1.586 ± 1.39 0.913 ± 0.06 0.987 ± 0.01 11820 ± 985

500
COSMO 3.288 ± 0.50 0.931 ± 0.01 0.992 ± 0.00 429 ± 87
DAGMA 4.055 ± 0.88 0.802 ± 0.03 0.981 ± 0.00 1465 ± 138
NOCURL-U 56.103 ± 41.06 0.420 ± 0.06 0.648 ± 0.07 1201 ± 253
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D.13. ER4 - Non-linear MLP

d Algorithm NHD TPR AUC Time (s)

20 COSMO 2.110 ± 0.37 0.726 ± 0.05 0.939 ± 0.02 125 ± 4
DAGMA 3.540 ± 0.45 0.323 ± 0.06 0.740 ± 0.05 1834 ± 34

40 COSMO 2.420 ± 0.48 0.668 ± 0.04 0.930 ± 0.01 139 ± 3
DAGMA 3.902 ± 0.07 0.024 ± 0.02 0.767 ± 0.03 2054 ± 45

100 COSMO 4.864 ± 0.95 0.627 ± 0.02 0.918 ± 0.01 228 ± 6
DAGMA 3.609 ± 0.10 0.244 ± 0.02 0.848 ± 0.02 3537 ± 32

D.14. SF4 - Non-linear MLP

d Algorithm NHD TPR AUC Time (s)

20 COSMO 1.725 ± 0.34 0.701 ± 0.06 0.949 ± 0.02 125 ± 5
DAGMA 3.290 ± 0.15 0.069 ± 0.04 0.604 ± 0.11 1838 ± 48

40 COSMO 2.065 ± 0.18 0.573 ± 0.05 0.960 ± 0.01 139 ± 4
DAGMA 3.750 ± 0.00 0.000 ± 0.00 0.706 ± 0.09 2069 ± 26

100 COSMO 3.019 ± 0.14 0.374 ± 0.04 0.945 ± 0.01 229 ± 8
DAGMA 3.835 ± 0.04 0.017 ± 0.01 0.721 ± 0.05 3551 ± 34

D.15. ER6 - Non-linear MLP

d Algorithm NHD TPR AUC Time (s)

20 COSMO 2.945 ± 0.23 0.666 ± 0.07 0.938 ± 0.01 124 ± 5
DAGMA 5.430 ± 0.24 0.132 ± 0.04 0.607 ± 0.07 1826 ± 45

40 COSMO 4.345 ± 0.64 0.594 ± 0.06 0.907 ± 0.01 138 ± 5
DAGMA 6.000 ± 0.00 0.000 ± 0.00 0.648 ± 0.04 2056 ± 40

100 COSMO 4.390 ± 0.31 0.421 ± 0.02 0.900 ± 0.01 228 ± 6
DAGMA 6.355 ± 0.22 0.161 ± 0.02 0.806 ± 0.01 3534 ± 29

D.16. SF6 - Non-linear MLP

d Algorithm NHD TPR AUC Time (s)

20 COSMO 2.110 ± 0.29 0.673 ± 0.08 0.965 ± 0.01 124 ± 5
DAGMA 4.915 ± 0.05 0.007 ± 0.01 0.610 ± 0.13 1846 ± 34

40 COSMO 3.255 ± 0.32 0.541 ± 0.04 0.950 ± 0.01 138 ± 2
DAGMA 5.460 ± 0.02 0.003 ± 0.00 0.590 ± 0.08 2056 ± 42

100 COSMO 4.625 ± 0.20 0.305 ± 0.04 0.936 ± 0.01 229 ± 6
DAGMA 5.654 ± 0.05 0.023 ± 0.01 0.667 ± 0.07 3480 ± 60
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