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ABSTRACT

Estimating causal treatment effects using observational data is a problem with few
solutions when the confounder has a temporal structure, e.g. the history of disease
progression might impact both treatment decisions and clinical outcomes. For such
a challenging problem, it is desirable for the method to be transparent — the ability
to pinpoint a small subset of data points that contribute most to the estimate and
to clearly indicate whether the estimate is reliable or not. This paper develops a
new method, SyncTwin, to overcome temporal confounding in a transparent way.
SyncTwin estimates the treatment effect of a target individual by comparing the
outcome with its synthetic twin, which is constructed to closely match the target in
the representation of the temporal confounders. SyncTwin achieves transparency
by enforcing the synthetic twin to only depend on the weighted combination of
few other individuals in the dataset. Moreover, the quality of the synthetic twin
can be assessed by a performance metric, which also indicates the reliability of the
estimated treatment effect. Experiments demonstrate that SyncTwin outperforms
the benchmarks in clinical observational studies while still being transparent.

1 INTRODUCTION

Estimating the causal individual treatment effect (ITE) on patient outcomes using observational data
(observational studies) has become a promising alternative to clinical trials as large-scale electronic
health records become increasingly available (Booth & Tannock, 2014). Figure 1 illustrates a common
setting in medicine and it will be the focus of this work (DiPietro, 2010): an individual may start
the treatment at some observed time (black dashed line) and we want to estimate the ITE on the
outcomes over time after the treatment starts (shaded area). The key limitation of observational
studies is that treatment allocation is not randomised but typically influenced by prior measurable
static covariates (e.g. gender, ethnicity) and temporal covariates (e.g. all historical medical diagnosis
and conditions, squares in Figure 1). When the covariates also modulate the patient outcomes, they
lead to the confounding bias in the direct estimation of the ITE (Psaty et al., 1999).
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Figure 1: Illustration of a treated
individual. Yellow dots represent
the outcomes under no treatment.

Although a plethora of methods overcome the confounding bias by
adjusting for the static covariates (Yoon et al., 2018; Yao et al., 2018;
Louizos et al., 2017; Shalit et al., 2017; Li & Fu, 2017; Alaa &
van der Schaar, 2017; Johansson et al., 2016), few existing works
take advantage of the temporal covariates that are measured irreg-
ularly over time (Figure 1) (Bica et al., 2020; Lim et al., 2018;
Schulam & Saria, 2017; Roy et al., 2017). Overcoming the con-
founding bias due to temporal covariates is especially important
for medical research as clinical treatment decisions are often based
on the temporal progression of a disease. Transparency is highly
desirable in such a challenging problem.

Although transparency is a general concept, we will focus on two spe-
cific aspects (Arrieta et al., 2020). (1) Explainability: the method
should estimate the ITE of any given individual (the target individual) based on a small subset of
other individuals (contributors) whose amount of contribution can be quantified (e.g using a weight
between 0 and 1). Although the estimate of different target individuals may depend on different
contributors, the method can always shortlist the few contributors for the expert to understand the

1



Under review as a conference paper at ICLR 2021

Treatment

Contributors
(control)

Covariates

Target
individual
(treated)

Weights Outcomes

Synthetic twin
ITE

+
+

Time
Rep. Vectors

1. Encode 2. Synthetize 3. Estimate
 A  B

Outcomes

Covariates

Latent
Variable

Unobserved
Confounder

Figure 2: A: Illustration of SyncTwin (shaded area: the time points after the treatment starts). 1. Temporal
covariates are encoded as representation vectors. 2. The synthetic twin of a treated target individual is constructed
as the weighted average of the few contributors from the control group. 3. The difference between the observed
outcome and the synthetic twin outcome estimates ITE. B: the DAG of the data generating model (Sec. 2).

rationale for each estimate. (2) Trustworthiness: the method should identify the target individuals
whose ITE cannot be reliably estimated due to violation of assumptions, lack of data, or other failure
modes. Being transparent about what the method cannot do improves the overall trustworthiness
because it guides the experts to only use the method when it is deemed reliable.

Inspired by the well-established Synthetic Control method in Statistics and Econometrics (Abadie
et al., 2010; Abadie, 2019), we propose SyncTwin, a transparent ITE estimation method which deals
with temporal confounding. Figure 2 A illustrates the schematics of SyncTwin. SyncTwin starts by
encoding the irregularly-measured temporal covariates as representation vectors. For each treated
target individual, SyncTwin selects and weights few contributors from the control group based on
their representation vectors and the sparsity constraint. SyncTwin proceeds to construct a synthetic
twin whose representation vector and outcomes are the weighted average of the contributors. Finally,
the ITE is estimated as the difference between the target individual’s and the Synthetic Control’s
outcomes after treatment. The difference in their outcomes before treatment indicates the quality of
the synthetic twin and whether the model assumptions hold. If the target individual and synthetic twin
do not match in pre-treatment outcomes, the estimated ITE should not be considered trustworthy.

Transparency of SyncTwin. SyncTwin achieves explainability by selecting only a few contributors
for each target individual. It achieves trustworthiness because it quantifies the confidence one should
put into the estimated ITE as the difference between the target and synthetic pre-treatment outcomes.

2 PROBLEM SETTING

We consider a clinical observational study with N individuals indexed by i ∈ [N ] = {1, . . . , N}. Let
ai ∈ {0, 1} be the treatment indicator with ai = 1 if i started to receive the treatment at some time
and ai = 0 if i never initiated the treatment. We realign the time steps such that all treatments were
initiated at time t = 0. Let I1 = {i ∈ [N ] | ai = 1} and I0 = {i ∈ [N ] | ai = 0} be the set of the
treated and the control respectively. Denote N0 = |I0| and N1 = |I1| as the sizes of the groups. The
time t = 0 is of special significance because it marks the initiation of the treatment (black dashed line
in Figure 1). We call the period t < 0 the pre-treatment period and the period t ≥ 0 the treatment
period (shaded area in Figure 1).

Temporal covariates are observed during the pre-treatment period only and may influence the treatment
decision and the outcome. Let Xi = [xis]s∈[Si] be the sequence of covariates xis ∈ RD, which
includes Si ∈ N observations taken at times t ∈ Ti = {tis}s∈[Si], where all tis ∈ R and tis < 0.
Note that xis may also include static covariates whose values are constant over time. To allow the
covariates to be sampled at different frequencies, let mis ∈ {0, 1}D be the masking vector with
misd = 1 indicating the dth element in xis is sampled.

The outcome of interest is observed both before and after the treatment. In many cases, the researchers
are interested in the outcomes measured at regular time intervals (e.g. the monthly average blood
pressure). Hence, let T − = {−M, . . . ,−1} and T + = {0, . . . ,H − 1} be the observation times
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before and after treatment initiation. In this work, we focus on real-valued outcomes yit ∈ R observed
at t ∈ T − ∪ T +. We arrange the outcomes after treatment into a H-dimensional vector denoted as
yi = [yit]t∈T + ∈ RH . Similarly define pre-treatment outcome vector y−i = [yit]t∈T − ∈ RM .

Using the potential outcome framework (Rubin, 2005), let yit(ai) ∈ R denote the potential outcome at
time t in a world where i received the treatment as indicated by ai. Let yi(1) = [yit(1)]t∈T + ∈ RH ,
and y−i (1) = [yit(1)]t∈T − ∈ RM , similarly for yi(0) and y−i (0). The individual treatment effect
(ITE) is defined as τi = yi(1) − yi(0) ∈ RH . Under the consistency assumption (discussed later
in details), the factual outcome is observed yi(ai) = yi, which means for any i ∈ [N ] only the
unobserved counterfactual outcome yi(1− ai) needs to be estimated in order to estimate the ITE. To
simplify the notations, we focus on estimating the ITE for the treated, i.e. τ̂i = yi(1) − ŷi(0) for
i ∈ I1, though the same approach applies to the control i ∈ I0 and new units i /∈ [N ] without loss of
generality (A.5).

SyncTwin relies on the following assumptions. (1) Consistency, also known as Stable Unit Treatment
Value Assumption (Rubin, 1980): yit(ai) = yit, ∀i ∈ [N ], t ∈ T − ∪ T +. (2) No anticipation,
also known as causal systems (Abbring & Van den Berg, 2003; Dash, 2005): yit = yit(1) = yit(0),
∀t ∈ T −, i ∈ [N ]. (3) Data generating model: the assumed directed acyclic graph is visualized
in Figure 2 B (Pearl, 2009), where we introduce two variables ci ∈ RK and vi ∈ RU in addition
to the previously defined ones. The latent variable ci is the common cause of yit(0) and xis, and
it indirectly influences ai through xis. As we show later, SyncTwin tries to learn and construct
a synthetic twin that has the same ci as the target. The variable vi is an unobserved confounder.
Although SyncTwin, like all other ITE methods, works better without unobserved confounders (i.e.
vi = 0, ∀i ∈ [N ]), we develop a unique checking procedure in Equation (4) to validate if there exists
vi 6= 0. We also demonstrate that under certain favourable conditions, SyncTwin can overcome the
impact of the vi. To establish the theoretical results, we further assume yit(0) follows a latent factor
model with ci, vi as the latent “factors”(Bai & Ng, 2008):

yit(0) = q>t ci + u>t vi + ξit, ∀t ∈ T − ∪ T +, (1)

where qt ∈ RK , ut ∈ RU are weight vectors and ξit is the white noise. We require the weight vectors
to have ||qt|| = 1, ∀t ∈ T −∪T + (Xu, 2017), which does not reduce the expressiveness of the model.
We further require the dimensionality of the latent factor to be smaller than the number of time steps
before or after treatment, i.e. K < min(M,H). Furthermore, let Q− = [qt]t∈T − ∈ RM×K and
Q = [qt]t∈T + ∈ RH×K denote the matrices that stack all the weight vectors q’s before and after
treatment as rows respectively. The latent factor model assumption may seem restrictive but as we
show in Appendix A.4 it is applicable to many scenarios. In the simulation study (5.1) we further
show SyncTwin performs well even when the data is not generated using model (1) but instead using
a set of differential equations. We compare our assumptions with those used in the related works in
Appendix A.3.

3 RELATED WORK

3.1 SYNTHETIC CONTROL

Similar to SyncTwin, Synthetic control (SC) (Abadie, 2019) and its extensions (Athey et al., 2018;
Amjad et al., 2018) estimate ITE based on Synthetic Control outcomes. However, when applied to
temporal confounding, SC will flatten the temporal covariates [xis]s∈[Si] into a fixed-sized (high-
dimensional) vector xi and use it to construct the twin. As a result, SC does not allow the covariates to
be variable-length or sampled at different frequencies (otherwise xi’s dimensionality will vary across
individuals). In contrast, SyncTwin can gracefully handle these irregularities because it constructs the
twin using the representation vectors. Moreover, the covariates xi may contain observation noise
and other sources of randomness that do not relate to the outcome or the treatment. Enforcing the
target and the twin to have similar xi will inject these irrelevant noise to the twin, a situation we call
over-match (because it resembles over-fit). Over-match undermines ITE estimation as we show in the
simulation study in Section 5.1. Finally, SC assumes yit(0) = q>t xi + u>t vi + ξit, i.e. the flattened
covariates xi linearly predicts yit(0), which is a special case of our assumption (1) and unlikely to
hold for many medical applications.
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3.2 COVARIATE ADJUSTMENT WITH DEEP LEARNING

In the static setting, the covariate adjustment methods fit two functions (deep neural networks) to
predict the outcomes with and without treatment i.e. ŷi(0) = f0(xi) and ŷi(1) = f1(xi) (Johansson
et al., 2016; Shalit et al., 2017; Yao et al., 2018; Yoon et al., 2018). The ITE is then estimated
as τ̂i = f1(xi) − f0(xi). Under this framework, various methods have been proposed to address
temporal confounding (Lim et al., 2018; Bica et al., 2020). However, these methods generally
lack transparency because the black-box neural networks cannot easily pinpoint the contributors
for each prediction. Moreover, the prediction accuracy before treatment cannot directly measure
the confidence or trustworthiness for the predictions after treatment because the network is very
nonlinear and non-stationary. Lastly, Bica et al. (2020) and Lim et al. (2018) are applicable to a more
general setting where the treatment can be turned on and off over time whereas SyncTwin assumes
the outcomes will continue to be influenced by the treatment after the treatment starts.

Works with similar terminology. Several works in the literature use similar terms such as “twin”
while most of them are not related to SyncTwin. We discuss these works in Appendix A.6.

4 TRANSPARENT ITE ESTIMATION VIA SYNCTWIN

To explain when and why SyncTwin gives a valid ITE estimate, let us assume that we have learned
a representation c̃i that approximates the latent variable ci, ∀i ∈ [N ] in Equation 1. For a target
individual i ∈ I1, let bi = [bij ]j∈I0 ∈ RN0 be a vector of weights, each associated with a control
individual. A synthetic twin can be generated using bi as

ĉi =
∑
j∈I0

bij c̃j , ŷit(0) =
∑
j∈I0

bijyjt(0) =
∑
j∈I0

bijyjt, ∀t ∈ T − ∪ T +, (2)

where ĉi is the synthetic representation and ŷit(0) is the synthetic outcome under no treatment.
The last equality follows from the consistency assumption. Let ŷi(0) = [ŷit(0)]t∈T + be the post-
treatment synthetic outcome vector, and similarly ŷ−i = [ŷit(0)]t∈T − . The ITE of i can be estimated
as

τ̂i = yi(1)− ŷi(0) = yi −
∑
j∈I0

bijyj , (3)

where again the last equality follows from the consistency assumption. We should highlight that
yi and yj , ∀j ∈ I0 in the equation above are the observed outcomes. Hence, bi is the only free
parameter that influences the ITE estimator τ̂i. The following two distances are central to the training
and inference procedure:

dci = ‖ĉi − c̃i‖, dyi = ‖ŷ−i − y−i ‖1, (4)

where || · || is the vector `2-norm and || · ||1 is the vector `1-norm.

Minimizing dci to construct synthetic twins. dci indicates how well the synthetic twin matches the
target individual in representations. Intuitively, we should seek to construct a twin who closely
matches the target by minimizing dci . This intuition is verified in Proposition 1 (proved in A.1.1).
Proposition 1 (Bias bound on ITE with no unobserved confounders). Suppose that vi = 0, ∀i ∈ [N ]
and dci = 0 for some i ∈ I1 (vi and dci are defined in Equation 1 and 4 respectively), the absolute
value of the expected difference in the true and estimated ITE of i is bounded by:

|E[τ̂i]− E[τi]| ≤ |T +|‖
∑
j∈I0

bijcj − ci‖ ≤ |T +|
( ∑
j∈I0

‖cj − c̃j‖+ ‖ci − c̃i‖
)
. (5)

Here we show that when dci is minimized at zero and there is no unobserved confounder, the bias on
the ITE estimate only depends on how close the learned representation c̃ is to the true latent variable
c. We will use use representation learning to uncover the latent variable c in the next section.

Using dyi to measure trustworthiness. By definition, dyi indicates how well the synthetic pre-
treatment outcomes match the target individual’s outcomes. Intuitively, matching the outcomes before
treatment is a prerequisite for a good estimate of the ITE after treatment (Equation 2 and 3). We
formalize this intuition in Proposition 2, which is proved in Appendix A.1.1.
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Proposition 2 (Trustworthiness of SyncTwin under no hidden confounders). Suppose that all the
outcomes are generated by the model in Equation 1 with the unobserved confounders equal to zero
s.t. vi = 0, ∀i ∈ [N ], and that we reject the estimate τ̂i if the pre-treatment error dyi on T − is larger
than δ|T −|/|T +|, the post-treatment ITE estimation error on T + is below δ.

Here we show that if we would like to ensure the ITE error to fall below a pre-specified threshold
δ, we should reject the estimate τ̂i when the distance dyi > δ|T −|/|T +| assuming no unobserved
confounder. In other words, dyi can be used as an evaluation metric to access whether the estimated
ITE is trustworthy.

Situation with unobserved confounders. In presence of the unobserved confounders vi 6= 0,
SyncTwin cannot guarantee to correctly estimate the ITE. However, dyi can still indicate whether vi
has a significant impact on the pre-treatment outcomes, i.e. the unobserved confounders may exist
but only weakly influence the outcomes before treatment. We discuss unobserved confounders in
detail in Appendix A.1.2.

4.1 LEARNING TO REPRESENT TEMPORAL COVARIATES

In this section, we show how SyncTwin learns the representation c̃i as a proxy for the latent variable
ci using a sequence-to-sequence architecture as depicted in Figure 3 (A) and discussed below.

Architecture. SyncTwin is agnostic to the exact choice of architecture as long as the network
translates the covariates into a single representation vector (encode) and reconstructs the covariates
from that representation (decode). For this reason, we use the well-proven sequence-to-sequence
architecture (Seq2Seq) (Sutskever et al., 2014) with an encoder similar to the one proposed in
Bahdanau et al. (2015) and a standard LSTM decoder (Hochreiter & Schmidhuber, 1997).

The encoder first obtains a sequence of representations at each time step using a recurrent neural
network. Instead of using the bi-directional LSTM as in Bahdanau et al. (2015), we use a GRU-D
network because it is designed to encode irregularlly-sampled temporal observations (Che et al.,
2018). This gives us the sequence his = GRU-D(hi,s−1,xis,mis, tis), ∀s ∈ [Si]. Since our goal
is to obtain a single representation vector rather than a sequence of representations, we aggregate
the sequence of his using the same attentive pooling method as in Bahdanau et al. (2015). The
final representation vector c̃i is obtained as: c̃i =

∑
s∈[Si]

αishis, where αis = r>his/
√
K is the

attention weight and r ∈ RK is the attention parameter (Vaswani et al., 2017).

The decoder uses the representation c̃i to reconstruct xis at time tis ∀s ∈ [Si]. Since the timing
information tis may be lost in c̃i due to aggregation, we reintroduce it to the decoder by first
obtaining a sequence of time representations ois = k0 + w>0 tis, where ois,k0,w0 ∈ RK , and then
concatenating each with c̃i to obtain: eis = c̃i ⊕ ois ∈ R2K . Reintroducing timing information
during decoding is a standard practice in Seq2Seq models for irregular time-series (Rubanova et al.,
2019; Li & Marlin, 2020). Furthermore, using time representation ois instead of time values tis
is inspired by the success of positional encoding in the self-attention architecture (Vaswani et al.,
2017; Gehring et al., 2017). The decoder then applies a LSTM autoregressively on the time-aware
representations eis to decode gis = LSTM(gi,s−1, eis), ∀s ∈ [Si], where gis ∈ RK . Finally, it uses
a linear layer to obtain the reconstructions: x̃is = k1 + W1gis, where k1 ∈ RD, W1 ∈ RD×K .

Loss functions. We train the networks with the weighted sum of the supervised loss Ls and the
reconstruction loss Lr (Figure 3 A):

Ls(D0) =
∑
i∈D0

||Q̃ · c̃i − yi(0)||, Lr(D0,D1) =
∑

i∈D0∪D1

∑
s∈[Si]

||(x̃is − xis)�mis||, (6)

where D0 ⊆ I0, D1 ⊆ I1, mis is the masking vector (Section 2), � represents element-wise product
and Q̃ ∈ RH×K is a trainable parameter and || · || is the L2 norm. Intuitively, the supervised loss Ls
ensures that the learned representation c̃i to be a linear predictor of the outcomes under no treatment
yi(0). Here a linear function ỹi(0) := Q̃ · c̃i is used to be consistent with the data generating model
(1). Using a nonlinear function here might lead to smaller Ls, but it will not uncover the latent
variable ci as desired. We justify the supervised loss in Proposition 3 below and present the proof
and detailed discussions in Appendix A.1.1.
Proposition 3 (Error bound on the learned representations). Suppose that vi = 0, ∀i ∈ [N ] (vi is
defined in Equation 1), the total error on the learned representations for the control, i.e., the first term
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Figure 3: Illustration of the loss functions. (A) The representation networks are trained using Ls and Lr in
Equation 6. Note that the supervised loss Ls only applies to the control. (B) Validation and inference involve
optimizing the matching loss Lm in Equation 8. Note the encoder needs to be fixed during optimization.

in the upper bound of the absolute value of the expected difference in the true and estimated ITE
(R.H.S of Equation 5), is bounded as follows:∑

j∈I0

‖cj − c̃j‖ ≤ βLs +
∑
j∈I0

‖ξj‖, (7)

where Ls is the supervised loss in Equation 6 and ξj is the white noise in Equation 1.

4.2 CONSTRUCTING SYNTHETIC TWINS

Constraints. We require the weights bi in Equation 2 to satisfy two constraints (1) positivity:
bij ≥ 0 ∀i ∈ [N ], j ∈ I0, and (2) sum-to-one:

∑
j∈I0 bij = 1, ∀i ∈ [N ]. The constraints are needed

for three reasons. (1) The constraints reduce the solution space of bi and serve as a regularizer.
Regularizing is vital because the dimensionality of bi ∈ RN0 can easily exceed ten thousand in
observational studies. (2) The constraints encourage the solution to be sparse by fixing the `1-norm of
bi to be one i.e. ||bi||1 = 1 (Tibshirani, 1996). Better sparsity leads to fewer contributors and better
transparency. (3) Finally, the constraints ensure that the synthetic twin in Equation 2 is the weighted
average of the contributors. Therefore the weight bij directly translates into the “contribution” or
“importance” of j to i, further improving the transparency.

Matching loss. The matching loss finds weight bi so that the synthetic twin and the target individual
match in representations, as depicted in Figure 3 (B).

Lm(D0,D1) =
∑
i∈D1

||c̃i −
∑
j∈D0

bij c̃j ||22, (8)

where again D0 ⊆ I0 and D1 ⊆ I1. We use the Gumbel-Softmax reparameterization detailed in
Appendix A.9 to optimize Lm under the constraints (Jang et al., 2016; Maddison et al., 2016).

4.3 TRAINING, VALIDATION AND INFERENCE

As is standard in machine learning, we perform model training, validation and inference (testing) on
three disjoint datasets. On a high level, we train the encoder and decoder on the training data using
the loss functions described in Section 4.1. The validation data is then used to validate and tune the
hyper-parameters of the encoder and decoder. Finally, we fix the encoder and optimize the matching
loss Lm on the testing data to find the weight bi, which leads to the ITE estimate using Equation 3.
The detailed procedure is described in A.8. The hyperparamter sensitivity is studied in A.13.
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5 EXPERIMENTS

5.1 SIMULATION STUDY

In this simulation study, we evaluate SyncTwin on the task of estimating the LDL cholesterol-lowering
effect of statins, a common drug prescribed to hypercholesterolaemic patients. We simulate the
ground truth ITE using the widely adopted Pharmacokinetic-Pharmacodynamic model in the literature
(Faltaos et al., 2006; Yokote et al., 2008; Kim et al., 2011).

dpt
dt

= kint − k · pt;
ddt
dt

= at − h · dt;
dyt
dt

= k · pt −
dt

dt + d50
k · yt. (9)

where yt is the LDL cholesterol level (outcome) and at is the indicator of statins treatment. The
interpretation of all other variables involved are presented in Appendix A.10.

Data generation. Following our convention, the individuals are enrolled at t = 0, the covariates
are observed in T = [−S, 0), where S ∈ {15, 25, 45}, and the ITE is to be estimated in the period
T + = [0, 4]. We start by generating kint for each individual from the following mixture distribution:

kinit = g>i ft; gi = δiei1 + (1− δi)ei2; δi
iid∼ Bern(p); ein

iid∼ N(µn,Σn), n = 1, 2 (10)

where ft ∈ R6 are the Chebyshev polynomials, Bern(p) is the Bernoulli distribution with success
probability p and N(µn,Σn) is the Gaussian distribution. To introduce confounding, we vary p for
the treated and the control: p = p0, ∀i ∈ I0 and p = 1, ∀i ∈ I1, where p0 controls the degree
of confounding bias. After that, the variables pt, dt, yt are obtained by solving Equation 9 using
scipy (Virtanen et al., 2020) and adding independent white noise ε ∼ N(0, 0.1) to the solution. The
temporal variables defined above give us the covariates xt = {kint , yt, pt, dt}. Finally, we introduce
irregular sampling by creating masks mit∼Bern(m), where probability m ∈ {0.3, 0.5, 0.7, 1}.

Figure 4: Heatmap of the weights bi learned by
SyncTwin and SC. Each row represents one bi.

Benchmarks. From the Synthetic Control literature,
we considered the original Synthetic Control method
(SC) (Abadie et al., 2010), Robust Synthetic Control
(RSC) (Amjad et al., 2018) and MC-NNM (Athey
et al., 2018). From the deep learning literature, we
compared against Counterfactual Recurrent Network
(CRN) (Bica et al., 2020) and Recurrent Marginal
Structural Network (RMSN) (Lim et al., 2018), which
are the state-of-the-art methods to estimate ITE under
temporal confounding. In addition, we included a
modified version of the CFRNet, which was origi-
nally developed for the static setting (Shalit et al.,
2017). To allow the CFRNet to handle temporal co-
variates, we replaced its fully-connected encoder with the encoder architecture used by SyncTwin
(Section 4.1). We also included the counterfactual Gaussian Process (CGP) (Schulam & Saria, 2017)
and One-nearest Neighbour Matching (1NN) (Stuart, 2010) as baselines. The implementation details
of all benchmarks are available in Appendix A.7. We also included two ablated versions of SyncTwin.
SyncTwin-Lr is trained only with reconstruction loss and SyncTwin-Ls only with supervised loss.

Main results. We evaluate the mean absolute error (MAE) on ITE estimation: 1
N1

∑N1

i=1 ||τi − τ̂i||1.
In table 6 the parameter p0 controls the level of confounding bias (smaller p0, larger bias). Additional
results for different sequence length S and sampling irregularity m are shown in Appendix A.11.
SyncTwin achieves the best or equally-best performance in all cases. The full SyncTwin with
both loss functions also consistently outperforms the versions trained only with Lr or Ls. As
discussed in Section 4 (and Appendix A.1.1), training with only reconstruction loss Lr leads to
significant performance degradation. It is worth highlighting that the data generating model used in
this simulation (9) is not the same as SyncTwin’s assumed latent factor model (1). This implies that
SyncTwin may still achieve good performance when the assumed model (1) does not exactly hold.

SC, RSC and MC-NNM underperform because their assumption that the flattened covariates xi
linearly predict the outcome is violated (Section 3). Furthermore, Table 2 shows the synthetic twin
created by SC matches the target covariates xi consistently better than SyncTwin, yet produces worse
ITE estimates. This suggests that matching covariates better may not lead to better ITE estimate
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Table 1: Mean absolute error on ITE under different levels of confounding bias p0. m = 1 and S = 25 are
used. Estimated standard deviations are shown in the parentheses. The best performer is in bold.

Method N0 = 200 N0 = 1000

p0 = 0.1 p0 = 0.25 p0 = 0.5 p0 = 0.1 p0 = 0.25 p0 = 0.5

SyncTwin-Full 0.324 (.038) 0.144 (.012) 0.119 (.008) 0.141 (.012) 0.106 (.006) 0.093 (.005)
SyncTwin-Lr 0.353 (.039) 0.170 (.015) 0.139 (.010) 0.256 (.026) 0.145 (.012) 0.101 (.006)
SyncTwin-Ls 0.336 (.039) 0.170 (.015) 0.120 (.008) 0.144 (.012) 0.113 (.007) 0.127 (.010)
SC 0.340 (.041) 0.151 (.024) 0.149 (.018) 0.258 (.050) 0.166 (.034) 0.214 (.036)
RSC 0.837 (.044) 0.360 (.020) 0.321 (.018) 0.310 (.016) 0.298 (.014) 0.302 (.014)
MC-NNM 1.160 (.059) 0.612 (.031) 0.226 (.011) 0.527 (.029) 0.159 (.008) 0.124 (.006)
CFRNet 0.895 (.077) 0.411 (.037) 0.130 (.007) 0.411 (.038) 0.175 (.013) 0.106 (.007)
CRN 1.045 (.064) 0.546 (.039) 0.360 (.024) 0.864 (.052) 0.767 (.040) 0.357 (.021)
RMSN 0.390 (.031) 0.362 (.028) 0.332 (.026) 0.447 (.041) 0.386 (.034) 0.385 (.032)
CGP 0.660 (.043) 0.610 (.039) 0.561 (.035) 0.826 (.056) 0.693 (.047) 0.602 (.038)
1NN 1.866 (.099) 1.721 (.091) 1.614 (.078) 2.446 (.131) 1.746 (.106) 1.384 (.083)

Table 2: Mean absolute error between the observed covariates xi and synthetic twin’s covariates x̂i. SC matches
the covariates better yet produces worse ITE estimate (Table 1), suggesting it is over-matching. The average
distance between any two individuals is 0.95, much larger than all values reported in the table.

Method N0 = 200 N0 = 1000

p0 = 0.1 p0 = 0.25 p0 = 0.5 p0 = 0.1 p0 = 0.25 p0 = 0.5

SyncTwin-Full 0.343 (.029) 0.203 (.014) 0.179 (.011) 0.469 (.037) 0.223 (.015) 0.175 (.012)
SyncTwin-Lr 0.321 (.028) 0.192 (.015) 0.182 (.015) 0.250 (.019) 0.190 (.013) 0.195 (.013)
SC 0.236 (.027) 0.117 (.014) 0.111 (.011) 0.155 (.025) 0.110 (.019) 0.128 (.020)

Figure 5: Illustration of the transparency of SyncTwin. Top: the outcomes (LDL) before and after treatment
of a target individual and its synthetic twin. Bottom left: histogram of distance dy (Equation 4). Bottom right:
histogram of number of contributors used to construct the synthetic twin.

because the covariates are noisy and the method might over-match (Section 3). In addition, Figure
4 visualizes the weights bi of SyncTwin and SC in a heatmap. We can clearly see that SyncTwin
produces sparser weights because SC needs to use more contributors to construct the twin that
(over-)matches xi. Quantitative evaluation of the sparsity is provided in Appendix A.12. These
findings verify our belief that constructing twins in the representation space (SyncTwin) rather than
in the high-dimensional observation space (SC) leads to better performance and transparency.
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5.2 EXPERIMENT ON REAL DATA

Purpose of study. We present an clinical observational study using SyncTwin to estimate the LDL
Cholesterol-lowering effect of statins in the first year after treatment (Ridker & Cook, 2013).

Data Source. We used medical records from English National Health Service general practices that
contributed anonymised primary care electronic health records to the Clinical Practice Research
Datalink (CPRD), covering approximately 6.9 percent of the UK population (Herrett et al., 2015).
CPRD was linked to secondary care admissions from Hospital Episode Statistics, and national
mortality records from the Office for National Statistics. We defined treatment initiation as the date
of first CPRD prescription and the outcome of interest was measured LDL cholesterol (LDL). Known
risk factors for LDL were selected as temporal covariates measured before treatment initiation: HDL
Cholesterol, Systolic Blood Pressure, Diastolic Blood Pressure, Body Mass Index, Pulse, Creatinine,
Triglycerides and smoking status. Our analysis is based on a subset of 125,784 individuals (Appendix
A.15) which was split into three equally-sized subsets for training, validation and inference, each
with 17,371 treated and 24,557 controls.

Evaluation. We evaluate our models using the average treatment effect on the treated group (ie,
ATT = E(τi|ai = 1)) to directly correspond to the reported treatment effect in randomised clinical
trials, e.g. The Heart Protection Study reported an a change of -1.26 mmol/L (SD=0.06) in LDL
cholesterol for participants randomised to statins versus placebo (Group et al., 2007; 2002). We use
the sample average on the testing set to estimate the ATT as

∑
i∈Dte

1
τ̂it/|Dte1 |, where Dte1 are the

individuals in the testing set who received the treatment. SyncTwin estimates the ATT to be -1.25
mmol/L (SD 0.01), which is very close to the results from the clinical trial. In comparison, CRN and
RMSN estimate the ATT to be -0.72 mmol/L (SD 0.01) and -0.83 mmol/L (SD 0.01) respectively.
Other benchmark methods either cannot handle irregularly-measured covariates or do not scale to the
size of the dataset. Our result suggests SyncTwin is able to overcome the confounding bias in the
complex real-world datasets.

Transparent ITE estimation. For each individual, we can visualize the outcomes before and after
the treatment and compare them with the synthetic twin in order to sense-check the estimate. The
individual shown in Figure 5 (top) has a sensible ITE estimate because the synthetic twin matches its
pre-treatment outcomes closely over time. In addition to visualization, we can calculate the distance
dy (Equation 4) to quantify the difference between the pre-treament outcomes. From Figure 5 (bottom
left) we can see in most cases the distance is small with a median of 0.24 mmol/L (compared to the
population average distance 0.76 mmol/L). This means if the expert can only tolerate an error of 0.24
mmol/L on ITE estimation, half of the estimates (those with dy ≤ 0.24 mmol/L) can be accepted
(Section 4). The estimates are also explainable due to the sparsity of SyncTwin. As shown in Figure
5 (bottom right) on average only 15 (out of 24,557) individuals contribute to the synthetic twin.

6 CONCLUSION

In this work, we present SyncTwin, an transparent ITE estimation method that deals with temporal
confounding and has a broad range of applications in clinical observational studies and beyond.
Combining the Synthetic Control method and deep representation learning, SyncTwin achieves
transparency and strong performance in both simulated and real data experiments.
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A APPENDIX

A.1 THEORETICAL RESULTS

A.1.1 SITUATION WITH NO UNOBSERVED CONFOUNDERS

Proposition 1 Bias bound on ITE with no unobserved confounders. Suppose that vi = 0, ∀i ∈ [N ]
and dci = 0 for some i ∈ I1 (vi and dci are defined in Equation 1 and 4 respectively), the absolute
value of the expected difference in the true and estimated ITE of i is bounded by:

|E[τ̂i]− E[τi]| ≤ |T +|‖
∑
j∈I0

bijcj − ci‖ ≤ |T +|
( ∑
j∈I0

‖cj − c̃j‖+ ‖ci − c̃i‖
)
. (11)

Proof. We start the proof by observing

|E[τ̂i]− E[τi]| =
∑
t∈T +

|E[ŷit(0)]− E[yit(0)]|

=
∑
t∈T +

|q>t (
∑
j∈I0

bijcj − ci)|

≤
∑
t∈T +

||qt|| · ||
∑
j∈I0

bijcj − ci||

= |T +|||
∑
j∈I0

bijcj − ci||

(12)

where the first equation follows from the definition of ITE in Section 4. The second equation follows
from Equation 1 and 2 together with the fact that vi = 0, ∀i ∈ [N ]. The third line follows from
Cauchy–Schwarz inequality. The fourth line uses the fact that ||qt|| = 1. By definition, dci = 0
implies

∑
bij c̃j = c̃i. Continuing the proof,

||
∑
j∈I0

bijcj − ci|| = ||
∑
j∈I0

bij(cj − c̃j)− (ci − c̃i)||

≤
∑
j∈I0

bij ||cj − c̃j ||+ ||ci − c̃i||

≤
∑
j∈I0

||cj − c̃j ||+ ||ci − c̃i||,

(13)

where the second line follows from the triangular inequality and the third line relies on
∑
j∈I0 bij = 1

and bij ≥ 0, ∀j ∈ I0. Combining inequality 12 and 13, we prove the inequalities in Equation 11.

Justification for the matching loss and dci . Proposition 1 presents a justification for minimizing
dci (or the matching loss Lm). Essentially, when the synthetic representations are matched with the
target (dci = 0), the bias in ITE estimate is controlled by how close the learned representations c̃
is to the true latent variable c up to an arbitrary linear transformation Λ. An important implication
is that the learned representation c̃ does not need to be equal to c, instead the learning algorithm
only needs to identify c up to a linear transformation. Of course, Proposition 1 also implies that
|E[τ̂i]− E[τi]| ≤

∑
j∈I0 ||cj − c̃j ||+ ||ci − c̃i|| when Λ is taken to be the identity matrix instead of

the minimizer.

Proposition 2 Trustworthiness of SyncTwin under no hidden confounders. Suppose that all the
outcomes are generated by the model in Equation 1 with the unobserved confounders equal to zero
s.t. vi = 0, ∀i ∈ [N ], and that we reject the estimate τ̂i if the pre-treatment error dyi on T − is larger
than δ|T −|/|T +|, the post-treatment ITE estimation error on T + is below δ.

Proof. As a reminder, Q− = [qt]t∈T − and Q = [qt]t∈T + denote the matrix that stacks all the weight
vectors q’s before and after treatment as rows respectively where each qt satisfies that ‖qt‖ = 1 in
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Equation 1. The error dyi in Equation 4 can be decomposed into a representation error and a white
noise error,

dyi = ‖ŷ−i − y−i ‖1
= ‖

∑
j∈I0

bijy
−
j − y−i ‖1

= ‖
∑
j∈I0

bij(Q
−cj + ξj)− (Q−ci + ξi)‖1

= ‖Q−
( ∑
j∈I0

bijcj − ci
)
‖1 + ‖

∑
j∈I0

bijξj − ξi
)
‖1

≤
∑
t∈T −

‖qt‖‖
∑
j∈I0

bijcj − ci‖+ ‖
∑
j∈I0

bijξj − ξi‖1

≤ |T −|‖
∑
j∈I0

bijcj − ci‖+ ‖
∑
j∈I0

bijξj − ξi‖

(14)

We can not estimate the error from the representation and white noise on the last line of Equation 14.
Conservatively, we can say the representation error itself is larger or equal to dyi such that

|T −|‖
∑
j∈I0

bijcj − ci‖ ≥ dyi ,

i.e.,
‖
∑
j∈I0

bijcj − ci‖ ≥ dyi /|T
−|. (15)

The post-treatment error is upper bounded as follows,

|E[τ̂i]− E[τi]| = |E[ŷit(0)]− E[yit(0)]|

=
∑
t∈T +

|q>t (
∑
j∈I0

bijcj − ci)|

≤ |T +|‖
∑
j∈I0

bijcj − ci‖

:= sup
τ̂i

|E[τ̂i]− E[τi]|.

Using Equation (15), we have

sup
τ̂i

|E[τ̂i]− E[τi]| ≥ dyi |T
+|/|T −|.

Conservatively, we reject the estimate τ̂i if supτ̂i |E[τ̂i]− E[τi]| is larger than δ. That is when

dyi > δ|T −|/|T +|.

Why does dyi indicate the trustworthiness of the estimation? Proposition 2 shows that we can
control the estimation error to be below a certain threshold δ by rejecting the estimate if its error dyi
during the pre-treatment period is larger than δ|T −|/|T +|. Alternatively, we can rank the estimation
trustworthiness for the individuals based on dyi alone. This is helpful when the user is willing to
accept a percentage of estimations which are deemed most trustworthy. We note that this proposition
only holds under the assumption that the outcomes over time are generated by the model stated in
Equation 1. The outcomes generated by such a model can be nonlinear and complicated due to the
representation. However, the model assumes that the outcomes over time are linear functions of
the same representation. This is the reason why the pre-treatment error can be used to assess the
post-treatment error. We parameterize our neural network model according to Equation 1. If it is a
not good fit to the data, the model should have a large estimation error before treatment. The users
should also use their domain knowledge to check if the model holds for their data, i.e., if there is any
factor starting to affect the outcomes in halfway and causes the representation to change over time.
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Proposition 3 Error bound on the learned representations. Suppose that vi = 0, ∀i ∈ [N ] (vi is
defined in Equation 1), the total error on the learned representations for the control, i.e., the first term
in the upper bound of the absolute value of the expected difference in the true and estimated ITE
(R.H.S of Equation 11), is bounded as follows:∑

j∈I0

‖cj − c̃j‖ ≤ βLs +
∑
j∈I0

‖ξj‖, (16)

where Ls is the supervised loss in Equation 6 and ξj is the white noise in Equation 1.

Proof. We start the proof from the definition of the supervised loss.

Ls =
∑
j∈I0

‖Q̃c̃j − yj(0)‖

=
∑
j∈I0

‖Q̃c̃j − (Qcj + ξj)‖

≥
∑
j∈I0

(∑
t∈T −

[
c̃>j ,−c>j

] [q̃t
qt

] [
q̃>t ,q

>
t

] [ c̃j
−cj

]) 1
2

−
∑
j∈I0

||ξj‖2

≥ β̃
√
|T −|

∑
j∈I0

‖c̃j − cj‖ −
∑
j∈I0

‖ξj‖

(17)

where β̃ denotes the square root of the element of the matrices
[
q̃t
qt

] [
q̃>t ,q

>
t

]
, ∀t ∈ T−, with the

smallest absolute value. The first and second equations follow from Equation 6 and 1. Let β denotes
the constant 1/(β

√
|T −|). Arranging the terms in inequality 17 and we prove Proposition 3.

Justification for the supervised loss. Proposition 3 provide a justification for the supervised loss Ls.
By optimizing the supervised loss, SyncTwin learns the representation c̃i that is close to the latent
variable ci, which also reduces the bias bound on ITE in Proposition 1.

Rationale for the reconstruction loss. Although the bias bounds we developed so far do not include
the reconstruction loss Lc, we believe it is useful in real applications. Our reasoning follows from
the fact that unsupervised or semi-supervised loss often improve the performance of deep neural
networks (Erhan et al., 2009; 2010; Hendrycks et al., 2019). In addition, the reconstruction loss
ensures the representation c̃ retains the information from the temporal covariates as required in the
DAG (Figure 2). In our simulations (Section 5.1), we found that ablating the reconstruction loss leads
to consistently worse performance (though the magnitude is somewhat marginal).

Can we estimate the ITE as τ̂i = yi(1) − Q̃ · c̃i? No, this is because Ls is based on the factual
outcome yi(0) of the control group i ∈ I0 only. For treated individuals i ∈ I1, the predictor Q̃ · c̃i
can be biased for their counterfactual outcomes yi(0). Hence, Ls is only used to learn a good
representation c̃i for downstream procedures, and not to directly predict counterfactual outcomes.

A.1.2 SITUATION WITH UNOBSERVED CONFOUNDERS

In general, the unobserved confounders make it hard to provide good estimates for the ITE. The
matching in pre-enrollment outcomes dyi (Equation 4) validates if the unobserved confounders vi
create significant error in the pre-treatment period. Using the same derivation of Theorem 1, we can
see that:

dyi = ||Q−(
∑
j∈I0

bijcj − ci) + U−(
∑
j∈I0

bijvj − vi) + ξ||, (18)

where Q− and U− are unknown but fixed matrices relating to the data generating process and ξ is a
term only depending on the white noise.

As shown in Proposition 1, the matching in representations encourages the first term involving ci
to be small. Hence, a large value in dyi implies that the remaining term involving the unmeasured
confounders vi is big, which leads to a large estimation error. It is worth pointing out that a small
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value of dyi does not guarantee there is no unobserved confounders — a hypothesis we cannot test
empirically. For instance, consider the weights U− = 0. It follows that the second term in Equation
18 will always be zero even if vi 6= 0 — there exists unobserved confounders but they do not
impact the outcomes before treatment (Equation 1). In summary, dyi does not prove or disprove the
existence of unobserved confounders; it only indicates their impact on the pre-treatment outcomes.
Our assumption is a small relaxation of the standard no unmeasured confounders assumption by
allowing a linear effect from some unmeasured confounders. More conservatively, we can assume
there is no unmeasured confounders by setting all the vi to 0, ∀i ∈ [N ] in Equation 1.

A.2 COMPARISON OF THE TEMPORAL COVARIATES ALLOWED IN THE RELATED WORKS

As introduced in Section 2, SyncTwin is able to handle temporal covariates sampled at different
frequencies, i.e. the set of observation times Ti and a mask mit can be different for different
individuals. In comparison, Synthetic Control (Abadie et al., 2010), robust Synthetic Control
(Amjad et al., 2018), and MC-NNM (Athey et al., 2018) are only able to handle regularly-sampled
covariates, i.e. Ti = {−1,−2, . . . ,−L} ∀i ∈ [N ], and mit = 1 ∀i ∈ [N ], t ∈ Ti. In other words,
the temporal covariates [xis]s∈[Si] = Xi ∈ RD×Si has a matrix form.

The deep learning methods including CRN (Bica et al., 2020) and RMSN (Lim et al., 2018) have the
potential to handle irregularly-measured variable-length covariates when a suitable architecture is
used. However, the architectures proposed in the original papers only apply to regularly-sampled
case and no simulation or real data experiments were conducted for the more general irregular cases.

A.3 COMPARISON OF THE CAUSAL ASSUMPTIONS IN THE RELATED WORKS

Table 3: Comparison of the causal assumptions in the related works. The definitions of Consistency, Sequential
overlap, and No unobserved confounder are given in A.3 in bold. The data generating model (D.G.M) in
Equation 1 contains the one in Equation 9 as a special case.

Approach Ref Consistency D.G.M Sequential Overlap No unobserved conf.

SC Abadie (2019) Yes Equation 19 - -
RSC Amjad et al. (2018) Yes Equation 19 - -
MC-NNM Athey et al. (2018) Yes Equation 19 - -
CRN Bica et al. (2020) Yes - Yes Yes
RMSN Lim et al. (2018) Yes - Yes Yes
SyncTwin This work Yes Equation 1 - -

A.3.1 SYNTHETIC CONTROL

As shown in Table 3, Synthetic control (Abadie et al., 2010; Abadie, 2019) and its variants (Athey
et al., 2018; Amjad et al., 2018) rely on two causal assumptions: (1) consistency: yit(ait) = yit and
(2) data generating assumption (linear factor model):

yit(0) = q>t xi + u>t vi + ξit ∀i ∈ [N ], t ∈ T − ∪ T +. (19)

where xi = vec(Xi) ∈ RD×L, vec is the vectorization operation; ut ∈ RU and qt ∈ RD×L are
time-varying variables and vi ∈ RU is a latent variable. ξit is an error term that has mean zero and
satisfies ξit ⊥⊥ ars, xr, us, vr for ∀ k, r, s, t.
It is worth highlighting that the data generating assumption of Synthetic Control is a special case
of the more general assumption of SyncTwin in Equation 1. To see this, let ci = xi = vec(Xi) in
Equation 1, i.e. we use the flattened temporal covariates directly as the representation. Further let
φθ(ci, tis) = ci[Ds : D(s+ 1)] and εis = 0, where c[a : b] takes a slice of vector c between index
a and b. The result is exactly Equation 19.

Why does Synthetic Control tend to over-match? Both SyncTwin and Synthetic Control estimate
the treatment effects using a weighted combination of control outcomes (Equation 3). However,
Synthetic Control finds weight bij in a different way by directly minimizing

Lx = ||xi −
∑
j

bijxj ||.

17



Under review as a conference paper at ICLR 2021

Since xi contains the observation noise and other random components that do not relate to the
outcomes, the weights bij that minimize Lx tend to over-match, i.e. they capture the irrelevant
randomness in xi. In contrast, SyncTwin finds bij based on the learned representations c̃i rather
than xi (Lm, Equation 6). Since c̃i has much lower dimensionality than xi, the reconstruction
loss Lr encourages the Seq2Seq network to learn a c̃i that only retains the signal in xi but not the
noise. Meanwhile, the supervised loss encourages c̃i to only retain the information that predicts the
outcomes. As a consequence, we expect the weights based on c̃i to be less prone to over-match.
Moreover, since the relationship between c̃i and xi is nonlinear (as captured by the decoder network),
the weights bij that minimize Lm will generally not minimize the Synthetic Control objective Lx,
therefore avoiding over-match.

A.3.2 COUNTERFACTUAL RECURRENT NEURAL NETWORKS

As shown in Table 3, CRN (Bica et al., 2020) and RMSN (Lim et al., 2018) makes the following
three causal assumptions. (1) Consistency: yit(ait) = yit. (2) Sequential overlap (aka. positivity):
Pr(ait = 1|ai,t−1, xit) > 0 whenever Pr(ai,t−1, xit) 6= 0. (3) No unobserved confounders:
yit(0), yit(1) ⊥⊥ ait | xit, ai,t−1. In summary, CRN makes the same consistency assumption as
SyncTwin. However, SyncTwin does not assume sequential overlap or no unobserved confounders
while CRN does not make assumptions on the data generating model.

The sequential overlap assumption means that the individuals should have non-zero probability to
change treatment status at any time t ≥ 0 given the history. This assumption is violated in the
clinical observational study setting we outlined in Section 1, where the treatment group will continue
to be treated and cannot switch to the control group after they are enrolled (and similarly for the
control group). While the sequential overlap assumption allows these methods to handle more
general situations where treatment switching do occur, their performance is negatively impacted in
the “special” (yet still widely applicable) setting we consider in this work.

While CRN makes strict no-unobserved-confounder assumption, SyncTwin allows certain types of
unobserved confounders to occur. In particular, the latent factor vi in Equation 1 can be unobserved
confounders. Being less reliant on no-unobserved-confounder assumption is important for medical
applications because it is hard to assume the dataset captures all aspects of the patient health status.
SyncTwin ’s ability to handle unobserved confounders vi relies on the validity of its data generating
assumption, which we discuss next.

Why does SyncTwin not explicitly require overlap? The overlap assumption is commonly made in
treatment effect estimation methods. We first give a very brief review of why two importance classes
of methods need overlap. (1) For methods that rely on propensity scores, overlap makes sure that the
propensity scores are not zero, which enables various forms of propensity weighting. (2) For methods
that rely on covariate adjustment, overlap ensures that the conditional expectation E[yi|Xi, ai] is
well-defined, i.e. the conditioning variables (Xi, ai) have non-zero probability. In comparison,
SyncTwin relies on neither the propensity scores nor the explicit adjustment of covariates, and hence
it does not make overlap assumption explicitly. However, as discussed in Proposition 1, SyncTwin
requires the synthetic twin to match the representations dci ≈ 0, which implies c̃i ≈

∑
j∈I0 bij c̃i for

some bij — the target individual should be in or close to the convex hull formed by the controls in the
representation space. This condition has a similar spirit to overlap (but very different mathematically).
When overlap is satisfied there tend to be control individuals in the neighbourhood of the treated
individual, making it easier to construct matching twins. Conversely, if overlap is violated, the
controls will tend to far away from the treated individual, making it harder to construct a good twin.

A.4 THE GENERALITY OF THE ASSUMED DATA GENERATING MODEL

SyncTwin assumes that the outcomes are generated by a latent factor model (Teräsvirta et al., 2010)
with the latent factors ci learnable from covariates Xi and the latent factors vi that are unobserved
confounders. We assume the dimensionality of ci and vi to be low compared with the number of time
steps. Despite its seemingly simple form, the assumed latent factor model is very flexible because the
factors are in fact latent variables.

The latent factor model is widely studied in Econometrics. In many real applications, the temporally
observed variables naturally have a low-rank structure, thus can be described as a latent factor model
(Abadie & Gardeazabal, 2003; Abadie et al., 2010). The latent factor model also captures many
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of well-studied scenarios as special cases (Finkel, 1995) such as the conventional additive unit and
time fixed effects (yit(0) = qt + ci). Last but not least, It has also been shown that the low-rank
latent factor models can well approximate many nonlinear latent variable models (Udell & Townsend,
2017).

Latent factor models in the static setting are very familiar in the deep learning literature. Consider a
deep feed-forward neural network that uses a linear output layer to predict some real-valued outcomes
y ∈ RD in the static setting (notations used in this example are not related to the ones used in the
rest of the paper). Denote the last layer of the neural network as h−1 ∈ RK ; it is easy to see that
the neural network corresponds to a latent factor model i.e. y = Ah−1 + b, where h−1 is the latent
factor. Note that this holds true for arbitrarily complicated feed-forward networks as long as the
output layer is linear.

A.5 ESTIMATING ITE FOR CONTROL AND NEW INDIVIDUALS

We have been focusing on estimating ITE for a treated individual i ∈ I1. The same approach can
estimate the ITE for a control individual without loss of generality. After obtaining the representation
c̃i for i ∈ I0, SyncTwin can use the treatment group j ∈ I1 to construct the synthetic twin by
optimizing the matching loss Equation 8. The checking and estimation procedure remains the same.

SyncTwin can also estimate the effect of a new individual i /∈ [N ]. The same idea still applies, but
this time we need to construct two synthetic twins: one from the control group and one from the
treatment group. The ITE estimation can be obtain using the difference between the two twins.

SyncTwin also easily generalizes to the situation where there are A > 1 treatment groups each
receiving a different treatment. In this case, the treatment indicator ai ∈ [0, 1, . . . , A]. For a target
individual in any of the treatment groups, SyncTwin can construct its twin using the control group I0.
The remaining steps are the same as the single treatment group case.

A.6 UNRELATED WORKS WITH SIMILAR TERMINOLOGY

Several recent works in the deep learning ITE literature employ similar terminologies such as
“matching” (Johansson et al., 2018; Kallus, 2018). However, they are fundamentally different from
SyncTwin because they only work for static covariates and they try to match the overall distribution
of the treated and control group rather than constructing a synthetic twin that matches one particular
treated individual.

The Virtual Twin method (Foster et al., 2011) is designed for randomized clinical trials where there is
no confounding (temporal or static). As a result, it cannot overcome the confounding bias when the
problem is to estimate causal treatment effect from observational data.

A.7 IMPLEMENTATION DETAILS OF THE BENCHMARK ALGORITHMS

Synthetic control. We used the implementation of Synthetic Control in the R package Synth
(1.1-5). The package is available at https://CRAN.R-project.org/package=Synth.

Robust Synthetic Control. We used the implementation accompanied with the original paper (Amjad
et al., 2018) at https://github.com/SucreRouge/synth_control. We optimized the
hyperparameters on the validation set using the method described in Section 3.4.3 Amjad et al. (2018).
The best hyperparameter setting was then applied to the test set.

MC-NNM. We used the implementation in the R package SoftImpute (1.4) available at https:
//CRAN.R-project.org/package=softImpute. The regularization strength λ is tuned
on validation set using grid search before applied to the testing data.

Counterfactual Recurrent Network and Recurrent Marginal Structural Network. We used the
implementations by the authors Bica et al. (2020); Lim et al. (2018) at https://bitbucket.
org/mvdschaar/mlforhealthlabpub/src/master/. The networks were trained on the
training dataset. We experimented different hyper-parameter settings on the validation dataset, and
applied the best setting to the testing data. We also found that the results are not sensitive to the
hyperparameters.
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Counterfactual Gaussian Process. We used the implementation with GPy (GPy, since 2012), which
is able to automatically optimize the hyperparameters such as the kernel width using the validation
data.

One-nearest neighbour. We used our own implementation. Since no parameters need to be learned
or tuned, the algorithm was directly applied on the testing dataset.

Search range of hyper-parameters

1. Synthetic control: hyperparameters are optimized by Synth directly.

2. Robust Synthetic control: num sc ∈ {1, 2, 3, 4, 5}
3. MC-NNM: C ∈ {3, 4, 5, 8, 10}
4. Counterfactual Recurrent Network: max alpha ∈ {0.1, 0.5, 0.8, 1}, hidden dimension H ∈
{32, 64, 128}

5. Recurrent Marginal Structural Network: hidden dimension H ∈ {32, 64, 128}
6. Counterfactual Gaussian Process: hyperparameters are optimized by GPy directly.

A.8 DETAILED TRAINING, VALIDATION AND INFERENCE PROCEDURE

As is standard in machine learning, we perform model training, validation and inference (testing) on
three disjoint datasets, Dtr, Dva and Dte. We use Dtr0 and Dtr1 to denote the control and the treated
in the training data and use similar notations for validation and testing data.

Training. On the training dataset Dtr0 , we learn the representation networks by optimizing Ltr =
λrLr + λpLs, where Lr and Ls are the loss functions defined in Equation 6. The hyperparameter
λr and λp controls the relative importance between the two losses. We provide an ablation study in
Section 5.1 and perform detailed analysis on hyperparameter importance in Appendix A.13. The
objective Ltr can be optimized using stochastic gradient descent. In particular, we used the ADAM
algorithm with learning rate 0.001 (Kingma & Ba, 2014).

Validation. Since we never observe the true ITE, we cannot evaluate the error of ITE estimation,
||τi − τ̂i||22. As a standard practice (Bica et al., 2020), we rely on the factual loss on observed
outcomes: Lva =

∑
j∈Dva

0
||yi(0)− ŷi(0)||22, where ŷi(0) is defined as in Equation 2 and obtained

as follows. We obtain the c̃i for all i ∈ Dva and then optimize the matching loss Lm(Dva0 ,Dva1 ) to
find weights bvai . It is important to keep the encoder fixed throughout the optimization; otherwise it
might overfit to Dva. Finally, ŷi(0) =

∑
j∈Dva

0
bvaij yj(0).

Inference. The first steps of the inference procedure are the same as validation. We start by obtaining
the representation c̃i for all i ∈ Dte and then obtain weights btei by optimizing the matching loss
Lm(Dte0 ,Dte1 ) while keeping the encoder fixed. Using weights btei , the ITE for any i ∈ Dte1 can be
estimated as τ̂i = yi(1)−

∑
j∈Dte

0
bteijyj(0) according to Equation 3. Similarly, we obtain ĉi, ŷit(0)

according to in Equation 2. The expert can check dyi to evaluate the trustworthiness of τ̂i.

Table 4: Parameters for each component of the architecture and the loss function for training each parameter.

Component Parameters Loss function Reference

Attentive Encoder GRU-D parameters, b Ls, Lr Section 4.1
Decoder LSTM parameters, k0, w0, k1, W1 Lr Section 4.1
Linear outcome prediction Q̃ Ls Section 4.1
Weights B Lm Section 4.2

A.9 OPTIMIZING THE MATCHING LOSS

Here we present a way to optimize the matching lossLm in Equation 8. To ensure the three constraints
discussed in Section 4.2 while also allowing gradient-based learning algorithm, we reparameterize
bi = Gumbel-Softmax(fm(zi), τ), where zi ∈ RN0 , fm(·) is a masking function that sets the
element zii = −Inf to satisfy constraint (3). Gumbel-Softmax(·, τ) is the Gumbel softmax function
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Algorithm 1: SyncTwin training procedure.
Input: Training data set: Dtr0 , Dtr1
Input: Hyperparameters: λr, λp
Input: Encoder, Decoder, Q̃
Input: Training iteration max itr, batch size batch size, Optimizer
Output: Trained Encoder, Decoder and Q̃
Randomly initialize Encoder and Decoder; set Q̃ = 0
for itr ∈ (0,max itr] do

Randomly draw a mini-batch of control units D0 ⊂ Dtr0 with batch size samples.
Randomly draw a mini-batch of treated units D1 ⊂ Dtr1 with batch size samples.
Evaluate training loss Ltr(D0,D1) = λrLr(D0,D1) + λpLs(D0) (defined in Equation 6)
Calculate the gradient of Ltr(D0,D1) via back propagation.
Update all encoder, decoder parameters and Q̃ using the Optimizer

Algorithm 2: SyncTwin inference procedure.
Input: Testing data set: Dte0 , Dte1
Input: Trained Encoder
Input: Training iteration max itr, batch size batch size, Optimizer
Output: Estimated ITE τ̂i, ∀i ∈ Dte1
Initialize a size |Dte1 | by |Dte0 | matrix B = 0 as the weight matrix.
Use Encoder to get representation c̃i, ∀i ∈ Dte0 ∪ Dte1
for itr ∈ (0,max itr] do

Randomly draw a mini-batch of treated units D1 ⊂ Dtr1 with batch size samples.
Evaluate matching loss Lm(Dte0 ,D1) (defined in Equation 8)
Calculate the gradient of Lm(Dte0 ,D1) via back propagation.
Update B using the Optimizer while keeping the Encoder fixed.

Use weight matrix B to obtain τ̂i, ∀i ∈ Dte1 using Equation 3.
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with temperature hyper-parameter τ (Jang et al., 2016). It is straightforward to verify that bk satisfies
the three constraints while the loss Lm remains differentiable with respect to zk. We use the Gumbel
softmax function instead of the standard softmax function because Gumbel softmax tend to produce
sparse vector bk, which is highly desirable as we discussed in Section 4.

The memory footprint to directly optimize Lm is O
(
(|D0| + |D1|) × |D0|

)
, which can be further

reduced to O
(
|DB | × |D0|

)
if we use stochastic gradient decent with a mini-batch DB ⊆ D0 ∪ D1.

A.10 THE SIMULATION MODEL

In Equation 9, Rt is the LDL cholesterol level (outcome) and It is the dosage of statins. For each
individual in the treatment group, one dose of statins (10 mg) is administered daily after the treatment
starts, which gives dosage It = 0 if t ≤ t0 and It = 1 otherwise. K, H and D50 are constants fixed
to the values reported in Faltaos et al. (2006). Kin

t ∈ R is a individual-specific time varying variable
that summarizes a individual’s physiological status including serum creatinine, uric acid, serum
creatine phosphokinase (CPK), and glycaemia. Pt and Dt are two intermediate temporal variables
both affecting Rt.

A.11 ADDITIONAL SIMULATION RESULTS

Table 5: Mean absolute error on ITE with varying irregular m. S = 25 and p0 = 0.5 are used in all cases.
Estimated standard deviations are shown in the parentheses. The best performer is in bold. * did not finish
within 48h.

Method N0 = 200 N0 = 1000

m = 0.7 m = 0.5 m = 0.3 m = 0.7 m = 0.5 m = 0.3

SyncTwin-Full 0.129 (.008) 0.142 (.009) 0.190 (.012) 0.109 (.006) 0.116 (.006) 0.141 (.008)
SyncTwin-Lr 0.158 (.012) 0.176 (.014) 0.245 (.017) 0.125 (.007) 0.133 (.008) 0.175 (.011)
SyncTwin-Ls 0.129 (.009) 0.152 (.010) 0.234 (.016) 0.139 (.009) 0.134 (.009) 0.172 (.012)
SC 0.155 (.017) 0.201 (.015) 0.326 (.023) 0.145 (.015) 0.215 (.020) 0.359 (.026)
RSC 0.414 (.021) 0.520 (.028) 0.639 (.043) * 0.495 (.028) *
MC-NNM 0.363 (.020) 0.556 (.031) 0.898 (.050) 0.174 (.010) 0.332 (.021) 0.556 (.036)
CFRNet 0.317 (.030) 0.303 (.018) 0.481 (.030) 0.143 (.009) 0.187 (.012) 0.255 (.018)
CRN 0.300 (.020) 0.364 (.026) 0.424 (.028) 0.416 (.027) 0.456 (.029) 0.677 (.040)
RMSN 0.327 (.025) 0.338 (.025) 0.391 (.026) 0.381 (.031) 0.400 (.030) 0.471 (.031)
CGP 0.568 (.037) 0.553 (.037) 0.631 (.045) 0.605 (.039) 0.626 (.039) 0.689 (.044)
1NN 1.584 (.080) 1.725 (.098) 1.703 (.096) 1.455 (.083) 1.680 (.088) 1.531 (.089)

Table 6: Mean absolute error on ITE under different lengths of the temporal covariates S. m = 1 and p0 = 0.5
are used in all cases. Estimated standard deviations are shown in the parentheses. The best performer is in bold.
* did not finish within 48 hours.

Method N0 = 200 N0 = 1000

S = 15 S = 25 S = 45 S = 15 S = 25 S = 45

SyncTwin-Full 0.123 (.008) 0.119 (.008) 0.112 (.007) 0.097 (.005) 0.093 (.005) 0.085 (.004)
SyncTwin-Lr 0.136 (.010) 0.139 (.010) 0.139 (.010) 0.114 (.006) 0.101 (.006) 0.098 (.006)
SC 0.139 (.018) 0.149 (.018) 0.138 (.021) 0.190 (.029) 0.214 (.036) 0.215 (.044)
RSC 0.348 (.023) 0.321 (.018) 0.228 (.011) * 0.302 (.014) *
MC-NNM 0.454 (.023) 0.226 (.011) 0.159 (.008) 0.139 (.007) 0.124 (.006) 0.109 (.005)
CFRNet 0.126 (.006) 0.130 (.007) 0.143 (.008) 0.113 (.006) 0.106 (.007) 0.095 (.005)
CRN 0.283 (.019) 0.360 (.024) 0.422 (.022) 0.387 (.024) 0.357 (.021) 0.426 (.023)
RMSN 0.331 (.024) 0.332 (.026) 0.399 (.024) 0.363 (.029) 0.385 (.032) 0.447 (.029)
CGP 0.561 (.036) 0.561 (.035) 0.549 (.035) 0.578 (.037) 0.602 (.038) 0.611 (.038)
1NN 1.356 (.072) 1.614 (.078) 1.575 (.078) 1.322 (.072) 1.384 (.083) 1.744 (.098)

Table 5 shows the results under irregularly-measured covariates with varying degree of irregularity
m (smaller m, more irregular and fewer covariates are observed). For methods that are unable to
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deal with irregular covariates, we first impute the unobserved values using Probabilistic PCA before
applying the algorithms (Hegde et al., 2019). SyncTwin achieves the best performance in all cases.
Furthermore, SyncTwin’s performance deteriorates more slowly than the benchmarks when sampling
becomes more irregular (larger m). This suggests that the encoder network in SyncTwin is able to
learn good representations even from highly irregularly-measured sequences. Table 6 shows the
results under various lengths of the observed covariates S (smaller S, shorter sequences are observed).
Again SyncTwin achieves the best performance in all cases. As expected, SyncTwin makes smaller
error when the observed sequence is longer. Note that this is not the case of CRN and RMSN —
their performance deteriorates when the observed sequence is longer. This might indicate that these
two methods are less able to learn good balancing representations (or balancing weights) when the
sequence is longer.

A.12 SPARSITY COMPARED WITH SYNTHETIC CONTROL

In Figure 4 we have shown visualy that SyncTwin produces sparser solution than SC. To quantify the
differences, we report the Gini index (

∑
ij bij(1 − bij)/N1), entropy (

∑
ij −bij log(bij)/N1) and

the number of contributors used to construct the twin (
∑
ij 1{bij > 0}/N1) in the simulation study.

All three metrics reflect the sparsity of the learned weight vector (smaller more sparse). Table 7 shows
that SyncTwin achieve sparser results that SC in all metrics considered. The full and ablated versions
of SyncTwin have similar sparsity because the sparsity is regulated in the matching loss, which all
versions share. It is worth pointing out that RSC and MC-NNM do not produce sparse weights and
the weights do not need to be positive and sum to one (Amjad et al., 2018; Athey et al., 2018).

Table 7: Sparsity metrics of the learned bi. Estimated standard deviations are shown in the parentheses. Here
p0 = 0.5, m = 1, S = 25. The worst performer is italicized

Method N0 = 200 N0 = 1000

Gini Entropy N Control Gini Entropy N Matched

SyncTwin-Full 0.213 (.016) 0.409 (.030) 1.755 (.069) 0.242 (.017) 0.483 (.034) 1.830 (.073)
SyncTwin-Lr 0.214 (.017) 0.407 (.033) 1.780 (.075) 0.267 (.018) 0.548 (.037) 1.930 (.080)
SyncTwin-Ls 0.213 (.016) 0.409 (.030) 1.760 (.068) 0.249 (.018) 0.500 (.037) 1.930 (.083)
SC 0.792 (.009) 1.871 (.035) 6.125 (.135) 0.862 (.006) 2.274 (.029) 7.059 (.110)
RSC - - 1.903 (.084) - - 2.311 (.964)

A.13 SENSITIVITY OF HYPER-PARAMETERS

It is beneficial to understand the network’s sensitivity to each hyper-parameter so as to effectively
optimize them during validation. In addition to the standard hyper-parameters in deep learning (e.g.
learning rate, batch size, etc.), SyncTwin also includes the following specific hyper-parameters: (1) τ ,
the temperature of the Gumbel-softmax function Appendix A.9, (2) λp in the training loss Ltr (since
only the ratio between λp and λr matters, we keep λr = 1 and search different values of λp) , and (3)
H , the dimension of the representation c̃i.

Here we present a sensitivity analysis on the hyper-parameters H , λp and τ using the simulation
framework detailed in Section 5.1. Here we present the results for N0 = 2000 and S = 15 although
these results generalize to all the simulation settings we considered. The results are presented in
Figure 6, where we can derive two insights.

Firstly, the hyper-parameter τ is very important to the performance and need to be tuned carefully
during validation. This is understandable because τ is the temperature parameter of the Gumbel
softmax function and it directly controls the sparsity of matrix B. In comparison, hyper-parameter H
and λp do not impact the performance in significant way. Therefore we recommend to use H = 40
and λp = 1 as the default.

Secondly, we observe that the validation loss Lva closely tracks the error on ITE estimation (which
is not directly observable in reality). These results support the use of Lva to validate models and
perform hyper-parameter optimization.
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Figure 6: The sensitivity of hyper-parameters on the mean absolute error of ITE estimation and the validation
loss defined in Section 4.3. The left panel shows the results for various choices of H; the middle panel shows
λp; and the right panel shows τ . The y-axis is shown in log scale.

A.14 COMPUTATION TIME
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Figure 7: The wall-clock time of the simulation study under different settings. For each setting, 10 independent
simulation runs were conducted. The bar shows the average wall-clock time and the line range captures the 95%
confidence interval.

In figure 7 we present the wall-clock computation time (in seconds) of SyncTwin under various
simulation conditions — with the control group size N0 = (200, 1000, 2000) and the length of
pre-enrollment period S = (15, 25, 45). The simulations were performed on a server with a Intel(R)
Core(TM) i5-8600K CPU @ 3.60GHz and a Nvidia(R) GeForce(TM) RTX 2080 Ti GPU. All
simulations finished within 10 mins. As we expect, the computation time increases with respect to
N0 and S as more data need to be processed. However, a 10-fold increase in N0 only approximately
doubled the computation time, suggesting that SyncTwin scales well with sample size. In comparison,
S seems to affect the computation time more because the encoder and decoder need to be trained on
longer sequences.

A.15 ADDITIONAL RESULTS IN THE CPRD STUDY

We the treatment and the control group in the CPRD experiment are selected based on the selection
criterion in Figure 8. We have followed all the guidelines listed in Dickerman et al. (2019) to make
sure the selection process does not increase the confounding bias. The summary statistics of the
treatment and control groups are listed below. We can clearly see a selection bias as the treatment
group contains a much higher proportion of male and people with previous cardiovascular or renal
diseases.
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Table 8: The summary statistics of the treatment and control groups

Treatment Group Control Group

% male 59% 51%
Median age 61 60
Median Townsend Index 8 8
% CVD 16% 9%
% Renal disease 16% 12%
% Atrial Fibrillation 4% 4%

A.16 COHORT SELECTION CRITERION IN THE CPRD STUDY
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Number of available People in CPRD =
17,251,881

Number of people = 11,997,921

Reason for exclusion: Remove patients whose data is
marked as unacceptable, gender is not male or female,

outside England.  N = 5,253,960

Reason for exclusion: Removing prople who exited
before the start of the study or age 40, and who startd
after the study exit or age 85

Study entry date was the latest of:

The date of 6 months after the individual
registered at a general practice
The date that the individual turned 30 years of
age
The date that the data for the practice were up
to standard (UTS)

Study exist date was the eariliest of:

The date of deregistration at the practice
The individual's death
The date that the individual turned 95 years of
age
The last contect date for the proactice with
CPRD
The administrate end date (Nov 2017)

N = 9,368,221

Number of people = 2,619,700
Reason for exclusion: Remove patients with data
quality issue. 

people for whom likage data is not available; 
people who have a death recorded in Office of
National Statistics (ONS) before study entry; 
people with entry date = exit date

N=30,626

Number of people = 2,589,074

Number of people = 2,383,191

Reason for exclusion: Removing people with prevalent
cardiovascular disease (CVD) beofre study entry:

N=205,883

Number of people = 125,784

Reason for exclusion: Participants have no detected
exposures for SBP, total cholesterol, HDL, SBP, DBP,
BMI, Pulse, Creatinine, Triglycerides or smoking status
between study entry and exit.

N = 2,257,407

Treatment group 
52,113

Control group
73,671

Figure 8: Flowchart for selection of eligible individuals from CPRD for the observational study on the treatment
effect of statins. Numbers represent unique individuals in each group.
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