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Abstract
In this work, we propose novel families of posi-
tional encodings tailored to graph neural networks
obtained with quantum computers. These encod-
ings leverage the long-range correlations inherent
in quantum systems that arise from mapping the
topology of a graph onto interactions between
qubits in a quantum computer. Our inspiration
stems from the recent advancements in quantum
processing units, which offer computational ca-
pabilities beyond the reach of classical hardware.
We prove that some of these quantum features are
theoretically more expressive for certain graphs
than the commonly used relative random walk
probabilities. Empirically, we show that the per-
formance of state-of-the-art models can be im-
proved on standard benchmarks and large-scale
datasets by computing tractable versions of quan-
tum features. Our findings highlight the potential
of leveraging quantum computing capabilities to
enhance the performance of transformers in han-
dling graph data.

1. Introduction
Graph machine learning (GML) is an expanding field of re-
search with applications in chemistry (Gilmer et al., 2017),
biology (Zitnik et al., 2018), drug design (Konaklieva, 2014),
social networks (Scott, 2011), computer vision (Harchaoui
& Bach, 2007) and science (Sanchez-Gonzalez et al., 2020;
Xu et al., 2018). In the past few years, significant effort
has been put into the design of Graph Neural Networks
(GNNs) (Hamilton). The objective is to learn suitable rep-
resentations that enable efficient solutions to the original
problem.

Message Passing Neural Networks (MPNN) (Kipf &
Welling, 2016; Hamilton et al., 2018; Veličković et al., 2018;

1Pasqal, Massy, France 2Sorbonne University, Paris,
France. Correspondence to: Slimane Thabet <sli-
mane.thabet@pasqal.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Gilmer et al., 2017) is the first and most common approach
to build GNNs. This method exhibits several recognized
limitations (Zhu et al., 2020; Chen et al., 2020; Topping
et al., 2021), that the research community is actively explor-
ing in order to find solutions. The key idea is to expand
aggregation beyond neighbouring nodes by incorporating
information related to the entire graph or a more extensive
portion of it. Graph Transformers were created according
to these requirements, showing success on standard bench-
marks (Ying et al., 2021; Rampášek et al., 2022). Among
the myriad of proposed architectures, the Graph Inductive
Bias Transformer (GRIT) (Ma et al., 2023) stands out for its
impressive generalization capacity. Similarly to their coun-
terparts in natural language processing, graph transformers
compute positional encodings (PE) that are concatenated
to node features. The most commonly used PEs are the
eigenvectors of the laplacian matrix (Rampášek et al., 2022;
Kreuzer et al., 2021) and the random walk probabilities (Ma
et al., 2023; He et al., 2023; Dwivedi et al., 2022).

The goal of this work is to leverage new types of structural
features as positional encodings emerging from quantum
physics that can be obtained using quantum computers. The
rapid development of quantum computers during the pre-
vious years indeed provides the opportunity to compute
features that would be otherwise intractable. These features
contain complex topological characteristics of the graph,
and their inclusion has the potential to enhance the model’s
quality, reduce training or inference time, and decrease en-
ergy consumption. The idea of using quantum states con-
taining topological features about the graphs has already
been explored theoretically in (Verdon et al., 2019; Schuld
et al., 2020; Henry et al., 2021; Thabet et al., 2022), and
experimentally implemented in (Albrecht et al., 2023). Most
of these works rely on the idea to prepare a parameterized
quantum state by evolving a hamiltonian which encodes the
topology of the graph. Measurements on this quantum state
are used as graph features in a classical algorithm like Sup-
port Vector Machine. The majority of these works propose a
method where most of the computation is done on a quantum
processing unit. In contrast, (Thabet et al., 2022) proposes a
hybrid algorithm where the attention matrix in conventional
graph transformers is replaced by the the correlation ma-
trix of the quantum state. The advantage of this method is
to better leverage the capabilities of classical graph neural
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networks (Xu et al., 2018; Hamilton et al., 2017), and to
improve the expressivity of the model by jointly training
classical parameters and quantum parameters. However it
comes with significant difficulties in training quantum cir-
cuits (e.g., expensive computation of quantum gradients,
noise-induced barren plateaus, only to name a few (Cerezo
et al., 2022)). In this work, we propose a method similar
to (Thabet et al., 2022) that circumvents these issues. In
short, we propose to use the quantum features as positional
encodings for graph transformers. In contrary to (Thabet
et al., 2022), it separates the parts done on quantum and
classical processors which improves the scalablitiy to large
datasets.

The paper is organized as follows:

• In Sec. 2, we provide a concise overview of the existing
research on graph transformers, along with references
to the latest developments in quantum graph machine
learning, and position our contributions in this land-
scape.

• Sec. 3 describes the core methodology that we propose.
It details ways to construct a quantum state from a
graph and explains how positional encodings can be
extracted from that quantum state.

• In Sec. 4, we detail the properties of quantum positional
encodings and show that they are superior to most other
classical methods on SRGs.

• Sec. 5 presents the outcomes of our numerical
experiments and includes discussions of the re-
sults. The code to run all the experiments is avail-
able at https://github.com/pasqal-io/
quantum-encodings-gnn.

2. Related works and contributions
2.1. Graph Transformers

Several efforts have been made by the machine learning
community to go beyond MPNNs due to several issues in-
cluding the theoretical limitations of expressivity by the
Weisfeiler-Lehman (WL) (Morris et al., 2019) test, over-
smoothing (Chen et al., 2020), oversquashing (Topping
et al., 2021), and difficutlties on heterophilic data (Zhu et al.,
2020). Inspired by the success of transformers in natural
language processing (Vaswani et al., 2017; Alayrac et al.,
2022), new architectures of GNNs have been proposed to
allow an all-to-all aggregation between the nodes of the
graphs, the so-called graph transformers (GT) (Dwivedi &
Bresson, 2020; Dwivedi et al., 2021; Rampášek et al., 2022;
Kreuzer et al., 2021; Zhang et al., 2023; Ma et al., 2023).
However, due to the quadratic cost of computing the atten-
tion process, they are not applicable to large-scale graphs of

millions of nodes and more. It has been shown that GTs that
include graph inductive biases such as MP modules perform
better than those that do not (Rampášek et al., 2022; Ma
et al., 2023).

2.2. Positional and Structural Encoding

Positional or structural embeddings are features computed
from the graph that are concatenated to original node
or edge features to enrich GNN architectures (either
MPNN or GT). These two terms are used interchangeably
in the literature and we denote them as ”positional
encodings” (PEs) in the rest of this work. PEs can include
random walk probabilities (Rampášek et al., 2022; Ma
et al., 2023), spectral information (Dwivedi et al., 2020;
Rampášek et al., 2022; Kreuzer et al., 2021), shortest path
distances (Li et al., 2018), or heat kernels (Mialon et al.,
2021). They can also be learned (Dwivedi et al., 2021).
We detail below the most common PEs used in the literature.

Laplacian Eigenvectors. The spectral information of the
graph can be used as PE, more precisely the eigenvectors
of the Laplacian matrix with the smallest eigenvalues, or
laplacian eigenvectors (LE). For a line graph, the laplacian
eigenvectors almost correspond to positional embeddings
in the transformer architecture for sequences (Vaswani
et al., 2017). The main issue of this encoding is to ensure
that the model remains invariant by changing the sign of
eigenvectors, and a solution has been proposed by (Lim
et al., 2022).

Relative Random Walk Probabilities (RRWP). The au-
thors of (Ma et al., 2023) introduced the RRWP with which
they initialize their model. For a graph G, let A be the adja-
cency matrix and D the degree matrix. Let P be a 3 dimen-
sional tensor such that Pk,i,j = (Mk)ij with M = D−1A.
For each pair of node (i, j), we associate the vector P:,i,j ,
i.e., the concatenation of the probabilities for all k to get
from node i to node j in k steps in a random walk. P:,i,i is
the same as the Random Walk Structural Encodings (RWSE)
defined in (Rampášek et al., 2022). The authors of (Ma
et al., 2023) highlight the benefits of RRWP. They prove
that the Generalized Distance WL (GD-WL) test introduced
by (Zhang et al., 2023) with RRWP is strictly more powerful
than GD-WL test with the shortest path distance, and they
prove universal approximation results of multi-layer percep-
trons (MLP) initialized with RRWP. They also achieve state
of the art results on most of benchmark datasets.

2.3. Quantum Computing for Graph Machine Learning

In recent years, quantum machine learning has seen a fast
development with both theoretical and experimental ad-
vances (Huang et al., 2022; Cerezo et al., 2022). Using
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Figure 1. Summary of our method. (a) Our hybrid quantum-classical framework utilizes a classical computer for parameter optimization
(if required) and employs a hybrid model using a Quantum Processing Unit (QPU) and a CPU and/or GPU, denoted as classical Processing
Unit (cPU). In our quantum graph NN, we initialize QPU at a quantum state |ψ0⟩, apply a mixing Hamiltonian ĤM evolution for a
duration θ, and utilize a Hamiltonian ĤG evolution for the graph feature map with a duration t. K layers are used to obtain a sufficiently
expressive quantum model. Finally, the output is obtained by measuring correlators, e.g., ⟨ZiZj⟩. See Section 3.1 for details. (b) Static or
trainable PE is constructed for a graph G via (c) (quantum) random walk (static PE) or a quantum graph NN (static/trainable PE), which
computes quantum correlations. Note that our PEs are not restricted to classical models (such as the transformer studied in this work) but
are also applicable to all quantum models.

quantum computing for machine learning on graphs has al-
ready been proposed in several works, as reviewed in (Tang
et al., 2022). The authors of (Verdon et al., 2019) realized
learning tasks by using a parameterized quantum circuit
depending on a Hamiltonian whose interactions share the
topology of an input graph. Comparable ideas were used to
build graph kernels from the output of quantum procedures,
for photonic (Schuld et al., 2020) as well as neutral atom
quantum processors (Henry et al., 2021). The latter was
successfully implemented on quantum hardware (Albrecht
et al., 2023). The architectures proposed in these papers
are entirely quantum and only rely on classical computing
for the optimization of variational parameters. Furthermore,
these approaches can only be applied to graph-level tasks,
whereas many applications are node-level or edge-level.

(Thabet et al., 2022) proposed a new hybrid architecture
that uses the correlation matrix of quantum dynamics con-
taining the information about the graph in the aggregation
phase of a larger, entirely classical GNN architecture. Such
a hybrid model presents the advantage of gaining access to
hard-to-compute graph topological features through quan-
tum dynamics while benefiting from the power of well-
known existing classical architectures. Furthermore, the
method presents the advantage to be applicable to all types
of tasks, graph-level, node-level or edge-level. However,
this approach presents some drawbacks. First, the model
is difficult to train in simulation because the optimizer of

quantum parameters needs to be adjusted separately from
the optimizer of classical parameters. Secondly, it has been
shown that methods to compute the gradients on a quantum
computer are hardly scalable. (Abbas et al., 2023). More-
over, there were little theoretical indications about the power
of the architecture compared to classical methods. The ex-
periments have only been made on small datasets compared
to the biggest ones available (a few 1000s of graphs and
maximum 20 nodes)

2.4. Contributions

In light of the related works described above, we propose a
method similar to (Thabet et al., 2022) that combines corre-
lations from quantum dynamics and classical GNNs. Instead
of parameterizing the quantum dynamics and training it as
in (Thabet et al., 2022), we either use random parameter-
ized states or well-chosen quantum states (such as ground
states) and use the correlations as positional encoding for
graph transformers. This approach removes the difficulty of
training the quantum states, and can be included in most of
classical architectures, which facilitates benchmarking. It
keeps all the advantages of combining quantum and classi-
cal methods while being applicable to any graph machine
learning tasks. In this work, we also give detailed theoretical
properties of our positional encoding and show that they
are strictly more powerful on some instances of graphs than
random walks and spectral methods. Finally, we provide
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Figure 2. Visualization of RRWP (RW) and CQRW (QRW) steps
for the fluorescein molecule that highlights different substructures
(edge thickness). Note stronger long-range correlations (thicker
edges between distant nodes) in 4th step of QRW versus RW.

benchmarks on large-scale datasets (∼ 3 millions graphs).

3. Methods
In this section, we outline the process of mapping graphs
to a quantum state of a QPU as used in (Henry et al., 2021;
Thabet et al., 2022; Verdon et al., 2019). To extract graph
features, we introduce correlators and define the concept of
the ground state for a quantum graph representation. Finally,
we explore an alternative approach for extracting graph
features using quantum random walks (QRW) and their
advantages over classical analogues. Figure 1 shows the
summary of our hybrid approach in extracting positional
encodings from graphs. We discuss the various steps in
more detail below.

3.1. Quantum Graph Machine Learning

The graph as a quantum state. We explain in this sub-
section how to create a quantum state that contains relevant
information about the graph. More details about quantum
information processing can be found in (Nielsen & Chuang,
2002). We associate a graph G(V, E), to a quantum state
|ψG⟩ of |V| qubits containing information about G via a
hamiltonian ĤG of the form

ĤG =
∑

(i,j)∈E
Ĥij (1)

where Ĥij is an Pauli string acting non-trivially on i and j
only. We will be focusing on the Ising hamiltonian

ĤI =
∑

(i,j)∈E
ZiZj (2)

and the XY hamiltonian

ĤXY =
∑

(i,j)∈E
XiXj + YiYj . (3)

We will note |0⟩ and |1⟩ the two eigenstates (or eigenvec-
tors) of Z with respective eigenvalues 1 and -1, and we

will use
{
|b⟩ =⊗N

i=1 |bi⟩
}
b∈{0,1}N

as a basis of the 2N -

dimensional space of quantum states. We consider the quan-
tum state obtained by alternated action of p layers of ĤG
and a mixing hamiltonian ĤM (that doesn’t commute with
ĤG , for instance ĤM ∝

∑
i Yi)

|ψG(θ)⟩ =
p∏
k=1

(
e−iĤMθke−iĤGtk

)
e−iĤMθ0 |ψ0⟩ , (4)

where θ = (θ0, t0, θ1, t1, . . . θp) is a real vector of param-
eters. The choice of these states is motivated by their sim-
ilarity with the Trotterized dynamics of several quantum
systems(Suzuki, 1976). Other states, including ones gen-
erated with analog evolution of quantum systems (Henriet
et al., 2020) can also be considered.

Correlation. The correlations (or correlators) Cij of local
operators Ôi and Ôj acting respectively on qubits i and j
can be defined either as the expectation value of their prod-
uct ⟨ÔiÔj⟩, or their covariance ⟨ÔiÔj⟩ − ⟨Ôi⟩⟨Ôj⟩ (note
that the orders matters if Ôi and Ôj don’t commute). In the
rest of the paper, we will indifferently call correlation the
two former expressions, and give precisions when necessary.
We will be focusing on the case where Ôi is a Pauli string
of length 1 (i.e., Xi, Yi or Zi).

Ground state. The ground state (GS) of a system is defined
as the lowest-energy eigenstate of its hamiltonian (when it is
degenerate, one considers the ground state manifold HGS).
GSs are in the general case hard to compute classically
(Schollwöck et al., 2008). With that in mind, we call ground
state of the graph the state

|ψGS⟩ =
1√
|HGS |

∑
b∈HGS

|b⟩. (5)

More details can be found in the appendix A.3.

Classical and Quantum Walks. Quantum walks, as in-
troduced by (Aharonov et al., 1993), differ fundamentally
from classical random walks by evolving through unitary
processes, allowing for interference between different tra-
jectories. This difference, related to the evolution of (real-
valued classical) probabilities and (complex-valued quan-
tum) amplitudes, leads to significant differences between
dynamics of classical and quantum walks that can provide
novel graph features which can be used as positional encod-
ings (see Fig. 2). Quantum walks manifest in two primary
types: continuous-time quantum walks (CQRW) (Farhi &
Gutmann, 1998; Rossi et al., 2017) and discrete-time quan-
tum walks (DQRW) (Lovett et al., 2010). In CQRW, the
evolution of amplitudes ⟨i|ψG(t)⟩ is given by

i
d

dt
⟨i|ψG(t)⟩ =

∑
j

⟨i|ĤG |j⟩⟨j|ψG(t)⟩ (6)
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where |i⟩ is a computational basis state. The connection to
a classical CRW can be made essentially by replacing the
quantum amplitudes with classical probabilities, which we
detail in the first section of the appendix. For an overview,
refer to (Kempe, 2003). In Sec. 3.2.2, we define the par-
ticular cases of quantum walks studied in this work. More
details can be found in the appendix A.1.

3.2. Positional encodings with quantum features

In this section, we detail our proposals to incorporate quan-
tum features in GNN models and discuss the potential bene-
fits and drawbacks. We focus on two types of encoding: the
first uses the ground state of the graph as defined in section
3.1, the second uses the XY hamiltonian on the k-particles
subspace (detailed in 3.2.2). Both methods use a quantum
state that is difficult to prepare in the general case, so we
expect to obtain features that are not available with classical
approaches. For details of the corresponding algorithms,
see appendix A.2.

3.2.1. EIGENVECTORS OF THE CORRELATION ON THE
GROUND STATE.

We propose to use the correlation matrix Cij = ⟨ZiZj⟩ on
the ground state of the graph defined in Sec. 3.1. Since this
matrix is symmetric with nonnegative eigenvalues, it can
formally be used in the same place as the Laplacian matrix
in graph learning models. Hence, we use the eigenvectors
of this correlation matrix in the same way Laplacian
eigenvectors (LE) are used in other architectures of graph
transformers. Instead of taking the eigenvectors with the
lowest eigenvalues as for the Laplacian eigenmaps, we take
the ones with highest eigenvalues, since they are the ones in
which most of the information about the correlation matrix
is contained. We expect to face the same challenges due
to the sign ambiguity (Dwivedi et al., 2021; Kreuzer et al.,
2021), and to implement the same techniques to alleviate
them (Lim et al., 2022).

3.2.2. k-PARTICLES QUANTUM RANDOM WALKS
(k-QRW).

In this subsection, we introduce the k-particles (or walkers)
random walk positional encoding that can be obtained us-
ing ĤXY . We denote byHk the k-particles subspace (i.e.
the Hilbert space obtained as the span of states |b⟩ of Ham-
ming weight k, noted |i1 . . . ik⟩, parameterized by k integers
i1 . . . ik ∈ {0, 1}k). It is a well-known property that ĤXY
stabilizes each of the Hks and we denote by ĤXYk the XY
hamiltonian restricted to Hk (Henry et al., 2021).
ĤXYk can be seen as the adjacency matrix of a graph called
the k occupation graph. Therefore, a quantum evolution of
ĤXYk can be seen as a quantum walk on the k occupation

graph. We use the hamiltonian ĤXYk to prepare a quantum
state as in equation 4 that will represent a superposition over
all k-tuples of nodes, and we measure observables for each
pair of nodes which will give edge features. A complete
simulation of the XY hamiltonian evolution is impractical
for graphs of more than 20 nodes, therefore in this work we
restrict ourselves to the simulation of ĤXY1 and ĤXY2 . In
the following, we give details about the features that were
implemented in the experiments.

Continuous quantum random walk. For a 1-particle QRW,
we calculate the probability

[X(1)(t)]ij = | ⟨j| e−iĤ
XY
1 t |i⟩ |2 (7)

to find particle at node j coming from node i after time t.
Similarly for a 2-particle QRW, we calculate

[X(2)(t)]ij = | ⟨ij| e−iĤ
XY
2 t |ψi⟩ |2 (8)

where |i, j⟩ ∈ ĤXY2 is the state with walkers at nodes
i and j and |ψi⟩ ∈ ĤXY2 the initial state. As choices
for the initial distribution, we propose to use some lo-
calised state |ψinit⟩ ∝ |ij⟩, or the uniform distribution
over all pairs of nodes |ψinit⟩ ∝

∑
(i,j)∈V2|i ̸=j |ij⟩, or the

uniform distribution over the edges of the original graph
|ψinit⟩ ∝

∑
(i,j)∈E |ij⟩. From these we obtain the positional

encodings using

Pij = [I,X(nw)(t1), X
(nw)(t2)...X

(nw)(tK)]ij (9)

where nw = 1, 2 is the number of walkers.

Quantum-inspired random walks. We propose a discrete
version of the quantum features described above, where
we consider powers of the hamiltonian (ĤXY )p for inte-
gers p instead of continuous evolutions as explained in the
previous paragraph. The discrete powers are not imple-
mented natively on a quantum computer, hence the name
quantum-inspired. They are however directly comparable
to the RRWP scheme of (Ma et al., 2023), and they are
cheaper to compute than the continuous quantum random
walks. We consider a discrete 2-particle quantum-inspired
RW (2-QiRW) encoding that reads

Pij =
[
⟨ij| ((DXY

2 )−1ĤXY2 )k |ψinit⟩ |k ∈ [0,K]
]
ij

(10)

whereDXY
2 is the diagonal matrix sum of the rows of ĤXY2 .

4. Theory
We present below our main theoretical results. The proofs
for all the original statements made in this section can be
found in appendix B. We mean by X ⊏ Y that algorithm
X is weaker than algorithm Y or that Y can obtain a more
refined node partition thanX in the context of node coloring.
X ̸⊏ Y means that there exists graphs for which X is
stronger than Y and vice-versa in distinguishing ability.
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4.1. QWs and their relationship with the WL test

In this section, we present some elements that help us to
lay the groundwork for understanding the theoretical ex-
pressiveness of the approach developed in this paper. Since
the seminal work of (Morris et al., 2019), it has become
standard practice to bound this theoretical expressiveness
by the various variants of the WL test. We propose the same
here to better understand the advantages and limitations of
quantum computation in such context. First, we position our
current results on Hamiltonian evolution by the XY model
in the landscape of the WL test and its variants (proposi-
tions 4.1, proposition 4.3 & theorem 4.2). We then focus on
strongly regular graphs (SRGs) (propositions 4.6 and 4.7),
which, as we describe next, constitute a relevant data set for
the analysis of expressiveness.

Proposition 4.1. When the input state of the unitary is a
uniform superposition of delocalized states, the following
holds : 1-QW ⊏ 1-WL.

This result is mainly due to the fact that we start from a de-
localized state (uniform superposition), and we can actually
show that it is more efficient to start from a localized state:

Proposition 4.2. When the input state of the unitary is
a uniform superposition or localized states the following
holds:

1. 1-QW ⊏ 2-WL
2. 1-QW ̸⊏ 1-WL

Both results presented so far are limited to a single quantum
walker, but it’s possible – and arguably no more expensive
on quantum computers– to consider walks involving a larger
number of walkers. For that, we simply need to prepare the
initial state in a different configuration that allows such an
analogy (Henry et al., 2021). In such case, it is possible
to link it to the δ-k-LWL test, a variant of the WL test
presented in (Morris et al., 2020):

Proposition 4.3. When the input state of the unitary is a
superposition state, the following holds : k-QW ⊏ k-δ-LWL.

However, this result does not allow us to make a conclusive
comparison between k-QW and k-WL. In a related paper
(Morris et al., 2020), the authors also introduce an aug-
mented version of k-δ-LWL,denoted k-δ-LWL+, of which
the k-δ-LWL is a particular case. They then show that both
k-δ-WL and k-WL are less powerful than k-δ-LWL+. The
definition of a hierarchical rule to precisely position the k-
QW in comparison with the k-WL is not provided here and
is part of our future work. We do, however, have a series of
experimental results for a further comparison, in the context
of a particular type of graphs, the strongly regular graphs,
that we define next.

4.2. QWs on SRGs

Definition 4.4. A strongly regular graph (SRG), noted
srg(ν, k, λ, µ), is a graph with ν vertices of fixed degree k,
such that every pair of adjacent vertices have a fixed number
λ of common neighbors, and every pair of non-adjacent
vertices have a fixed number µ of common neighbors.

Each tuple (ν, k, λ, µ) defines a family of SRGs, and it
is possible to find multiple non isomorphic graphs within
the same family (Spence, 2024). We chose to work on
these particular graphs because their regularity makes them
especially difficult to distinguish within the same family. For
instance, (Zhang et al., 2023) provide a worst-case analysis
for the GD-WL test, a provably more powerful version of 1-
WL , in the case of distance-regular graphs. Their examples
include Rook’s and Shrikhande graphs, both of diameter
2. We know on the other hand that a SRG is a distance-
regular graph with a diameter 2 when µ ̸= 0 (Biggs, 1993).
In (Ma et al., 2023), proposition 3.2., the authors show
that GD-WL with RRWP distance is strictly more powerful
than GD-WL with shortest path distance. They test their
approach on 2 distance regular graphs. In the following, we
propose to analyze the distinguishability of SRGs through
the GD-WL test with RRWP distance, as well as a test
involving a particular case of Hamiltonian evolution by
the Ising model, constituting one of the rare configurations
where it is possible to extract generic formulas without any
costly simulation or quantum computing.

Proposition 4.5. (Bodnar et al., 2021) It requires a 3-WL
test or higher to distinguish two non-isomorphic strongly
regular graphs from the same family.

This result highlights the difficulty of the task, as a 3-WL
test requires overlapping information from all the triplets
in the graph, and is therefore costly in terms of memory
and time as the size of the graph analyzed increases. We
continue in the same line with the following result:

Proposition 4.6. GD-WL with RRWP distance cannot, even
with eigen-decomposition of the distance matrix, distinguish
non isomorphic SRGs from the same family.

This extends to the RRWP distance the results recovered
in (Zhang et al., 2023), in which they show the same for
shortest path distance and resistance distance.We provide in
the next section a set of experiments as empirical evidence
that show that in some cases, a GD-WL with correlations
on 2-QW distinguishes SRGs.

4.3. Empirical study : Ising and XY models for the
distinguishability of SRGs

So far we only focused on the XY hamiltonian, as it offers
a nice basis for theoretical analysis. This is not the case for
another widely used model in many-body physics : the Ising
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model cf. section 3.1. As described in (Henry et al., 2021),
the XY hamiltonian preserves the space of the states with
the same number of occupied states, which allows the anal-
ogy between classical and quantum walks. Such an invariant
is not available for the Ising model, and the counterpart for
augmenting the number of walkers for higher expressive-
ness in the case of the Ising model comes from raising the
value of p in equation 4, which can be seen as piling a larger
number of ”layers” in the hamiltonian evolution described
there (Verdon et al., 2019). In this framework, we limit
ourselves to the case of 1 and 2 bodies observables for many
practical reasons. First they allow us to recover one and two
dimensional tensors to describe graphs, which is convenient
for learning tasks. They also allow us to construct the covari-
ance matrix of such observables. This matrix can then be
seen as the Gram matrix of a quantum graph kernel, which
makes it suitable for comparison with the different variants
of the GD-WL test. Finally, it is possible to derive a formal
expression for one and two body observables resulting from
an evolution for p = 1 in the general case, but not for larger
values of p, which requires costly simulations or a quantum
computer.

Proposition 4.7. For any quantum state representing a
strongly regular graph following an evolution from a local,
uniform-field Ising Hamiltonian, the total occupation ob-
servable, as well as the linear (one body) and quadratic
(two bodies) local occupation observables do not allow to
distinguish two non isomorphic SRGs from the same family.

This result shows that the case in which it is possible
to derive formal expressions actually fails to distinguish
non isomorphic SRGs. Figure 3 shows the results of the
distinguishability in a set of 2 families, with 25 and 26
nodes. We compute both Ising and XY-hamiltonian evo-
lutions, for p = 2 in the former and for a 2-QW in the
latter. We use the following permutation invariant mea-
sure to compute the distance between a pair of graphs

d(Gi, Gj) =
1
2

ν2∑
k=1

||S(C(Gi)) − S(C(Gj)||k where C is

the correlation matrix, S(M) a function that receives a ma-
trix M ∈ RN×N as input and returns a vector m ∈ RN2

containing the sorted elements of M . Using this formula, a
non- zero value implies that the two graphs are not isomor-
phic, but the opposite is not necessarily true. We can see
from this figure that it is possible to distinguish these graphs.
We also ran experiments to verify that the distance between
any of these graphs and a set of 5 randomly selected isomor-
phic counterparts is zero as expected.This shows empirically
that for certain data sets, a two layers Ising evolution and a
2-QW are strictly more powerful than 2-WL. We also run
the GD-WL test with the edge features S(M) and we obtain
that all pairs of graphs are successfully distinguished. Fi-
nally, it’s important to point out that the classical k-WL test

(a) (b)

Figure 3. Normalized values of Ising correlations (upper triangu-
lar part) and XY model correlations (lower triangular part) for
(a) the family srg(26, 10, 3, 4) that includes 10 non-isomorphic
graphs, and (b) the family of srg(25, 12, 5, 6) that includes 15
non-isomorphic graphs.

requires comparisons between pairs of subsets of nodes of
size k, rendering its complexity to at least Nk, N being the
size of the graph. On the other hand, for quantum evolutions,
the complexity of the algorithm is characterized by the num-
ber of shots that need to be measured in order to reconstruct
the distribution of the desired observable. The number of
shots is O( 1

ϵ2 ) for a precision up to ϵ (Huang et al., 2020).
This number does not increase with the number of layers
in the Ising hamiltonian case, where we only have a linear
increase in the evolution time (which is short in practice), or
with the number of quantum walkers that only depends on
the initial input state preparation. This gives our approach
an attractive potential for quantum advantage, albeit limited
to datasets on which large values of k in the k-WL test are
relevant. This also assumes that the k-QW as well as the k-
layers Ising, are both strictly more powerful than the k-WL
for any values of k. This property has been demonstrated in
some cases for k = 1 and observed for k = 2 in the case of
SRGs, but not yet demonstrated in the general case and for
any value of k.

5. Experiments
5.1. Experiments on RW models

In this subsection, we test concatenating the QRW encod-
ings to the RRWP in the GRIT model (Ma et al., 2023). We
compute the (continuous) 1-CQRW for K random times
and the discrete 2-QiRW for K steps. Those encodings
are computed numerically since they are still tractable for
graphs below 200 nodes compared to the higher order k-
QiRW ones. We benchmark our method on 7 datasets from
(Dwivedi et al., 2020), following the experimental setup of
(Rampášek et al., 2022) and (Ma et al., 2023). Our method
is compared to many other architectures and the results di-
rectly taken from (Ma et al., 2023). We do not perform
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an extensive hyperparameter search for each architecture
and only run ourselves the GRIT model by taking the same
hyperparameters as the authors. The experiments are done
by building on the codebase of (Ma et al., 2023) which is
itself built on (Rampášek et al., 2022). More details about
the protocol can be found in C.1, and more details about
the datasets can be found in Appendix D. The results are
included in Table 1. Our methods performs better on ZINC,
MNIST and CIFAR10 than all others, and comes second for
PATTERN and CLUSTER. We also benchmark our meth-
ods on large-scale datasets, ZINC-full (a bigger version
of ZINC (Irwin et al., 2012)) and PCQM4MV2 (Hu et al.,
2021). For these datasets, we run a variety of models (GINE,
GatedGCN, and GRIT) with different position encodings
(LE, RRWP, 2-QiRW, and a mix of RRWP and 2-QiRW.
The results are reported figure 4 and the full numbers are
table 4 in the appendix. Quantum features perform better
for all models in the case of ZINC-full and for some models
of PCQM4Mv2. All hyperparameters for this sections are
reported in the appendix in tables 2 and 3.

GatedGCN GatedGCN-big GINE GINE-big GRIT
Models

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
AE

ZINC-full
LE
RRWP
Q
RRWP+Q

GatedGCN GatedGCN-big GINE GINE-big GRIT
Models

0.07

0.08

0.09

0.10

0.11

0.12

M
AE

PCQM4Mv2
LE
RRWP
Q
RRWP+Q

Figure 4. Test performance (mean absolute error) of different mod-
els with different positional encodings on large scale datasets. Q:
2-QiQRW features, RRWP+Q: RRWP and 2-QiQRW concate-
nated. Top : ZINC-full . Bottom: PCQM4Mv2. For ZINC-full, we
show the mean and s.d of 4 runs with different random seeds. For
PCQM4Mv2 we show the output of a single run.GRIT has 500k
parameters for ZINC-full and 11.8M for PCQM4MV2. Normal
models have about 200k parameters and big models about 700M.

5.2. Synthetic experiments

In this section, we provide one example of dataset with a
binary graph classification task for which the use of the
correlation matrix on the ground state as defined in 3.2.1 is

more powerful than other commonly used features like the
laplacian eigenvectors or RRWP. The idea is to construct
graphs that will exhibit very different Ising ground states
but similar spectral properties or random walk transition
probabilities. We illustrate the differences between the en-
codings in Appendix C.2. We train classical models like
GINE, GatedGCN, and GRIT on these datasets with LEs
and RRWP as node features and edge features, and we com-
pare it to a simple GCN model with the eigenvectors of the
correlation matrix as node features. More details on the
protocols can be found in C.2 We also benchmark the GRIT
model with RRWP. The results are shown in table 5. The
quantum encoding models achieve 100% accuracy whereas
all other classical models achieve 45% accuracy.

GCN GatedGCN GatedGCN-big GINE GINE-big GRIT
Models

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Synthetic Data
LE
RRWP
Q

Figure 5. Results on synthetic data. We show the accuracy on
the test set. Q: eigenvectors of the correlation on the ground
state. GCN model has about 4k parameters, GRIT model has 500k
parameters, other normal models have about 10k parameters, big
models have about 60k parameters.

5.3. Discussion

We performed several experiments comparing the quantum
encodings to the classical ones. Including the quantum walk
features into state-of-the-art models improves their perfor-
mances on most of the datasets tested. It is not surprising
that the method works well for datasets such as ZINC for
which random walks are known to provide relevant features
(Rampášek et al., 2022). We limited ourselves to versions
of quantum features that are efficiently computable and we
were able to show a small gain in performance compared to
state-of-the-art models. It is then plausible that using quan-
tum features that cannot be classically accessible could lead
to a greater improvement of models, if quantum hardware
can be made widely available. We were able to engineer
an artificial dataset for which classical approaches fail to
perform the associated binary classification tasks and our
quantum encoding perfectly realizes it, even with only 4k
parameters where classical models have between 10k and
500k.
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Table 1. Test performance in five benchmarks from (Dwivedi et al., 2020). We show the mean ± s.d. of 4 runs with different random seeds
as in (Ma et al., 2023). Highlighted are the top first, second, and third results. Models are restricted to ∼ 500K parameters for ZINC,
PATTERN, CLUSTER ∼ 100K for MNIST and CIFAR10. We compare our model to our run of GRIT and indicate the results obtained
by the authors for information. Figures other than the last 3 lines are taken from (Ma et al., 2023). Models in bold are our models.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
GIN 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GatedGCN 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326
EGT 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409 86.821 ± 0.020 79.232 ± 0.348
GPS 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
GRIT (our run) 0.060 ± 0.002 98.164 ± 0.054 76.198 ± 0.744 90.405 ± 0.232 79.856 ± 0.156

GRIT 1-CQRW 0.058 ± 0.002 98.108 ± 0.111 76.347 ± 0.704 87.205 ± 0.040 78.895 ± 0.1145
GRIT 2-QiRW 0.059 ± 0.004 98.204 ± 0.048 76.442 ± 1.07 90.165 ± 0.446 79.777 ± 0.171

6. Conclusion
In this paper, we have investigated how quantum comput-
ing architectures can be used to construct new families of
positional encodings for graph neural networks. This study
involved measuring observables like correlations and proba-
bilties for a quantum system with a hamiltonian that has the
same topology as the graph of interest. We then integrated
these observables as positional encodings and used them in
different classical graph neural network architectures. We
proved that some positional encodings that use quantum fea-
tures are theoretically more expressive than ones based on
simple random walk and laplacian eigenvectors, on strongly
regular graphs. Our experiments show that state-of-the-art
models can already be enhanced with restricted quantum
features that are classically efficient to compute. This study
provides strong indications that the full leverage of quantum
hardware can lead to the development of high-performance
architectures for certain tasks. Quantum simulation and
analog quantum computing platforms are particularly suited
to the type of time-dependent Hamiltonians we described
here. In particular, Neutral Atom quantum hardware (Hen-
riet et al., 2020; Wurtz et al., 2023) implement these natively
(including the XY model (Chen et al., 2023)) and they are
becoming usable through cloud access. Furthermore, we can
create artificial classification tasks that are easily solvable
with quantum-enhanced models while classical models fail.
While it remains unclear whether an actual performance
improvement will be observed on real-world use cases, and
whether this improvement will justify the cost of using quan-
tum hardware in the future., the results we obtain show that
quantum-enhanced GNNs are a promising family of mod-
els that could be fully exploited with near-term quantum
hardware.
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A. Methods
In this section, we present the details about classical and quantum random walks.

A.1. Differences between classical and quantum random walks

In this section, we make the connection between (continuous) classical and quantum walks explicit. In CRWs, the
probability of a walker being at vertex i and time t is represented as pi(t), which follows the differential equation
d
dtpi(t) = −∑j Gijpj(t). Here, the infinitesimal generator Gij = −γ if an edge exists between nodes i and j, and 0
otherwise, with diagonal elements Gii = kiγ determined by the node degree ki. Considering now a quantum evolution with
a graph Hamiltonian ĤG , given a 2N -dimensional Hilbert space of N qubits, the Schrödinger equation which governs the
evolution of a quantum state |ψG⟩ when projected onto a state |i⟩ is given as

i
d

dt
⟨i|ψG(t)⟩ =

∑
j

⟨i|ĤG |j⟩⟨j|ψG(t)⟩︸ ︷︷ ︸
Quantum

←→ d

dt
pi(t) = −

∑
j

Gijpj(t).︸ ︷︷ ︸
Classical

(11)

Note the similarity between the differential equations of CQRW and CRW. A quantum analogue of CRW can be obtained
by taking ⟨i|ĤG |j⟩ = Gij . The probabilities are preserved as the sum of amplitude squared,

∑
i |⟨i|ψG(t)⟩|2 = 1, in the

quantum case, instead of
∑
i pi(t) = 1 in the classical case. Using this formalism, any quantum evolution can be thought of

as a CQRW (Childs et al., 2002). Notably, quantum walks have demonstrated exponential hitting time advantage for graphs
like hypercubes (Kempe, 2002) and glued binary trees (Childs et al., 2003). These results have been recently extended for
more general hierarchical graphs (Balasubramanian et al., 2023). For an overview, refer to (Kempe, 2003).

A.2. Algorithms

In this appendix, we detail the algorithms for the approach described in this paper.
Firstly, we give a generic algorithm that allows the simulation of quantum features on a classical computer, according to an
arbitrary choice of Hamiltonian and quantum observables.

Algorithm 1 Positional encoding with a generic classical simulation of a Hamiltonian evolution

Input : a graph G(V, E), a hyper-parameter set {θ1,θ2, ...,θK}1 and a set of quantum observables {Ôi}i∈V 2

Output : the matrices of node pairs positional encoding PE ∈ Rde×K , and single nodes positional encoding
PN ∈ RN×K where de =

(
N
2

)
, and N the number of nodes in the graph.

for k ∈ {1, 2, ...,K} do
Compute |ψG(θk)⟩ according to equation (4)3

(PE)ij,k = ⟨ψG(θk)|ÔiÔj |ψG(θk)⟩ − ⟨ψG(θk)|Ôi|ψG(θk)⟩ ⟨ψG(θk)|Ôj |ψG(θk)⟩
(PN)i,k = ⟨ψG(θk)|Ô2

i |ψG(θk)⟩ − ⟨ψG(θk)|Ôi|ψG(θk)⟩
2

end for
return PE and PN.

1Here each θi = (θi,0, ti,0, θi,1, ti,1, . . . , θi,pi) with pi fixed by the user as the number of ”layers” in the i-th Hamiltonian evolution,
and potentially (but not necessarily) pi ̸= pj for i ̸= j.

2e.g Oi =
1
2
(I− Zi) in this paper, and Ôi =

⊗
j<i

I⊗ Ô ⊗
⊗
j>i

I in general

3This approach implies that we can store and reuse the quantum state |ψG(θk)⟩, which is true when running simulations on classical
computers but not in the case where we do it on quantum computers, where we need to run a certain number of measurements in order to
obtain an estimation of the desired quantities, as showcased in algorithm 3
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Next we provide an efficient classical algorithm for the simulation of the 2 particles quantum walk (which also applies to the
1 particle random walk, if one applies the following on the original adjacency matrix of the graph).

Algorithm 2 Positional encoding with a classically simulated 2 particles QW
Input : a graph G(V, E), a hyper-parameter set {t1, t2, ..., tK}
Output : the matrices of node pairs positional encoding PE ∈ Rde×K , and single nodes positional encoding

PN ∈ RN×K where de =
(
N
2

)
, and N the number of nodes in the graph.

- Compute the adjacency matrix A2 of the (2 particles) product graph : we draw an edge in the latter if the symmetric
difference {i1, j1}∆{i2, j2} is a pair of adjacent nodes in the input graph4.
- Define ĤXY1 as in equation (3) on the edges of the product graph, indexed as (i1j1, i2j2)
for k ∈ {1, 2, ...,K} do

if Continuous random walk scheme then
(PE)ij,k = | ⟨ij| e−i.tk.ĤXY

1 |ψ0⟩ |2 ∀i ∈ {1, .., N} and ∀j ∈ {i+ 1, ..., N} 5

(PN)i,k = | ⟨ii| e−i.tk.ĤXY
1 |ψ0⟩ |2 ∀i ∈ {1, .., N}

else if Quantum-inspired random walk scheme then
(PE)ij,k = [(D−1

2 .A2)
k.ψ0]ij ∀i ∈ {1, .., N} and ∀j ∈ {i+ 1, ..., N}

(PN)i,k = [(D−1
2 .A2)

k.ψ0]ii ∀i ∈ {1, .., N}6

end if
end for
return PE and PN.

Finally, we present an algorithm for computing our quantum features using a quantum computer.

Algorithm 3 Positional encoding with a generic Hamiltonian evolution on a quantum computer
Input : a graph G(V, E), a hyper-parameter set {θ1,θ2, ...,θK}, the number of measurements Nm for the estimation

of the average of quantum observable Ôi
Output : the matrices of node pairs positional encoding PE ∈ Rde×K , and single nodes positional encoding

PN ∈ RN×K where de =
(
N
2

)
, and N the number of nodes in the graph.

for k ∈ {1, 2, ...,K} do
for m ∈ {1, 2, ..., Nm} do

Let the system evolve according to equation (4) to prepare the quantum state |ψG(θk)⟩
Perform a measurement of the observables7 {Ôi}i∈V

end for

(PE)ij,k = ⟨ψG(θk)|ÔiÔj |ψG(θk)⟩−⟨ψG(θk)|Ôi|ψG(θk)⟩ ⟨ψG(θk)|Ôj |ψG(θk)⟩ estimated from the measurements

(PN)i,k = ⟨ψG(θk)|Ô2
i |ψG(θk)⟩ − ⟨ψG(θk)|Ôi|ψG(θk)⟩

2
estimated from the measurments

end for
return PE and PN.

A.3. Ground state.

The ground state of a system is defined as the lowest-energy eigenstate of its hamiltonian (when it is degenerate, one
considers the ground state manifold HGS). Ground state properties are widely studied in many-body physics and their

4This construction is specific to the case of 2 particles quantum walks, for more details see (Fabila-Monroy et al., 2011; Henry et al.,
2021)

5|ψ0⟩ could be for example a zero state or a uniform superposition state
6Here D2 is the diagonal degree matrix of the product graph, and ψ0 ∈ Rde is a vector that represents the uniform superposition state

over edges i.e contains ones in the index pairs ij that are actually linked in the input graph, or alternatively a vector of ones which extends
the previous property to all pairs in the original graph.

7All the observables in the set are measured simultaneously which prevents large computational overheads
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properties depend on the topology of the graph. Preparing this state is the purpose of quantum annealing (Das & Chakrabarti,
2008). When using neutral atom quantum processors (Henriet et al., 2020), one can natively address hamiltonians of the
form

ĤG =
∑

(i,j)∈E
Jij(Zi − αiI)(Zj − αjI) (12)

with αi real coefficients. Its eigenstates are the basis states |b⟩ described above. In the case where αi = 1− δ/(2zi) with
zi =

∑
j|(i,j)∈E Jij and Jij = 1/4, the eigenenergies (or eigenvalues) are

E(b) =
∑
i,j∈E

bibj − δ
N∑
i=1

bi. (13)

When 0 < δ < 1, this is the cost function associated with the maximum independent set problem, a NP-hard problem (Garey
& Johnson, 1979). In the absence of degeneracy-lifting or symmetry-breaking effects, a quantum annealing scheme would
prepare a symmetric, equal-weight superposition of all maximum independent sets. With that in mind, we will call ground
state of the graph the state

|ψGS⟩ =
1√
|HGS |

∑
b∈HGS

|b⟩. (14)

B. Theory
In this section, we present the proofs relating the expressiveness of QW with well-known WL tests and other graph invariants
such as the Furer Invariant (Fürer, 2010).

B.1. Proof of proposition 4.1

1-QW ⊏ 1-WL when the input state of the unitary is a uniform superposition state.
We show that beginning with an initial uniform superposition state, the action ofHXY evolution is similar to WL coloring
iterations. We consider a graph G, with vertex set V and consisting of N nodes. Suppose we begin with 1 particle QW. The
action ofHXY restricted to 1-particle subspace is then equivalent to action of the adjacency matrix A. Therefore we have :

eiHXY t =

∞∑
k=0

(i.t)k

k!
(HXY )

k

≡ 1 + iAt+ i2
1

2
A2t2 + ..

(15)

The action of A on the identity vector is simply the vector of degrees of the nodes, which is the first WL iteration. Further
operating with A leads to a vector where we add degrees of the neighbours of a node. Further iterations simply lead to
vectors where two entries are equal if they have same degrees and equal number of neighbours also of same degrees, which
corresponds to stable WL coloring. This scheme corresponds exactly to a 1-WL test with the sum operation as the update
function. To see this, suppose we define |I⟩ as the normalized vector of uniform superposition. Each entry of the vector is
1√
N

. After the action of adjacency matrix A we obtain the vector |I(1)⟩, which will be:

|I(1)⟩ = 1√
N


d1
d2
..
..
dN

 (16)

where d1, d2, ..., dN are the degrees of the nodes. This can be interpreted as the first step of WL coloring where each node is
assigned the color depending on the degree. Again applying A to vector |I(1)⟩ we obtain the vector |I(2)⟩, which will be:

|I(1)⟩ = 1√
N


∑
i∈N (1) di∑
i∈N (2) di
..
..∑

i∈N ((N) di

 (17)
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where N (i) is the set of neighbours of node i. Thus in this iteration, the degrees of the neighbours of a node are aggregated
8. Further steps simply lead to aggregation of neighbour properties for a given node until stable coloring is reached i.e same
colored neighbours will have same entry in the vector. It is known that ith entry of Ak|1⟩ will correspond to the number of
walks of length k beginning from node i. Every kth iteration induces a refinement on the previous step until convergence. It
has been shown that stable WL coloring is a refinement of the partition obtained at convergence for some k for Ak|1⟩ and
is in fact equal for a large number of graphs (Powers & Sulaiman, 1982). Since the evolution due to HXY is simply the
weighted summation of these vectors, it follows that that the output vector for 1-QW with input superposition ⊏ 1-WL.

B.2. Proof of proposition 4.2

1-QW ̸⊑ 1-WL ⊑ 2-WL when the input state of the unitary is a localized state.
The complete proof relies on this two following statements :

1. 1-QW ̸⊑ 1-WL when the input state of the unitary is a general input state.
We can see that in fact for a localized input state a single-particle, QW can be more expressive than a 1-WL test for
some graphs. For example, beginning with a particle localized at one of the nodes, the action of theHXY as seen above
has contributions from different powers of A. Beginning with a localized input state, the kth power of A tell about the
number of paths of length k between a set of nodes. If 2 regular graphs differ in these quantities, the set of probabilities
pij = p(i → j) or probability of a particle to go from node i to j will be different. Thus, a single particle QW can
distinguish 2 such regular graphs. However, we know that a 1-WL cannot distinguish regular graphs. Hence 1-QW ̸⊑
1-WL for a general input.

2. 1-QW ⊏ F.I when the input state of the unitary is a localized state.
For a general input and output state, the time averaged transition probability for evolution withHXY to go from |ψ⟩ to
|ϕ⟩ is given by:

p(|ϕ⟩ → |ψ⟩) = limT→∞

∫ T

0

dt|⟨ϕ|eiHXY t|ψ⟩|2dt (18)

This can be further written as

p|ψ⟩→|ϕ⟩(∞) =
∑

λ∈Sp(HXY)

|⟨ϕ|Pλ|ψ⟩|2 (19)

where HXY =
∑
λ∈Sp(HXY) λP

λ, Sp(HXY) is the set of eigenvalues of HXY . For a single particle QW, this set is
exactly the set of eigenvalues ofA. Pλ are the projectors into the eigenspace spanned by the corresponding eigenvectors.
(Fürer, 2010) defines the spectral invariant based on projectors Pλ. We refer to this as the Furer Invariant (F.I.). The
Furer invariant is a spectral invariant defined in terms of projectors Pλ defined above. The projector Pλ by definition
can be written as |eλ⟩⟨eλ|, where |eλ⟩ is the eigenvector corresponding to the eigenvalue λ. In matrix form this can be
written as

Pλ =


pλ11 pλ11 .. pλ1n
pλ21 pλ22 .. pλ2n
. . .
. . .
pλn1 pλn2 .. pλnn

 (20)

The quantities ⟨bi|Pλ|bj⟩ and ⟨bi|Pλ|bi⟩ represent the non-diagonal and the diagonal entries of the matrix Pλ

respectively. The |bi⟩ represent the coordinate basis vectors where a vector |01, 02.., 1i, 0.., 0⟩ would represent the
node i. The quantity ⟨bi|Pλ|bj⟩ represents the product of angles made by the coordinate basis vectors corresponding to
node i, j with the eigenspace defined by λ. Similarly ⟨bi|Pλ|bi⟩ represents the angle made by the coordinate basis
vector of node i with the eigenspace defined by λ. These quantities along with the spectra of the adjacency matrix
define the Furer invariant. Expanding each of the vectors |ϕ⟩ and |ψ⟩ in terms of the eigenvectors, it can be seen that

8Again, we are here in a case where the aggregation function is the sum operation, which is not an injective function. This is the
main reason for which the 1−QW is less powerful than the 1−WL, which allows any sort of aggregation functions and most notably
injective functions.
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the probability p(i→ j) can be computed using the Furer invariant. Thus, the set of probabilities is weaker than the
Furer invariant.

Thus, we see that 1-QW ⊏ F.I. In (Rattan & Seppelt), the authors prove that F.I ⊏ 2-WL. Therefore 1-QW⊏ 2-WL.
These inequalities along with Proposition 1.1 tell us that 1-QW ̸⊑ 1-WL and 1-QW ⊑ 2-WL.

B.3. Proof of proposition 4.3

k-QW ⊏ to k-δ-LWL for uniform input superposition state.
For a general k-particle case, the WL coloring for a k-particle occupation graph is the same as k-δ-LWL coloring as defined
in (Morris et al., 2020). This is because the colors of the k-tuples are updated only based on the local neighbourhood, as is the
case for the k-δ-LWL test. The k-particle occupancy graph Gk, where every node now labelled by a k-tuple represents the
presence of k particles at that node, is constructed in the following way.: We begin with a k-tuple , (v1, v2, ..vi, vi+1, ..vk).
An adjacent k-tuple is found by replacing vi with a node wi such that wi ∈ N (vi). In a k-δ-LWL test, colors of a
particular k-tuple are updated based on colors of the local neighborhood, in which two k-tuples (v1, v2, ..vi, vi+1, ..vk) and
(v1, v2, ..wi, vi+1, ..vk) are local neighbours only if wi ∈ N (vi) in the original graph. Thus the updates for both the cases
are equivalent. Analogously to the 1-QW case, we see therefore that k-QW ⊏ to k-δ-LWL.

B.4. Proof of proposition 4.6

One can show (Shiau & Joynt, 2003; Gamble et al., 2010) that for strongly regular graphs, the powers of the adjacency
matrix A can be expressed as

An = αnI + βnJ + γnA

where αn, βn, γn only depend on N, k, λ, µ. I is the identity matrix, J is the matrix full of 1s.
The degree matrix D is also equal to kI , then (D−1A)n = An/kn. Hence the information about distance contained in Puv

for strongly regular graphs is the same as in their adjacency matrices. Therefore, for strongly regular graphs, the GD-WL
with RRWP test is equivalent to the WL test. The F.I. consists of eigenvalues and eigenvectors. It has been shown that F.I
is stronger than 1-WL, but weaker than 2-WL (Rattan & Seppelt). Therefore, GD-WL along with eigenvectors cannot
distinguish SRGs, which require 3-WL or higher.

B.5. proof of proposition 4.7

In this proof, we provide the full calculation for

• The average value of the global occupation observable ⟨n̂(t)⟩G = ⟨
∑
v∈V

n̂v(t)⟩G

• the correlation matrix for the local occupation observables Cuv(t) = ⟨n̂u(t).n̂v(t)⟩G − ⟨n̂u(t)⟩G⟨n̂v(t)⟩G

We provide for each of these cases a formulation involving the corresponding graph quantities. In each of these steps, the
goal is to show that it is not a powerful tool to distinguish graphs, and more specifically, that it fails to distinguish non
isomorphic strongly regular graphs from the same family.

We start by defining the following quantities :

n̂v =
1

2
(I− Ẑv) (21)

and
Ẑv =

⊗
u<v

I⊗ Ẑ ⊗
⊗
u>v

I (22)

We also define
⟨Ô⟩G = ⟨ψG |Ô|ψG⟩ (23)

where

|ψG⟩ = UG |ψ0⟩ = UG
n⊗
v=1

|0⟩ (24)
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For our case, the evolution operator UG can be written as :

UG(ϑ, t) = eiĤMϑe−iĤIte−iĤMϑ (25)

where, for a graph G = (V, E) we have

ĤI =
∑

(v,u)∈E
n̂vn̂u +

∑
v∈V

n̂v (26)

and 9

ĤM =
∑
v∈V

Ŷv (27)

This corresponds to a single layer Ising evolution, preceded and followed by an evolution through the mixing hamiltonian
ĤM with opposite signs. The motivation for switching signs in the mixing hamiltonian parameter ϑ is to allow us to write
UG(ϑ, t) = U†

M (ϑ) · UI(t) · UM (ϑ) which is equal to the identity when t = 0.
Now let us compute the quantities ⟨n̂vn̂u⟩G and ⟨n̂v⟩G
We start by defining the following pulse operator, that will be useful later in this calculation :

P̂ †
ϑ = exp

(
−iϑ

∑
v

Ŷv

)
=
∏
v

[
cos θ I+ sin θ

(
σ̂+
v − σ−

v

)]︸ ︷︷ ︸
P̂ †

ϑ,v

(28)

where we introduce the spin operators σ̂+ and σ̂−, such that

σ̂+|0⟩ = |1⟩, σ̂+|1⟩ = 0,
σ̂−|0⟩ = 0, σ̂−|1⟩ = |0⟩, (29)

such that X̂ = (σ̂+ + σ̂−)/2, Ŷ = −i(σ̂+ − σ̂−)/2 and Ẑ = σ̂+σ̂−.

B.5.1. STATE PREPARATION

1. We start with the system in

|0⟩ =
⊗
v

|0⟩. (30)

2. We then apply a pulse of angle ϑ to get the system in the state

|ψϑ(0)⟩ = P̂ †
ϑ|0⟩ = (cos θ)N

∑
σ∈{0,1}N

(tan θ)nσ |σ⟩. (31)

3. We then let the system evolve with the Ising Hamiltonian, so that

|ψϑ(t)⟩ = e−iĤIt|ψϑ(0)⟩ = (cos θ)N
∑

σ∈{0,1}N

(tan θ)nσe−iE(I)
σ |σ⟩. (32)

4. Finally, the inverse pulse is then applied, to get

|ψf,ϑ(t)⟩ = P̂ϑ|ψϑ(t)⟩ = (cos θ)N
∑

σ∈{0,1}N

(tan θ)nσe−iE(I)
σ t

(
N∏
v=1

P̂ϑ,v

)
|σ⟩. (33)

9Physically, this describes the same phenomenon as if we had chosen a mixing hamiltonian with operators Xi, up to a gauge change.
Which leads to similar results that do not affect the statement in the corresponding proposition.
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B.5.2. COMPUTATION OF THE TOTAL OCCUPATION

We first start by providing a full expression, in terms of graph quantities, for a (graph level) observable that we call the
global occupation :

n̂ =
∑
v

n̂v =
∑
v

σ̂+
v σ̂

−
v , (34)

Such that, when transposed in the expression provided in equations 33 and 23 we have :

⟨n̂(t)⟩ = (cos θ)2N
∑

σ,σ′∈{0,1}N

e−i
(
E(I)

σ −E(I)

σ′
)
t
(tan θ)nσ+nσ′ ⟨σ′|

(
N∏
v′=1

P̂ †
ϑ,v′

)
n̂

(
N∏
v=1

P̂ϑ,v

)
|σ⟩︸ ︷︷ ︸

:=fσσ′ (ϑ)

. (35)

We then insert an identity I =
∑

µ∈{0,1}N

|µ⟩⟨µ|, so that

⟨n̂(t)⟩ = (cos θ)2N
∑

σ,σ′∈{0,1}N

e−i
(
E(I)

σ −E(I)

σ′
)
t
(tan θ)nσ+nσ′

∑
µ∈{0,1}N

nµ ⟨σ′|
(

N∏
v′=1

P̂ †
ϑ,v′

)
|µ⟩⟨µ|

(
N∏
v=1

P̂ϑ,v

)
|σ⟩︸ ︷︷ ︸

=

N∏
v=1

⟨σ′
v|P̂ †

ϑ,v|µv⟩⟨µv|P̂ϑ,v|σv⟩

.

(36)

Let us now compute an expression for the matrix elements appearing in (36) :

λµvσv
(ϑ) := ⟨µv|P̂ϑ,v|σv⟩

= cos θ ⟨µv|σv⟩+ sin θ ⟨µv|σ̂−
v |σv⟩ − sin θ ⟨µv|σ̂+

v |σv⟩
= cos θ δµv,σv

+ sin θ (δµv,σv−1 − δµv,σv+1)
(37)

The following table gives the possible values for the product λ∗µvσ′
v
(ϑ)λµvσv (ϑ) :

(µv, σv, σ
′
v) λ∗µvσ′

v
(ϑ)λµvσv

(ϑ)

(0, 0, 0), (1, 1, 1) cos θ2

(0, 1, 1), (1, 0, 0) sin θ2

(0, 1, 0), (0, 0, 1) cos θ sin θ
(1, 1, 0), (1, 0, 1) − cos θ sin θ

(38)

In order to further explicit (36), we split the set of all vertices into Oσσ′ = {v|σv = σ′
v = 1}, Zσσ′ = {v|σv = σ′

v = 0}
and ∆σσ′ = {v|σv ̸= σ′

v}, respectively containing n0, n1, and n ̸= vertices, so that

N∏
v=1

λ∗µvσ′
v
(ϑ)λµvσv

(ϑ) =
∏

v∈Oσσ′

λ∗µvσ′
v
(ϑ)λµvσv

(ϑ)︸ ︷︷ ︸
=(cos θ)2µv (sin θ)2−2µv

∏
v∈Zσσ′

λ∗µvσ′
v
(ϑ)λµvσv

(ϑ)︸ ︷︷ ︸
=(cos θ)2−2µv (sin θ)2µv

∏
v∈∆σσ′

λ∗µvσ′
v
(ϑ)λµvσv

(ϑ)︸ ︷︷ ︸
cos θ sin θ(−1)µv

. (39)

We then split µ in µ = µ(1)∪µ(0)∪µ(̸=), where µ(1) = {µv|v ∈ Oσσ′}, µ(0) = {µv|v ∈ Zσσ′} and µ( ̸=) = {µv|v ∈ ∆σσ′}.
We can then write

fµσσ′(ϑ) =

N∏
v=1

λ∗µvσ′
v
(ϑ)λµvσv

(ϑ) = (sin θ)2n1(tan θ)
−2n

µ(1) × (cos θ)2n0(tan θ)
2n

µ(0) × (cos θ)n ̸=(sin θ)n ̸=(−1)nµ(̸=)︸ ︷︷ ︸
(cos θ)2N (tan θ)n ̸=+2n1 (tan θ)

2(n
µ(0)−n

µ(1) )
(−1)

n
µ( ̸=)

.
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Noting that
∑

µ∈{0,1}m

A(nµ) =

m∑
p=0

(
m

p

)
A(p) we can write

∑
µ∈{0,1}N

nµf
µ
σσ′(ϑ) = (cos θ)2N (tan θ)n ̸=+2n1

n1∑
p1=0

(
n1
p1

) n0∑
p0=0

(
n0
p0

)
(tan θ)2(p0−p1)

n̸=∑
p ̸==0

(
n ̸=
p̸=

)
(p1 + p0 + p̸=) (−1)p ̸=︸ ︷︷ ︸

=(p1+p0)δ0,n̸=
−δ1,n ̸=︸ ︷︷ ︸

=[1+(tan θ)2]n0

[
δ0,n ̸=

(
p1+n0

(tan θ)2

1+(tan θ)2

)
−δ1,n ̸=

]︸ ︷︷ ︸
=[1+(tan θ)2]n0 [1+(tan θ)−2]n1

{
δ0,n̸=

[
n0(sin θ)2+n1

(tan θ)−2

1+(tan θ)−2

]
−δ1,n̸=

}︸ ︷︷ ︸
(cos θ)2N (tan θ)n ̸= [1+(tan θ)2]n0+n1{δ0,n̸=

[n0(sin θ)2+n1(cos θ)2]−δ1,n̸=}

Since n0 + n1 + n ̸= = N ,

(cos θ)2N (tan θ)n ̸=
[
1 + (tan θ)2

]n0+n1
=

(tan θ)n ̸=

[1 + (tan θ)2]
n ̸= = (cos θ sin θ)n ̸= , (40)

so that

∑
µ∈{0,1}N

nµf
µ
σσ′(ϑ) = δ0,n̸=

[
n0(sin θ)

2 + n1(cos θ)
2
]
− δ1,n̸=

cos θ sin θ (41)

The sum in (36) then only runs on pairs of configuration (σ, σ′) that differ by at most 1 element. Let us simplify those terms.

• n ̸= = 0
Then σ = σ′, so that nσ = nσ′ = n1 = N − n0.

fσσ(ϑ) = (tan θ)2nσ
[
(N − nσ)(sin θ)2 + nσ(cos θ)

2
]

(42)

• n ̸= = 1

– nσ′ = nσ + 1
Then n1 = nσ = N − n0 − 1, so that

fσσ′(ϑ) = −(tan θ)2nσ+1 cos θ sin θ = −(tan θ)2nσ sin2 ϑ (43)

– nσ′ = nσ − 1
Then n1 = nσ′ = N − n0 − 1, so that

fσσ′(ϑ) = −(tan θ)2nσ−1 cos θ sin θ = −(tan θ)2nσ cos2 ϑ (44)

Remark : Exchanging σ and σ′ in either of the previous equations (43) or (44) yields the other one, ensuring that
⟨n̂(t)⟩ is real. For example, if nσ′ = nσ + 1

fσ′σ = −(tan θ)2n′
σ cos2 ϑ = −(tan θ)2nσ+2 cos2 ϑ = −(tan θ)2nσ sin2 ϑ = fσσ′ (45)

For a given configuration σ, we note ∆σ,v = Eσ − Eσ′(v) where σ′(v) is the configuration obtain from σ by flipping σv.
The total occupation is then

⟨n̂(t)⟩ =
∑

σ∈{0,1}N

{
fσσ(ϑ) +

∑
v∈Zσ

e−i∆σ,vtfσσ′(v)(ϑ) +
∑
v∈Oσ

e−i∆σ,vtfσσ′(v)(ϑ)

}
(46)
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Let us put this in a form that makes it more explicitly real. We start with

∑
σ∈{0,1}N

∑
v∈Zσ

e−i∆σ,vtfσσ′(v)(ϑ) =︸︷︷︸
ν=σ′(v)

∑
ν∈{0,1}N

∑
v∈Oν

ei∆ν,vtfν′(v)ν(ϑ) =
∑

ν∈{0,1}N

∑
v∈Oν

ei∆ν,vtfνν′(v)(ϑ). (47)

The total occupation becomes

⟨n̂(t)⟩ =
∑

σ∈{0,1}N

{
fσσ(ϑ) + 2

∑
v∈Oσ

cos (∆σ,vt) fσσ′(v)(ϑ)

}
. (48)

The first term can be rewritten as

∑
σ∈{0,1}N

fσσ(ϑ) = (cos θ)2N
N∑
p=0

(
N

p

)
(tan θ)2p

[
(N − p) sin2 ϑ+ p cos2 ϑ

]
= 2N sin2 ϑ cos2 ϑ (49)

The total occupation becomes

⟨n̂(t)⟩ = 2N sin2 ϑ cos2 ϑ− 2(cos θ)2N+2
∑

σ∈{0,1}N

(tan θ)2nσ

∑
v∈Oσ

cos (∆σ,vt) (50)

Remark : for nσ = 0, the term in the sum vanishes

(∑
v∈Oσ

cos (∆σ,vt) = 0

)
.

At t = 0, this becomes

n(0) = 2N sin2 ϑ cos2 ϑ− 2(cos θ)2N+2
∑

σ∈{0,1}N

(tan θ)2nσnσ = 2N sin2 ϑ cos2 ϑ− 2(cos θ)2N
tan2 ϑ

1 + tan2 ϑ
= 0 (51)

B.5.3. EXPRESSION IN TERMS OF GRAPH

For an induced subgraph Gσ of G and a vertex v ∈ Vσ, we note κσ(v) the degree of v in Gσ, and κ(v) its degree in G. The
energy difference between the Ising configurations corresponding to Gσ and to Gσ \ v is κ(v). The total occupation can then
be expressed as

⟨n̂(t)⟩G = 2N sin2 ϑ cos2 ϑ− 2(cos θ)2N+2
∑
Gσ⊂G

(tan θ)2|Vσ|
∑
v∈Vσ

cos (κσ(v)t) . (52)

We can also express the sum as

∑
Gσ⊂G

(tan θ)2|Vσ|
∑
v∈Vσ

cos (κσ(v)t) =
∑
v∈V

∑
Vσ∋v

(tan θ)2|Vσ| cos (κσ(v)t) . (53)

We note V (v) = {v′ ∈ V|(v, v′) ∈ E} the set of all neighbours of v in G, as well as Vσ(v) = {v′ ∈ Vσ|(v, v′) ∈ Eσ} the
set of all neighbours of v in Gσ , so that10

∑
v∈V

∑
Vσ∋v

(tan θ)2|Vσ| cos (κσ(v)t) =
∑
v∈V

κ(v)∑
ω=0

∑
Vσ∋v|
κσ(v)=ω

(tan θ)2|Vσ| cos (ωt) . (54)

10|Vσ(v)| = κσ(v)
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For a given degree ω ≤ κ(v), and a given integer n ≥ 0, there are
(
N−1−κ(v)

n

)(
κ(v)
ω

)
induced subgraphs Gσ of size n+ω+1,

containing v, and in which v has degree ω. We can then write

∑
v∈V

κ(v)∑
ω=0

∑
Vσ∋v

κσ(v)=ω

(tan θ)2|Vσ| cos (ωt) =
∑
v∈V

κ(v)∑
ω=0

(
κ(v)

ω

)
cos (ωt) (tan θ)2ω+2

︸ ︷︷ ︸
(tan θ)2ℜ{(1+eit(tan θ)2)κ(v)}

N−1−κ(v)∑
n=0

(
N − 1− κ(v)

n

)
(tan θ)2n︸ ︷︷ ︸

(1+(tan θ)2)N−1−κ(v)

(55)

The sum in ⟨n̂(t)⟩ then becomes

2(cos θ)2N+2
∑
Gσ⊂G

(tan θ)2|Vσ|
∑
v∈Vσ

cos (κσ(v)t) = 2 sin2 ϑ
∑
v∈V

ℜ
{(

1 + eit tan2 ϑ
)κ(v)}(

1 + tan2 ϑ
)1+κ(v) . (56)

If we note mG(κ) the number of vertices of degree κ in G, and κmax(G) the maximum degree of G, we can express the
occupation as

⟨n̂(t)⟩G = 2 sin2 ϑ cos2 ϑ

κmax(G)∑
κ=0

mG(κ)ℜ
{
1−

(
cos2 ϑ+ eit sin2 ϑ

)κ}
. (57)

This expression is checked in Fig. 6, on a random graph of 10 vertices.
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n(
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analytics

Figure 6. Comparison between (57) and numerical simulation of the dynamics, in the case of a density-density hamiltonian, on the graph
shown in the inset. Both curves collapse on top of each other.

Computation for a generic Ising model
We now consider the case of a generic Ising model, defined by the Hamiltonian

ĤIgen =
∑

(i,j)∈E
Jij n̂in̂j +

∑
v∈V

hvn̂v. (58)

In this case, (50) becomes

⟨n̂(t)⟩ = 2N sin2 ϑ cos2 ϑ− 2(cos θ)2N+2
∑

v∈[0,N−1]

∑
σ∈{0,1}N

σv=1

(tan θ)2nσ cos (∆σ,vt) . (59)
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We note NG(v) = {v′ ∈ V|(v, v′) ∈ E} the neighbourhood of v in G, and split the Ising configuration σ into σ =
{σv′ |v′ ∈ NG(v)}︸ ︷︷ ︸

σNG(v)

∪{σv} ∪ {σv′ |v′ ̸∈ NG(v) ∪ {v}}︸ ︷︷ ︸
σ̄NG(v)

, so that

∑
σ∈V
σv=1

(tan θ)2nσ cos (∆σ,vt) =
∑

σNG(v)∈{0,1}κ(v)

(tan θ)
2(1+nσNG(v)

)
cos (∆σ,vt)

∑
σNG(v)∈{0,1}N−1−κ(v)

(tan θ)
2nσ̄NG(v)

︸ ︷︷ ︸
(1+tan2 ϑ)N−κ(v)−1

.

(60)
We can then write

2(cos θ)2N+2
∑
v∈V

∑
σ∈{0,1}N

σv=1

(tan θ)2nσ cos (∆σ,vt) = 2 cos2 ϑ sin2 ϑ
∑
v∈V

∑
σ∈{0,1}κ(v)

(tan θ)2nσ(
1 + tan2 ϑ

)κ(v) cos (∆σ,vt) . (61)

Finally, we can further simplify the second sum into

∑
σ∈{0,1}κ(v)

(tan θ)

2

κ(v)∑
i=1

σi

(
1 + tan2 ϑ

)κ(v) cos
(hv + κ(v)∑

i=1

Jvṽiσi)t

 =

κ(v)∑
κ=0

(tan θ)2κ(
1 + tan2 ϑ

)κ(v) ∑
ṽ∈NG(v)κ

ṽi ̸=ṽj

cos

[
(hv +

κ∑
i=1

Jvṽi)t

]
.

(62)
Or,

∑
σ∈{0,1}κ(v)

(tan θ)

2

κ(v)∑
i=1

σi

(
1 + tan2 ϑ

)κ(v) cos
(hv + κ(v)∑

i=1

Jvṽiσi)t

 = ℜ

eihvt
∏

ṽ∈NG(v)

(
1 + tan2 ϑeiJvṽt

1 + tan2 ϑ

) . (63)

The density ϱG(t) = n(t)/N then becomes

ϱG(t) = 2 sin2 ϑ cos2 ϑ
∑
v∈V
ℜ

1− eihvt
∏

ṽ∈NG(v)

(
cos2 ϑ+ sin2 ϑ eiJvṽt

) (64)

In this form, it is very easy to check that n(0) = 0.

More generic pulse
We consider here the case where the system is first subject to a ϑ pulse, then evolves freely for a duration t and finally is
subject to a φ pulse. In this case the average number of excitations is

⟨n̂(t)⟩G = sinϑ cosϑ sinφ cosφ
∑
v∈V
ℜ
{
tanϑ

tanφ
+

tanφ

tanϑ
+ 2 eihvt

∏
ṽ∈V

(
cos2 ϑ+ sin2 ϑ eiJvṽt

)}
(65)

If we consider the case of the uniform local Ising model, i.e. hv = 1∀v ∈ V and Jv1,v2 is the adjacency matrix of the graph,
then we can write :

⟨n̂(t)⟩G = sinϑ cosϑ sinφ cosφ
∑
v∈V
ℜ
{
tanϑ

tanφ
+

tanφ

tanϑ
+ 2 eit (cos2 ϑ+ sin2 ϑ eit)dv} (66)

where dv is the degree of node v. We can see that this quantity is not enough to distinguish two graphs with the same degree
histograms, which is the case of two non-isomorphic SRGs from the same family. this completes the first part of the proof.
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B.5.4. COMPUTATION OF THE LOCAL OBSERVABLES

As we have just shown, the total occupation seems to too simple of an observable to extract meaningful informations from
the graph. To this end, we express the expectation value of a generic quadratic function of the bitstring µ

φ(µ) =
∑
v∈V

hvµv +
∑

(v,v′)∈E
Jvv′µvµv′ . (67)

We start from (36), and replace nµ by φ(µ)

⟨φ⟩(t) = (cos θ)2N+3(sin θ)3
∑

µ∈{0,1}N

φ(µ)
∑

σ,σ′∈{0,1}N

e−i∆Eσσ′ t(tan θ)nσ+nσ′

×
∏

v∈Oσσ′

(tan θ)−2µv

∏
v∈Zσσ′

(tan θ)2µv

∏
v∈∆σσ′

(−1)µv .
(68)

Linear term
Let us focus on a given linear term and find an expression for ⟨µv⟩. We start from (68).

We note Ov =
{
σ ∈ {0, 1}N |σv = 1

}
and Zv =

{
σ ∈ {0, 1}N |σv = 0

}
then expand

∑
σ,σ′∈{0,1}N

into

The term for v ∈ Oσσ′

∑
µ∈Ov

fµσσ′(ϑ) = (cos θ)2N (tan θ)n ̸=+2n1

n1−1∑
p1=0

(
n1 − 1

p1

)
(tan θ)−2(p1+1)

n0∑
p0=0

(
n0
p0

)
(tan θ)2p0

n̸=∑
p ̸==0

(−1)p ̸=

= (cos θ)2Nδσσ′(tan θ)2(n1−1)(1 + tan−2 ϑ)n1−1(1 + tan2 ϑ)n0

= (cos θ)2Nδσσ′(tan θ)2(n1−1)(sin θ)−2(n1−1)(cos θ)−2n0

= δσσ′ cos2 ϑ

(69)

The term for v ∈ Zσσ′

∑
µ∈Ov

fµσσ′(ϑ) = (cos θ)2N (tan θ)n ̸=+2n1

n1∑
p1=0

(
n1
p1

)
(tan θ)−2p1) = δσσ′ sin2 ϑ (70)

The term for v ∈ ∆σσ′

∑
µ∈Ov

fµσσ′(ϑ) = (cos θ)2N (tan θ)n ̸=+2n1

n1∑
p1=0

(
n1
p1

)
(tan θ)−2p1

n0∑
p0=0

(
n0
p0

)
(tan θ)2p0

n ̸=−1∑
p ̸==0

(−1)p ̸=+1

= −(cos θ)2Nδn ̸=−1(tan θ)
1+2n1(sin θ)−2n1(cos θ)−2n0

= −δn ̸=−1 sinϑ cosϑ

(71)

The sum of all terms : ⟨nv(t)⟩G

⟨nv(t)⟩G = (cos θ)2N

[
cos2 ϑ

∑
σ∈Ov

tan2nσ ϑ+ sin2 ϑ
∑
σ∈Zv

tan2nσ ϑ

− sinϑ cosϑ
∑
σ∈Ov

(tan θ)2nσ−1ei∆Eσσ̃v t − sinϑ cosϑeihvt
∑
σ∈Zv

(tan θ)2nσ+1e−i∆Eσσ̃v t

] (72)

We have introduced here σ̃v the configuration obtained from σ by flipping σv .
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We focus on the first two terms first.

cos2 ϑ
∑
σ∈Ov

tan2nσ ϑ+ sin2 ϑ
∑
σ∈Zv

tan2nσ ϑ = cos2 ϑ

N−1∑
n=0

(
N − 1

n

)
tan2(n+1) ϑ+ sin2 ϑ

N−1∑
n=0

(
N − 1

n

)
tan2n ϑ

= 2 sin2 ϑ

N−1∑
n=0

(
N − 1

n

)
tan2n ϑ

= 2 sin2 ϑ cos2 ϑ(cos θ)−2N .
(73)

And now, the third term, using (58)

cos2 ϑ
∑
σ∈Ov

(tan θ)2nσei∆Eσσ̃v t = sin2 ϑ eihvt
∏

ṽ∈NG(v)

(
1 + tan2 ϑ eiJṽt

)N−1−κ(v)∑
n=0

(
N − 1− κ(v)

n

)
(tan θ)2n

= sin2 ϑ eihvt
∏

ṽ∈NG(v)

(
1 + tan2 ϑ eiJvṽt

)
(cos θ)2(1+κ(v)−N)

= sin2 ϑ cos2 ϑ(cos θ)−2N eihvt
∏

ṽ∈NG(v)

(
cos2 ϑ+ sin2 ϑ eiJvṽt

)
.

(74)

Similarly, the fourth terms is

sin2 ϑ
∑
σ∈Zv

(tan θ)2nσe−i∆Eσσ̃v t = sin2 ϑ e−ihvt
∏

ṽ∈NG(v)

(
1 + tan2 ϑ e−iJvṽt

)N−1−κ(v)∑
n=0

(
N − 1− κ(v)

n

)
(tan θ)2n

= sin2 ϑ e−ihvt
∏

ṽ∈NG(v)

(
1 + tan2 ϑ e−iJvṽt

)
(cos θ)2(1+κ(v)−N)

= sin2 ϑ cos2 ϑ(cos θ)−2N e−ihvt
∏

ṽ∈NG(v)

(
cos2 ϑ+ sin2 ϑ e−iJvṽt

)
.

(75)

Adding all those terms together, we get

⟨nv(t)⟩G = 2 sin2 ϑ cos2 ϑ ℜ

1− eihvt
∏

ṽ∈NG(v)

(
cos2 ϑ+ sin2 ϑ eiJvṽt

) (76)

Quadratic term
We no focus on a given quadratic term and find an expression for ⟨µv1µv2⟩, where v1 ̸= v2. We start from again from (68).

v1, v2 ∈ Oσσ′

∑
µ∈Ov1

∩Ov2

fµσσ′(ϑ) = (cos θ)2N (tan θ)n ̸=+2n1

n1−2∑
p1=0

(
n1 − 2

p1

)
(tan θ)−2(p1+2)

n0∑
p0=0

(
n0
p0

)
(tan θ)2p0

n ̸=∑
p ̸==0

(−1)p ̸=

= cos4 ϑ δσσ′

(77)

Note that here ∀v, σv = σ′
v , and

(tan θ)nσ+nσ′
∑

µ∈Ov1
∩Ov2

fµσσ′(ϑ) = cos4 ϑ(tan θ)2nσ δσσ′ (78)
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v1 ∈ Oσσ′ , v2 ∈ Zσσ′

∑
µ∈Ov1

∩Ov2

fµσσ′(ϑ) = (cos θ)2N (tan θ)n ̸=+2n1

n1−1∑
p1=0

(
n1 − 1

p1

)
(tan θ)−2(p1+1)

n0−1∑
p0=0

(
n0 − 1

p0

)
(tan θ)2(p0+1)

n ̸=∑
p ̸==0

(−1)p ̸=

= sin2 ϑ cos2 ϑ δσσ′

(79)
Note that here ∀v, σv = σ′

v , and

(tan θ)nσ+nσ′
∑

µ∈Ov1
∩Ov2

fµσσ′(ϑ) = cos4 ϑ(tan θ)2nσ+1 δσσ′ (80)

v1 ∈ Oσσ′ , v2 ∈ ∆σσ′

∑
µ∈Ov1

∩Ov2

fµσσ′(ϑ) = (cos θ)2N (tan θ)n ̸=+2n1

n1−1∑
p1=0

(
n1 − 1

p1

)
(tan θ)−2(p1+1)

n0∑
p0=0

(
n0
p0

)
(tan θ)2p0

n̸=−1∑
p ̸==0

(−1)p ̸=+1

= − sin θ cos3 ϑ δn ̸=−1

(81)
Note that here ∀v ̸= v2, σv = σ′

v , and σv2 = 1− σ′
v2 , and

(tan θ)nσ+nσ′
∑

µ∈Ov1
∩Ov2

fµσσ′(ϑ) = − cos4 ϑ(tan θ)2(nσ−σv2
) δn ̸=−1 δ̄σv2

σ′
v2

(82)

v1, v2 ∈ Zσσ′

∑
µ∈Ov1∩Ov2

fµσσ′(ϑ) = (cos θ)2N (tan θ)n ̸=+2n1

n1∑
p1=0

(
n1
p1

)
(tan θ)−2p1

n0−2∑
p0=0

(
n0 − 2

p0

)
(tan θ)2(p0+2)

n ̸=∑
p ̸==0

(−1)p̸=

= sin4 ϑ δσσ′

(83)

Note that here ∀v, σv = σ′
v , and

(tan θ)nσ+nσ′
∑

µ∈Ov1∩Ov2

fµσσ′(ϑ) = sin4 ϑ(tan θ)2nσ δσσ′ = cos4 ϑ(tan θ)2nσ+4 δσσ′ (84)

v1 ∈ Zσσ′ , v2 ∈ ∆σσ′

∑
µ∈Ov1∩Ov2

fµσσ′(ϑ) = (cos θ)2N (tan θ)n ̸=+2n1

n1∑
p1=0

(
n1
p1

)
(tan θ)−2p1

n0−1∑
p0=0

(
n0 − 1

p0

)
(tan θ)2(p0+1)

n̸=−1∑
p ̸==0

(−1)p ̸=+1

= − sin3 ϑ cos θ δn ̸=−1

(85)
Note that here ∀v ̸= v2, σv = σ′

v , and σv2 = 1− σ′
v2 , and

(tan θ)nσ+nσ′
∑

µ∈Ov1
∩Ov2

fµσσ′(ϑ) = − sin4 ϑ(tan θ)2(nσ−σv2 ) δn̸=−1 δ̄σv2
σ′
v2

= − cos4 ϑ(tan θ)2(nσ+2−σv2
) δn ̸=−1 δ̄σv2σ

′
v2

(86)
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v1, v2 ∈ ∆σσ′

∑
µ∈Ov1

∩Ov2

fµσσ′(ϑ) = (cos θ)2N (tan θ)n̸=+2n1

n1∑
p1=0

(
n1
p1

)
(tan θ)−2p1

n0∑
p0=0

(
n0
p0

)
(tan θ)2p0

n̸=−2∑
p ̸==0

(−1)p ̸=+2

= sin2 ϑ cos2 ϑ δn ̸=−2

(87)

Note that here ∀v ̸= v2, v1, σv = σ′
v , and σv1 = 1− σ′

v1 , σv2 = 1− σ′
v2 , and

(tan θ)nσ+nσ′
∑

µ∈Ov1∩Ov2

fµσσ′(ϑ) = cos4 ϑ(tan θ)2(nσ−σv2−σv2 ) δn ̸=−2 δ̄σv2σ
′
v2
δ̄σv1σ

′
v1

(88)

⟨nv1nv2(t)⟩G
In the following, we will note σ̃i the configuration obtained from σ by flipping σvi , and configuration obtained from σ by
flipping both σv1 and σv2 . We then split the sum

∑
σ∈{0,1}N

into four terms

∑
σ∈Ov1

∩Ov2

+
∑

σ∈Ov1
∩Zv2

+
∑

σ∈Zv1
∩Ov2

+
∑

σ∈Zv1
∩Zv2

:= S11 + S10 + S01 + S00, (89)

and focus on each of them separately.

S11 =
∑

σ∈Ov1
∩Ov2

∑
σ′∈{0,1}N

e−i∆Eσ,σ′ t(tan θ)nσ+nσ′
∑

µ∈Ov1
∩Ov2

fµσσ′(ϑ)

= cos4 ϑ

N−2∑
n=0

(
N − 2

n

)
(tan θ)2(n+2)

− cos4 ϑ
∑

σ∈Ov1
∩Ov2

(tan θ)2(nσ−1)
(
e−i∆Eσ,σ̃1 t + e−i∆Eσ,σ̃2 t

)
(90)

We introduce N12 = NG(v1) ∩NG(v2), and N1 = NG(v1)\N12\v2 (and 1↔ 2). Furthermore, we also introduce

wϑ(ϕ, t) =
(
cos2 ϑ+ sin2 ϑ e−iϕt) (91)

If (v1, v2) ∈ E , then

S11 = (cos θ)−2N sin2 ϑ cos6 ϑ

tan2 ϑ− e−ihv1
t
∏

ṽ∈N\v2
wϑ(Jv1ṽ, t)− e−ihv2

t
∏

ṽ∈N\v1
wϑ(Jv2ṽ, t)

+ tan2 ϑ e−i(hv1
+hv2

+Jv1v2
)t
∏
ṽ∈N1

wϑ(Jv1ṽ, t)
∏
ṽ∈N2

wϑ(Jv2ṽ, t)
∏

ṽ∈N12

wϑ(Jv1ṽ + Jv2ṽ, t)

] (92)

The generic expression is

S11 = (cos θ)−2N sin2 ϑ cos6 ϑ

tan2 ϑ− e−ihv1
t
∏
ṽ ̸=v2

wϑ(Jv1ṽ, t)− e−ihv2
t
∏
ṽ ̸=v1

wϑ(Jv2ṽ, t)

+ tan2 ϑ e−i(hv1
+hv2

+Jv1v2
)t

∏
ṽ ̸=v1,v2

wϑ(Jv1ṽ + Jv2ṽ, t)

 (93)
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S10 = (cos θ)−2N sin2 ϑ cos6 ϑ

tanϑ− eihv2 t
∏
ṽ ̸=v1

wϑ(−Jv2ṽ, t)

− tan−1 ϑe−ihv1 t
∏
ṽ ̸=v2

wϑ(Jv1ṽ, t)

− tan−2 ϑe−ihv1 t
∏
ṽ ̸=v2

wϑ(Jv1ṽ, t)

+ tan2 ϑ e−i(hv1+hv2+Jv1v2 )t
∏

ṽ ̸=v1,v2
wϑ(Jv1ṽ + Jv2ṽ, t)



(94)

⟨nv1nv2(t)⟩G = 4 sin4 ϑ cos4 ϑ ℜ

1− eihv1
t
∏
ṽ ̸=v2

(
cos2 ϑ+ sin2 ϑ eiJv1ṽt

)
− eihv2

t
∏
ṽ ̸=v1

(
cos2 ϑ+ sin2 ϑ eiJv2ṽt

)
+

1

2
ei(hv1+hv2+Jv1v2 )t

∏
ṽ ̸=v1,v2

(
cos2 ϑ+ sin2 ϑ ei(Jv1ṽ+Jv2ṽ)t

)

+
1

2
ei(hv1

−hv2
)t

∏
ṽ ̸=v1,v2

(
cos2 ϑ+ sin2 ϑ ei(Jv1ṽ−Jv2ṽ)t

)
(95)

⟨nv1nv2(t)⟩G − ⟨nv1(t)⟩G⟨nv2(t)⟩G
In order to emphasise the structure of the expression, we introduce

wvṽ(ϑ, t) =
(
cos2 ϑ+ sin2 ϑ eiJvṽt

)
(96)

and

ϱϑ,v(t) = eihv1
t
∏
ṽ

(
cos2 ϑ+ sin2 ϑ eiJvṽt

)
= eihv1

t
∏
ṽ

wvṽ(ϑ, t), (97)

so that

⟨nv(t)⟩G = 2 sin2 ϑ cos2 ϑ ℜ{1− ϱϑ,v(t)} = 2 sin2 ϑ cos2 ϑ

[
1− 1

2

(
ϱϑ,v(t) + ϱ∗ϑ,v(t)

)]
, (98)

and

⟨nv1nv2(t)⟩G = 4 sin4 ϑ cos4 ϑ ℜ
{
1− [ϱϑ,v1(t) + ϱϑ,v2(t)] +

1

2

[
ϱϑ,v1(t)ϱϑ,v2(t) + ϱϑ,v1(t)ϱ

∗
ϑ,v2(t)

]}
. (99)

28



Quantum Positional Encodings for Graph Neural Networks

Similarly,

⟨nv1nv2(t)⟩G = 4 sin4 ϑ cos4 ϑ ℜ
{
1− ϱϑ,v1(t) + ϱϑ,v2(t)

wv1v2(ϑ, t)

+
1

2
eiJv1v2

t ϱϑ,v1(t)ϱϑ,v2(t)∏
ṽ∈N12∪{v1,v2}

cos2 ϑ+ sin2 ϑ ei(Jv1ṽ+Jv2ṽ)t

+
1

2

ϱϑ,v1(t)ϱ
∗
ϑ,v2

(t)∏
ṽ∈N12∪{v1,v2}

cos2 ϑ+ sin2 ϑ ei(Jv1ṽ−Jv2ṽ)t

 .

(100)

Introducing w±
v1v2

(ϑ, t) =
∏

ṽ∈N12∪{v1,v2}
cos2 ϑ+ sin2 ϑ ei(Jv1ṽ±Jv2ṽ)t, the correlation between densities at v1 and v2 can

then be expressed as

⟨nv1nv2(t)⟩G − ⟨nv1(t)⟩G⟨nv2(t)⟩G = 4 sin4 ϑ cos4 ϑ ℜ
{
[ϱϑ,v1(t) + ϱϑ,v2(t)]

[
1− wv1v2(ϑ, t)−1

]
+

1

2

[
1− eiJv1v2

tw+
v1v2(ϑ, t)

−1
]
ϱϑ,v1(t)ϱϑ,v2(t)

+
1

2

[
1− w−

v1v2(ϑ, t)
−1
]
ϱϑ,v1(t)ϱ

∗
ϑ,v2(t)

}
. (101)

Since we consider only the uniform Ising model for this proof, we have hv = 1 ∀v ∈ V and Jv1,v2 = 1 if (v1, v2) ∈ E and
0 if not. This allows us to rewrite the elements recovered in the generic expression derived in equation 101. furthermore, if
we write a = (cos2 ϑ+ sin2 ϑeit) and b = (cos2 ϑ+ sin2 ϑe2it) we can rewrite the previous quantities in terms of SRGs
invariants (ν, k, λ, µ) as :

ϱϑ,v(t) = eitak (102)

w+
v1,v2(ϑ, t) =

{
a2.bλ, if (v1, v2) ∈ E
bµ otherwise (103)

w−
v1,v2(ϑ, t) =

{
|a|2, if (v1, v2) ∈ E
1 otherwise (104)

this allows us to write the correlation matrix C as :

C = ck,λA+ ck,µ(J −A) (105)

with ck,λ & ck,µ ∈ R that only depend on the invariants, A the adjacency matrix of the graph, and J a matrix where all the
entries are ones. It is then easy to verify that using this formula, invariant functions (ex : the distance introduced in section
4.2) are not enough to distinguish non isomorphic SRGs from the same family, neither can the GD-WL which is in this case
equivalent to the 1-WL, and we know that the latter is not powerful enough to distinguish SRGs c.f proposition 4.5.

C. Experiments
C.1. Experiments on quantum random walk

In the same way as (Ma et al., 2023), we perform the experiments on the standard train/val/test splits. For each dataset, we
perform 4 runs with the seeds 0, 1, 2, 3 and display the average of the scores and the standard deviation.

We do not perform an extensive hyperparameter search, and we only compute ourselves the GRIT model. We take the same
hyperparameters as (Ma et al., 2023) that we remind in table 2.
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Table 2. Hyperparameters for GRIT model five datasets from BenchmarkingGNNs (Dwivedi et al., 2020), ZINC-full (Irwin et al., 2012)
and (Hu et al., 2021)

Hyperparameter ZINC/ZINC-full MNIST CIFAR10 PATTERN CLUSTER PCQM4Mv2

# Transformer Layers 10 3 3 10 16 16
Hidden dim 64 52 52 64 48 256
# Heads 8 4 4 8 8 8
Dropout 0 0 0 0 0.01 0.1
Attention dropout 0.2 0.5 0.5 0.2 0.5 0.1
Graph pooling sum mean mean − − mean

PE dim (RW-steps) 21 18 18 21 32 16
PE encoder linear linear linear linear linear linear

QPE dim (1CQRW steps) 20 18 18 20 32 16
Max duration π π π π π π
Min duration 0.1 0.1 0.1 0.1 0.1 0.1
Initial distribution local local local local local local

QPE dim (2QiRW steps) 20 18 18 20 32 16
Initial distribution adjacency adjacency adjacency adjacency adjacency adjacency

Batch size 32/256 16 16 32 16 256
Learning Rate 0.001 0.001 0.001 0.0005 0.0005 0.0002
# Epochs 2000 200 200 100 100 150
# Warmup epochs 50 5 5 5 5 10
Weight decay 1e − 5 1e − 5 1e − 5 1e − 5 1e − 5 0

# Parameters GRIT 473,473 102,138 99486 477,953 432,206 11.8M
# Parameters 2QiRW GRIT 476,033 104,010 101,358 480,513 434,742 11.8M

Table 3. Hyperparameters for non transformer base models large scale datasets , ZINC-full (Irwin et al., 2012) and PCQM4Mv2 (Hu et al.,
2021). Each entry has to be read as the values for ZINC-full/PCQM4Mv2, when there is a single entry, the value is the same for both
datasets. * : same as the first column. - : non applicable.

Hyperparameter GINE GINE-big GatedGCN GatedGCN-big

# Layers 5/3 * * *
Hidden dim 128 256 128 256
Dropout 0 * * *
Aggregation mean * * *
# Layers MLP postprocessing 3 * * *
PE encoder linear * * *

PE dim (RRWP) 21 40 21 40

PE dim (LE) 32 * * *

PE dim (Q) 21 40 20 40
Initial distribution adjacency * * *

PE dim RRWP(RRWP+Q) 20 * * *
PE dim Q(RRWP+Q) 20 * * *

Batch size 256 * * *
Learning Rate 0.001/0.0002 * * *
# Epochs 2000/150 * * *
# Warmup epochs 50/10 * * *
Weight decay 1e − 5/0 * * *

C.2. Experiments on synthetic datasets

We train the GCN model for 200 epochs using the Adam optimizer, 0.001 learning rate, no weight decay. We split randomly
the dataset on train/validation/test with a proportion 0.8/0.1/0.1, and we measure the test accuracy of the model having the
highest validation accuracy. For the other models we use the same hyperparameters as in table 3, but with hidden dimensions
of 32 for normal models and 64 for big models. We also use a dimension 20 for all positional encodings, and initialize with
uniform node and edge features full of 1s.
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Table 4. Test performance on ZINC-full and PCQM4MV2.
Method Model ZINC-full (MAE ↓) PCQM4MV2 (MAE ↓)

GatedGCN

LE .033± .001 .1056
RRWP .026± .003 .1045
Q .031± .002 .1079
RRWP+Q .026± .001 .1052

GatedGCN-big

LE .033± .0008 .1016
RRWP .025± .0017 .1005
Q .025± .0023 .1035
RRWP+Q .022± .0017 .0999

GINE

LE .035± .002 .1155
RRWP .029± .003 .114
Q .027± .0005 .1149
RRWP+Q .029± .003 .1124

GINE-big

LE .036± .0022 .1063
RRWP .029± .003 .1041
Q .024± .002 .1054
RRWP+Q .027± .0025 .1048

GRIT RRWP 0.025± 0.002 .0842
RRWP+Q 0.023± 0.002 .0838

D. Supplementary information about the datasets
D.1. Datasets used in experiments on quantum random walks

The datasets used for benchmarking the use of quantum random walks encodings are standard in the GNN community. The
first five are from (Dwivedi et al., 2020), the last one is from (Hu et al., 2021). We reproduce the table of statistics 5 taken
from (Ma et al., 2023), and we also refer the reader to (Rampášek et al., 2022) for more information about the datasets.

Table 5. Overview of the graph learning datasets involved in this work (Dwivedi et al., 2020), (Irwin et al., 2012), (Hu et al., 2021) .
Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction level Prediction task Metric

ZINC(-full) 12,000 (250,000) 23.2 24.9 No graph regression Mean Abs. Error
MNIST 70,000 70.6 564.5 Yes graph 10-class classif. Accuracy
CIFAR10 60,000 117.6 941.1 Yes graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No inductive node binary classif. Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No inductive node 6-class classif. Accuracy

PCQM4Mv2 3,746,620 14.1 14.6 No graph regression Mean Abs. Error

D.2. Synthetic Dataset

In this subsection, we explain how to construct our artificial dataset. Our building blocks are 3 types of graphs, called types
0, 1, 2. Each type is composed of one ladder graphs with crossings inserted at different places. All crossings are in the same
fixed arbitrary direction. Type 0 graphs are plain ladder graphs and their Ising hamiltonian has two ground states. Type 1
graphs are type 0 graphs with crossings separated with an odd number of nodes. The crossings are located such that they
have one possible Ising ground state which is one of the ground states of the type 0 associated graph. The crossings will
effectively select one of the two possible ground states. Type 2 graphs are ladder graphs of odd length with crossings at the
beginning and the end. An illustration of the types of graphs is provided figure 7.

We construct a graph given two graphs of same length but different types concatenated to each other. The first class is
determined by graphs of type 0 and type 1 concatenated, and the second class is composed of graphs of type 0 concatenated
to graphs of type 1. The concatenation is made by adding edges to continue the ladder, the process is illustrated figure
8. The ground state of the total graph is included in a union of the groundstates of the subgraph, so it can be efficiently
computed. The length of graphs are taken between 100 and 400, our dataset consists of 400 graphs per class, so 800 in total.

In figure 8 we see that the RRWP features are very similar for the two classes whereas the correlations on the ground state
are very different.
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Figure 7. The base subgraphs (type 0, type 1, type 2) and their possible ground state. Top : type 0 graph of length 7, 2 possible ground
states. Middle: type 1 graph of length 7, 1 possible ground state. Bottom : type 2 graph of length 7, 9 possible ground states.

Type 0

Type 2

Type 1

Type 0

Class 0

Class 1

Class 0 Class 1

RRWP

Quantum 
correlations

Figure 8. Left: construction of our artificial dataset. Right: RRWP and quantum features for each class of the dataset on a 40 nodes graph.
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