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Figure 1: PersonView compared to conventional customization methods. PersonalView generates
personalized images consistent with multiple views given one reference image. Conventional methods
like PULID (Guo et al., 2024) have limited control over the viewpoint in the prompt (i.e., left, middle,
and right view) and do not have multi-view consistency.

ABSTRACT

Recent advances in personalized generative models demonstrate impressive results
in creating identity-consistent images of the same person under diverse settings.
Yet, we note that most methods cannot control the viewpoint of the generated image,
nor generate consistent multiple views of the person. To address this problem,
we propose a lightweight adaptation method, PersonalView, capable of enabling
an existing model to acquire multi-view generation capability with as few as 100
training samples. PersonalView consists of two key components: First, we design
a conditioning architecture to take advantage of the in-context learning ability of
the pre-trained diffusion transformer. Second, we preserve the original generative
ability of the pretrained model with a new Semantic Correspondence Alignment
Loss. We evaluate the multi-view consistency, text alignment, identity similarity,
and visual quality of PersonalView and compare it to recent baselines with potential
capability of multi-view customization. PersonalView significantly outperforms
baselines trained on a large corpus of multi-view data with only 100 training
samples. Generated samples are available at https://personalview01.
github.io/PersonalView/.

1 INTRODUCTION

Recent years have witnessed an explosion of research endeavors in the domain of human image
customization (Li et al., 2024e; Guo et al., 2024; Wang et al., 2024; Ye et al., 2023; Li et al., 2024c;
2025; Yang et al., 2024). These methodologies exhibit the capability for human customization to
user-provided photographic input. For example, given a user’s personal photograph, such approaches
can synthesize novel customizations depicting the individual seated on a beach or smiling in a
grassland setting. Despite the recent surge in human image customization techniques, a significant
challenge persists in achieving multi-view consistent customization.
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Method Geometry
Consistency

Visual
Consistency

w/o Large
MV Dataset

w/o Test-Time
Training

Human Identity
Consistency

Prompt
Control

Conventional Customization
(e.g., PuLID (Guo et al., 2024))

% % ! ! ! !

Image to Multi-View
(e.g., Era3D (Li et al., 2024d))

! % % ! ! %

Unified Multi-Modal Model
(e.g., BAGEL (Deng et al., 2025))

% % ! ! ! !

CustomDiffusion360
(Kumari et al., 2024)

% ! ! % % !

PersonalView ! ! ! ! ! !

Table 1: Comparison with previous methods. In comparison, our method is capable of generating
geometrically and visually consistent multi-view images while preserving human identity and prompt
controllability, all without requiring large-scale multi-view datasets or test-time training.

What if a user wishes to change the view of the customized human while simultaneously synthesizing
it in a novel context, as exemplified in Figure 1? Simply, employing viewpoint-specific prompts like
‘from the left view’ has limited control on customized images from diverse angles. Furthermore, the
resulting outputs often suffer from a lack of inter-view coherence including geometry consistency
of the human body and visual consistency manifesting across a range of visual attributes, encom-
passing body gestures, facial features, expressions, background elements, apparel, and accessories.
Consequently, a salient inquiry emerges: how can multi-view consistency be preserved during the
customized image generation process to satisfy user requirements?

In this work, we introduce a new task: Multi-View Customization (MVC) of human images condi-
tioned on a single user-provided photograph. Without test-time tuning, it empowers users to generate
multi-view personalized images exhibiting robust geometry consistency and visual consistency across
different views with promising identity fidelity and versatile prompt-based control, as shown in
Table 1. It not only enables users to explicitly control viewpoints for greater flexibility in customiza-
tion and visual creation, but also holds potential for extension to other critical domains such as 3D
modeling and reconstruction.

The core of this task is how to control the generation of multiple views while maintaining geometric
and visual consistency. We are inspired by the in-context learning ability of the DiT-based models,
such as FLUX (Labs, 2024b). As shown in prior work (Huang et al., 2024; Kang et al., 2025), they
have the ability to generate a grid of images with roughly consistent visual content. This observation
motivates our hypothesis that the model has a strong prior in multi-view capability, though the
consistency is not guaranteed. Therefore, we propose to exploit this 3D-aware prior by in-context
learning to foster more explicit multi-view consistency.

To this end, we propose employing in-context depth-maps as the cues to activate FLUX’s capacity for
geometry and visual consistent generation. Specifically, we introduce a novel generation framework
based on multi-view depth-maps, termed PersonalView. At first, our goal is to obtain multi-view
depth maps that are consistent with the provided prompts, which will serve as contextual cues
for further processing. To achieve this, in the first stage, we leverage a pre-trained customization
model (Guo et al., 2024) to perform preliminary sampling. Subsequently, we employ the SMPL
model (Goel et al., 2023) for fitting and rendering, generating multi-view depth maps that align with
the desired customization. Then, these multi-view human depth-maps are arranged into a four-panel
grid, serving as an in-context conditioning signal for the depth-conditioned model to synthesize
multi-view consistent customized images.

To enhance the geometry and visual consistency across multiple views, we further fine-tune the
depth-conditioned adapter with a multi-view in-context learning paradigm. However, given the
limited diversity of scenes within multi-view data, the model is susceptible to overfitting, potentially
compromising its prompt controllability. To mitigate this, we introduce a Semantic Correspondence
Alignment Loss specifically designed for DiT-based models to preserve the original model’s semantic
control capabilities. Concretely, this loss incorporates a frozen branch of the original model during
training. By aligning the correspondence between text tokens and visual tokens extracted from both
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the trainable and frozen branches, it effectively retains the original model’s semantic control without
impeding its in-context learning abilities.

Our proposed PersonalView consistently preserves multi-view human identity while demonstrating
strong adherence to editing prompts, requiring only a few training steps without large-scale multi-view
human dataset. It exhibits robust multi-view consistency across various attributes, including facial
features, body gestures, background, and clothing, while concurrently preserving excellent prompt
controllability and identity fidelity. Extensive experimentation demonstrates its superior performance
compared to existing novel view synthesis methods that typically necessitate extensive training on
large-scale multi-view datasets.

In summary, our contributions are as follows.

• We introduce a novel task, Multi-View Customization (MVC) conditioned on a single user-
provided photograph without test-time tuning, which aims to generate multi-view consistent
customized images with precise identity and diverse prompt-control.

• We propose PersonalView, leveraging in-context multiview depth maps to activate the
in-context learning capabilities of DiT-based models with only a few training samples,
facilitating the generation of geometry and visual consistent human images.

• We introduce a Semantic Correspondence Alignment loss tailored for DiT-based models,
which preserves the original model’s semantic control capabilities without impeding its
in-context learning abilities.

2 RELATED WORKS

2.1 IMAGE CUSTOMIZATION

In the domain of Text-to-Image (T2I) generation, a variety of approaches have emerged to address
identity (ID) customization (Gal et al., 2022; Li et al., 2024e; Gal et al., 2024; Valevski et al., 2023;
Xiao et al., 2024; Ma et al., 2024; Peng et al., 2024; Li et al., 2023; 2024a). A seminal method in this
line of work is Textual Inversion (Gal et al., 2022), which encodes user-specific identity information
into a dedicated token embedding while keeping the T2I model parameters fixed. To improve identity
fidelity, In contrast, encoder-based paradigms aim to directly inject identity representations into
the generation pipeline. For instance, PhotoMaker (Li et al., 2024e) leverages large-scale identity
datasets to construct robust ID embeddings from diverse image samples. Similarly, PuLID (Guo et al.,
2024) introduces a more precise ID supervision mechanism by minimizing identity loss between
synthesized outputs and reference images. Recently, CustomDiffusion360 enables explicit control
over object viewpoints in the customization of text-to-image diffusion models; however, it requires
test-time training and is limited to object-level customization rather than human subjects.

2.2 MULTI-VIEW IMAGES SYNTHESIS

Cross-view consistency plays a pivotal role in multi-view generation. MVFusion (Tang et al., 2023)
initiates this direction by parallel multi-view image generation with correspondence-aware attention,
which facilitates cross-view information exchange and supports textured scene mesh reconstruction.
Building upon it, subsequent works (Tseng et al., 2023; Kant et al., 2024; Gu et al., 2024; Li et al.,
2024b; Shen & Tang, 2024) incorporate epipolar constraints into diffusion models to enhance inter-
view feature alignment. Zero123++ (Shi et al., 2023a) adopts a tiled view representation, enabling
single-pass generation over multiple views, a strategy later adopted in Direct2.5 and Instant3D
for efficient view synthesis. Similarly, MVDream (Shi et al., 2023b) and Wonder3D (Long et al.,
2023) leverage dedicated multi-view self-attention mechanisms to promote cross-view coherence.
Meanwhile, other approaches (Chen et al., 2024; Voleti et al., 2024; Yu et al., 2024) exploit spatio-
temporal priors from video diffusion models to ensure view consistency across frames.

2.3 IN-CONTEXT LEARNING

Recent advancements in Text-to-Image (T2I) generation (OpenAI, 2023; Podell et al., 2023; Esser
et al., 2024; Labs, 2024a) have enabled the synthesis of identity-preserving subject views within a
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single M×N grid-structured mosaic, where each subview is prompted via carefully designed textual
inputs. For example, IC-LoRA (Huang et al., 2024) explores in-context learning by fine-tuning a
LoRA (Hu et al., 2021) model on concatenated grid-based image-prompt pairs; however, it suffers
from reduced visual consistency, particularly in transferring identity across views. Similarly, by
formulating the task as a grid-based image completion problem and replicating the subject image(s)
within a structured mosaic layout, (Kang et al., 2025) demonstrates strong identity-preserving capa-
bilities without the need for additional training data, fine-tuning, or modifications during inference.

3 METHOD

3.1 PRELIMINARY

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a class of
likelihood-based generative models that produce data samples via a sequential denoising procedure
originating from Gaussian white noise. During training, a predefined forward diffusion process is
employed to transform clean observations x0 into a latent noise representation xT ∼ N (0, I) through
the iterative injection of Gaussian perturbations across T steps, forming a Markov chain structure,
i.e., xt =

√
αtx0 +

√
1− αtϵ. The model is trained to learn the backward process, i.e.,

pθ(x0|c) =
∫ [

pθ(xT )
∏

ptθ(xt−1|xt, c)
]
dx1:T , (1)

Typically, the training objective maximizes the variational lower bound, which can be simplified to a
simple reconstruction loss with the conditioning signal c:

Ldiff = Ext,t,c,ϵ∼N (0,I)[wt||ϵ− ϵθ(xt, t, c)||]. (2)

Diffusion Transformers. A growing body of research has begun to adopt transformer (Peebles
& Xie, 2023) architectures within text-to-image generative frameworks. Notably, models such as
FLUX (Labs, 2024b) exemplify this trend by employing the MultiModal-Diffusion Transformer (MM-
DiT) architecture. This design facilitates joint cross-modal interaction by performing attention over
concatenated text and image embeddings, thereby enabling more effective integration of multimodal
information during the generation process.

Q = [QT ;QI ],K = [KT ;KI ], V = [VT ;VI ], (3)

A(Q,K, V ) = W (Q,K)V = softmax
(
QKT

√
d

)
V, (4)

where [; ] is the concatenation, Q, K, and V represent the key components of attention−query, key,
and value, respectively; Qt and Qi correspond to the text and image query tokens; W is the attention
weight, and A is the output correspondence.

3.2 TASK FORMULATION

Although existing human customization approaches have successfully demonstrated the ability to
accurately preserve user identities and allow for various prompt-control, the generation of consistent
multi-view customized images has yet to be thoroughly explored. In this work, we introduce a novel
task: Multi-View Customization for human images. Given an image provided by the user and the
prompt condition, our objective is to generate multiple customized images from different viewpoints
that maintain high geometric and visual consistency across all perspectives, with robust identity
similarity and prompt following.

3.3 IN-CONTEXT DEPTH-CONDITIONED GENERATION

Previous works (Huang et al., 2024; Kang et al., 2025) have demonstrated the contextual learning
capabilities of the DiT model, leveraging this to generate images with consistent appearances. Inspired
by these advancements, we hypothesize that the DiT model may also possess inherent multi-view

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Personalized
MMDiT

…

SMPL

Render

Control
Adapter +Personalized

MMDiT

A man wearing 
superman costume 
waving his hand …

2x2 grid of a man wearing 
superman costume waving 

his hand …

Step 1 : Multi-View Depth-Maps Generation

Step 2 : In-Context Depth-Conditioned Customization

Trainable

Frozen

Figure 2: Overview of PersonalView. In step 1, we use SMPL (Goel et al., 2023) to fit the body
mesh corresponding to the sample from the personalized generator (Guo et al., 2024). Then we render
the body mesh for multi-view depth maps. With the in-context depth maps, we can generate the
multi-view customization images in step 2 using the personalized model with our control Adapter.

geometric consistency. To explore this, we propose utilizing in-context depth maps as cues to activate
the multi-view consistency of the DiT model.

Specifically, we adopt a two-stage approach as shown in Figure 2. In the first stage, our objective
is to obtain multi-view depth maps that align with the provided prompt. Therefore, we leverage
a pre-trained customization generator, like PuLID (Guo et al., 2024), to perform initial sampling
based on the user-provided image and prompt. Subsequently, we employ SMPL (Goel et al., 2023)
to fit a corresponding human body model and generate multi-view depth maps by rotating and
rendering the fitted mesh. In the second stage, these multi-view human depth maps are arranged into a
four-panel grid, which serves as an in-context conditioning signal for a pre-trained depth-conditioned
model (Labs, 2024b). This setup enables the synthesis of multi-view consistent customized images.

3.4 LIGHTWEIGHT IN-CONTEXT LEARNING

With this in-context depth-conditioned framework, we can further fine-tune the depth-conditioned
adapter with an in-context learning paradigm to enhance the geometry and visual consistency.
Following FLUX, we adopt LoRA as the adapter mechanism. Empirical results demonstrate that,
only a small amount of training samples is required to activate the model’s inherent capability for
multi-view consistency. Specifically, we sample multi-view human depth-image pairs from the
multi-view dataset like NeRSemble (Kirschstein et al., 2023) and use the VLM model (Bai et al.,
2023) to generate captions that correspond to the respective prompts. These depth maps and images
are then organized into a four-panel grid format, which is utilized for in-context learning during
training. To alleviate the adverse effects of background diversity, we further extract body masks M
from the depth maps and integrate them into the diffusion reconstruction loss as spatial priors,

Ldiff = Ext,t,c,ϵ∼N (0,I)[wt||ϵ− ϵθ(xt, t, c)|| ·M ]. (5)

3.5 SEMANTIC CORRESPONDENCE ALIGNMENT

While the multi-view consistency is significantly enhanced during the contextual learning process, the
relatively limited variety of scenarios in multi-view human data can lead to model overfitting, which
in turn diminishes its ability to maintain semantic control. To address this degradation of semantic
capabilities, we propose a Semantic Correspondence Alignment Loss as shown in Figure 3.
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Figure 3: Overview of Semantic Correspondence Alignment Loss. Specifically, we minimize the
L2 distance between semantic correspondences at each layer of the finetuned and pretrained MMDiT
models for the same training sample, thereby explicitly constraining the finetuned model to retain the
semantic control capabilities learned in pretraining.

Our primary goal is to preserve the model’s original ability to respond to semantic textual inputs.
To achieve this, we introduce a frozen branch of the pretrained model during training. Intuitively,
aligning the correspondence between textual and visual tokens of the dual branch will facilitate the
preservation of cross-modal semantic consistency without affecting its other behaviors. To the end,
for the Query-Key-Value components in Equation (3) and Equation (4), we compute the semantic
correspondence of Q, K and V in each layer l

SC(Ql,Kl, V l) = A(Ql
I ,K

l
T , V

l
T ) +A(Ql

T ,K
l
I , V

l
I ). (6)

Then we minimize the L2 distance between all the semantic correspondence of the fine-tuned and
pretrained MMDiT

LSCA = Ext,t,l||SCF − SCP ||2, (7)

where SCF and SCP are the semantic correspondence of the fine-tuned and pretrained MMDiT
respectively. The alignment ensures that the model retains its semantic response capability while
benefiting from multi-view consistency. Overall, our training loss is

Ltotal = Ldiff + LSCA. (8)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation details. We utilize the recently developed DiT model FLUX (Labs, 2024b) with a
pre-trained personalized module PuLID (Guo et al., 2024) as our foundational model. Our training
set comprises only 100 cases randomly sampled from NeRSemble (Kirschstein et al., 2023), a widely
utilized multi-view human dataset. Please refer to the Appendix for more details.

Baselines. To the best of our knowledge, our approach is the first to support end-to-end customized
multi-view human image generation. For comparison, we construct a two-stage baseline wherein
PuLID is used for identity-specific image synthesis, followed by the novel view synthesis method
based on image-to-3D reconstruction. Specifically, we benchmark the proposed method against
DiffPortrait3D (Gu et al., 2024) and Era3D (Li et al., 2024d), recent methods synthesizing 3D-
consistent photo-realistic novel views. We also compare with ViewCrafter (Yu et al., 2024), a recent
method synthesizing high-fidelity novel views of generic scenes. Besides, we compare with recent
unified multi-modal model BAGEL (Deng et al., 2025) and Qwen-Image (Wu et al., 2025).

Evaluation. We collect a diverse portrait test set from the internet which consists of 80 characters
ensuring demographic representation, with 50 prompts for comprehensive motion evaluation. To
assess multi-view consistency, we follow the 3D consistency metric (MV Cons.) proposed in
Pippo (Kant et al., 2025). MV Cons. is calculated on a pair of images where landmarks are estimated
first and then reprojected to each other for error calculation. More details are in Appendix. The
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PersonalView DiffPortrait3D

Era3D ViewCrafter

PersonalView DiffPortrait3D

Era3D ViewCrafter

A futuristic man 
in a sleek 

cyberpunk outfit, 
neon lights 

reflecting on his 
chrome visor, 

dark sci-fi city 
background

a woman sitting in 
front of the 

camera, with a 
beautiful purple 
sunset at the 
beach in the 
background

PersonalView

Era3D ViewCrafter

DiffPortrait3D

a woman 
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sunglasses and 
necklace, close-

up

Era3D ViewCrafter

DiffPortrait3DPersonalView

a man wearing 
headphones with 

red hair

BAGEL Qwen-Image

BAGEL Qwen-Image

BAGEL Qwen-Image

BAGEL Qwen-Image

Figure 4: Qualitative comparison. DiffPortrait3D and Era3D exhibit limitations in maintaining geo-
metric and visual consistency, especially with regard to full-body and background regions. Although
ViewCrafter achieves improved scene modeling, it does so at the expense of geometric consistency in
human representations. Besides, both BAGEL and Qwen-Image demonstrate suboptimal performance
in terms of multi-view control. In contrast, our PersonalView achieves superior performance in both
geometric fidelity and visual coherence across views.

evaluation framework employs CLIP-T and CLIP-I for quantitative assessment of text and image
alignment. To further measure identity preservation, we implement facial recognition embedding
similarity metrics (An et al., 2021) complemented by specialized facial motion analysis protocols.
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Method MV Cons. (↓) ID Cons. (↑) CLIP-T (↑) CLIP-I (↑)

DiffPortrait3D (Gu et al., 2024) 7.887 0.7721 0.2588 0.6689
Era3D (Li et al., 2024d) 6.383 0.6462 0.2421 0.6708

ViewCrafter (Yu et al., 2024) 6.945 0.5820 0.2358 0.7037
BAGEL (Deng et al., 2025) 5.882 0.5623 0.2591 0.7289

Qwen-image (Wu et al., 2025) 5.324 0.6433 0.2603 0.7422

PersonalView 3.697 0.7920 0.2615 0.7793

Table 3: Quantitative comparison. We conduct a comprehensive comparison including the ability
to achieve high multi-view consistency, identity consistency with the reference image (i.e., ID
Consistency and CLIP-I), and text alignment (i.e., CLIP-T).

4.2 MAIN RESULTS

Qualitative Results. We present a qualitative assessment comparing PersonalView with baseline
methods. As illustrated in Figure 4, DiffPortrait3D struggles with maintaining full-body geometric
consistency and coherent scene appearance, largely due to its design and training focus on portrait-
level generation. Similarly, Era3D, by primarily targeting subject-centric multi-view synthesis,
performs poorly in preserving visual consistency across scene elements. Although ViewCrafter
achieves improved scene coherence, it does so at the cost of human body geometry, often leading
to distorted multi-view results. For BAGEL and Qwen-Image, they both exhibit relatively poor
performance in multi-view control and consistency. In contrast, our proposed method achieves
strong geometric consistency for the entire human body, along with visually consistent scene model-
ing, including accessories and backgrounds, while simultaneously preserving identity fidelity and
supporting prompt-guided customization. More results are included in Figure 6 of the Appendix.

Method MV Cons. Text Align. ID Cons. Overall

Era3D 10.33 6.24 15.55 10.43
DiffPortrait3D 15.62 15.71 10.74 11.88
ViewCrafter 10.52 10.92 13.64 14.23

BAGEL 18.18 17.83 12.98 18.32
Qwen-Image 21.22 22.38 17.42 20.58

PersonalView 31.80 26.92 29.67 24.56

Table 2: User Study. Our PersonalView achieves the
best human preference compared with all baselines.

Quantitative Results. We report the results
of the quantitative comparison in Table 3.
As observed, DiffPortrait3D exhibits lim-
ited multi-view consistency, highlighting its
weakness in modeling coherent geometry
across viewpoints. Although Era3D miti-
gates this issue to some extent, it still suffers
from subpar performance in identity preser-
vation and semantic control accuracy. Like-
wise, ViewCrafter shows inferior results in
both identity consistency and CLIP-based se-
mantic alignment. Although BAGEL and Qwen-Image improve multi-view consistency, the identity
similarity has decreased. In contrast, our method consistently achieves superior performance across
all key evaluation dimensions, including multi-view consistency, identity fidelity, and prompt-aligned
semantic controllability.

User Study. To further evaluate the effectiveness of our methodology, we conduct a human-centric
assessment, comparing our approach with existing novel view synthesis methods. We recruit 25
evaluators to assess 40 sets of generated results. For each set, we present reference images alongside
multi-view images produced using identical seeds across various methods. The quality of the
generated multi-view images is evaluated based on four criteria: Multi-View Consistency, Text
Alignment, ID Consistency, and Overall Quality. As depicted in Table 2, our PersonalView achieves
higher user preference across all evaluative dimensions, underscoring its superior effectiveness.

Num. MV Cons. (↓) CLIP-T (↑) ID Cons. (↑)

200 5.553 0.2596 0.7902
400 4.282 0.2588 0.7899

800* 3.694 0.2599 0.7912
1600 3.685 0.2579 0.7853

(a) Ablation study of training iterations.

Num. MV Cons. (↓) CLIP-T (↑) ID Cons. (↑)

100* 3.697 0.2604 0.7920
200 3.752 0.2543 0.7899
400 3.688 0.2522 0.7882
800 3.694 0.2599 0.7912

(b) Ablation study of training samples.

Table 5: Ablation study for the number of training iterations and samples. ∗ indicates the best
trade-off setting.
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In-Context
Depth maps

w/o MV-IL
w/o SCA

w/ MV-IL
w/o SCA

w/ MV-IL
w/ SCA

a woman sitting in front of the camera, 
with a beautiful purple sunset at the 

beach in the background

a woman waving in superman costume

Figure 5: Ablation study for multi-view in-context learning. As shown, transitioning from the
pretrained model (second row) to the multi-view in-context learning model (third row) significantly
improves cross-view geometric consistency. The addition of the SCA module (fourth row) helps the
finetuned model retain the pretrained model’s ability to follow prompt-based semantic controls, such
as identity, clothing, and background.

4.3 ABLATION STUDY

MV-IL SCA MV Cons. (↓) CLIP-T (↑) ID Cons. (↑)

7.270 0.2589 0.7943
✓ 3.928 0.2271 0.7753
✓ ✓ 3.697 0.2604 0.7920

Table 4: Quantitative ablation study of multi-view in-
context learning. As observed in Figure 5, applying
multi-view in-context learning improves multi-view con-
sistency but degrades semantic controllability and identity
consistency. Incorporating the SCA loss allows our model
to recover these capabilities, balancing geometric consis-
tency and semantic fidelity.

Multi-View In-Context Learning. To
validate the effectiveness of our pro-
posed components, we conduct an ab-
lation study presented in Figure 5 and
Table 4. As shown in the figure, the pre-
trained model often generates head orien-
tations inconsistent with the correspond-
ing depth maps, leading to degraded geo-
metric consistency across viewpoints. In-
corporating multi-view in-context learn-
ing significantly alleviates this issue, re-
sulting in more coherent human geome-
try across views. However, due to the limited diversity of scenes in the multi-view dataset, prompt-
based semantic controllability, particularly for attributes such as background and clothing, tends
to diminish. In contrast, Semantic Correspondence Alignment (SCA) loss effectively preserves
fine- grained semantic control, ensuring that identity and prompt-relevant attributes are maintained
throughout the generated views. More ablation studies are given in the Appendix.

Number of Training Iterations and Samples. To investigate the impact of training iterations on
model performance, we present a quantitative comparison in Table 5a. As indicated by the results,
800 iterations provide a favorable trade-off between efficiency and performance, and are therefore
adopted in our final setting. Additionally, to validate the lightweight nature of our in-context learning
framework, we evaluate the effect of varying the number of training samples. As shown in Table 5b,
our method achieves competitive performance with as few as 100 training samples, demonstrating its
data efficiency and strong generalization capability under limited supervision.

5 CONCLUSION

In this work, we introduce PersonalView, a novel framework for multi-view human image customiza-
tion from a single photograph. By leveraging in-context learning with multi-view depth maps, our
method enhances DiT-based models’ multi-view reasoning. We also propose a Semantic Correspon-
dence Alignment Loss to preserve prompt controllability during fine-tuning. Extensive experiments
show that PersonalView excels in identity fidelity and coherent multi-view synthesis, requiring
minimal additional training. Our approach enables efficient, high-quality multi-view customization
without large-scale multi-view datasets.

9
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

For the NeRSemble dataset, we employ Qwen-VL (Bai et al., 2023) to generate descriptive captions.
During training, we learn the LoRA for 800 iterations with a learning rate of 1e-4 with batch size
1. We employ the AdamW optimizer with a weight decay parameter of 1e-2. The epsilon is set to
the default 1e-8 and the weight decay is set to 1e-2. During inference, we use 50 steps of DDIM
sampler and classifier-free guidance with a scale of 7.5. We generate multi-view images with 512 ×
512 spatial resolution. We used Lora rank 128, following the common setting of FLUX finetuning.
All experiments are conducted on a single NVIDIA A800 GPU. Our code will be open-source.

A.2 EVALUATION METRIC FOR MULTI-VIEW CONSISTENCY

To evaluate the multi-view consistency of the generated results, we adopt the re-projection error
metric proposed in Pippo (Kant et al., 2025). Specifically, we first estimate facial landmarks
from the generated images and then establish pairwise correspondences of these landmarks across
different views. Based on these correspondences, we apply Triangulation using the Direct Linear
Transformation algorithm to recover the 3D positions of each landmark. Finally, we reproject the 3D
landmarks back onto each view and compute the Reprojection Error as the L2 distance between the
original 2D landmark and the reprojected point, normalized by the image resolution. The final RE
score is obtained by averaging this error across all views and landmarks.

A.3 MORE ABLATION STUDY

Method MV Cons. (↓) CLIP-T (↑) ID Cons. (↑)

ImagPose 4.882 0.2385 0.7315
MVDream 8.669 0.2322 0.7286

Ours 3.697 0.2604 0.7920

Table 6: Quantitative ablation study of different align-
ment loss.

The core design of SCA is to preserve the
original model’s semantic control (text-
image correspondence) without compro-
mising in-context learning during fine-
tuning. In contrast, applying regulariza-
tion on other aspects like full-attention
features or model parameters leads to re-
duced multi-view consistency as shown
in Table 7, since it disrupts in-context
learning.

A.4 COMPARISON WITH MORE BASELINES

Method MV Cons. (↓) CLIP-T (↑) ID Cons. (↑)

Full-Attn. 5.433 0.2593 0.7855
Parameter 6.129 0.2602 0.7678

Ours 3.697 0.2604 0.7920

Table 7: Quantitative ablation study of different align-
ment loss.

We provide comparisons with addi-
tional potential baselines, such as Imag-
Pose (Shen & Tang, 2024) and MV-
Dream (Shi et al., 2023b). Compared
with ImagPose, our method enables the
customization model to generate multi-
view consistent images via lightweight
adaptation with only 100 samples, while
Imagpose requires 85000 images with
diverse viewpoints. Besides, Imagpose
lacks the ability to control rich semantics, such as background changes via prompts, while our method
preserves the precise semantic control as validated in Table 6. For MVDream, it exhibits limited
multiview consistency and semantic control, probably because it has difficulty generalizing to the
human domain.

A.5 DISCUSSION OF SMPL FITTING

SMPL may introduce errors during body fitting, for instance, the body shape may undergo slight
changes, and features like hair may not be accurately modeled. However, this does not affect the
multi-view customization in the second stage, since our goal is to provide an initial depth condition
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A futuristic man in a 
sleek cyberpunk outfit, 
neon lights reflecting on 
his chrome visor, dark 
sci-fi city background

A man with a robotic 
arm, leather jacket, 
standing in a post-

apocalyptic ruin, intense 
gaze, gritty atmosphere

A man meditating by a 
tranquil lake at sunrise, 

wearing simple linen 
clothes, peaceful 

expression, serene nature 
background

A futuristic woman in a 
silver exosuit floating in 

zero gravity, space 
station background, sci-fi 

fantasy style

A woman wearing 
headphones with red hair

A woman wearing 
textured brown sweater 

and headphones

A man wearing a dark 
blue t-shirt, smiling 
slightly on the lawn. 
The expression on his 
face appears relaxed.

A woman wearing 
sunglasses and necklace, 

close-up

Figure 6: More results of PersonalView.

to ensure robust multi-view consistency and reasonable semantic alignment and it is not necessary
for the body shape in Step 2 to precisely match the single-view image in Step 1. For example, we
can control features like hair through prompts, as shown in Figure 4 and more results in Figure 6. In
practice, our method demonstrates excellent multi-view consistency and prompt adherence. On the
other hand, it does not introduce excessive inference costs, with a total GPU usage of 9.8GB and a
runtime of 0.45s.

A.6 DIFFERENCE FROM IC-LORA.

In practice, IC-LoRA (Huang et al., 2024) boils down to fine-tuning the DiT on concatenated images,
which is a simple yet widely-applicable technique. However, to our knowledge, there is no multi-view
conditional generation model built on IC-LoRA at the time of submission. Our work provides solid
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evidence of the success of in-context learning in transferring multi-view generation to a generic
model. On the other hand, our experiments demonstrate the insufficiency of using in-context learning
alone, which has distinct contributions not covered by IC-LoRA.

A.7 LIMITATION

While our approach demonstrates strong performance in generating multi-view consistent customized
images, it also has certain limitations. In particular, it primarily relies on activating the in-context
learning capabilities of the base model, and therefore, its effectiveness is inherently constrained by
the representational power of the underlying pre-trained model. Nevertheless, a key advantage of
our framework lies in its modularity and transferability, making it easily adaptable to more powerful
backbone models as they emerge — a direction we plan to explore in future work.

A.8 ETHICS STATEMENT

Our main objective in this work is to empower novice users to generate visual content creatively and
flexibly. However, we acknowledge the potential for misuse in creating fake or harmful content with
our technology. Therefore, we believe it’s essential to develop and implement tools to detect biases
and malicious use cases to promote safe and equitable usage.

A.9 REPRODUCIBILITY STATEMENT

We make the following efforts to ensure the reproducibility of PersonalView: (1) Our training and
inference codes together with the trained model weights will be publicly available. (2) We provide
training details in the appendix, which is easy to follow. (3) We provide the details of the human
evaluation setups.

A.10 LLM USAGE STATEMENT

Large Language Models (LLMs), specifically OpenAI’s GPT-5, were employed as a general-purpose
assistive tool during the preparation of this paper. The model was primarily used for: (1) Language
polishing – refining grammar, improving clarity, and adjusting tone to meet academic writing stan-
dards. (2) Formatting support – generating LaTeX table templates, figure captions, and consistent
section structuring. All core research activities—including problem formulation, theoretical develop-
ment, model design, experiments, analysis, and conclusions—were entirely conceived and executed
by the authors. The LLM was not used for generating original research ideas, deriving results, or
writing substantive scientific content.
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