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ABSTRACT

Zeroth-order optimization (ZO) has been a powerful framework for solving black-
box problems, which estimates gradients using zeroth-order data to update vari-
ables iteratively. The practical applicability of ZO critically depends on the effi-
ciency of single-step gradient estimation and the overall query complexity. How-
ever, existing ZO algorithms cannot achieve efficiency on both simultaneously. In
this work, we consider a general constrained optimization model with black-box
objective and constraint functions. To solve it, we propose novel algorithms that
can achieve the state-of-the-art overall query complexity bound of O(d/ϵ4) to find
an ϵ-stationary solution (d is the dimension of variable space), while reducing the
queries for estimating a single-step gradient from O(d) to O(1). Specifically, we
integrate block updates with gradient descent ascent and a block gradient esti-
mator, which leads to two algorithms, ZOB-GDA and ZOB-SGDA, respectively.
Instead of constructing full gradients, they estimate only partial gradients along
random blocks of dimensions, where the adjustable block sizes enable high single-
step efficiency without sacrificing convergence guarantees. Our theoretical results
establish the finite-sample convergence of the proposed algorithms for nonconvex
optimization. Finally, numerical experiments on a practical problem demonstrate
that our algorithms require over ten times fewer queries than existing methods.

1 INTRODUCTION

In practical problems, it is common to encounter real systems that lack analytical expressions or
models. In such cases, only zeroth-order (input-output) information of the systems is accessible.
The lack of higher-order information makes it especially difficult to optimize these systems. In this
research, we consider a general constrained optimization model for these problems:

min
x∈Rdx

h(x) s.t. cj(x) ≤ 0, ∀j ∈ J , (1)

where h : Rdx → R is the objective function and each cj : Rdx → R,∀j ∈ J is a constraint
function. Both h(x) and cj(x) do not have analytical expressions and are treated as black boxes, i.e.,
only the input x and the corresponding deterministic function outputs h(x) or cj(x) are observable.
Neither h nor cj ,∀j ∈ J is necessarily convex.

Problems in the form of (1) arise across many domains, such as power systems (Hu et al., 2024;
Zhou et al., 2025), simulation optimization (Park & Kim, 2015), and machine learning (Nguyen &
Balasubramanian, 2023). However, traditional model-based or gradient-based algorithms are inap-
plicable to problem (1), as they rely on first-order or second-order information (e.g., gradients or
Hessians) of h(x) and cj(x), which is not available. Zeroth-order optimization (ZO), a representa-
tive method in derivative-free optimization, offers a promising approach to this type of optimization
problem, and has been broadly applied (Fu et al., 2015; Liu et al., 2020a; Malladi et al., 2023; Lam
& Zhang, 2024). The fundamental idea behind ZO is to construct estimators of first-order informa-
tion using zeroth-order data (Berahas et al., 2022), and integrate these estimators into gradient-based
algorithms, such as gradient descent, to seek optimal or high-quality solutions.

Under the iterative ZO framework, the efficiency of single-step gradient estimation and overall query
complexity jointly determine the practical applicability of ZO (Scheinberg, 2022). They refer to the
number of function values required to generate a single-step gradient and a final solution, respec-
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tively. The traditional coordinate-wise gradient estimation (CGE) requires estimating partial gradi-
ents along all dimensions separately based on finite differences of function values (Kiefer & Wol-
fowitz, 1952). Although CGE-based algorithms can generally enjoy state-of-the-art overall query
complexities due to the controllable bias and variance of CGEs (Xu et al., 2024; Zhou et al., 2025),
the requirement of O(d) queries for estimating a single-step gradient makes them inefficient for
high-dimensional problems (d is the dimension of variable space). In contrast, the prevalent ran-
domized gradient estimation (RGE) only requires one or two function values to construct a gradient
estimator along a random direction (Flaxman et al., 2005; Nesterov & Spokoiny, 2017). RGE-based
algorithms have demonstrated excellent performance in unconstrained problems. However, they
suffer from slow convergence when applied to constrained cases (such as (1)) due to large variances
of gradient estimation (Liu et al., 2020a). This significantly limits their practical performance. In
view of this dilemma, a fundamental question arises:

To solve (1), can we design zeroth-order algorithms that are query-efficient regarding both
single-step and overall complexities?

In this paper, we provide a positive answer to this question. We will utilize the framework of random
block updates to design novel and query-efficient ZO algorithms for solving problem (1), and show
that the proposed algorithms enjoy controllable single-step efficiency and the best-known overall
query complexities. For a detailed discussion on related work, please refer to Appendix A.

1.1 MAIN CONTRIBUTIONS

We assume simultaneous zeroth-order access to h(x) and cj(x),∀j ∈ J (i.e., we can observe all the
function evaluations of h(x) and cj(x),∀j ∈ J simultaneously via querying a x) but no gradient
information. To handle the black-box constraints in (1), we adopt a primal-dual framework by
reformulating it as a deterministic min-max problem:

min
x∈Rdx

max
y∈Y

f(x, y), (2)

where f(x, y) = h(x) + yTc(x) is the Lagrange function of problem (1). Wherein, c(x) =
(c1(x), · · · , cdy

(x))T with dy = |J |; Y = {y ∈ Rdy |y ≥ 0} is the feasible set of Lagrange
multiplier. Clearly, f(x, y) is nonconvex-concave, i.e., nonconvex in x and concave in y, when h(x)
and cj(x),∀j ∈ J are not assumed convex. Then, solving problem (2) can provide optimal or high-
quality solutions to problem (1) (Nesterov et al., 2018). The detailed contributions of this work are
summarized as follows.

Table 1: Comparison of single-step and overall query complexities

Algorithms Gradient Estimator Queries per Step Overall Queries
SZO-ConEX (Nguyen &
Balasubramanian, 2023)

RGE O(1) O(d/ϵ6)

ZOAGP (Xu et al., 2024) CGE O(d) O(d/ϵ4)
ZOB-GDA (Ours) BCGE O(b) O(d/ϵ6)
ZOB-SGDA (Ours) BCGE O(b) O(d/ϵ4)

Note: In our algorithms, d = dx. b is the block size that can be chosen from {1, 2, · · · , d}. Overall queries
refer to the number of queries required to achieve an ϵ-stationary/KKT point.

Leveraging Block Updates with Zeroth-Order Algorithms to Solve (1). In this research, we
adopt the widely-used gradient descent ascent (GDA) framework to solve problem (1). However,
directly applying RGE or CGE in GDA cannot exhibit satisfactory performance in both single-step
and overall complexity (see our detailed discussion in Section 2.2). To address this, we combine
the framework of block updates with GDA and smoothed GDA to develop two novel algorithms,
called zeroth-order block gradient descent ascent (ZOB-GDA) and zeroth-order block smoothed
gradient descent ascent (ZOB-SGDA). Rather than estimating a full gradient at each step, they
randomly select a block of coordinates and update the variables using block coordinate-wise gradient
estimations (BCGEs). The adoption of the BCGEs effectively controls the bias and variance of
gradient estimations to be negligible and thereby accelerates convergence. Moreover, the block size
is adjustable to control the number of queries required to construct a single-step gradient.
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Best-Known Query Complexities with Controllable Single-Step Efficiency. We establish
finite-sample guarantees for the proposed algorithms by analyzing the min-max problems (2) in
nonconvex-concave settings. The query complexity results are summarized in Table 1 and com-
pared with two representative algorithms. Specifically, ZOB-GDA can find an ϵ-stationary point
of f(x, y) with a query complexity bound O(d/ϵ6), which differs from the bound for first-order
GDA only by a factor of d. Moreover, ZOB-SGDA is shown to have the query complexity bound
O(d/ϵ4), which aligns with the best-known results for solving deterministic nonconvex-concave
problems. Different from existing methods, our algorithms also benefit from controllable efficiency
in single-step gradient estimation, which makes them query-efficient for both single-step and overall
complexities. The numerical results demonstrate that our algorithms can require over 10 times fewer
queries for both a single step and overall complexity compared to existing methods.

2 PRELIMINARIES

Notations. For a positive integer n, we denote [n] := {1, 2, · · · , n}. For a vector x ∈ Rdx , denote
x(i) as its ith entry. For a differentiable function h(x) : Rdx → R, denote ∇h(x) as its gradient at
x and ∇ih(x), i ∈ [dx] as the partial gradient along the ith dimension. Similarly, for a differentiable
function f(x, y) : Rdx × Rdy → R, denote the partial gradient w.r.t. x (and y) by ∇xf(x, y)
(and ∇yf(x, y)). Without further specification, ∥ · ∥ denotes the ℓ2-norm in Euclidean space. The
Euclidean projection operator onto a closed convex set X is denoted by PX [·].

2.1 ASSUMPTIONS AND STATIONARITY MEASURE

Below, we present the key assumptions for our analysis and introduce the definition of stationarity
measure for evaluating our proposed algorithms.
Assumption 2.1. The set Y is compact, i.e., Y := {y ∈ Rdy |0 ≤ y ≤ y} for some bounded
y ∈ Rdy . Moreover, Φ(x) = maxy∈Y f(x, y) is lower bounded by some finite constant f .

The assumption on the lower boundedness of Φ(x) is equivalent to assume that h(x) is lower
bounded for any x ∈ Rdx satisfying cj(x) ≤ 0,∀j ∈ J .
Remark 1. In our problem (2), while Y serves as the feasible set of Lagrange multipliers that are in-
herently unbounded, the boundedness of the optimal dual set has been justified in Nedić & Ozdaglar
(2009) under the Slater condition. Therefore, this assumption is commonly imposed in existing
work (Liu et al., 2020b; Xu et al., 2023), and we can construct a bounded set containing the optimal
dual variables to replace {y ∈ Rdy |y ≥ 0} in our method.
Assumption 2.2. f(x, y) is differentiable and Lipschitz continuous, i.e., for any (x, y) ∈ Rdx ×Y ,
we have ∥∇xf(x, y)∥ ≤ Λ and ∥∇yf(x, y)∥ ≤ Λ for some Λ > 0.
Assumption 2.3. f(x, y) is L-smooth in x and y, i.e., there exist some L ≥ 0 satisfying
∥∇f(x1, y1)−∇f(x2, y2)∥ ≤ L (∥x1 − x2∥+ ∥y1 − y2∥) for any x1, x2 ∈ Rdx , and y1, y2 ∈ Y .

Assumptions 2.2-2.3 impose the Lipschitz continuity on f(x, y) and its gradients, which are standard
in the literature of both first-order and zeroth-order optimization (Nedić & Ozdaglar, 2009; Ghadimi
& Lan, 2013; Zhou et al., 2025). Similarly, we can also equivalently impose Lipschitz continuity on
h(x), cj(x),∀j ∈ J and their gradients to replace Assumptions 2.2 and 2.3.

For min-max problems, a widely adopted stationarity measure is the proximal gradient for first-order
and zeroth-order nonconvex optimization (Lin et al., 2020; Liu et al., 2020b; Xu et al., 2023):

g(x, y) =

(
gx(x, y)
gy(x, y)

)
=

(
∇xf(x, y)

(1/β) (y − PY [y + β∇yf(x, y)])

)
,

where β is the step size for dual updates. A point (x, y) ∈ Rdx × Y is a first-order stationary point
of (2) if ∥g(x, y)∥ = 0. We also introduce another notion of stationarity measure. The problem (2)
is equivalent to minimizing the function Φ(x) = maxy∈Y f(x, y) over Rdx . The norm of ∇Φ(x) is
an appropriate stationarity measure for nonconvex optimization when Φ(x) is differentiable (Wang
et al., 2023). However, Φ(x) may fail to be differentiable even if f(x, y) is concave in y, as the
maximum may not be uniquely attained. Alternatively, we define the Moreau envelope of Φ(x) for
any λ > 0 as

Φλ(x) = min
u∈Rdx

{
Φ(u) +

1

2λ
∥u− x∥2

}
.
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The Moreau envelope Φ1/2L(x) with parameter 1
2L and ∇Φ1/2L(x) are both well-defined because

Φ(u) + L∥u − x∥2 is strongly convex in u given x. Furthermore, Φ1/2L(x) is differentiable and
smooth in x. A point x ∈ Rdx is a stationary point of Φ if ∥∇Φ1/2L(x)∥ = 0. This stationar-
ity measure is also widely used in nonconvex-concave settings (Mahdavinia et al., 2022; Davis &
Drusvyatskiy, 2019). As shown in Lin et al. (2020), the computational overhead of transferring this
notion to the one measured by ∥g(x, y)∥ is negligible compared to the overall query complexity.
Therefore, we define our stationarity measure as follows.

Definition 2.1. Let M(x, y) = min
{
∥g(x, y)∥, ∥∇Φ1/2L(x)∥

}
for some (x, y) ∈ Rdx × Y . We

say a point (x, y) is an ϵ-stationary point of (2) if M(x, y) ≤ ϵ.

2.2 ZEROTH-ORDER GRADIENT ESTIMATION

Various gradient estimators for ZO have been proposed in the literature, where the two-point RGE
is most widely applied. For a differentiable function h : Rdx → R, the two-point RGE is defined as

g(x; r, z) =
h(x+ rz)− h(x)

r
· z, (3)

where g(x; r, z) ∈ Rdx is the estimated gradient for ∇h(x). Here, r > 0 is the smoothing radius and
z ∈ Rdx is a random perturbation vector typically sampled from the Gaussian distribution N (0, Idx)
or the uniform distribution on a sphere with radius

√
dx (Nesterov & Spokoiny, 2017; Duchi et al.,

2015). When h is smooth, this estimator enjoys a bias bounded by the smoothing radius (Malik
et al., 2020). In contrast, CGE adds perturbation to each dimension separately and applies the finite
difference of function values to construct a full gradient. The CGE is defined as

g(x; r, {ei}dx
i=1) =

∑
i∈[dx]

h(x+ rei)− h(x)

r
· ei, (4)

where g(x; r, {ei}dx
i=1) ∈ Rdx approximates ∇h(x), and ei ∈ Rdx is the unit vector with only the

ith entry being 1. Let gi(x; r, ei) denote the ith entry of g(x; r, {ei}dx
i=1). Similarly, the bias of CGE

is also negligible given a small smoothing radius (Berahas et al., 2022).

Dilemma of Trading off Single-Step and Overall Query Complexities. Both RGE and CGE
have biases bounded by the smoothing radius r. RGE in (3) is efficient for a single step and only
requires two function values to construct a gradient. Its variance approximately takes the form
O(d)∥∇h(x)∥2 (Liu et al., 2020a). In unconstrained problems, we have ∥∇h(x∗)∥ = 0 for any
optimal solution x∗. Therefore, the variance is negligible as the iterates approach the optimal solu-
tion, which allows RGE-based algorithms to mimic their first-order counterparts and achieve similar
convergence results. However, in constrained problems, the above property does not hold, as the
gradient ∇h(x∗) may not be zero. The large variance of RGE leads to worse overall query complex-
ities in constrained problems (Nguyen & Balasubramanian, 2023). In contrast, the variance of CGE
is controlled by the order of O(r2) and is negligible with small r. Therefore, CGE-based algorithms
generally enjoy the state-of-the-art overall query complexity bounds (Xu et al., 2024; Zhou et al.,
2025). However, CGE requires O(d) function values to construct a full gradient, which is inefficient
for large d. As a result, achieving efficiency in both aspects has yet to be addressed.

3 ZEROTH-ORDER BLOCK GRADIENT DESCENT ASCENT

In this section, we leverage BCGEs and block updates to design a new algorithm with controllable
single-step efficiency. Then, we establish its convergence guarantee and query complexity bound.

3.1 ALGORITHM DESIGN

We propose the zeroth-order block gradient descent ascent (ZOB-GDA) algorithm as presented in
Algorithm 1 for solving (2). Our algorithm follows the main steps of standard GDA, which perform
the gradient descent in x and gradient ascent in y. However, ZOB-GDA differs from the conventional
zeroth-order GDA method introduced in Liu et al. (2020b), which employs the RGE in (3). Instead
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of estimating a full gradient, ZOB-GDA randomly selects a block of dimensions to estimate the
partial gradients and performs block descent ascent at each step. Specifically, for the kth iterate
(xk, yk), we randomly sample a block of dimensions, denoted by a set Ik ⊆ [dx] with |Ik| = b (b is
an integer ranging from 1 to dx). Then, we apply BCGE to estimate the block gradient of f(xk, yk):

GIk
x (xk, yk) =

∑
i∈Ik

f(xk + rkei, yk)− f(xk, yk)

rk
ei,

where we denote GIk
x (xk, yk) ∈ Rdx as the vector with the entries of Ik being estimated and other

entries being 0. We can apply different smoothing radii rk for each iteration. For simplicity, we
denote Gx(xk, yk) = GI

x(xk, yk) when I = [dx]. For the update of the dual variable y, we have
the partial gradient ∇yf(xk, yk) = c(xk). No additional queries are required as c(xk) has been
observed when computing GIk

x (xk, yk).

Specifically, when the block size satisfies b = 1, the primal update resembles a coordinate update.
When b = dx, the primal update uses a full gradient and resembles the primal update in traditional
CGE-based algorithms (Xu et al., 2024; Zhou et al., 2025). Moreover, we can control the single-
step efficiency by adjusting the block size b. It will be shown that the choice of b does not affect the
overall query complexity of ZOB-GDA.

Unlike existing ZO literature that applies coordinate/block updates, we first generalize them within
the GDA framework to address non-analytical constraints, whose dynamics and convergence analy-
sis are significantly more complicated due to the coupling of primal and dual steps.

Algorithm 1 Zeroth-order block gradient descent ascent (ZOB-GDA)

1: Input: Initial (x0, y0) ∈ Rdx × Y , maximum steps K, block size b, and the step sizes α, β.
2: for k = 0, 1, 2, · · · ,K − 1 do
3: Randomly sample Ik ⊆ [dx] with |Ik| = b and update xk by

xk+1 = xk − α ·GIk
x (xk, yk). (5)

4: Update yk by yk+1 = PY [yk + β · ∇yf(xk, yk)] .
5: end for
6: Output: {(xk, yk)}Kk=0

3.2 CONVERGENCE RESULTS OF ZOB-GDA

In this subsection, we establish convergence guarantees and query complexity bounds for Algo-
rithm 1 in nonconvex-concave cases. First, we provide the following lemma to bound the bias of
coordinate gradient estimation.
Lemma 3.1. For a L-smooth and differentiable function h : Rdx → R, i.e., ∥∇h(x)−∇h(x′)∥ ≤
L∥x− x′∥,∀x, x′ ∈ Rdx , we have |∇ih(x)− gi(x; r, ei)| ≤ 1

2Lr.

Lemma 3.1 and its extended versions have appeared in existing literature (Lian et al., 2016; Berahas
et al., 2022; Jin et al., 2023), thus, we omit its proof here. Lemma 3.1 demonstrates that gi(x; r, ei)
is a good partial gradient estimator, in the sense that both its bias and variance can be effectively
controlled by the smoothing radius and L. This error bound plays a fundamental role and will be
frequently used in our theoretical analysis.

Let N = dx

b , Ry = ∥y∥ and Λ0 = Λ +
√
bL
2 · supk{rk}. Then, we present the following Theorem

to characterize the convergence of ZOB-GDA. Its proof is provided in Appendix B.
Theorem 3.1. Suppose Assumptions 2.1-2.3 hold. The sequence {(xk, yk)}Kk=0 is generated by
ZOB-GDA. The step sizes satisfy 0 < α, β ≤ 1/L, and the sequence of smoothing radii satisfies∑K

k=0 r
2
k < ∞. Then, we have

min
k≤K−1

E
[∥∥Φ1/2L(xk)

∥∥] ≤ O

(√
N

αK

)
+ ϵc,

where ϵc =
(
16LΛ0Ry

√
2α/β + 48αLΛ2

0

)1/2
.
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The results in Theorem 3.1 imply that ZOB-GDA can converge within a fixed error at a convergence
rate of O(

√
N/αK). The query complexity required to achieve mink≤K−1 E [M(xk, yk)] ≤ ϵ+ ϵc

is O(d/ϵ2). The fixed error results from the use of constant step sizes. Given the expression of
ϵc, one could adopt diminishing or small step sizes for α to eliminate the term ϵc. The following
corollary characterizes the exact convergence guarantee of ZOB-GDA.
Corollary 3.2. Suppose that the conditions in Theorem 3.1 hold. Further set the step size α =

O
(
(N/K)

2
3

)
. Then, we have mink≤K−1 E

[∥∥∇Φ1/2L(xk)
∥∥] ≤ O

(
(N/K)

1
6

)
.

The derivation of Corollary 3.2 is straightforward by substituting the step size into the result in
Theorem 3.1. The result in Corollary 3.2 shows that using two-time-scale step sizes for the updates
of x and y can effectively eliminate the fixed error term ϵc. This phenomenon aligns with the first-
order GDA in nonconvex-concave settings (Lin et al., 2020). Building upon Corollary 3.2, we obtain
the following corollary to establish the overall query complexity of ZOB-GDA.
Corollary 3.3. Suppose the conditions in Theorem 3.1 hold. Set α = O

(
ϵ4
)

for any sufficiently
small ϵ. Then, the query complexity to achieve mink≤K−1 E

[∥∥∇Φ1/2L(xk)
∥∥] ≤ ϵ is O

(
dx

ϵ6

)
.

To the best of our knowledge, Corollary 3.3 establishes the first query complexity result for zeroth-
order algorithms in the standard GDA framework for nonconvex-concave settings. Notably, this
complexity differs from the first-order GDA by an additional factor dx (Lin et al., 2020), which is
inherent to zeroth-order gradient estimation. Compared to the ZOAGP algorithm (Xu et al., 2024)
with the query complexity bound O(d/ϵ4), ZOB-GDA’s complexity bound seems worse due to
the limitation of standard GDA framework. However, the single-step gradient estimation can be
significantly more efficient for ZOB-GDA by using a small b. In the next section, we will leverage
block updates with a variant of the GDA framework to design a new algorithm that achieves both
the best-known overall query complexity and adjustable single-step efficiency.

4 ZEROTH-ORDER BLOCK SMOOTHED GRADIENT DESCENT ASCENT

In this section, we leverage block updates with a variant of GDA, smoothed GDA, to design a new
algorithm, and show the best-known convergence result for solving problem (1).

4.1 ALGORITHM DESIGN

Before presenting our algorithm, we define the smoothed function of f(x, y) as

K(x, y; z) = f(x, y) +
p

2
∥x− z∥2,

for some auxiliary variable z ∈ Rdx . The squared term can introduce strong convexity and further
smoothness in x with a proper p. Then, we will perform gradient descent ascent on the smoothed
function K(x, y; z), which is inspired by the first-order smoothed GDA (SGDA) in Zhang et al.
(2020). The zeroth-order block smoothed gradient descent ascent (ZOB-SGDA) algorithm is pro-
posed as shown in Algorithm 2. Similarly to ZOB-GDA, we randomly sample a block of dimensions
Ik for primal variables and only update the selected dimensions using BCGEs at each step. We de-
note the partial gradients along the dimensions Ik as

GIk
x (xk, yk; zk) =

∑
i∈Ik

(
f(xk + rkei, yk)− f(xk, yk)

rk
ei + p(xk − zk)⊙ ei

)
,

where ⊙ denotes the Hadamard (element-wise) product. We also denote Gx(xk, yk; zk) =
GI

x(xk, yk; zk) when I = [dx]. The update of yk follows the same way in ZOB-GDA. Addi-
tionally, an extra update for zk is introduced by an averaging step. When γ = 1, it is obvious that
ZOB-SGDA can resemble ZOB-GDA.

4.2 CONVERGENCE ANALYSIS OF ZOB-SGDA

By properly setting the parameters for ZOB-SGDA, we can establish its convergence result as sum-
marized in Theorem 4.1. Its proof is provided in Appendix C.
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Algorithm 2 Zeroth-Order Block Smoothed Gradient Descent Ascent (ZOB-SGDA)

1: Input: Initial (x0, y0) ∈ Rdx × Y, z0 = x0, maximum steps K, block size b, and the step sizes
α, β, γ.

2: for k = 0, 1, 2, · · · ,K − 1 do
3: Randomly sample a set Ik ⊆ [dx] with |Ik| = b and update xk by

xk+1 = xk − α ·GIk
x (xk, yk; zk). (6)

4: Update yk by yk+1 = PY [yk + β · ∇yK(xk, yk; zk)] .
5: Update zk by zk+1 = γxk+1 + (1− γ)zk.
6: end for
7: Output: {(xk, yk)}Kk=0

Theorem 4.1. Suppose Assumptions 2.1 and 2.3 hold. The sequence {(xk, yk)}Kk=0 is derived from
ZOB-SGDA. Set the parameters p ≥ 3L,

∑K
k=0 r

2
k ≤ 1

b , and α ≤ 1
p+10L+1 . Furthermore, let

β ≤ min
{

1
12L ,

α2(p−L)2

4L(
√
N+α(p−L))2

}
, and γ ≤ min

{√
1

KN , 1
36 ,

1
768pβ

}
. Then, we have

min
k≤K−1

E [∥g(xk, yk)∥] ≤ O
((

N

K

)1/4 )
.

The results in Theorem 4.1 show that ZOB-SGDA can converge to a stationary point at the conver-
gence of O((N/K)

1
4 ). Note that we do not impose the Lipschitz assumption on f(x, y) in Theorem

4.1. Similarly, based on Theorem 4.1, we have the following corollary to characterize the query
complexity of ZOB-SGDA.
Corollary 4.2. Suppose that the conditions in Theorem 4.1 hold. For any sufficiently small
ϵ > 0, set α, β, rk as in Theorem 4.1 and γ = O(ϵ2/N). Then, the query complexity to achieve
mink≤K−1 E [∥g(xk, yk)∥] ≤ ϵ is O

(
dx

ϵ4

)
.

We can see from Corollary 4.2 that ZOB-SGDA has the query complexity bound O(dx/ϵ
4), regard-

less of the choice of block sizes. That means our algorithm can achieve the best-known overall query
complexity while maintaining controllable single-step efficiency. For instance, only two queries are
required for each step when we set b = 1, which is more efficient than other CGE-based algorithms
that require O(d) queries for a gradient estimation.

5 DISCUSSIONS

Stationary Points of (2) Can Provide Solutions to (1). Our theoretical results establish conver-
gence guarantees to stationary points of f(x, y) for the proposed algorithms, while the convergence
guarantees to the solutions to problem (1) are yet to be established. However, under proper con-
ditions, the stationary points of f(x, y) satisfying ∥g(x, y)∥ = 0 is also a critical KKT point of
problem (1). We provide the following lemma to characterize this property. The definition of criti-
cal KKT points and the proof of Lemma 5.1 are provided in Appendix D.
Lemma 5.1. Suppose that (x, y) ∈ Rdx ×Y is a stationery point of f(x, y) satisfying ∥g(x, y)∥ = 0
and y < y. Then, x is a critical KKT point of problem (1).

The condition y < y stems from the gap between our assumption that Y is bounded and the fact
that the multiplier y ≥ 0 is generally not in practice. This is a common and fundamental gap in
the analysis of GDA-type algorithms (Nedić & Ozdaglar, 2009; Liu et al., 2020b; Xu et al., 2024),
which we believe is an important and interesting future research direction.

Extend Block Updates to Broader Problem Settings. In our problem (1), we deal with all con-
straints in the general form cj(x) ≤ 0. If equality constraints cj(x) = 0 have to be considered, we
can incorporate them by adding two inequalities cj(x) ≥ 0 and cj(x) ≤ 0. Besides, we can also
consider some simple constraints by constraining the feasible space directly:

min
x∈X

h(x) s.t. cj(x) ≤ 0, ∀j ∈ J ,

7
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and deal with x ∈ X by projection, i.e., xk+1 = PX [xk − αGIk
x (xk, yk)]. We can get

the same theoretical results in our analysis when X is convex and decomposable, i.e., X =∏
i∈[dx]

Xi. This requirement originates from the fundamental limit of block/coordinate updates
(Lian et al., 2016; Jin et al., 2023). Note that we need to make the modifications: gx(x, y) =
1
α (x− PX [x− α∇xf(x, y)]), and Φ1/2L(x) = minu∈X

{
Φ(u) + 1

2λ∥u− x∥2
}

for the stationar-
ity measure. The extended theoretical results are straightforward to establish based on our analysis
and the non-expansiveness of projection operators; thus, we omit the detailed analysis in this study.

Our algorithms can also be applied to stochastic cases, i.e., h(x) = E[h(x; ξ)], cj(x) = E[cj(x; ξ)],
where ξ is a random variable defined in a probability space. However, we cannot expect better
convergence guarantees than the RGE-based algorithms, because extra variance arises in BCGEs due
to the stochasticity of ξ, which diminishes the advantage of controllable variance of our methods.

6 NUMERICAL SIMULATIONS

We validate our algorithms through numerical experiments on an energy management problem in a
141-bus distribution network with dx = 168 (Khodr et al., 2008; Zhou et al., 2025). In this problem,
the goal is to adjust the load of multiple users within a distribution network to curtail a specific
amount of load while minimizing the cost of participating in load curtailment. The detailed problem
formulation and experimental settings are provided in Appendix E.

(a) (b) (c)

(d) (e) (f)

Figure 1: Performance of ZOB-GDA and ZOB-SGDA. (a), (b), and (c) present the objective func-
tion value, constraint violation, and stationarity measure of ZOB-GDA. (d), (e), and (f) present the
corresponding results for ZOB-SGDA.

First, we apply ZOB-GDA and ZOB-SGDA to solve the problem using different block sizes. Their
performance is averaged over 50 repeated runs with different initial parameters and shown in Figure
1. The dark curves represent the average performance, and the shaded areas represent the standard
deviation. The results show that both ZOB-GDA and ZOB-SGDA can converge to the same objec-
tive function value with the constraint satisfied. Their stationarity measures can both converge to 0,
which validates our theoretical guarantees. While different block sizes lead to convergence to the
same objective, properly selecting the block sizes may improve the query complexity.

We also compare our algorithms (block size b = 10) with three others, i.e., ZO-MinMax (Liu et al.,
2020b), SZO-ConEx (Nguyen & Balasubramanian, 2023), and ZOAGP (Xu et al., 2024), which can
be applied to solve problem (1). Each algorithm is tested with 50 runs, and the average performance
is presented in Figure 2. The results show that our algorithms can both converge to a solution
significantly faster than other algorithms. To better compare their query complexities, we present
the average number of queries required to generate solutions with different qualities, as in Table 2. It

8
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(a) (b) (c)

Figure 2: Performance comparison of different algorithms.

is shown that ZOB-GDA and ZOB-SGDA exhibit highly similar performance under different block
sizes, while the complexity bound of the latter is theoretically tighter. Notably, even though different
block sizes share the same query complexity bound, proper block sizes may lead to much improved
performance (over 10 times better than existing methods). Moreover, SZO-ConEx and ZOMinMax
have the worst performance due to the large variance of RGEs.

In practice, observations from real systems are often noisy, which can influence the accuracy of
gradient estimations. Our algorithms can still exhibit robust and satisfactory performance under
noisy cases. Due to space limitations, the test results are provided in Appendix E.3.

Table 2: Average numbers of iterations and queries required to generate solutions with certain levels
of relative errors and zero constraint violation. “NaN” means no runs can achieve such a solution.

Relative error
10% 1% 0.1%

Iteration Complexity Iteration Complexity Iteration Complexity

ZOBGDA

b = 1 722.06 1444.12 1213.48 2426.96 1584.84 3169.68
b = 10 73.66 810.26 130.70 1437.70 163.78 1801.58
b = 50 21.92 1117.92 57.24 2919.24 76.16 3884.16
b = 168 51.48 8700.12 185.92 31420.48 265.71 44905.71

ZOB-SGDA

b = 1 722.80 1445.60 1195.94 2391.88 1594.32 3188.64
b = 10 74.00 814.00 131.90 1450.90 169.68 1866.48
b = 50 22.18 1131.18 58.26 2971.26 77.76 3965.76
b = 168 52.06 8798.14 187.42 31673.98 266.59 45054.15

ZO-MinMax 12535.10 25070.20 12771.33 25542.65 NaN NaN
SZO-ConEx 12817.62 51270.49 NaN NaN NaN NaN

ZOAGP 51.48 8700.12 185.92 31420.48 265.71 44905.71

7 CONCLUSION

In this research, we study a general optimization problem with black-box constraints. We reformu-
late it as a min-max problem, and then apply zeroth-order optimization (ZO) methods to solve it
using the input-output information. Specifically, by integrating block updates with gradient descent
ascent (GDA), we develop two novel algorithms, called ZOB-GDA and ZOB-SGDA, which achieve
efficiency in both single-step gradient estimation and the overall query complexity. Our theoretical
results demonstrate that ZOB-GDA achieves the same query complexity as its first-order counterpart
with an additional dimension-dependent factor, and ZOB-SGDA enjoys the best-known complexity
bound. In addition, our numerical experiments validate the superior performance of our algorithms.
However, our work on block updates in constrained ZO is just a beginning. There are still several
open challenges. First, while the block update framework is a broadly applicable technique for im-
proving single-step efficiency, its integration with other primal–dual algorithms requires more study.
Second, although we anticipate that the benefits of block updates in stochastic constrained ZO will
be more limited than in deterministic settings, rigorous validation requires further investigation.

9
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A RELATED WORK

Here, we provide a detailed discussion on prior related work in zeroth-order optimization, zeroth-
order gradient descent ascent, and coordinate/block updates in ZO.

Zeroth-Order Optimization. ZO has emerged as a prevalent tool to solve black-box problems
and found application across machine learning (Liu et al., 2020a; Nguyen & Balasubramanian,
2023), power systems (Hu et al., 2024; Zhou et al., 2025), simulation optimization (Fu et al., 2015;
Lam & Zhang, 2024), large language models (Malladi et al., 2023; Zhang et al., 2024), etc. ZO
originates from the stochastic approximation method in Kiefer & Wolfowitz (1952), where CGE is
applied to estimate partial gradients along all dimensions via finite differences of function values.
This is inefficient for high-dimensional problems, even if parallel techniques can be applied (Schein-
berg, 2022). To improve single-step efficiency, one-point and two-point RGEs have been developed
by estimating gradients along randomized directions (Flaxman et al., 2005; Nesterov & Stich, 2017;
Lam & Zhang, 2024). Generally, RGE-based algorithms can achieve the same oracle complexities as
their first-order counterparts in unconstrained problems, differing by a dimension-dependent factor
(Liu et al., 2020a). However, RGEs suffer from large variance in gradient estimation in constrained
problems (see Section 2.2 for a detailed discussion). Moreover, most literature considers simple
constraints on the input x that can be dealt with by projection operations (Duchi et al., 2015; Yuan
et al., 2015; Jin et al., 2023; He et al., 2024), which cannot be used to solve problem (1).

Zeroth-Order GDA. GDA is a classical framework for solving min-max problems and has been
extensively studied (Nemirovski, 2004; Nedić & Ozdaglar, 2009; Lin et al., 2020; Xu et al., 2023;
Zhang et al., 2020). It is also well-established and widely applied to solve zeroth-order min-max
problems of the form (2) (Hu et al., 2024; Nguyen & Balasubramanian, 2023). The authors of
Liu et al. (2018) applied the two-point RGE to solve a composite optimization problem. Then,
the standard zeroth-order GDA was applied to the general min-max problems (Liu et al., 2020b;
Wang et al., 2023), while only the query complexity of nonconvex-strongly concave cases was es-
tablished. Several variants of zeroth-order GDA have been developed for convex-concave settings,
such as zeroth-order OGDA-RR (Maheshwari et al., 2022) and zeroth-order extra-gradient (Zhou
et al., 2025), which can achieve the query complexity bounds of O(d4/ϵ2) and O(d/ϵ2) to reach an
ϵ-optimal solution, respectively. For nonconvex–concave problems, Xu et al. (2024) proposed com-
bining alternating gradient projection with CGEs to solve a min-max problem with the query com-
plexity bound of O(d/ϵ4) to obtain an ϵ-stationary point. In Nguyen & Balasubramanian (2023), the
SZO-ConEX algorithm was designed based on RGEs to achieve the query complexity of O(d/ϵ6)
to derive an ϵ-critical Karush-Kuhn-Tucker (KKT) point of the problem (1).

Zeroth-Order Coordinate/Block Updates. The framework of coordinate/block updates is widely
adopted in first-order optimization (Nesterov & Stich, 2017; Latafat et al., 2019). The core idea is
to apply the partial gradients along a subset of full dimensions to update the iterates. The appli-
cations of coordinate/block updates in ZO mainly lie in unconstrained problems (Lian et al., 2016;
Cai et al., 2021), where only the coordinate/block gradients along a subset are estimated using block
CGEs or RGEs at each step. Their extension to constrained problems, however, remains relatively
underexplored. In Shanbhag & Yousefian (2021), the RGE was combined with zeroth-order block
updates and projected gradient descent to solve a stochastic constrained problem. Moreover, in He
et al. (2024) and Jin et al. (2023), a cyclic zeroth-order block coordinate descent method and a
randomized zeroth-order coordinate descent method were proposed, respectively, to solve the de-
terministic constrained problems and achieve complexity bounds proportional to ϵ−2 for nonconvex
optimization. However, all these methods require the constraint set to be projection-friendly and
coordinate/block-structured, which is usually too restrictive in practical problems and inapplicable
to non-analytical constraint sets (such as in our problem (1)).

B PROOF OF THEOREM 3.1

First, define the proximity operator

proxλh(x) = arg min
u∈Rdx

{
h(u) +

1

2λ
∥x− u∥2

}
.
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Define the filtration: Fk = σ(x0, y0, I0, · · · , ik−1, xk, yk). Then, we provide the following lemma
to bound the one-step drift of Φ1/2L(xk).

Lemma B.1. Let ∆k = Φ(xk)− f(xk, yk). The following inequality holds for any k ≥ 0,

E
[
Φ1/2L(xk+1)− Φ1/2L(xk)

∣∣Fk

]
≤2αL

N
∆k − α

8N

∥∥∇Φ1/2L(xk)
∥∥2 + 2α2Λ2L

N
+

α2bL3r2k
2

+
αbL2r2k

2
. (7)

The proof of Lemma B.1 is delayed in Appendix B.1. We further provide the following lemma to
bound the summation of ∆k.
Lemma B.2. For any integer B that can divide K, we have

1

K

K−1∑
k=0

∆k ≤αΛ2
0(B + 2) +

R2
y

2βB
+

∆0

K
.

The proof of Lemma B.2 is provided in Appendix B.2. Taking the telescoping sum of (7) and taking
the total expectation, we have

1

K

K−1∑
k=0

E
[∥∥∇Φ1/2L(xk)

∥∥2]
≤ 8N

αK
E
[
Φ1/2L(x0)− Φ1/2L(xK)

]
+

16L

K

K−1∑
k=0

E [∆k]

+ 16αΛ2L+
4αdxL

3

K

K−1∑
k=1

r2k +
4dxL

2

K

K−1∑
k=0

r2k

≤ 8N∆Φ

αK
+

16L

K

K−1∑
k=0

E [∆k] + 16αΛ2L+
8dxL

2

K

K−1∑
k=0

r2k,

where ∆Φ := Φ1/2L(x0) −minx∈Rdx Φ1/2L(x). The last step follows from the fact that αL ≤ 1.
Then, we can combine the above inequality with the result in Lemma B.2 to get

1

K

K−1∑
k=0

E
[∥∥∇Φ1/2L(xk)

∥∥2]
≤8N∆Φ

αK
+

16L∆0

K
+

8NL2

K
+

8LR2
y

βB
+ 16αLΛ2

0(B + 3),

(8)

Due to that, for any x ∈ Rdx ,

Φ1/2L(x) = min
u∈Rdx

{Φ(u) + L∥x− u∥2}

= min
u∈Rdx

{
max
y∈Y

f(u, y) + L∥x− u∥2
}

≥ min
u∈Rdx

{
f + L∥x− u∥2

}
= f,

we have ∆Φ is upper bounded. Without loss of generality, set B =
Ry

Λ0

√
1

2αβ that can divide K,
then we can derive

1

K

K−1∑
k=0

E
[∥∥∇Φ1/2L(xk)

∥∥2] ≤ O
(

N

αK

)
+ ϵ2c ,

which leads to

min
k≤K−1

E
[∥∥Φ1/2L(xk)

∥∥] ≤ (O( N

αK

)
+ ϵ2c

)1/2

≤ O

(√
N

αK

)
+ ϵc.
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B.1 PROOF OF LEMMA B.1

Denote x̂k = proxΦ/2L(xk). Using the definition of Φ1/2L(xk+1), we have

Φ1/2L(xk+1) ≤ Φ(x̂k) + L∥x̂k − xk+1∥2. (9)

Based on the update of xk, we have

∥x̂k − xk+1∥2

=
∥∥x̂k − xk + αGIk

x (xk, yk)
∥∥2

= ∥x̂k − xk∥2 + 2α⟨GIk
x (xk, yk), x̂k − xk⟩+ α2

∥∥GIk
x (xk, yk)

∥∥2 . (10)

Substituting the above equation into (9) leads to

Φ1/2L(xk+1)

≤ Φ(x̂k) + L∥x̂k − xk∥2 + α2L
∥∥GIk

x (xk, yk)
∥∥2 + 2αL⟨GIk

x (xk, yk), x̂k − xk⟩

= Φ1/2L(xk) + α2L
∥∥GIk

x (xk, yk)
∥∥2 + 2αL⟨GIk

x (xk, yk), x̂k − xk⟩.

(11)

Taking the conditional expectation of the third term on the right-hand side of (11), we have

E
[
2αL⟨GIk

x (xk, yk), x̂k − xk⟩
∣∣Fk

]
=
2αL

N
⟨∇xf(xk, yk), x̂k − xk⟩+

2αL

N
⟨Gx(xk, yk)−∇xf(xk, yk), x̂k − xk⟩

≤2αL

N
(f(x̂k, yk)− f(xk, yk)) +

αL2

N
∥x̂k − xk∥2

+
2αL

N
⟨Gx(xk, yk)−∇xf(xk, yk), x̂k − xk⟩

≤2αL

N
(f(x̂k, yk)− f(xk, yk)) +

3αL2

2N
∥x̂k − xk∥2 +

αbL2r2k
2

, (12)

where in the first inequality we used the smoothness of f(x, y), and in the second inequality we used
the AM-GM inequality and Lemma 3.1. Using the relation Φ(x̂k) ≥ f(x̂k, yk) and the definition of
x̂k, we have

f(x̂k, yk)− f(xk, yk) ≤ Φ(x̂k)− f(xk, yk) ≤ ∆k − L∥x̂k − xk∥2,

where we applied the relation Φ(x̂k) ≤ Φ(xk) − L∥xk − x̂k∥2 in the last step. Substituting the
above inequality into (12), we further use the relation

∥x̂k − xk∥ =
1

2L
∥∇Φ1/2L(xk)∥,

which is derived from Davis & Drusvyatskiy (2019), to get

E
[
2αL⟨GIk

x (xk, yk), x̂k − xk⟩
∣∣Fk

]
≤2αL∆k

N
− α

8N
∥∇Φ1/2L(xk)∥2 +

αbL2r2k
2

. (13)

For the term α2L
∥∥GIk

x (xk, yk)
∥∥2, we have

E
[
α2L

∥∥GIk
x (xk, yk)

∥∥2∣∣∣Fk

]
≤ α2L

N
∥Gx(xk, yk)−∇xf(xk, yk) +∇xf(xk, yk)∥2

≤ 2α2LΛ2

N
+

α2bL3r2k
2

,

(14)

where we applied the Lipschitz continuity and Lemma 3.1 in the last step.

Taking the expectation of (11) conditioned on Fk and combining it with (13) and (14) can derive the
final result in Lemma B.1.
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B.2 PROOF OF LEMMA B.2

We divide {∆k}K−1
k=0 into K/B blocks: {∆k}B−1

k=0 , · · · , {∆k}(j+1)B−1
jB , · · · , {∆k}K−1

K−B , with each
block containing B terms. Then, we have

1

K

K−1∑
k=0

∆k =
B

K

K/B−1∑
j=0

 1

B

(j+1)B−1∑
k=jB

∆k

 . (15)

We provide the following lemma to bound ∆k, whose proof is provided in B.3.

Lemma B.3. Denote y∗(x) as an arbitrary element in the set Y∗(x) = argmaxy∈Y f(x, y) for any
x ∈ Rdx . Then, for the sequence {(xk, yk)} derived from ZOB-GDA, we have for any s ≤ k:

∆k ≤ αΛ2
0(2k − 2s+ 1) + f(xk+1, yk+1)− f(xk, yk)

+
1

2β

(
∥yk − y∗(xs)∥2 − ∥yk+1 − y∗(xs)∥2

)
.

For the jth block, using the result in Lemma B.3 and letting s = jB, we have

(j+1)B−1∑
k=jB

∆k ≤ αΛ2
0(B

2 +B) +
R2

y

2β
+ E [f(xjB+B , yjB+B)− f(xjB , yjB)] .

Substituting the above inequality with j = 0, 1, · · · ,K/B − 1 into (15), we have

1

K

K−1∑
k=0

∆k ≤ αΛ2
0(B + 1) +

R2
y

2βB
+

1

K
E [f(xK , yK)− f(x0, y0)] .

We further have

E [f(xK , yK)− f(x0, y0)]

= E [f(xK , yK)− f(x0, yK) + f(x0, yK)− f(x0, y0)]

≤ αΛ2
0K +∆0.

Combining the above two inequalities leads to the result in Lemma B.2.

B.3 PROOF OF LEMMA B.3

Based on the definition of projection, we have for any y ∈ Y

⟨yk+1 − yk − β∇yf(xk, yk), y − yk+1⟩ ≥ 0.

Rearranging this inequality, we can have

1

2β

(
∥y − yk∥2 − ∥y − yk+1∥2 − ∥yk+1 − yk∥2

)
≥ ⟨y − yk+1, ∇yf(xk, yk)⟩
= ⟨y − yk, ∇yf(xk, yk)⟩+ ⟨yk − yk+1, ∇yf(xk, yk)⟩.

(16)

Using the concavity and smoothness of f(x, y) in y, we have

⟨y − yk, ∇yf(xk, yk)⟩ ≥f(xk, y)− f(xk, yk),

f(xk, yk+1)− f(xk, yk) ≥⟨yk+1 − yk, ∇yf(xk, yk)⟩ −
L

2
∥yk+1 − yk∥2.

Substituting the above two bounds into (16) and using the condition β ≤ 1
L , we have

f(xk, yk+1)− f(xk, y) +
1

2β

(
∥y − yk∥2 − ∥y − yk+1∥2

)
≥ 0. (17)
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Combining the definition of ∆k with the above inequality with y = y∗(xs), we have

∆k = f(xk, y
∗(xk))− f(xk, yk)

≤ f(xk, y
∗(xk))− f(xk, yk) + f(xk, yk+1)− f(xk, y

∗(xs))

+
1

2β

(
∥y∗(xs)− yk∥2 − ∥y∗(xs)− yk+1∥2

)
= f(xk, y

∗(xk))− f(xs, y
∗(xs))︸ ︷︷ ︸

E1

+ f(xs, y
∗(xs))− f(xk, y

∗(xs))︸ ︷︷ ︸
E2

+ f(xk, yk+1)− f(xk+1, yk+1)︸ ︷︷ ︸
E3

+(f(xk+1, yk+1)− f(xk, yk))

+
1

2β

(
∥y∗(xs)− yk∥2 − ∥y∗(xs)− yk+1∥2

)
.

(18)

Due to that f(xs, y
∗(xk)) ≤ f(xs, y

∗(xs)), we have

E1 ≤ f(xk, y
∗(xk))− f(xs, y

∗(xk))

≤ Λ∥xk − xs∥
≤ αΛ2

0(k − s).

Similarly, we also have
E2 ≤ Λ∥xk − xs∥ ≤ αΛ2

0(k − s),

and
E3 ≤ Λ∥xk+1 − xk∥ ≤ αΛ2

0.

Substituting these bounds into (18) leads to the final result.

C PROOF OF THEOREM 4.1

We define some auxiliary notation:

d(y, z) = min
x∈Rdx

K(x, y; z), m(z) = min
x∈Rdx

max
y∈Y

K(x, y; z),

h(x, z) = max
y∈Y

K(x, y; z), x(y, z) = arg min
x∈Rdx

K(x, y; z),

x∗(z) = arg min
x∈Rdx

h(x, z), Y(z) = argmax
y∈Y

d(y, z),

y+(zk) = PY [yk + β∇yK(x(yk, zk), yk, zk)].

Note that Y(z) is a set, and we use y(z) to denote an arbitrary element in Y(z). Recall that we
assume f(x, y) is L-smooth in x and y. Then, if p > L, K(x, y; z) is (p− L)-strongly convex in x
and smooth in x with a constant (L+ p). We define the potential function:

ϕ(x, y, z) = K(x, y; z)− 2d(y, z) + 2m(z).

For simplicity, we denote ϕk = ϕ(xk, yk; zk).

Before providing our formal proof, we present some supporting lemmas.

C.1 SUPPORTING LEMMAS FOR THEOREM 4.1

Lemma C.1. For any x, z ∈ Rdx and y ∈ Y , ϕ(x, y; z) is lower bounded by f .

Proof of Lemma C.1. We have

ϕ(x, y; z) = m(z) + (K(x, y; z)− d(y, z)) + (m(z)− d(y, z)) ≥ m(z) ≥ f,

where the first inequality follows from the definition of d(y, z) and m(z). The second one holds
because Φ(x) = maxy∈Y f(x, y) is lower bounded by f .

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Lemma C.2. There exists some constants σ1, σ2 satisfying

∥x(y, z)− x(y, z′)∥ ≤ σ1∥z − z′∥,
∥x∗(z)− x∗(z′)∥ ≤ σ1∥z − z′∥,
∥x(y, z)− x(y′, z)∥ ≤ σ2∥y − y′∥,

for any y, y′ ∈ Y and z, z′ ∈ Rdx , where σ1 = p
p−L , σ2 = 2(p+L)

p−L .

Lemma C.2 follows from the results in (Zhang et al., 2020, Lemma B.2). Therefore, we omit its
proof here.

Lemma C.3. The dual function d(y, z) is differentiable in y and Ld-smooth in y, i.e., ∥∇yd(y, z)−
∇yd(y

′, z)∥ ≤ Ld∥y − y′∥,∀y, y′ ∈ Y , where Ld = L+ Lσ2.

Proof of Lemma C.3. Based on Danskin’s Theorem, we have ∇yd(y, z) = ∇yK(x(y, z), y; z) =
∇yf(x(y, z), y). Then, we have for any y, y′ ∈ Y

∥∇yd(y, z)−∇yd(y
′, z)∥

= ∥∇yK(x(y, z), y; z)−∇yK(x(y′, z), y′; z)∥
≤ ∥∇yK(x(y, z), y; z)−∇yK(x(y, z), y′; z)∥

+ ∥∇yK(x(y, z), y′; z)−∇yK(x(y′, z), y′; z)∥
≤ L∥y − y′∥+ L∥x(y, z)− x(y′, z)∥
≤ (L+ σ2L)∥y − y′∥,

where the third step follows from the L-smoothness of K(x, y; z) in y, and the last step follows
from Lemma C.2.

Lemma C.4. For the sequence {(xk, yk, zk)} derived from ZOB-SGDA, we have

E
[
∥xk+1 − x(yk, zk)∥2

]
≤ 4σ2

3E
[
∥xk+1 − xk∥2

]
+

L2r2kdx
(p− L)2

, (19)

where σ3 =
√
N+α(p−L)
α(p−L) .

Proof of Lemma C.4. Denote Fk = σ(x0, y0, I0, · · · , ik−1, xk, yk) as a filtration. By Lemma 3.10
in Zhang & Luo (2020), we have

∥xk − x(yk, zk)∥ ≤ 1

α(p− L)
∥xk − PX [xk − α∇xK(xk, yk; zk)]∥

=
1

α(p− L)
∥α∇xK(xk, yk; zk)∥ ,

(20)

where X = Rdx in our algorithm. Then, we can get

∥xk+1 − x(yk, zk)∥2

≤ 2∥xk+1 − xk∥2 + 2∥xk − x(yk, zk)∥2

≤ 2∥xk+1 − xk∥2 +
2

α2(p− L)2
∥α∇xK(xk, yk; zk)∥2

≤ 2∥xk+1 − xk∥2 +
4

α2(p− L)2
∥αGx(xk, yk; zk)∥2

+
4

(p− L)2
∥∇xK(xk, yk, zk)−Gx(xk, yk; zk)∥2

≤ 2∥xk+1 − xk∥2 +
4N

α2(p− L)2
E
[
∥xk − xk+1∥2

∣∣∣Fk

]
+

L2r2kdx
(p− L)2

,

18
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where the first and third steps follow from the Cauchy-Schwarz inequality. The second step
follows from Eq.(20). In the last step, we applied Lemma 3.1 and E

[
∥αGx(xk, yk; zk)∥2

]
=

NE
[
∥xk+1 − xk∥2

]
. Taking the expectation of both sides of the above inequality leads to

E
[
∥xk+1 − x(yk, zk)∥2

]
≤
(
2 +

4N

α2(p− L)2

)
E
[
∥xk+1 − xk∥2

]
+

L2r2kdx
(p− L)2

≤ 4σ2
3E
[
∥xk+1 − xk∥2

]
+

L2r2kdx
(p− L)2

.

Lemma C.5. For any k ≥ 0, we have

E
[
∥yk+1 − y+(zk)∥2

]
≤ κE

[
∥xk+1 − xk∥2

]
+

β2L2r2kdx
2

,

where κ = (8σ2
3 + 2)β2L2.

Proof of Lemma C.5. By the non-expansiveness of the projection operator, we have

∥yk+1 − y+(zk)∥2

= ∥PY [yk − β · ∇yK(xk, yk; zk)]− PY [yk − β · ∇yK(x(yk, zk), yk; zk)]∥2

≤ β2∥∇yK(x(yk, zk), yk; zk)−∇yK(xk, yk; zk)∥2

≤ β2L2∥xk − x(yk, zk)∥2.
where in the first step we used the non-expansiveness of projection operations and in the third step
we used the L-smoothness of K(x, y; z) in x. Then, taking the expectation of the above inequality
leads to

E
[
∥yk+1 − y+(zk)∥2

]
≤ β2L2E

[
∥xk − x(yk, zk)∥2

]
≤ 2β2L2E

[
∥xk+1 − xk∥2

]
+ 2β2L2E

[
∥xk+1 − x(yk, zk)∥2

]
≤
(
8β2L2σ2

3 + 2β2L2
)
E
[
∥xk+1 − xk∥2

]
+

2β2L4r2kdx
(p− L)2

≤
(
8β2L2σ2

3 + 2β2L2
)
E
[
∥xk+1 − xk∥2

]
+

β2L2r2kdx
2

,

where in the second step we applied Lemma C.4 and in the last step we applied the inequality (19)
and the condition p ≥ 3L.

Lemma C.6. For any k ≥ 0, we have

β(p− L)∥x∗(zk)− x(y+(zk), zk)∥2 ≤ (1 + βL+ βLσ2)Dy∥yk − y+(zk)∥.

Lemma C.6 comes from (Zhang et al., 2020, Lemma B.10).

C.2 FORMAL PROOF OF THEOREM 4.1

In this subsection, we provide the formal proof of Theorem 4.1. The proof mainly contains three
steps as follows.

Step 1: Derive a Bound for the Stationarity Measure. Recall that the stationarity measure is
defined as M(x, y) = min{∥Φ(x)∥, ∥g(x, y)∥}. Here we analyze the convergence of ∥g(x, y)∥.
Also, recall the definition of g(x, y):

g(x, y) =

(
gx(x, y)
gy(x, y)

)
=

(
∇xf(x, y)

1
β (y − PY [y + β∇yf(x, y)])

)
,

for any (x, y) ∈ Rdx × Y . Then, we provide a bound on the stationarity measure in the following
lemma.
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Lemma C.7. For any {xk, yk, zk}k≥0 derived from ZOB-SGDA, we have

E
[
∥g(xk, yk)∥2

]
≤ E

[(
3N

α2
+ 8L2σ2

3 + 6p2
)
∥xk+1 − xk∥2

]
+

5L2r2kdx
4

+ E
[
2

β2
∥yk − y+(zk)∥2 + 6p2∥xk+1 − zk∥2

]
.

Proof of Lemma C.7. Based on the update of x : xk+1 = xk − α ·GIk
x (xk, yk; zk), we have

E
[
∥gx(xk, yk)∥2

]
= E

[
∥Gx(xk, yk; zk) +∇xK(xk, ykzk)−Gx(xk, yk; zk)− p(xk − zk)∥2

]
≤ E

[
3∥Gx(xk, yk; zk)∥2 + 3∥Gx(xk, yk; zk)−∇xK(xk, yk; zk)∥2 + 3p2∥xk − zk∥2

]
≤ E

[
3N

α2
∥xk+1 − xk∥2 + 3p2∥xk − zk∥2

]
+

3L2r2kdx
4

≤ E
[(

3N

α2
+ 6p2

)
∥xk+1 − xk∥2 + 6p2∥xk+1 − zk∥2

]
+

3L2r2kdx
4

,

where in the third step we applied the relation

E
[
3N

α2
∥xk+1 − xk∥2

]
= E

[
3N∥GIk

x (xk, yk)∥2
]
= E

[
3∥Gx(xk, yk)∥2

]
.

For the term ∥gy(xk, yk)∥2, we can get

E
[
∥gy(xk, yk)∥2

]
=

1

β2
E
[
∥yk+1 − yk∥2

]
≤ 2

β2
E
[
∥yk+1 − y+(zk)∥2

]
+

2

β2
E
[
∥y+(zk)− yk∥2

]
≤ 8κ2

β2
E
[
∥xk+1 − xk∥2

]
+

2

β2
E
[
∥y+(zk)− yk∥2

]
+

L2r2kdx
2

= 8L2σ2
3E
[
∥xk+1 − xk∥2

]
+

2

β2
E
[
∥y+(zk)− yk∥2

]
+

L2r2kdx
2

,

where we applied Lemma C.5 in the third step. Finally, combining it with the bound on
E[∥gx(xk, yk)∥2] leads to the desired result.

Step 2: Derive a bound on the one-step drift of potential function. We provide a bound on the
one-step drift in the following lemma.

Lemma C.8. Suppose the assumptions and conditions in Theorem 4.1 hold. For any {xk, yk, zk}
derived from ZOB-SGDA, we have

E [ϕk − ϕk+1]

≥ E

 1

8α
∥xk+1 − xk∥2 +

1

8β
∥yk − y+(zk)∥2 +

p

8γ
∥zk+1 − zk∥2︸ ︷︷ ︸

T1


− E

24pγ∥x∗(zk)− x(y+(zk), zk)∥2︸ ︷︷ ︸
T2

− L3r2kα
2dx

N

− 12β2L2r2kσ
2
2pγdx − βL2r2kdx

8
− L2r2kdx

8N
.

(21)
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Proof of Lemma C.8. First, we provide the following lemma to characterize the descent in primal
steps.

Lemma C.9. For any k ≥ 0, we have

K(xk, yk; zk)−K(xk+1, yk+1; zk+1)

≥
(
1

α
− p+ L+ 1

2

)
∥xk+1 − xk∥2 −

L

2
∥yk − yk+1∥2 +

p

2γ
∥zk+1 − zk∥2

+ ⟨∇yK(xk+1, yk; zk), yk − yk+1⟩ −
L2r2kdx
8N

.

Proof of Lemma C.9. By the update of x, we use the smoothness of K to get

K(xk+1, yk; zk)−K(xk, yk; zk)

≤ ⟨∇xK(xk, yk; zk), xk+1 − xk⟩+
p+ L

2
∥xk+1 − xk∥2

= ⟨Gx(xk, yk; zk), xk+1 − xk⟩+
p+ L

2
∥xk+1 − xk∥2

+ ⟨∇xK(xk, yk; zk)−Gx(xk, yk; zk), xk+1 − xk⟩

≤ ⟨Gx(xk, yk; zk), xk+1 − xk⟩+
p+ L+ 1

2
∥xk+1 − xk∥2 +

L2r2kdx
8N

≤
(
− 1

α
+

p+ L+ 1

2

)
∥xk+1 − xk∥2 +

L2r2kdx
8N

,

(22)

where in the second inequality we applied AM-GM inequality and the fact that only the entries of
Ik in xk+1 − xk are nonzero. Similarly, we can use the L-smoothness of K(x, y; z) to get

K(xk+1, yk; zk)−K(xk+1, yk+1; zk)

≥ ⟨∇yK(xk+1, yk; zk), yk − yk+1⟩ −
L

2
∥yk+1 − yk∥2. (23)

Based on the update of z, we have

K(xk+1, yk+1; zk)−K(xk+1, yk+1; zk+1) ≥
p

2γ
∥zk+1 − zk∥2. (24)

Combining the results in (22), (23), and (24) leads to the final result.

We further provide the following two lemmas to characterize the one-step drift of d(y, z) and m(z)
in ZOB-SGDA. Their proofs follow from (Zhang et al., 2020, Lemma B.6 and Lemma B.7).

Lemma C.10. For any k, we have

d(yk+1, zk+1)− d(yk, zk)

≥ ⟨∇yK(x(yk, zk), yk; zk), yk+1 − yk⟩ −
Ld

2
∥yk+1 − yk∥2

+
p

2
⟨zk+1 − zk, zk+1 + zk − 2x(yk+1, zk+1)⟩.

Proof of Lemma C.10. Using the smoothness of d(y, z) in y provided in Lemma C.3, we have

d(yk+1, zk)− d(yk, zk)

≥ ⟨∇yd(yk, zk), yk+1 − yk⟩ −
Ld

2
∥yk+1 − yk∥2

= ⟨∇yK(x(yk, zk), yk; zk), yk+1 − yk⟩ −
Ld

2
∥yk+1 − yk∥2,
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where in the second step we used ∇yd(yk, zk) = ∇yK(x(yk, zk), yk; zk). Also, we have
d(yk+1, zk+1)− d(yk+1, zk)

= K(x(yk+1, zk+1), yk+1; zk+1)−K(x(yk+1, zk), yk+1; zk)

≥ K(x(yk+1, zk+1), yk+1; zk+1)−K(x(yk+1, zk+1), yk+1; zk)

=
p

2
∥xk+1 − zk+1∥2 −

p

2
∥xk+1 − zk∥2

=
p

2
⟨zk+1 − zk, zk+1 + zk − 2x(yk+1, zk+1)⟩.

Finally, combining the above two inequalities leads to the desired result.

Lemma C.11. For any k, we have

m(zk+1)−m(zk) ≤
p

2
⟨zk+1 − zk, zk+1 + zk − 2x(y(zk+1), zk)⟩,

where y(zk+1) is an arbitrary element in Y(zk+1).

Proof. Using Kakutoni’s Theorem, we have
m(z) = max

y∈Y
d(y, z) = d(y(z), z).

Therefore, we have
m(zk+1)−m(zk)

≤ d(y(zk+1), zk+1)− d(y(zk+1), zk)

= K(x(y(zk+1), zk+1), y(zk+1); zk+1)−K(x(y(zk+1), zk), y(zk+1); zk)

≤ K(x(y(zk+1), zk), y(zk+1); zk+1)−K(x(y(zk+1), zk), y(zk+1); zk)

=
p

2
⟨zk+1 − zk, zk+1 + zk − 2x(y(zk+1), zk)⟩,

where in the first step and third step we used the definitions of y(z) and x(y, z), respectively.

Now we can bound the one-step drift of the potential function. Using the results in Lemmas C.9,
C.10, and C.11, we have

ϕk − ϕk+1

≥
(
1

α
− p+ L+ 1

2

)
∥xk+1 − xk∥2 −

L+ 2Ld

2
∥yk+1 − yk∥2

+
p

2γ
∥zk+1 − zk∥2 + ⟨∇yK(xk+1, yk; zk), yk+1 − yk⟩

+ 2⟨∇yK(x(yk, zk), yk; zk)−∇yK(xk+1, yk; zk), yk+1 − yk⟩

+ 2p(zk+1 − zk)
T (x(y(zk+1), zk)− x(yk+1, zk+1))−

L2r2kdx
8N

.

Using the property of the projection operator:
⟨yk+1 − (yk + β∇yK(xk, yk; zk)), yk+1 − y⟩ ≤ 0,

for any y ∈ Y , and setting y = yk, we have

⟨∇yK(xk, yk; zk), yk+1 − yk⟩ ≥
1

β
∥yk+1 − yk∥2.

Therefore,
⟨∇yK(xk+1, yk; zk), yk+1 − yk⟩

= ⟨∇yK(xk, yk; zk), yk+1 − yk⟩+ ⟨∇yK(xk+1, yk; zk)−∇yK(xk, yk; zk), yk+1 − yk⟩

≥ 1

β
∥yk+1 − yk∥2 −

L

2
∥yk+1 − yk∥2 −

L

2
∥xk+1 − xk∥2

=

(
1

β
− L

2

)
∥yk+1 − yk∥2 −

L

2
∥xk+1 − xk∥2,
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where the first inequality follows from AM-GM inequality and the smoothness of K. Then, we can
further get

ϕk − ϕk+1

≥
(
1

α
− p+ 2L+ 1

2

)
∥xk+1 − xk∥2 +

(
1

β
− (L+ Ld)

)
∥yk+1 − yk∥2 +

p

2γ
∥zk+1 − zk∥2

+ 2⟨∇yK(x(yk, zk), yk; zk)−∇yK(xk+1, yk; zk), yk+1 − yk⟩

+ 2p(zk+1 − zk)
T (x(y(zk+1), zk)− x(yk+1, zk+1))−

L2r2kdx
8N

.

(25)

Besides, we have

2p(zk+1 − zk)
T (x(y(zk+1), zk)− x(yk+1, zk+1))

= 2p(zk+1 − zk)
T (x(y(zk+1), zk)− x(y(zk+1), zk+1))

+ 2p(zk+1 − zk)
T (x(y(zk+1), zk+1)− x(yk+1, zk+1))

≥ − 2pσ1∥zk+1 − zk∥2 + 2p(zk+1 − zk)
T (x(y(zk+1), zk+1)− x(yk+1, zk+1))

≥ − 2pσ1∥zk+1 − zk∥2 −
p

6γ
∥zk+1 − zk∥2 − 6pγ∥x(y(zk+1), zk+1)− x(yk+1, zk+1)∥2,

(26)

where the second step follows from Lemma C.2 and the third step follows from the AM-GM in-
equality. We also have the bound:

E [2⟨∇yK(x(yk, zk), yk; zk)−∇yK(xk+1, yk; zk), yk+1 − yk⟩]
≥ E [−2L∥xk+1 − x(yk, zk)∥ · ∥yk+1 − yk∥]
≥ E

[
−Lσ2

3∥yk+1 − yk∥2 − Lσ−2
3 ∥xk+1 − x(yk, zk)∥2

]
≥ E

[
−Lσ2

3∥yk+1 − yk∥2 − 4L∥xk+1 − xk∥2
]
− L3r2kα

2dx(√
N + α(p− L)

)2
≥ E

[
−Lσ2

3∥yk+1 − yk∥2 − 4L∥xk+1 − xk∥2
]
− L3r2kα

2dx
N

,

(27)

where the first step follows from the smoothness of K(x, y; z) and the third step follows from
Lemma C.4. In the last step, we used the fact that p > L. Taking the expectation on both sides of
(25) and combining it with the bounds in (26) and (27), we can get

E [ϕk − ϕk+1]

≥ E
[(

1

α
− p+ 2L+ 1

2
− 4L

)
∥xk+1 − xk∥2 +

(
1

β
− L− Ld − Lσ2

3

)
∥yk+1 − yk∥2

]
+ E

[(
p

2γ
− 2pσ1 −

p

6γ

)
∥zk+1 − zk∥2

]
− E

[
6pγ∥x(y(zk+1), zk+1)− x(yk+1, zk+1)∥2

]
− L3r2kα

2dx
N

− L2r2kdx
8N

.

(28)

Using the conditions β ≤ min
{

1
12L ,

α2(p−L)2

4L(
√
N+α(p−L))2

}
, we have

L+ Ld ≤ 6L ≤ 1

2β
,

and

Lσ2
3 =

L(
√
N + α(p− L))2

α2(p− L)2
≤ 1

4β
.

Therefore, we have

1

β
− L− Ld − Lσ2

3 ≥ 1

4β
. (29)
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Using Lemma C.5, we have the bound on E[∥yk+1 − yk∥2]:

E
[
∥yk+1 − yk∥2

]
≥ E

[
1

2
∥yk − y+(zk)∥2 − ∥yk+1 − y+(zk)∥2

]
≥ E

[
1

2
∥yk − y+(zk)∥2 − κ∥xk+1 − xk∥2

]
− β2L2r2kdx

2
.

As for the bound on E[∥x∗(zk+1)− x(yk+1, zk+1)∥2], we have

E
[
∥x∗(zk+1)− x(yk+1, zk+1)∥2

]
≤ E

[
2∥x∗(zk+1)− x∗(zk) + x∗(zk)− x(y+(zk), zk)∥2

+2∥x(y+(zk), zk)− x(yk+1, zk) + x(yk+1, zk)− x(yk+1, zk+1)∥2
]

≤ E
[
4∥x∗(zk+1)− x∗(zk)∥2 + 4∥x∗(zk)− x(y+(zk), zk)∥2

]
+ E

[
4∥x(y+(zk), zk)− x(yk+1, zk)∥2 + 4∥x(yk+1, zk)− x(yk+1, zk+1)∥2

]
≤ E

[
4σ2

1∥zk+1 − zk∥2 + 4∥x∗(zk)− x(y+(zk), zk)∥2
]

+ E
[
4σ2

2∥y+(zk)− yk+1∥2 + 4σ2
1∥zk − zk+1∥2

]
≤ E

[
8σ2

1∥zk+1 − zk∥2 + 4∥x∗(zk)− x(y+(zk), zk)∥2

+4σ2
2κ∥xk+1 − xk∥2

]
+ 2β2L2r2kσ

2
2dx,

where the first two steps follow from the Cauchy-Schwarz inequality and the last two steps follow
from Lemma C.2 and C.5. Combining the above two bounds with (29) and (28) leads to

E [ϕk − ϕk+1]

≥ E
[(

1

α
− p+ 2L+ 1

2
− 4L− κ

4β
− 24pγσ2

2κ

)
∥xk+1 − xk∥2

]
+ E

[
1

8β
∥yk − y+(zk)∥2 +

(
p

2γ
− 2pσ1 −

p

6γ
− 48pγσ2

1

)
∥zk+1 − zk∥2

]
− E

[
24pγ∥x∗(zk)− x(y+(zk), zk)∥2

]
− L3r2kα

2dx
N

− 12pγdxσ
2
2β

2L2r2k − βL2r2kdx
8

− L2r2kdx
8N

.

Based on the condition α ≤ 1
p+10L+1 , we have α < 1

p+10L ≤ 1
13L and p+10L+1

2 ≤ 1
2α . Using the

condition β ≤ min
{

1
12L ,

α2(p−L)2

4L(
√
N+α(p−L))2

}
, we have

κ

4β
= 2βL2σ2

3 +
1

2
βL2 < L <

1

8α
.

Furthermore, using the condition γ ≤ 1
768pβ , we can get

24pγσ2
2κ ≤ σ2

2κ

32β
≤ κ

2β
≤ 1

4α
.

Therefore, we have
1

α
− p+ 2L+ 1

2
− 4L− κ

4β
− 24pγσ2

2κ >
1

8α
.

Using the condition γ ≤ 1
36 , we have 2pσ1 ≤ 3p ≤ p

12γ and 48pγσ2
1 ≤ 3p ≤ p

12γ . Thus, we have

p

2γ
− 2pσ1 −

p

6γ
− 48pγσ2

1 >
p

8γ
.
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Then, we can combine the above results to get
E [ϕk − ϕk+1]

≥ E
[
1

8α
∥xk+1 − xk∥2 +

1

8β
∥yk − y+(zk)∥2 +

p

8γ
∥zk+1 − zk∥2

]
− E

[
24pγ∥x∗(zk)− x(y+(zk), zk)∥2

]
− L3r2kα

2dx
N

− 12pγβ2L2r2kσ
2
2dx − βL2r2kdx

8
− L2r2kdx

8N
.

Step 3: Combine the above two bounds to get the convergence rate. Then, we are ready to prove
the final result. We consider two situations in (21): (1) 1

2T1 ≤ T2, (2) 1
2T1 > T2. In the first case,

we have
1

16α
∥xk+1 − xk∥2 +

1

16β
∥yk − y+(zk)∥2 +

p

16γ
∥zk+1 − zk∥2

≤ 24pγ∥x∗(zk)− x(y+(zk), zk)∥2.

Let t1 = 384pDy
1+βL+βLσ2

p−L . Then, using Lemma C.6, we have

∥yk − y+(zk)∥2

≤ 384pγβ∥x∗(zk)− x(y+(zk), zk)∥2

≤ 384pγβDy
1 + βL+ βLσ2

β(p− L)
∥yk − y+(zk)∥,

which leads to ∥yk − y+(zk)∥ ≤ t1γ. Therefore, we can get

∥zk+1 − zk∥2

≤ 384γ2∥x∗(zk)− x(y+(zk), zk)∥2

≤ 384γ2Dy
1 + βL+ βLσ2

β(p− L)
∥yk − y+(zk)∥

=
t21γ

3

pβ
,

and
∥xk+1 − xk∥2

≤ 384pαγ∥x∗(zk)− x(y+(zk), zk)∥2

≤ 384pαγDy
1 + βL+ βLσ2

β(p− L)
∥yk − y+(zk)∥

≤ αt21γ
2

β
.

Combining the above three inequalities with Lemma C.7, we can get

1

K

K−1∑
k=0

E
[
∥g(xk, yk)∥2

]
≤
(
3N

α2
+ 8L2σ2

3 + 6p2
)

αt21γ
2

β
+

2t1γ
2

β2
+

6p2t21γ

pβ
+

5L2dx
∑K−1

k=0 r2k
4K

.

By γ ≤ 1√
KN

and
∑K−1

k=0 r2k = 1
b , we can get 1

K

∑K−1
k=0 E

[
∥g(xk, yk)∥2

]
≤ O

(
N
K +

√
N
K

)
,

which leads to

1

K

K−1∑
k=0

E [∥g(xk, yk)∥] ≤ O

√N

K
+

√
N

K

 = O

((
N

K

) 1
4

)
.
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In the second case, we have

1

16α
∥xk+1 − xk∥2 +

1

16β
∥yk − y+(zk)∥2 +

p

16γ
∥zk+1 − zk∥2

≥ 24pγ∥x∗(zk)− x(y+(zk), zk)∥2.

Then, according to (21), we have

E [ϕk − ϕk+1]

≥ E
[

1

16α
∥xk+1 − xk∥2 +

1

16β
∥yk − y+(zk)∥2 +

pγ

16
∥xk+1 − zk∥2

]
− L3r2kα

2dx
N

− 12β2L2r2kσ
2
2pγdx − βL2r2kdx

8
− L2r2kdx

8N

≥ t2E
[
∥g(xk, yk)∥2

]
− 5t2L

2r2kdx
4

− L3r2kα
2dx

N
− 12β2L2r2kσ

2
2dx − βL2r2kdx

8
− L2r2kdx

8N
,

where t2 = min

{
1

16α( 3N
α2 +8L2σ2

3+6p2)
, β
32 ,

γ
96p

}
. Consequently, we can obtain

E
[
∥g(xk, yk)∥2

]
≤ E [ϕk − ϕk+1]

t2
+

5L2r2kdx
4

+
L3r2kα

2dx
Nt2

+
12β2L2r2kσ

2
2dx

t2
+

βL2r2kdx
8t2

+
L2r2kdx
8Nt2

.

Taking the summation of the above inequality from k = 0 to K − 1 leads to

1

K

K−1∑
k=0

E
[
∥g(xk, yk)∥2

]
≤

ϕ0 − f

Kt2
+

5L2dx
∑K−1

k=0 r2k
4K

+
L3α2dx

∑K−1
k=0 r2k

Nt2K

+
12β2L2σ2

2pγdx
∑K−1

k=0 r2k
t2K

+
βL2dx

∑K−1
k=0 r2k

8t2K
+

L2dx
∑K−1

k=0 r2k
8Nt2K

.

Substituting γ = 1√
KN

and
∑K−1

k=0 r2k ≤ 1
b into the above inequality, we can get

1

K

K−1∑
k=0

E
[
∥g(xk, yk)∥2

]
≤ O

(√
N

K

)
.

Finally, we have

min
k=0,··· ,K−1

E [∥g(xk, yk)∥] ≤
1

K

K−1∑
k=0

E [∥g(xk, yk)∥] ≤ O

((
N

K

) 1
4

)
,

which is the desired result and finishes the proof.

D PROOF OF LEMMA 5.1

We provide the definition of a critical KKT point below.
Definition D.1. We say a point x∗ is a critical KKT point of problem (1) if cj(x∗) ≤ 0,∀j ∈ J and
there exists y∗ ∈ Y satisfying y∗ ≥ 0 and

y∗(j)cj(x
∗) = 0,∀j ∈ J , (30)

∇xh(x
∗) + (y∗)T∇xc(x

∗) = 0. (31)

We restate Lemma 5.1 as follows.
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Lemma D.1. Suppose that (x, y) ∈ Rdx×Y is a stationery point of f(x, y) satisfying ∥g(x, y)∥ = 0
and y < y. Then, x is a critical KKT point of problem (1).

Proof of Lemma 5.1. Recall that ∥g(x, y)∥ = 0 for some (x, y) ∈ Rdx × Y implies that(
gx(x, y)
gy(x, y)

)
=

(
∇xf(x, y)

(1/β) (y − PY [y + β∇yf(x, y)])

)
=

(
∇xh(x) + yT∇xc(x)

(1/β) (y − PY [y + βc(x)])

)
= 0.

The first condition ∇xh(x) + yT∇xc(x) = 0 implies (31) directly. The second condition implies
that y − PY [y + βc(x)] = 0. Then, due to that y < y, one of the following two cases holds: (1)
c(x) = 0; (2) y = 0 and c(x) ≤ 0. Both cases can lead to c(x) ≤ 0 and (30).

E DETAILED EXPERIMENTAL SETTINGS

E.1 PROBLEM FORMULATION

We consider a classic energy management problem in power systems called load curtailment. In this
problem, a load aggregator tries to coordinate the loads of multiple users within a distribution net-
work to meet the load requirements imposed by the higher-level grid operator. On the one hand, the
aggregator needs to ensure that the total power injection into the network satisfies a constraint tied
to a reference load. On the other hand, the operational costs associated with users’ load adjustments
should be minimized to maintain a satisfactory consumer experience.

Mathematically, denote x ∈ Rdx as the power load of multiple users. Let D denote the reference
load received from the grid operator, which imposes a constraint on the distribution network’s net
power exchange with the main grid. The power injection of the distribution network is not simply
the sum of users’ loads but is determined by nonlinear power flow dynamics. Denote the dynamics
as a function of the load levels of multiple users pc(x) : Rdx → R. In our formulation, pc(x) is
viewed as a black box, provided that the topology and parameters of the distribution network are
unattainable. That means we can only observe the total power consumption pc(x) of a distribution
network given the power load x of users.

We apply the 141-bus distribution network model as the nonconvex black box (shown in Figure 3)
(Khodr et al., 2008). We consider the following problem with dx = 168:

min
x∈R168

h(x) =
∑

i∈[168]

ci(x(i)) + ρ(x),

s.t. pc(x) ≤ D, x ∈ X = [x, x],

(32)

where ci : R → R is the cost function of user i and defined as ci(x(i)) = aix
2(i) + bix(i).

ρ(x) : X → R is the penalty term when the voltage is out of the standard region and formulated as

ρ(x) =
∑

j∈[141]

(
max(vj(x)− v, 0)2 +max(v − vj(x), 0)

2
)
.

Here vj(x) denotes the voltage of the jth node when the power load of the distribution network is x,
and v, v represent the lower and upper bounds of the voltage. vj : R168 → R,∀j is also a black-box
mapping with only the function value observable. Therefore, the objective and constraint functions
in problem (32) are both non-analytical.

E.2 PARAMETERS SETTING

In our numerical simulation, x is also set to 0, and x is the nominated load level from the origi-
nal 141-bus system. The coefficients of cost functions, ai and bi, are randomly sampled from the
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Figure 3: 141-bus distribution network.

intervals (0.5, 1.5) and (0, 5), respectively. For the voltage penalty, we set v = 0.96 p.u. and
v = 1.04 p.u.. The total load to be curtailed is set to 0.15 p.u. = 1500 kW . In addition to
testing our proposed algorithms, we also compare them with three other algorithms, ZO-MinMax
(Liu et al., 2020b), ZO-AGP (Xu et al., 2024), and stochastic zeroth-order constraint extrapolation
(SZO-ConEX) (Nguyen & Balasubramanian, 2023). For all tests, we compute ∥g(xk, yk)∥ as the
stationarity measures. The constraint violation is measured by pc(x) − D. In Table 2, the relative
error is computed by (h(xk)− h∗)/h∗ based on the optimal objective function value h∗ = 0.3841.

For ZOB-GDA, we consider four scenarios with batch sizes b = 1, 10, 50, 168, where the step
sizes are set as α = 0.03, 0.025, 0.005, 0.00035 and β = 0.01α, respectively. For ZOB-SGDA,
we set p = 10 and γ = 0.3, and adopt the same batch-size scenarios and corresponding step
sizes as ZOB-GDA. For the benchmark algorithms, ZO-MinMax is implemented with α = β =
5 × 10−6; since it involves constraint-handling techniques, we adopt a decaying penalty parameter
δk = min(50/k, 0.1). For SZO-ConEx, we set α = β = 5 × 10−6. For ZOAGP, we choose
α = β = 0.00035. We set the maximum iteration steps as K = 20000. For the smoothing radius,
ZOB-GDA, ZOB-SGDA, and ZOAGP use rk = min(10−1/(k1.2), 2 × 10−4), while SZO-ConEx
and ZO-MinMax use rk = min(10−2/(k+4000)1.1, 1×10−5) All the parameters are selected with
the best performance among multiple settings. All experiments are conducted on a MacBook Pro
laptop equipped with an Apple M1 Pro SoC (10-core CPU: 8 performance cores and 2 efficiency
cores) and 16 GB of unified memory.

E.3 NUMERICAL RESULTS FOR NOISY CASES

In this subsection, we further test our proposed algorithms, ZOB-GDA and ZOB-SGDA, under
noisy observations to validate their robustness. The observed values of pc(x) are perturbed by addi-
tive Gaussian noise with zero mean and a standard deviation of 5 kW. In noisy cases, the smoothing
radius is set as rk = min(400/(k1.2), 4 × 10−3), while all the other parameter settings remain
unchanged as in the noise-free cases. Each algorithm is tested with 20 runs, and the average per-
formance is presented in Figure 4. The average number of queries required to generate solutions
with different qualities is summarized in Table 3. The results show that our algorithms also ex-
hibit satisfactory performance in noisy cases without degrading significantly, which demonstrates
the robustness of our methods.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Performance of ZOB-GDA and ZOB-SGDA under noisy observations. (a), (b), and (c)
present the objective function value, constraint violation, and stationarity measure of ZOB-GDA.
(d), (e), and (f) present the corresponding results for ZOB-SGDA.

Table 3: Average numbers of iterations and queries required to generate solutions with certain levels
of relative errors and zero constraint violation under noisy observation.

Relative error
10% 1% 0.1%

Iteration Complexity Iteration Complexity Iteration Complexity

ZOBGDA

b=1 680.8 1361.6 1263.3 2526.6 1816.75 3633.5
b=10 75.05 825.55 139.25 1531.75 194.55 2140.05
b=50 21.65 1104.15 60.65 3093.15 97.05 4949.55

b=168 51.9 8771.1 194.8 32921.2 255.25 43137.25

ZOB-SGDA

b=1 687.4 1374.8 1282.15 2564.3 1937.35 3874.7
b=10 76.95 846.45 141 1551 191.05 2101.55
b=50 21.8 1111.8 61.6 3141.6 101.2 5161.2

b=168 52.25 8830.25 196.65 33233.85 257.25 43475.25
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