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ABSTRACT

Language-guided object tracking aims to locate the target in a video based solely
on a natural language description, without any bounding box supervision. While
recent methods have made encouraging progress by incorporating language into
visual tracking, most treat it as an auxiliary signal rather than a primary driver. This
limits their effectiveness in fully language-only scenarios, which remain underex-
plored despite their user-friendly nature. In this paper, we propose MAGTrack, a
novel framework for language-guided object tracking that seamlessly integrates
Multimodal Large Language Models (MLLMs) without requiring additional train-
ing. MAGTrack tackles key challenges through two plug-and-play modules: the
MLLM-based Grounding Module (MGM) and the MLLM-based Text Refinement
Module (TRM). MGM leverages MLLM reasoning to achieve accurate initial
target localization, even in challenging scenarios with visually similar objects.
Complementarily, TRM dynamically updates the textual description based on the
current visual context and tracking history. Extensive experiments on four bench-
marks—OTB99, TNL2K, LaSOT, and LaSOText—demonstrate that MAGTrack
consistently improves both first-frame grounding and long-term tracking accuracy,
achieving state-of-the-art performance under the language-only setting.

1 INTRODUCTION

Language-guided object tracking (Li et al., 2017) aims to locate the target in a video based solely
on a natural language description provided in the first frame, without relying on any bounding box
supervision. Compared to conventional tracking methods (Wei et al., 2023; Bai et al., 2024; Ye et al.,
2022; Chen et al., 2023) that depend on manually annotated boxes, this paradigm eliminates explicit
spatial input, offering a more challenging yet natural form of human-computer interaction. By re-
placing box-based initialization with language, this setting enables greater practicality and scalability
in real-world applications such as robotics, surveillance, and augmented reality (MacKenzie, 2024;
Haresh et al., 2024).

Although recent vision-language tracking methods (Wang et al., 2021; Li et al., 2022b) have shown
promising results using natural language descriptions, their performance still falls short compared
to approaches that rely on manually annotated bounding boxes—particularly in the absence of
spatial supervision. As illustrated in Figure 1(a), language-only trackers commonly face two major
challenges: 1) Uncertainty in First-Frame Localization. Without spatial priors, the model must
infer the target’s identity and location solely from the description, which can lead to confusion among
visually similar objects. 2) Temporal Misalignment of Static Descriptions. Most methods rely
on a fixed initial description throughout the sequence, failing to adapt to changes in the target’s
appearance or context, resulting in a growing mismatch between language and visual content. While
some existing approaches (Zhou et al., 2023; Ma et al., 2024) incorporate language as an auxiliary
signal to enhance visual features, they typically focus on unified architectures or multimodal fusion
strategies, rather than addressing the unique challenges of the language-only setting. As a result,
they struggle to reason effectively in ambiguous or dynamic scenes, especially when the language
description is vague or becomes outdated.
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Figure 1: Comparison between conventional language-only tracking and our proposed framework. (a)
Conventional methods rely solely on the initial natural language description throughout the process.
(b) Our method incorporates MLLM-based visual grounding and text refinement modules, which
improve target localization by leveraging historical cues and dynamically updated textual descriptions.

In recent years, Multimodal Large Language Models (MLLMs) (Wang et al., 2024a; Touvron et al.,
2023; Wang et al., 2024b; Zhu et al., 2023) have emerged as powerful tools for vision-language tasks,
exhibiting strong generalization and reasoning capabilities (Chen et al., 2024; Zhao et al., 2025; Pan
et al., 2024). While several recent works have explored the use of MLLMs in visual tracking, their
applications typically rely on additional training or ground-truth bounding box supervision. For
example, Liu et al. (2024b) perform real-time language updates via MLLMs but require task-specific
fine-tuning, whereas ChatTracker (Sun et al., 2024) leverages MLLMs for prompt refinement based
on manually annotated boxes—resources that are unavailable in language-only settings. As a result,
the potential of MLLMs in the language-only setting remains largely unexplored.

To address the challenges in the language-only setting, we propose MAGTrack, a flexible framework
with two plug-and-play modules, as shown in Figure 1(b): the MLLM-based Grounding Module
(MGM) and the MLLM-based Text Refinement Module (TRM). Notably, both of these mod-
ules are operational solely during inference. MGM combines a grounded vision-language module
(GVLM) with the reasoning power of an MLLM to achieve accurate and robust localization, even
under heavy distractor interference from semantically similar objects. Building on this foundation,
MGM focuses on accurate target initialization, while long-term tracking also demands adaptabil-
ity to appearance changes and contextual variations. To address this, we introduce TRM, which
continuously updates the initial natural language description using current visual cues and tracking
history. This dynamic refinement helps maintain alignment between language and visual content
throughout the sequence. We validate our approach across four standard benchmarks—OTB99 (Li
et al., 2017), TNL2K (Wang et al., 2021), LaSOT (Fan et al., 2019), and LaSOText (Fan et al.,
2021)—where MAGTrack consistently improves both grounding accuracy and tracking robustness
under the language-only setting.

Our main contributions are summarized as follows:

1. We present MAGTrack, a modular framework that integrates MLLMs into language-guided object
tracking, enabling effective inference without additional training or spatial annotations.

2. We introduce two plug-and-play modules: MGM enhances first-frame localization by leveraging
MLLM reasoning to handle semantically similar distractors, while TRM refines the initial
language description over time to stay aligned with dynamic visual content.

3. Experiments on four standard benchmarks show that MAGTrack achieves state-of-the-art per-
formance under the language-only setting, demonstrating its potential for more natural and
interactive human-AI interfaces in future tracking systems.
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2 RELATED WORK

2.1 LANGUAGE-GUIDED OBJECT TRACKING

Vision-language tracking (VLT) incorporates language into object tracking to enhance tracking
accuracy. While many methods use language to assist box-initialized tracking (Zhang et al., 2023; Guo
et al., 2022; Li et al., 2023; Zheng et al., 2024), we focus on the language-guided object tracking (Li
et al., 2017; Zhou et al., 2023; Ma et al., 2024), which is more challenging due to the lack of spatial
supervision and evolving visual content. Several datasets with rich textual annotations (Wang et al.,
2021; Fan et al., 2019; Hu et al., 2023), provide a foundation for research in this direction. In the
language-only setting, Li et al. (2017) first formalize the task and demonstrate its potential for
semantic-level tracking. Early works such as Yang et al. (2020b) and Feng et al. (2020) decompose
the task into separate grounding and tracking stages. However, these methods lack sufficient cross-
modal interaction, resulting in unstable performance. Subsequently, JointNLT (Zhou et al., 2023)
reformulates grounding and tracking as a unified task, introducing an end-to-end framework for
localizing language-referred targets. UVLTrack (Ma et al., 2024) extends this idea with a contrastive
learning framework that supports both language and visual references within a single model. Despite
their effectiveness, these methods assume a static language query throughout tracking and fail to
adapt to the target’s appearance changes. To address this, QueryNLT (Shao et al., 2024) introduces a
query refinement module that identifies and removes redundant phrases from the original description.
Although it considers the issue of semantic mismatch, its refinement is limited to filtering and lacks
the ability to generate updated or context-aware language. MemVLT (Feng et al., 2024) further
explores prompt adaptation through memory-augmented modelling inspired by Complementary
Learning Systems (CLS) theory, enabling temporal flexibility in multimodal prompting. However,
this method requires task-specific training and is constrained by a fixed architecture. In contrast, our
method leverages pretrained multimodal large language models (MLLMs) to perform both first-frame
grounding and dynamic language refinement entirely at inference time. Crucially, it enables the
generation of new, context-aware descriptions, allowing the tracker to adapt to appearance shifts
without retraining.

2.2 MULTIMODAL LARGE LANGUAGE MODELS IN TRACKING

Multimodal large language models (MLLMs) (Wang et al., 2024a; Chen et al., 2024; Liu et al., 2023;
Li et al., 2022a; Xu et al., 2023) extend the capabilities of large language models (LLMs) (Achiam
et al., 2023; Team et al., 2023; Touvron et al., 2023) by incorporating visual inputs, enabling joint
reasoning over language and vision. These models have achieved strong performance across a wide
range of tasks, including anomaly detection (Zanella et al., 2024), video understanding (Tang et al.,
2025), and medical image analysis (Kim et al., 2024). Recently, MLLMs have also been explored
in the context of object tracking. DTLLM-VLT (Li et al., 2024) utilizes MLLMs to automatically
generate multi-granularity textual annotations, improving tracking benchmarks through enhanced
semantic diversity. At the algorithmic level, Liu et al. (2024b) propose a real-time updating framework
that continuously refines language descriptions based on visual observations. While effective, this
method relies on additional training on tracking datasets, which limits its generalizability to unseen
domains. ChatTracker (Sun et al., 2024) introduces a reflection-based prompt optimization (RPO)
module that iteratively improves ambiguous or inaccurate queries using feedback from tracking
results. However, the RPO module is conditioned on ground-truth bounding boxes to guide prompt
reflection, making the method dependent on annotated spatial supervision and unsuitable for language-
only tracking settings. While prior works demonstrate the potential of MLLMs in visual tracking,
they either depend on task-specific training or require annotated spatial supervision to function
effectively. To overcome these limitations, we propose a general-purpose framework that fully
exploits the reasoning and generative capabilities of MLLMs for adaptive language-guided tracking
in a training-free and annotation-free manner.

3 METHOD

In this section, we present MAGTrack, a framework for language-only object tracking that requires
no additional training. It integrates multimodal large language models (MLLMs) through two plug-
and-play modules: a grounding module (see Sec. 3.3) that identifies the target in the initial frame
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Figure 2: MLLM-augmented language-guided tracking framework. Our approach enhances a
Vision-Language Tracker (VLT) by incorporating two plug-and-play modules: (a) the MLLM-based
Grounding Module (MGM) leverages prompt-based reasoning for enhanced localization, and (b) the
MLLM-based Text Refinement Module (TRM) dynamically refines the language description using
historical visual information and tracking trajectories. The integrated framework facilitates robust
and adaptive target tracking in challenging ambiguous or dynamic environments.

without bounding box input, and a text refinement module (see Sec. 3.4) that updates the query based
on evolving visual context. The entire system operates purely at inference time and does not rely on
any spatial supervision.

3.1 PRELIMINARIES

Task Formulation. Given a video V = {It}Tt=0 with T frames and a natural language description
L = {w1, w2, . . . , wN} provided for the first frame I0, the goal of language-guided object tracking
is to predict a sequence of object positions {Pt}Tt=0 without relying on any bounding box annotations,
where each Pt denotes the estimated location in frame It.

Model Components. We denote the Multimodal Large Language Model (MLLM) as a functionM
that performs cross-modal reasoning over an image and a language prompt. Given an image I and a
textual prompt, the MLLM produces a natural language response:

R =M(I,prompt), (1)

where R is a plain-text output whose interpretation depends on the prompt design. Depending on
the task, R can be post-processed into various forms, such as a bounding box prediction, a refined
description, or a semantic decision.

We define the Grounded Vision-Language Model (GVLM) as a function G that generates language-
conditioned object proposals. Given an image I and the natural language description L, the GVLM
outputs a set of candidate bounding boxes with associated confidence scores:

{bi}Ki=1 = G(I, L), (2)

where bi ∈ R4 is the i-th bounding box and K is the total number of proposals. We adopt Grounding
DINO (Liu et al., 2024a) as the GVLM in our implementation.

The Vision-Language Tracker (VLT) is defined as a function T that performs frame-wise localization
guided by both language and a visual template. Given a search frame It, a fixed reference template
extracted from the initial localization, and the language description L, the tracker predicts the target
position and a confidence score:

(Pt, st) = T (It,template, L), (3)
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where Pt ∈ R4 denotes the predicted bounding box in frame It, and st ∈ [0, 1] reflects the model’s
confidence. The tracker is applied to each frame t > 0 using the template from frame I0.

3.2 FRAMEWORK OVERVIEW

As illustrated in Figure 2, our framework integrates multimodal reasoning and adaptive tracking to
address the language-only tracking setting. Given a video sequence, we first use an MLLM-based
grounding module to infer the initial object location P0 from the first frame I0 and the language
description. This initial position serves as the template for a vision-language tracker, which then
performs frame-by-frame prediction. For each t > 0, the tracker produces a bounding box Pt and
an associated confidence score st, following (Pt, st) = T (It,template, L). To detect potential
tracking failures, we monitor st over time. Once the confidence drops below a predefined threshold τ
for k consecutive frames, i.e., st−k+1, . . . , st < τ , we invoke a text refinement module that leverages
the generative capabilities of the MLLM to reassess and optionally update the original description.
The refined query, denoted as Lnew, is then used to assist the tracker in re-localizing the target,
allowing the system to recover from drift or ambiguity. This design combines the complementary
strengths of large-scale multimodal reasoning and efficient temporal tracking, enabling robust object
localization under weak supervision.

3.3 MLLM-BASED GROUNDING MODULE

The MLLM-based Grounding Module plays a key role in initializing the tracker by identifying the
target object in the first frame I0 based solely on the natural language description L. While primarily
designed for first-frame localization, this module can also be leveraged in subsequent stages to assist
tracking under ambiguous or challenging conditions.

To perform grounding, we first leverage the intrinsic grounding capability of the MLLM itself using a
promptground, which directly produces a bounding box prediction:

bMLLM =Mground(I0,promptground). (4)

Inspired by the strategy proposed in (Sun et al., 2024), we apply a Grounded Vision-Language Model
(GVLM) in parallel to generate a set of language-conditioned region proposals:

{bi}Ki=1 = G(I0, L). (5)

The direct output bMLLM and the proposals {bi}Ki=1 are then combined and encoded into a unified
prompt, which is passed again to the MLLM using a promptselect instruction. The MLLM performs
cross-modal reasoning over all candidate boxes and selects the one most semantically aligned with L:

P0 =Mselect(I0, {bMLLM} ∪ {bi}Ki=1,promptselect). (6)

This two-stage grounding strategy combines the high-quality region proposals from the GVLM (Liu
et al., 2024a) with the strong reasoning capabilities of the MLLM, effectively mitigating the inherent
ambiguity of natural language and visual distractors, and enabling our method to produce more
accurate and reliable initializations under the language-only setting. Detailed experimental validation
of this two-stage grounding strategy can be found in Sec. 4.3.

3.4 MLLM-BASED TEXT REFINEMENT MODULE

To enhance adaptability under appearance variations or tracking drift, we introduce a text refinement
module that leverages the generative capabilities of MLLMs to produce updated descriptions tailored
to the target’s current state. To maintain tracking efficiency, the module is only activated when
necessary. Specifically, it is triggered when the vision-language tracker exhibits persistently low
confidence over a consecutive window of k frames, i.e., st−k+1, . . . , st < τ , where τ is a predefined
threshold.

Upon activation at frame t, the module gathers visual history from the tracker. Instead of using all
high-confidence predictions, we construct a compact pseudo-trajectory by selecting representative
points from the interval [0, t]. Let Bhigh = {(fi, ci) | sfi ≥ τ} be the set of center coordinates ci from

5
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Table 1: State-of-the-art comparison of tracking methods under the language-only setting on four
datasets. TEXTu indicates whether textual information was updated during tracking. Red and blue
values represent the best and second-best scores, respectively. Entries marked with * are reproduced
using official code in our evaluation environment. All values are reported as percentages.

Method TEXTu
OTB99 TNL2K LaSOT LaSOText

AUC P PN AUC P PN AUC P PN AUC P PN

GTI (Yang et al., 2020a) ✗ 58.1 - 73.2 - - - 47.8 - 47.6 - - -
TNL2K-I (Wang et al., 2021) ✗ 19.0 - 24.0 11.0 11.0 6.0 51.0 - 49.0 - - -
CTRNLT (Li et al., 2022b) ✗ 53.0 - 72.0 14.0 15.0 9.0 52.0 - 51.0 - - -
JointNLT* (Zhou et al., 2023) ✗ 57.2 75.3 68.3 54.5 54.8 70.5 56.8 59.2 64.4 34.9 35.5 41.3
UVLTrack-B* (Ma et al., 2024) ✗ 60.1 76.9 71.1 54.9 56.6 71.0 56.7 60.1 64.1 30.6 31.6 36.1
QueryNLT (Shao et al., 2024) ✓ 61.2 81.0 73.9 53.3 53.0 70.4 54.2 55.0 62.5 - - -
ATFUVLT-B (Liu et al., 2024b) ✓ 60.9 78.1 72.1 54.9 56.7 71.2 57.1 60.8 64.6 - - -
MAGTrack(Ours) ✓ 65.3 88.2 79.8 58.2 60.7 75.1 60.1 63.9 67.4 42.2 48.2 51.2

high-confidence frames fi. We apply a stratified sampling function Sample(·) to obtain a fixed-length
representative trajectory:

Cvis = Sample(Bhigh, t), (7)

where Cvis = {(fj , cj)}Nj=1 includes N sampled frame-center pairs. The sampling strategy divides
the frame interval into early, mid, and late segments, prioritizing diversity and recency. The sampling
strategy is detailed in Algorithm 1 in Appendix A.5.

With this trajectory, the MLLM is prompted using: (1) the initial frame I0 and language L, (2) the
current frame It, and (3) the representative trajectory Cvis. A structured prompt is constructed via a
promptgen function and passed to the MLLM:

Lnew =Mgen(I0, It, L, Cvis,promptgen), bnew =Mground(It,promptground), (8)

where Lnew is the updated textual query reflecting the target’s current appearance or behaviour, and
bnew is a predicted box in frame t. The refined language Lnew is used in subsequent grounding and
tracking steps, enabling the system to recover from drift and continue operating under challenging
visual conditions, all in a training-free manner.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We conduct all experiments on a server equipped with 8 NVIDIA A800-SXM4-80GB GPUs. Our
method integrates Qwen2-VL-72B (Wang et al., 2024a) as the multimodal large language model
(MLLM), Grounding DINO-T (Liu et al., 2024a) as the grounding vision-language model (GVLM),
and UVLTrack-B (Ma et al., 2024) as the base tracker (VLT). For modules involving confidence-based
activation and MLLM interaction, we set the confidence threshold τ to 0.5 by default. The monitor
window length k, used for determining when to trigger MLLM-based refinement, is set to 10 in most
cases but may be adjusted for different datasets based on their tracking characteristics. In the text
refinement module’s experimental setup, the trajectory length N for representing the current tracking
context is specifically set to 5 frames

4.2 COMPARISON WITH EXISTING TRACKERS

Table 1 summarizes the performance of our method and several state-of-the-art language-guided
trackers under the language-only setting, where our approach consistently achieves the best results
across all datasets and evaluation metrics. On OTB99 (Li et al., 2017), which contains 48 short-term
sequences with challenges such as occlusion, scale variation, and motion blur, our method reaches
an AUC of 65.3%, precision of 88.2%, and normalized precision of 79.8%, clearly highlighting
the effectiveness of our MLLM-based modules in enhancing short-term tracking accuracy. On the
large-scale TNL2K (Wang et al., 2021) benchmark with 700 diverse test sequences spanning RGB,
thermal, cartoon, and synthetic modalities, our tracker achieves an AUC of 58.2%, surpassing the
second-best method by 3.3% and showing strong adaptability to heterogeneous scenarios. Finally,
on the long-term benchmarks LaSOT (Fan et al., 2019) and LaSOText (Fan et al., 2021), which
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Table 2: Quantitative results of first-frame localization using AvgIoU across four benchmarks. VLT-
Based methods represent conventional trackers, Detection-Based methods rely on open-set object
detectors, while MLLM-Augmented methods leverage large multimodal models for localization.

Method Category OTB99 TNL2K LaSOT LaSOText

JointNLT VLT-Based 54.18 59.04 52.17 28.65
UVLTrack-B VLT-Based 59.82 60.13 52.17 24.75

GroundingDINO-Only Detection-Based 58.79 57.28 49.92 20.50
QWEN2-VL-Only MLLM-Augmented 67.47 67.46 60.28 44.62
MAGTrack-MGM MLLM-Augmented 71.36 70.18 64.09 46.84

JointNLT UVLTrack-B Qwen2-VL-Only Qwen2-VL-DINO (ours) Ground Truth

#TNL2K: BoatTroy_video_02-Done #TNL2K: CheerTeam_video_09-Done
“the smallest boat on the top right corner “ “the third girl on the second column”

#LaSOT: rubicCube-6 #LaSOText:frisbee-2
“rubic cube placing on the desktop” “blue frisbee played by a person and a dog on the grassland”

Figure 3: Illustrations of first-frame localization results highlighting differences between different
methods in challenging scenarios with semantic ambiguity and visually similar distractors.

emphasize complex conditions and semantically rich queries, our method integrates dynamic text
refinement and multimodal reasoning to alleviate drift and semantic mismatch, achieving clear
improvements over prior methods, with especially large gains on LaSOText (+7.3% AUC and +12.7%
P). These results collectively demonstrate the robustness and generalization ability of our framework
across both short- and long-term, homogeneous and heterogeneous tracking scenarios.

4.3 ANALYSIS

Robust First-Frame Grounding via MLLM-Guided Disambiguation. Accurate target localization
in the first frame is critical for robust language-guided visual tracking, especially in the absence
of any initial bounding box and when only a natural language description is available. However,
existing trackers such as UVLTrack (Ma et al., 2024) and JointNLT (Zhou et al., 2023) are not
designed to perform localization from scratch based solely on language input. Instead, they typically
rely on shallow vision-language matching mechanisms or fixed embedding comparisons, which are
insufficient to resolve semantic ambiguities or to filter out visually similar distractors in complex
scenes. Similarly, detection-based approaches like GroundingDINO (Liu et al., 2024a) can provide
region proposals but lack the semantic reasoning ability to disambiguate complex queries. As shown
in Table 2, these methods exhibit limited localization accuracy in the first frame.

In contrast, multimodal large language models (MLLMs) possess strong semantic reasoning capa-
bilities, enabling them to interpret complex natural language queries and identify corresponding
regions in an image. While this improves grounding in many cases, MLLMs alone can still fail in
challenging scenarios. For example, as illustrated in Figure 3, given the query “the smallest boat on
the top right corner”, multiple similar-looking boats may cause ambiguity and lead to inaccurate
localization. To mitigate this, we incorporate explicit spatial priors from GroundingDINO into the
MLLM pipeline: candidate regions are first proposed and then refined by semantic reasoning. This
combination leverages the global language understanding of MLLMs and the spatial precision of
visual grounding, resulting in improved robustness and localization accuracy across diverse cases.

Adaptive Language Refinement for Dynamic Visual Semantics. While initial localization sets
the foundation for tracking, visual appearance and semantic relevance can drift over time, especially
in long or dynamic sequences. To address this issue, we propose a Text Refinement module that
adaptively updates the natural language description based on observed tracking history and current
visual cues.
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woman in white and sing on the 
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couch and singing

a dancer in a black outfit 
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the woman in black and dancing on 
the stage

t=0 t=1080 t=1933 t=2336

t=0 t=951 t=2808 t=3605
gray monkey playing with a cat monkey sitting on the ground monkey hanging upside down from 

a tree branch monkey climbing a tree

t=0
the red and most thick book on the 

top of the bookshelf
t=2067
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right side of the bookshelf

t=4379

a red book being held open by a 
person wearing a red jacket

t=5082

the red and most thick book on the 
top shelf, slightly tilted

UVLTrack-B Ours Ground TruthSource Language Updated Language

Figure 4: Visualization of text refinement and tracking under semantic variation. Each row corre-
sponds to a video sequence and displays several keyframes sampled over time, along with the original
language description, the refined language, and the tracking results from UVLTrack-B (Ma et al.,
2024), our method, and the ground truth.

Table 3: Average image-text alignment scores us-
ing original and refined descriptions on updated
frames, evaluated with CLIP (Radford et al.,
2021) using ViT-B/32 and RN-50 as image en-
coders.

Setting TNL2K LaSOT LaSOText

RN50 (Original) 0.1789 0.1916 0.1856
RN50 (Refined) 0.1849 0.1926 0.1861

ViT-B/32 (Original) 0.2421 0.2576 0.2470
ViT-B/32 (Refined) 0.2497 0.2590 0.2482

Table 4: Ablation study of the MLLM-based
Grounding Module (MGM) and Text Refinement
Module (TRM) on three datasets, showing only
the AUC metric.

Method TNL2K LaSOT LaSOText

UVLTrack-B 54.85 56.67 30.58
+ MGM 56.56 59.03 40.18

+ TRM 58.24 60.11 42.22

JointNLT 54.55 56.83 34.99
+ MGM 54.84 57.38 37.44

+ TRM 55.39 57.49 37.77

As shown in the qualitative examples in Figure 4, the original language often becomes semantically
misaligned with the target object. For instance, in the first sequence, the description "woman in
white and sing on the stage" becomes less accurate as the target transitions to lying on a couch,
prompting an updated description: "the woman in white lying on a couch and singing". These re-
fined descriptions enable more accurate grounding by the MLLM and improve the robustness of
tracking under significant appearance or context changes. We further validate the effectiveness
of our Text Refinement module through image-text matching experiments. Specifically, we use
the ground-truth bounding boxes to crop the target object from each frame where refinement was
triggered, and compute the text-to-image alignment score using CLIP (Radford et al., 2021). Both
the original and refined descriptions are encoded along with the cropped image region, and their
similarity is measured via cosine distance in the CLIP embedding space. As reported in Table 3,
the refined descriptions consistently yield higher alignment scores across three datasets, using both
RN-50 (He et al., 2016) and ViT-B/32 (Dosovitskiy et al., 2020) as image encoders. These results
indicate that the updated language more accurately reflects the visual content of the target, thereby
improving the semantic grounding and reliability of the overall tracking process.
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Table 5: Comparison of different MLLM backbones across four benchmarks. Localization perfor-
mance is evaluated using AvgIoU, and tracking performance is reported using AUC.

Model First-Frame Localization (AvgIoU) Tracking (AUC)
OTB99 TNL2K LaSOT LaSOText OTB99 TNL2K LaSOT LaSOText

Baseline 59.82 60.13 52.17 24.75 60.09 54.85 56.67 30.58
Qwen2-VL-7B 68.47 63.79 59.49 43.68 65.58 55.40 59.87 41.88
InternVL3-78B 71.23 68.40 61.43 41.92 64.29 57.33 59.40 41.16
Qwen2-VL-72B 71.36 70.18 64.09 46.84 65.33 58.24 60.11 42.22

4.4 ABLATION STUDY

To better understand the role of each component, we perform ablation studies on TNL2K, LaSOT,
and LaSOText (Table 4). Incorporating the MLLM-based Grounding Module (MGM) consistently
improves both UVLTrack and JointNLT, confirming its plug-and-play nature and effectiveness in
enhancing first-frame grounding with external visual cues. For instance, adding MGM to UVLTrack
yields a gain of +1.7% AUC on TNL2K and +9.6% on LaSOText, showing substantial improvements
especially in challenging long-term scenarios. The Text Refinement Module (TRM) further boosts
performance, yielding the best results across all datasets; e.g., UVLTrack achieves an additional
+1.1% AUC on LaSOT with TRM, while JointNLT gains +0.3% on LaSOText. These results confirm
the complementary benefits of MGM and TRM: while MGM mainly contributes to spatial grounding
accuracy, TRM enhances temporal robustness through adaptive language refinement. The largest
improvement is observed on LaSOText (+11.6% over the UVLTrack baseline), highlighting the strong
generalization of our design to long-term and unseen scenarios. Overall, the consistent gains across
backbones and datasets demonstrate that our modules not only provide cumulative benefits but also
transfer seamlessly across diverse tracker architectures, making them broadly applicable for future
vision-language tracking frameworks.

4.5 SCALABILITY AND EFFICIENCY WITH VARYING MLLM BACKBONES

In addition to component-level analysis, we further examine the influence of the underlying MLLM
used in our framework. As detailed in Table 5, we compare several large multimodal models with
varying architectures and parameter scales, including Qwen2-7B (Wang et al., 2024a), Qwen2-
72B (Wang et al., 2024a), and InternVL3-78B (Zhu et al., 2025). Our method achieves consistently
strong performance across all backbones, confirming its robustness to the choice of MLLM. Although
the 72B-scale models yield the best results overall, the 7B variant performs competitively while
offering significantly lower inference latency and computational cost. This demonstrates that our
framework is not only effective but also flexible and practical for real-world deployment scenarios,
where resource constraints may limit the use of extremely large models. Detailed analysis of inference
speed can be found in Appendix A.2.

5 CONCULSION

In this work, we propose MAGTrack, a flexible framework powered by Multimodal Large Language
Models (MLLMs) for language-guided visual tracking. Without requiring any additional training,
MAGTrack incorporates two plug-and-play components: an MLLM-based Grounding Module
(MGM) that improves initial localization from ambiguous descriptions, and an MLLM-based Text
Refinement Module (TRM) that adaptively updates the language query based on visual context during
tracking. Together, these components enable seamless integration with existing trackers and enhance
tracking robustness. Extensive experiments across multiple benchmarks demonstrate consistent
improvements, highlighting the potential of MLLMs as powerful reasoning engines for vision-
language tracking tasks. However, the inference cost of large MLLMs may limit their applicability
in real-time or resource-constrained settings. Future work may explore lightweight alternatives or
distillation-based approaches to improve efficiency. Our framework opens up promising directions
for natural human-computer interaction, including multimodal surveillance, robotics, and assistive
systems, where flexible language-based control and adaptation are essential.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, Large Language Models (LLMs) were employed solely as writing assistants for language
polishing, including improving grammar, clarity, and readability. They were not used for generating,
analyzing, or interpreting research data, nor for deriving any scientific conclusions. All core ideas,
methods, and experimental results presented in this paper are entirely the work of the authors.

A.2 LIMITATIONS

While our method demonstrates strong performance across four benchmarks without additional
training, it relies on large-scale multimodal language models (MLLMs), such as Qwen2-VL-72B,
which can be computationally expensive to deploy in real-time or resource-constrained environments.
To evaluate the runtime performance of our method, we conduct all testing experiments on an
NVIDIA A800-SXM4-80GB GPU. Although our framework is designed to adaptively trigger text-
based re-grounding based on the confidence scores from the visual tracker, we adopt a fixed-interval
re-grounding strategy in this experiment to better isolate and measure the computational overhead
introduced by MLLMs. Specifically, we simulate the process of query updating by performing
re-grounding every 200 frames, which approximates a moderate update frequency in typical video
scenarios where the target’s appearance changes gradually over time. As shown in Table 6, the baseline
tracker (UVLTrack-B) runs at 48.93 FPS. Incorporating MLLMs introduces notable latency: the 7B
variant (e.g., Qwen2-VL-Chat) achieves 17.04 FPS, while the 72B model (Qwen2-VL-72B) further
reduces speed to 7.67 FPS due to its significantly larger model size and visual-textual reasoning cost.
Despite the runtime drop, MLLMs substantially enhance grounding and text refinement, particularly
in challenging scenes with ambiguous language or drastic appearance changes. Future work could
explore lightweight alternatives, such as distilled or quantized MLLMs, and dynamic scheduling
strategies that invoke re-grounding based on tracking confidence rather than fixed intervals. These
improvements may reduce latency while maintaining robustness across diverse scenarios.

Table 6: Runtime speed (FPS) comparison of different tracking methods.

Metric UVLTrack-B MAGTrack-7B (Ours) MAGTrack-72B(Ours)
FPS 48.93 17.04 7.67

A.3 BROADER IMPACTS

While the core contribution of this work lies in proposing a training-free and modular framework
for language-guided object tracking, its practical value emerges in enabling user-friendly interac-
tion—allowing tracking through natural language instead of manual annotations. This lowers the
barrier for real-world applications such as assistive systems or human-computer interfaces. On the
downside, the use of large vision-language models introduces efficiency and resource constraints,
which may hinder deployment in time-sensitive or resource-limited environments.

A.4 PROMPT FOR LLM

n this section, we present the prompt designs used for three core tasks involving large language
models: grounding generation, box selection, and textual description refinement. The corresponding
examples are illustrated in Figure 5, Figure 6, and Figure 7, respectively. For clarity, the input
components provided to the model are highlighted in blue.

A.5 REPRESENTATIVE FRAME SAMPLE STRATEGY

To reduce the number of frames passed into the MLLM while preserving temporal diversity, we design
a simple yet effective strategy to select representative frames based on frame indices. Specifically,
given the target frame index, we divide the timeline into two parts: the early segment and the tail
segment. For the early part, we sample kmain frames at fixed ratio intervals between 10% and 60%
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Prompt for Visual Grounding

Detect the bounding box of {description}. You must answer only in the following format:
<|object_ref_start|>. . . <|object_ref_end|><|box_start|>(x1,y1),(x2,y2)<|box_end|>
If uncertain, still provide your best guess. An answer in the required format is always

mandatory.

Figure 5: Prompt for Visul Grounding.

Prompt for Box Selection

Here are {num} boxes: {boxes_list}. Which box best matches the phrase: "{language}"?
Please output in the following strict format:

<answer>. . . your final description [x1,y1,x2,y2] here. . . </answer>
The answer must be one of the boxes from the list.

Figure 6: Prompt used for box selection based on language queries.

of the target frame, selecting the closest available frame to each target ratio. For the tail part, we
select the last two available frames from the range between 80% and 100% of the target frame. All
selected frames are then deduplicated and sorted. This strategy ensures that the sampled frames
capture both long-range and short-range temporal context while maintaining efficiency, as detailed in
Algorithm 1.

Algorithm 1 Select Representative Frames

Require: Frame index list F , target frame t, number of frames k
Ensure: A set of k representative frames

1: if |F | ≤ k then
2: return all frames in F
3: end if
4: Divide k as k = kmain + 2
5: Compute kmain ratio points in [0.1, 0.6]
6: for each ratio r do
7: fr ← frame closest to r · t
8: Add fr to selected set
9: end for

10: From frames in [0.8t, t], select last two
11: Add them to selected set
12: Remove duplicates and sort
13: return selected frames
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Prompt for Language Generation

You are given the following information from the same video:
1. The source frame (frame 0) provides a textual description and bounding box of an object.
2. The target frame is a later frame (frame {curr_id}) where the object may have changed location,

appearance, or status.
3. Optionally, several intermediate points track the object’s center as it moves between the two

frames.

Your task is to:
1. Analyze the position and visual cues of the object in the source frame.
2. Use the intermediate trajectory to infer the likely location of the object in the target frame.
3. Generate a new textual description that best describes the object in the target frame, based on its

new appearance, pose, or behavior.
4. Provide the bounding box in the target frame.

Input:
1. {trajectory_dict}
2. <|src_description_start|>{src_language}<|src_description_end|>
3. <|src_box_start|>{src_coor}<|src_box_end|>

Always follow this format in your answer:
<|think|>...your reasoning about how the object moved and what it looks like now...<|think|>
<|tgt_description_start|>...updated textual description...<|tgt_description_end|>
<|tgt_box_start|>(x1, y1), (x2, y2)<|tgt_box_end|>

Figure 7: Prompt used for language and box generation across frames, based on object trajectory.
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