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ABSTRACT

Evaluating generalist agents presents significant challenges due to their wide-
ranging abilities and the limitations of current benchmarks in assessing true gen-
eralization. We introduce the MineCraft Universe (MCU), a fully automated
benchmarking framework set within the open-world game Minecraft. MCU dy-
namically generates and evaluates a broad spectrum of tasks, offering three core
components: 1) a task generation mechanism that provides high degrees of freedom
and variability, 2) an ever-expanding set of over 3K composable atomic tasks, and
3) a general evaluation framework that supports open-ended task assessment. By
integrating large language models (LLMs), MCU dynamically creates diverse envi-
ronments for each evaluation, fostering agent generalization. The framework uses a
vision-language model (VLM) to automatically generate evaluation criteria, achiev-
ing over 90% agreement with human ratings across multi-dimensional assessments,
which demonstrates that MCU is a scalable and explainable solution for evaluating
generalist agents. Additionally, we show that while state-of-the-art foundational
models perform well on specific tasks, they often struggle with increased task
diversity and difficulty.

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated remarkable progress in the field
of AI (Touvron et al., 2023; Achiam et al., 2023). The release of the GPT series (Brown et al.,
2020) has significantly reshaped AI research, moving the focus away from task-specific models
toward the development of foundation models. (Bubeck et al., 2023). These models excel across
a diverse set of tasks and are highly instructable, marking a substantial leap forward in versatility
and adaptability. The next step in this evolution is the development of Generalist Agents (Bubeck
et al., 2023). So, what is a Generalist Agent? From the perspective of users, the ideal generalist agent
should embody a multifaceted utility, seamlessly integrating a spectrum of complex services. For
instance, users typically prefer asking ChatGPT for a range of services like searching, translation,
writing, coding, etc., rather than relying on numerous specialized apps. This preference underscores
the potential for a “single-brain” style generalist agent, which intriguingly aligns with neuroscience
insights (Mountcastle, 1978; Zhu et al., 2020; Taylor, 2005), offering a two-way benefit. Beyond
that, generalist agent extends its capabilities by being able to interact with its environment, directly
influencing and adapting to the real world. This interaction capability bridges the gap between passive
task execution and active decision-making in complex, dynamic settings (Reed et al., 2022; Durante
et al., 2024; Oertel et al., 2020). Therefore, we think that generalists should have following two
characteristics: 1) possess the generalization capability to manage diverse tasks; and 2) exhibit robust
interactivity and adaptability in the real-world challenges.

Creating a generalist agent presents significant challenges. Early efforts attempted to create a “one-fits-
all” network (Schmidhuber, 2018) with life-long learning strategies but struggled with basic tasks due
to catastrophic forgetting (McCloskey & Cohen, 1989). Recent meta-reinforcement learning (meta-
RL) studies (Finn et al., 2017; Hospedales et al., 2021; Lake & Baroni, 2023) has shown potential
in endowing models with human-like abilities for systematic generalization, but challenges such as
scalability, sample inefficiency, and limited performance in complex environments persist (Parmar
et al., 2023; Hospedales et al., 2021). Recent efforts have shifted towards pretraining large foundation
models on extensive internet-scale datasets (Cai et al., 2023b; Baker et al., 2022), achieving significant
advances in tackling more complex and diverse tasks in open-world environments. However, these
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Table 1: Comparison between MCU and related benchmarks for testing generalization
Environmental-level Task-level Evaluation-level

Benchmark Open-world Procedure
generation

Dynamic
task generation

Task
Verification

Task
composability

Tunable
difficulty

Auto eval
open-ended task

DmLab (Beattie et al., 2016) × × × ✓ × ✓ ×
Procgen (Cobbe et al., 2020) × ✓ ✓ × × ✓ ×
Crafter (Hafner, 2021) ✓ ✓ × × × × ×
Xland (Team et al., 2021) ✓ ✓ × × × × ×
DYVAL Zhu et al. (2023a) × ✓ ✓ ✓ ✓ × ×
Minedojo Fan et al. (2022) ✓ ✓ × × × × ✓
MCU (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

models exhibit strong performance only on a constrained set of tasks, leaving their true generalization
capabilities unproven.

In light of these challenges, the need for rigorous evaluation methods becomes apparent. While
benchmarks like DmLab-30(Beattie et al., 2016) and Procgen(Cobbe et al., 2020) have made strides
with multi-tasks learning and procedural generation, they fall short in assessing agent within com-
petitive environments (Stanley et al., 2017; Parmar et al., 2023). Minedojo(Fan et al., 2022) and
Crafter(Hafner, 2021), have pushed forward in open-world contexts, they lack sufficient task dy-
namism and verification mechanisms. Other works(Zhu et al., 2023a; Zhou et al., 2020) push
boundaries with dynamic task generation and composition, yet constrained by text-only modality of
the tasks. The CRAB framework Xu et al. (2024) introduces a cross-environment benchmark that
leverages multimodal language models to perform tasks across various GUI environments. However,
the above benchmarks often face limitations in evaluating open-ended tasks due to the absence of
clear completion signals, making it difficult to test agents on more creative and adaptive challenges.
A comparison of these benchmarks is provided in Table 1.

To address these limitations, we introduce our benchmark, MineCraft Universe (MCU), which
offers high degrees of freedom in task design and evaluation. Minecraft, as an open-world platform,
provides a rich and diverse set of challenges, including tasks such as Trade (logical reasoning), Mining
(physical interaction), Combat (strategic planning), Building (artistic creation), Trapping (precision
control), and Redstone (complex-knowledge application). This variety provides agents with ample
opportunities to explore and learn across diverse scenarios. At the task level, we collect over 3000
atomic, composable tasks, with the potential to infinite expansion. By leveraging large language
models (LLMs), each task is dynamically generated and uniquely instantiated during each evaluation,
promoting essential generalization skills in agents. Tunable difficulty is also involved to ensure more
flexible testing. Furthermore, we propose a domain-general, vision-language model (VLM)-based
evaluation method capable of assessing open-ended tasks, even those without explicit end signals.
Crucially, our method automates the whole pipeline of task generation, verification, and evaluation,
enabling scalable benchmarking (Figure 1), which paves the way for comprehensive evaluation of
generalist agents. We adhere to the criteria outlined in Section2 to develop our benchmark.

2 BENCHMARK DESIDERATA

Based on the aforementioned challenges, we argue that three keystones should be introduced to
benchmarking generalist agents.

First, diversity is the key. The emergence of human-like general intelligence is inextricably tied to
diverse environments (Taylor, 2005). Environmental diversity drives evolutionary pressures, fostering
the development of complex cognition, technological innovation, and adaptability (Elmqvist et al.,
2012; Zhu et al., 2020). Similarly, diverse challenges stimulate the capacities of agents, pushing
them to generalize and perform across a wide array of tasks and conditions. However, in reality,
their capabilities are vastly different. In our MCU benchmark, we incorporate two types of diversity:
1) intra-task diversity: Each task should embody a high degree of variability and randomness,
providing freedom to truly test the agent’s adaptive skills. 2) inter-task diversity: The benchmark
should encompass a broad spectrum of task categories, representing the diverse challenges agents are
likely to encounter in real-world environments.

Second, task quality deserves attention. As the demand for automatic generation grows, some
approaches (Cheng et al., 2024; Fan et al., 2022), rely heavily on large language models (LLMs)
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Atomic Task

MINE
Mine Dirt
Mine birch log
…
CRAFT
Craft oak planks
Craft Stone Axe
…
DIET
Eat beef
Drink potion
…
COMBAT
Combat a wolf
Hunt a sheep
…
DECORATION
Decorate the wall
Lay carpet
…
BUILD
Build a house
Build a waterfall
…

LLM-based  Env Generator

task_description: use iron pickaxe to mine 
redstone ore
custom_init_commands:
- /give @s minecraft:stone_pickaxe #random
- /give @s minecraft:iron_pickaxe #necessary
-/execute as @p at @s run fill ~-2 ~ ~
  ~2 ~ ~ minecraft:redstone_ore #necessary
-/give @s minecraft:torch 64 #random

Refine config

Task 
sets

Code as env 
initialization

New tasks

Agents Set

STEVE-1

VPT

Future Agents …

VLM-based  Evaluator

Policy rollouts

-    Evidence: The agent locate the redstone ore… 
- Overall: Excellent
- Evidence: The agent mine efficiently…
- Action Control: Excellent
- Evidence: …
- Materia Usage: …
- …

Task
descriptions

An example of procedure-generated open world

Figure 1: Overview of MCU automated benchmarking pipeline.

or procedural methods to generate numerous tasks and their corresponding initial conditions, yet it
remains questionable whether these initial conditions can actually lead to the task’s solution Yang
et al. (2024). For instance, a task such as “mine diamond” cannot be completed with wooden pickaxe.
Hence, we introduce a task generation approach based on soft constraints and a verification pipeline.
Although we cannot guarantee that every task can be solved, we can ensure that more than 95% of
the tasks are solvable.

Third, an automatic evaluation system is indispensable for fostering the development of generalist
agents. Open-ended tasks (Stanley et al., 2017; Standish, 2003), by their very nature, lack well-
defined end states or straightforward success signals, necessitating reliance on human evaluation or
handcrafted metrics, which are labor-intensive and time-consuming(Dubois et al., 2024). Therefore,
automatic evaluation systems that enable the large-scale evaluation of generalist agents across
complex, open-ended tasks is required.

To make our automatic evaluation effective, we meet the following two criteria: 1) evaluations must
be reliable, providing accurate assessments that align closely with human judgments. This requires
the system to identify the key points of task completion, ensuring that the results are both consistent
and interpretable; 2) evaluations are multi-dimensional. Beyond success rates, which only capture
a binary measure of task completion, we need more granular such as overall skills, task efficiency,
error correction, and fine-grained control of actions.

3 THE AUTOMATED BENCHMARKING PIPELINE

In this section, we will introduce our benchmarking pipeline. To achieve diversity in section2, we
adopt Minecraft, an open-world environment, as our platform and propose an automatic task
generation method to maximize task randomness. To ensure task quality, we define atomic tasks
and introduce an automatic verification method to guarantee the solvability of the tasks. In order to
conduct large-scale task evaluations, we propose an automatic evaluation method to alleviate the
burden on humans and provide multi-dimensional assessment metrics.

3.1 MINECRAFT AS AN OPEN-WORLD ENVIRONMENT

For human player, there is not a pre-defined goal in Minecraft. For example, players are allowed
to mine ores, craft items, build architectures, combat enemies, explore freely in the varied world
with diverse biomes. Previous researches proposed classical tasks such as Obtain Diamond (Guss
et al., 2019a) and Find Cave (Milani et al., 2023), but the possible tasks are endless which makes the
multi-task evaluation insufficient. Furthermore, the broad open-ended tasks cover a wide spectrum
of challenges in AI research, such as long-horizon decision making (Jin et al., 2023), precise
control (Zhang et al., 2020), OOD generalization (Yang et al., 2023).
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combat_sheep_plains_iron_armors_diamond_sword_shield:
  category: combat
  guidance: '1. Find a sheep.
    2. Get close to the sheep.
    3. Hit the sheep with your hand or a weapon.
    4. The sheep will die and you will get 1-3 pieces of mutton.'
  prompt: hunt a sheep in plains with a diamond sword, shield...

creative:1236:
  collection: youtube
  prompt: build a nether portal

creative:699:
  collection: youtube
  prompt: make a nether portal.

task_description: decorate the cave 
custom_init_commands:
- /give @s minecraft:torch 10
- /give @s minecraft:poppy 10
- /give @s minecraft:item_frame 2
- /give @s minecraft:flower_pot 5
- /give @s minecraft:red_dye 5

task_description: hunt a sheep with 
diamond_sword
custom_init_commands:
- /give @s minecraft:diamond_sword
- /summon minecraft:sheep ~5 ~ ~

task_description: hunt a sheep with 
wooden_sword
custom_init_commands:
- /give @s minecraft:wooden_sword 
- /summon minecraft:sheep ~8 ~ ~
- /summon minecraft:wolf ~ ~ ~2
- /give @s minecraft:golden_apple 8

MINEDOJO Task Examples

MCU Task Examples (Ours)

Build a life-sized replica
of your house in Minecraft

Design and build a transpo-
rtation system for your city

Create a working calculator 
out of redstone

Only executable for programmatic task

Support open-ended tasks Simulate real game playing Different difficulty level

Highly repetitive Not solvable

Figure 2: A comparison between the “tasks” in our MCU and Minedojo (Fan et al., 2022). We
investigate the task list provided by Minedojo2 and identify several issues. For example, only
programmatic tasks that have clear reward signal can be executable in the benchmark; many tasks in
their list are repetitive (both No.1236 and No.699 are “build nether portal”); and a large amount of
tasks in the creative tasks are not solvable even by human. To address this, our MCU benchmark can
create executable configurations for open-ended tasks, and ensure intra-task and inter-task diversity
to simulate real game playing in different difficulty levels, while preserving solvability of tasks.

3.2 AUTOMATIC TASK GENERATION

3.2.1 ATOMIC TASK

As demonstrated above, diversity is a crucial characteristic of effective benchmarks. Intuitively, this
suggests that more tasks should be included. However, if tasks consistently overlap in skill assessment
(e.g., mine stone with a wooden pickaxe, mine stone with a stone pickaxe, and mine stone with a
golden pickaxe Fan et al. (2022)), they merely test the same fundamental skill with minor variations.
This leads to an artificial inflation of task quantity without contributing meaningfully to the evaluation
of generalization. In our work, we introduce the concept of an atomic task, which is characterized by
distinct challenges aimed at promoting genuine generalization. An atomic task is defined by two core
properties:

Goal-oriented definition. An atomic task T is a basic unit defined exclusively by its goal g,
independent of the methods, tools, or specific environmental conditions. During evaluation, the
atomic task is instantiated, which induces a task-specific initial state distribution P(s0|g) (see 3.2.2).
For example, the atomic task “mine stone” is goal-centric, and across different evaluation batches, it
may be instantiated into different s0 states, such as “mine stone with a wooden pickaxe” or “mine
stone with a stone pickaxe on the rainy day.” However, all of these instances correspond to the same
atomic task, ensuring the independence between different atomic tasks .

Composability. Atomic tasks can be combined to form more complex tasks by using logical operators
such as “and” (

∧
) and “or” (

∨
), or by introducing constraints like “when,” “where,” and “how.” For

instance, an agent could be tasked to “[mine oak log] or [mine grass] bare-handed and then [craft
sticks],” where “[]” denotes individual atomic tasks. This compositional approach enables a vast task
space to be explored, leveraging the combinatorial complexity of atomic goals.

The above two properties enable us to generate endless distinctive tasks. We collect over 3,000
atomic tasks3 that represent unique functionalities in Minecraft. These tasks span a wide spectrum
in Minecraft domain and can compose almost all the feasible tasks for junior human players. The
annotated atomic tasks will also be released to community and researchers can DIY their open-ended
tasks using atomic tasks as building blocks freely.

3The set is still growing.
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Generate the initial config 
of sheep hunting.

GPT-4o

Environment initialization

task_description: use diamond sword 
to hunt the sheep.
custom_init_commands:
- /give @s minecraft:diamond_sword
- …

Self-verification 
module

Error code refine

Generate the rating criteria 
for hunting sheep with a 
diamond sword.

Automatic task generation

Automatic evaluation

Verified initial 
environments

GPT-4o

Multi-dimensional criteria

**Overall: the key steps …**
- identify and approaches sheep
- …

**Action control: execute actions…**
- …

Key frames
GPT-4v

**Overall**:
- evidence: the agent locate…
- results: excellent 
**Action Control**:
- evidence: …
- results: … 

Evaluation results

Sample

Figure 3: Automatic pipeline of task generation and performance evaluation.

3.2.2 LLM-POWERED SCENE GENERATION

For a given atomic task T , we automatically generate a task-specific initial state distribution P(s0|T )
that meets two key criteria:

• The initial state distribution exhibits high diversity.
• They need to be formulated into executable files within Minecraft.

To achieve above objectives, we propose a scalable task generation pipeline powered by LLMs,
coupled with an automatic verification process to ensure accuracy. LLMs provide scalability beyond
human-written programs, generating a broader spectrum of task scenarios by integrating broad
knowledge and creativity.

As illustrated in Figure 3, we input the atomic task and few-shot examples into GPT-4O, expecting
it to generate a specific task description (used as instructions for LLM-based agents (Lifshitz et al.,
2023) and for generating evaluation criteria 3.3), along with a set of executable “cheat commands”
that initialize the environment configuration. This initial configuration includes various attributes such
as the spawn point, inventory, equipment, items in the agent’s main hand and off-hand, nearby entities,
time of day, weather conditions, and more. For example, if the atomic task is to mine diamonds, the
initial environment would include nearby diamond ore and an iron pickaxe in the agent’s inventory.
To increase task diversity, we introduce random additional conditions related to the task (e.g., placing
other ores nearby) and shuffle item arrangements to prevent predictable patterns.

To address common errors generated by LLMs, we integrate soft constraints into the prompts. LLMs
often struggle with numerical accuracy and game-specific rules. To mitigate this, we implement
constraints to guide the outputs. For example, when generating scenes for crafting, where exact
materials are required (e.g., three wool blocks and three wooden planks), we instruct LLMs to generate
a surplus to account for their insensitivity to quantities. Constraints also prevent the generation of
inaccessible structures (e.g., via the /fill command), maintaining environmental integrity. Essential
elements like crafting tables and furnaces are consistently reminded to ensure usability.

3.2.3 AUTOMATIC VERIFICATION PIPELINE

To ensure the quality of generated task, Mineflayer (PrismarineJS, 2024) is employed as a super-agent
to conduct task verification. We validate generated scenes by executing tasks T within an initial
environment s0 for a maximum duration d = 60 seconds. Let V(g, s0, d) represent the task execution
process. If the agent successfully completes the task within the time limit, the scene is validated. If
V(g, s0, d) results in failure (i.e., the task is not completed within d), an error signal ϵ is sent back

5
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to the LLM. This feedback, denoted as F(ϵ), prompts the LLM to generate a revised scene s′0. The
process ensure that the generated scenes meet benchmark standards for accuracy and usability.

3.3 AUTOMATIC EVALUATION

In open-world scenarios, traditional benchmarks often fall short due to the diverse and open-ended
nature of tasks. In this section, We introduce an automated evaluation method designed to scale
task assessments beyond the limitations of human judgment. Our framework consists of two main
components. (1) Criteria generation: establishing clear, task-specific evaluation dimensions. (2)
Scoring based on criteria: using these predefined dimensions to infer “scoring points” from videos of
agent performance (see Figure 3).

Criteria generation We define six key dimensions for evaluating agent performance:

• Task progress: measures critical steps and factors required for task completion.

• Action control: evaluates the agent’s ability to avoid unrelated or unnecessary actions.

• Material usage: evaluates the ability in the selection and application of materials.

• Task efficiency: focuses on minimizing unnecessary repetitions and optimizing strategies.

• Error recognition: assesses the agent’s capacity to identify and correct its own errors.

• Creative attempts: recognizes innovative approaches taken by the agent in task execution.

The LLMs can autonomously generate tailored criteria for each task. This dynamic approach
allows for efficient, task-specific evaluation standards across a wide variety of tasks. These six
metrics provide a comprehensive view of the agent’s capabilities, offering insights into both strategic
execution and adaptive problem-solving.

Scoring with criteria Given the task T and initial states P(s0|g), an agent A will rollout the
trajectories based on its policy A : (s0; g) 7→ (a0, s1, a1, · · · , at, st), where {si}ti=0 are past and
current states, and {aj}tj=0 are past and current actions. We store the agent’s rollout trajectories
in video format. In the evaluation phase, we leverage the VLM to analyze agent performance. To
optimize resource utilization, we extract one frame from every n frames of the video. While this
sampling approach may result in a certain degree of performance loss, it is possible to achieve a
trade-off between resource conservation and evaluative efficacy hat aligns with researcher’s specific
conditions.

We input the sampled frames and task-specific criteria into VLM. To ensure rigor, VLM provides
evidence and explanations before assigning a score (?). It evaluates each dimension by identifying
supporting evidence from the video to justify the rating. We define the scoring intervals for each
criterion as follows: very poor, poor, fair, good, and excellent. This structured scoring scale helps the
VLM intuitively interpret performance levels, promoting consistent and detailed assessments that
lead to more instructive resuplts.

4 EXPERIMENTS

To show that our MCU is implementable in real evaluation practice, we first validate the rationality of
the automatic evaluation methods by comparing their judgments with human assessments. Subse-
quently, to investigate the capabilities of the existing agents, we conduct experiments in accordance
with the task design principles outlined in Section 3.

4.1 AUTOMATIC EVALUATION

We implemented two distinct evaluation methods: comparative assessment and individual rating.

• Comparative assessment: it allows for direct comparison between two videos.

• Single rating: it scores individual video, quantifying the overall skill set of the agent.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

These two approaches each have their own utility. Comparative assessment can facilitate the evaluation
of an agent’s improvement across different training iterations or enables the comparison between
different agents combined with an Elo rating system. Individual rating provides a clear and intuitive
representation of the agent’s performance, allowing for the identification of specific strengths and
areas for improvement.

Our video sets consisted of 60 tasks, featuring over 500 trajectories from both agent simulations and
human gameplay videos. This presents a challenge for automated evaluation methods. Unlike the
majority of previous work, which typically contrasted successful and unsuccessful trajectories, our
dataset predominantly consists of trajectories from similar agents across different rollouts. These
trajectories exhibit highly similar poses for many steps, thereby increasing the evaluative complexity.
We hire 20 experts in the field of Minecraft to annotate data, with each person contributing one hour
of annotation work.

Comparative assessment We randomly sample two videos from the same task for each evaluation
instance. Participants are then prompted to vote on the comparative quality of the videos, with
options ranging from “a is better,” “b is better,” “tie,” to “both are bad.” This methodology allows
for the pairing of any videos that complete the same task, creating an extensive sample space for
analysis. Automated evaluation metric exhibits strong concordance with human assessments across
all dimensions (Table 3). Our methodology demonstrates a marked improvement over MineClip,
which finetune on large-scale Minecraft videos based on CLIPopenai model (Table 2).

Table 2: The automatic evaluation results align with human judgments across a variety of tasks.
Numbers represent the F1 scores for classifying the better trajectory.

Model Survive Build Craft Tool Collect Explore Average
MineClip (Fan et al., 2022) 11.0 45.0 44.0 44.0 73.0 0.0 44.0
Ours (w/o criteria) 100.0 73.0 53.0 100.0 49.0 100.0 73.0
Ours (w criteria) 100.0 85.0 62.0 58.0 73.0 100.0 80.0

Table 3: The automatic evaluation results align with human judgments across different dimensions.
Metric Task Progress Action Error Recog. Creative Efficiency Material Average

F1 Score 80.0 96.0 86.0 100.0 92.0 91.0 90.8

Single rating In an experiment spanning five independent rating scales, the concordance between
VLM and human assessment, as indicated by Kendall’s τ , stands at a robust 0.78, with a P-value of
1.70× 10−15 (see Figure 4). Our unified rating system demonstrates reliable performance on creative
tasks, including ’build’ and ’find’, providing meaningful insights into open-ended evaluations. How-
ever, for meticulous tasks such as ’craft’, which require acute attention to detail and the recognition
of minor elements, the system’s efficacy is somewhat diminished. Enhancements may be achieved by
increasing the frame sampling rate from the current one frame per thirty.

4.2 HOW CAPABLE ARE THE EXISTING AGENTS?

To show that our MCU is implementable in real evaluation practice and investigate how capable the
existing agents are, we conduct experiments following the guidance of the task design principles
introduced in Section 2.

4.2.1 EXPERIMENTAL SETTINGS

Minecraft Agents. We compare four powerful agents in Minecraft, which have been pre-trained
on large-scale Minecraft video datasets to ensure generalizability: (1) VPT(bc), which is a behavior
cloning model fine-tuned from earlygame keyword data of YouTube video pre-training(VPT) (Baker
et al., 2022); (2) VPT(rl), which is a RL fine-tuned model based on earlygame keyword to maximizing
the reward of obtaining diamond in Minecraft; (3) STEVE-I (text) (Lifshitz et al., 2023), which
follows text instructions to solve tasks; and (4) GROOT (Cai et al., 2023b), which solves a task by
watching a reference video. More model details can be found in Cai et al. (2023b).

7
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Figure 4: Human and VLM scores for various task variants demonstrate a consistent trend. When
VLM scores, it extracts one image per every 30 frames, which may lead to a certain degree of
information loss.

Task Settings. To verify intra-task diversity and inter-task diversity proposed in Section 2, we select
a diverse range of tasks and establish a gradient of difficulty levels ranging from simple to hard within
each task. We randomly choose 30 atomic tasks and 5 diverse compositional tasks to evaluate the
agents capability. The representative tasks include “drink hurting potion”, which is very novel as
players rarely do this in Minecraft because it will hurt themselves, and “prepare a birthday present”,
which is not pre-defined in Minecraft and highly creative. Moreover, we provide three settings of
difficulty level: simple, medium, and hard. The higher the difficulty level, the greater the number of
factors that can impede the completion of tasks.

4.2.2 INTER-TASK GENERALIZATION

For ease of presentation, we categorize tested tasks into six major categories, which include many
sub-categories, such as tool-use with sub-tasks like drink, carve, compose, etc., each assessing
different types of skills (Figure 5). We test each task at three levels of difficulty, with 10 rollouts for
each, and averaged their success rates. While agents show satisfactory performance on specific tasks
like “find forest” and “mine grass,” giving an illusion of impressive inter-task generalization, their
performance deteriorates when faced with a broader spectrum of challenges, particularly in areas
such as “craft” and “build.” Notably, there is a consistent failure among all agents to execute tasks
involving structured construction, exemplified by the “build nether portal” task. Furthermore, tasks
requiring extensive knowledge and meticulous operational control, such as “compose obsidian,” pose
considerable difficulties. These results underscore the need for progress in spatial understanding and
fine motor control as we advance towards the development of a generalist agent.

exploring find forest find diamond find villages0.0

0.5

1.0

su
cc

es
s_

ra
te

navigation
Agents

groot
steve-1
vpt-bc
vpt-rl

drink sleep flint&steel carve compose obsidian0.0

0.5

1.0

su
cc

es
s_

ra
te

tool-use
Agents

groot
steve-1
vpt-bc
vpt-rl

crafting table diamond dye&shear sheep till&plant seeds0.0

0.5

1.0

su
cc

es
s_

ra
te

compositional
Agents

groot
steve-1
vpt-bc
vpt-rl

grass dirt iron ore diamond ore obsidian0.0

0.5

1.0

su
cc

es
s_

ra
te

mine
Agents

groot
steve-1
vpt-bc
vpt-rl

Figure 5: Testing performance across a multitude of task types, averaging from 3 difficulty levels,
with 10 trial runs for each task. Video instructions are offered to Groot, text instructions are offered
to Steve-1, and no instructions are offered to VPT.
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Figure 6: Generalization performance from ’simple’ to ’hard’ level. Results averaged from 10 trails.

We believe this vast performance gap between different level is worth highlighting. It reveals a
crucial hidden flaw in training on environments that follow a fixed mode. These results underscores
the necessity for developing not just basic competence in straightforward scenarios, but also the
advanced resilience and discernment essential for successfully navigating the intricate and distracting
challenges presented by more complex environments.

Table 4: Average performance across all tasks in different dimensions.
Metric Task Progress Action Error Recog. Creative Efficiency Material Average

Vpt-rl 34.61 31.50 10.31 3.62 23.43 28.25 21.97
Vpt-bc 34.45 29.69 9.65 6.35 19.38 38.02 22.26
Steve-1 41.84 38.84 15.26 7.90 24.40 38.15 27.73
Groot 48.39 42.77 16.23 9.58 31.71 46.25 32.99

The averaged performance of Groot, steve-1 and VPT model across all tasks shows in Table 4. It can
be observed that the Groot model performs the best, with its ranking consistent with that of humans
elo rating Figure 10. However, all models show poor performance in error recognition and creativity
dimensions. This indicates that there is still significant room for improvement in these aspects for the
agents.

4.2.3 INTRA-TASK GENERALIZATION

We randomly selected two tasks where each agent performed well under the “simple” setting and
investigated their performance under “medium” and “hard” difficulties. In our observations, the
performance of the agents shows a significant decline as the difficulty increases (Figure 6), indicating
that their generalization and robustness to interference are currently inadequate.

Taking “craft cake” as an example, Steve-1 exhibits remarkable proficiency in the simple mode, where
the crafting table is readily available in hand. However, this proficiency does not scale well with
increased difficulty levels. In the medium mode, where the crafting table in the inventory, and the hard
mode, where additional items are present in hand, Steve-1 struggles to maintain focused execution,
and becoming distracted by irrelevant information and displaying a lack of robust judgment. For
agents that receive video instruction, such as Groot, relies heavily on instruction videos in many
scenarios. For instance, during a test to “mine grass” where the grass is actually at its feet, but the
instructional video shows the grass in front, Groot will still move to the front and perform the mining
action as if that is where the target is located.

In Table 5, we can observe varying degrees of decline across multiple dimensions, but there is an
increase in material usage. Analysis indicates that in the hard mode, the redundancy of items has led
to an increase in the agent’s usage and exploration of different tools, consequently resulting in a rise
in the scores.
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Table 5: Performance changes across multiple dimensions in simple and hard modes.

Task Task Progress Action Control Efficiency Material Usage

Simple Hard ∆ Simple Hard ∆ Simple Hard ∆ Simple Hard ∆

enchant sword 62.50 60.00 -2.50 31.25 30.00 -1.25 18.75 17.00 -1.75 25.00 50.00 25.00
build portal 81.25 50.00 -31.25 50.00 40.00 -10.00 43.75 40.00 -3.75 43.75 60.00 16.25
mine iron ore 56.25 60.00 3.75 43.75 55.00 11.25 31.25 45.00 13.75 62.50 70.00 7.50
craft to cake 37.50 35.00 -2.50 31.25 25.00 -6.25 25.00 20.00 -5.00 37.50 25.00 -12.50
carve pumpkin 35.00 20.00 -15.00 35.00 25.00 -10.00 15.00 10.00 -5.00 40.00 30.00 -10.00
combat skeleton 25.00 20.00 -5.00 25.00 20.00 -5.00 16.67 10.00 -6.67 25.00 15.00 -10.00
mine dirt 50.00 65.00 15.00 40.00 40.00 0.00 20.00 25.00 5.00 40.00 20.00 -20.00
sleep in bed 85.00 50.00 -35.00 40.00 60.00 20.00 40.00 45.00 5.00 45.00 60.00 15.00
build dig3fill1 55.00 62.50 7.50 55.00 43.75 -11.25 40.00 37.50 -2.50 60.00 56.25 -3.75

average 55.00 47.94 -7.06 39.03 37.08 -1.94 27.43 28.61 -0.34 42.08 43.89 1.81

5 RELATED WORK

Minecraft as Test Bed Various test beds exist for multimodal generalist agents, such as Alf-
World (Shridhar et al., 2020) and BabyAI (Chevalier-Boisvert et al., 2018). However, Minecraft,
due to its openness and high degree of freedom, serves as a crucial platform for testing generalist
agents on infinite tasks, leading to the emergence of specific benchmarks. MineDojo (Fan et al., 2022)
introduced a suite of 1560 creative tasks defined by natural language instructions, but it suffers from
significant redundancy and overly complex tasks that challenge practical evaluation (Lin et al., 2023).
BEDD (Milani et al., 2023) presents five tasks that cover different Minecraft aspects, primarily aimed
at the MineRL BASALT competition (Shah et al., 2021). By decomposing the evaluation framework,
BEDD enables detailed assessments of agent performance across subgoals and characteristics like
human likeness.

Efforts to Generalist Many agents have been developed to interact with Minecraft environ-
ments (Baker et al., 2022; Wang et al., 2023d;a; Cai et al., 2023b). Some focus on short-term
task execution; for instance, Baker et al. (2022) employs imitation learning from YouTube videos,
enhanced by reinforcement learning for specific tasks, but it is not a multi-task agent. Lifshitz et al.
(2023) utilizes pretrained VPT and the vision-language model MineCLIP (Fan et al., 2022) to follow
human instructions. These agents typically leverage pre-trained large language models (LLMs), like
GPT-4 (Achiam et al., 2023) or ChatGPT (Ouyang et al., 2022), to generate action plans and execute
tasks via existing low-level controllers (Wang et al., 2023d; Zhu et al., 2023b; Wang et al., 2023c;a;
Ding et al., 2023). However, current LLMs, especially open-source models like LLaMA (Touvron
et al., 2023), often lack the necessary knowledge of the Minecraft environment, highlighting the
importance of enhancing their knowledge base for the development of generalist agents.

LLM-as-Judge Large Language Models (LLMs) (Achiam et al., 2023; Wang et al., 2023b) have
been explored as cost-effective alternatives to human evaluation. While LLMs exhibit certain biases,
such as position bias and verbosity bias (Shi et al., 2023; Zheng et al., 2023), recent advancements
have mitigated these issues through techniques like providing few-shot examples to calibrate the
models’ scoring mechanisms (Kim et al., 2023; Li et al., 2023). Recently, state-of-the-art models
have demonstrated high agreement rates with human evaluators (Liu et al., 2023), underscoring their
potential to replicate human judgment in complex scenarios. The scalability and cost-efficiency
offered by LLM-based evaluation address critical challenges in open-world domains (Stanley et al.,
2017; Standish, 2003), providing a promising direction for future research and application.

6 CONCLUSION

In this work, we present the MCU framework, an automated benchmarking methodology that inte-
grates task generation, verification, and evaluation. With evaluation results achieving an agreement
rate exceeding 90%, it becomes possible to conduct large-scale assessments of diverse tasks. More-
over, MCU reveals critical limitations in the generalization capabilities of current agents, highlighting
the urgent need for more comprehensive and rigorous benchmarks. We anticipate that MCU will
contribute to the advancement of more versatile and truly generalist agents, empowering the research
community to expand the frontiers of agent generalization.
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A APPENDIX

B MINECRAFT ENVIRONMENT SETTING

In the regular Minecraft game, the server (or ”world”) always runs at 20Hz while the client’s rendering
speed can typically reach 60-100Hz. To ensure consistency with the server, the frame rate is fixed at
20 fps for the client. The action and observation spaces in our environment are identical to what a
human player can operate and observe on their device when playing the game. These details will be
further explained in subsequent subsections. Additionally, diagnostic information such as in-game
stats, contents of the agent’s inventory, and whether any in-game GUI is open is provided by the
environment. This information can only be used for tracking, recording, and evaluating purposes but
cannot serve as inputs to evaluated agents.

B.1 MINECRAFT GAME WORLD SETTING

We have chosen to conduct the test in Minecraft version 1.16.5’s survival mode. During this open-
world experiment, the agent may encounter situations that result in its death, such as being burned by
lava or a campfire, getting killed by hostile mobs, or falling from great heights. When this happens,
the agent will lose all its items and respawn at a random location near its initial spawn point within
the same Minecraft world or at the last spot it attempted to sleep. Importantly, even after dying, the
agent retains knowledge of its previous deaths and can adjust its actions accordingly since there is no
masking of policy state upon respawn.

Figure 7: Minecraft game observation.

B.2 OBSERVATION SPACE

The observation space for a human player is limited to the raw pixels visible on the display screen. It
does not include any hidden information from the game world, such as hidden blocks or nearby mobs.
Additionally, any information contained in the pixels must be perceived by the model rather than
directly given, including inventories and health indicators. Human players can access this information
by pressing F3, which should be considered part of the game screen. There are no restrictions on
optional parameters that human players can adjust in the display settings, such as field of view, GUI
scale (controlling the size of in-game GUI), and brightness. The rendering resolution of Minecraft is
640x360; however, it is recommended to resize images to lower resolutions for better discernibility
and computational efficiency.

B.3 ACTION SPACE

The action space is also consistent with human-playing settings, i.e., mouse and keyboard controls.
These actions include key presses, mouse movements, and clicks. The specific binary actions that
are triggered by keypress are shown in Table Table 6. In addition to actions triggered by keypresses,
the action space also includes mouse movements. Similar to human gameplay, when there are no
in-game GUIs open, moving the mouse along the X and Y axes changes the agent’s yaw and pitch
respectively. However, when a GUI is open, camera actions shift the position of the mouse cursor.
The mouse movements are relative and adjust their position or camera angle based on their current
state.
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Table 6: Binary actions included in the action space. More details can be found at Minecraft wiki
page5.

Action Human action Description
forward W key Move forward.

back S key Move backward.
left A key Strafe left.

right D key Strafe right.
jump space key Jump.

inventory E key Open or close inventory and the 2x2 crafting grid.
sneak shift key Move carefully in the current direction of motion. In the GUI it acts

as a modifier key: when used with an attack it moves item from/to the
inventory to/from the Hotbar, and when used with craft it crafts the
maximum number of items possible instead of just 1.

sprint ctrl key Move fast in the current direction of motion.
attack left mouse button Attack; In GUI, pick up the stack of items or place the stack of items

in a GUI cell; when used as a double click (attack - no attack - attack
sequence), collect all items of the same kind present in inventory as a
single stack.

use right mouse button Place the item currently held or use the block the player is looking at. In
GUI, pick up the stack of items or place a single item from a stack held
by the mouse.

drop Q key Drop a single item from the stack of items the player is currently holding.
If the player presses ctrl-Q then it drops the entire stack. In the GUI, the
same thing happens except for the item the mouse is hovering over.

hotbar.[1-9] keys 1 – 9 Switch active item to the one in a given hotbar cell.
show debug screen F3 key See the chunk cache, the memory usage, various parameters, the player’s

map coordinates, and a graph that measures the game’s current frame
rate.

C WHY MINECRAFT IS SUITABLE FOR GENERALIST AGENT?

C.1 COMPLEXITY

The environment in Minecraft is highly complex, encompassing various elements such as blocks,
creatures, terrain, vegetation, and more. This complexity poses diverse challenges for agents in this
environment, requiring them to learn to adapt and address a wide array of intricate tasks. The intricate
nature of the environment provides generalist agents with abundant learning opportunities, enabling
them to flexibly navigate through different scenarios.

C.2 OPEN-ENDEDNESS

Minecraft offers a vast open world where players can freely explore various regions. This openness
exposes agents to limitless potential environments, requiring them to possess exploration and naviga-
tion capabilities. In an open world, a generalist agent must be able to adapt to new terrains, scenes,
and situations. In this open-ended environment, it becomes more convenient to select tasks with
varying difficulty levels, each presenting unique dimensions of challenge. This allows us to evaluate
the agent’s performance in a targeted manner, assessing its proficiency across various abilities.

C.3 DYNAMISM AND UNPREDICTABILITY

Compared to some static, text-based, or vision-language based test environments, the dynamism and
unpredictability of Minecraft provide unique advantages for the training and testing of intelligent
agents. The in-game environment is filled with dynamic changes and unknown factors, including
day-night cycles, the random appearance of creatures, diverse terrains, and more. This dynamism
and unpredictability necessitate that the agents adapt flexibly to various scenarios and possess the
ability to handle unexpected events, thereby better cultivating their generalization skills for complex
environments.
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C.4 CREATIVITY AND INNOVATION

Minecraft allows for a high degree of creativity and innovation. The abundance of open-ended tasks,
such as construction and decoration, provides agents with ample space to unleash their creativity. By
exploring various ways to achieve goals, agents cultivate innovative abilities in addressing diverse
and complex challenges.

C.5 BROAD CHALLENGE COVERAGE

Minecraft, with its outstanding freedom and depth of tasks in an open-world setting, is well-suited as
a training and testing platform for a generalist agent. In general, agents in the Minecraft environment
may encounter the following four primary challenges.

Long-horizon Decision Making In the Minecraft environment, tasks can break into a sequence of
subtasks. For instance, to achieve the goal of mining diamonds, players need to complete various
subtasks including chopping the trees, crafting a crafting table, obtaining a pickaxe, and searching
for diamonds. The sequences of subtasks for a task are not necessarily the same; rather, they can
be entirely different. For example, to complete the task of ”obtaining wool,” the typical approach
is to kill sheep. However, if there are no sheep nearby, players might need to kill spiders to obtain
string, then use the string to craft wool, or even directly trade with villagers for wool. Different
environments lead to different subtask sequences, placing a challenge on the agent’s ability for
long-horizon decision-making.

In this context, agents must have the capability to predict and plan future environments and actions,
instead of mere reactions to the current state. Long-horizon decision-making in Minecraft requires
agents to understand the complex spatial and temporal relationships within the game environment. The
diverse and dynamic nature of tasks, combined with the multitude of possible approaches, demands
that agents develop a comprehensive understanding of the environment to effectively navigate through
various steps and reach their goals.

Precise Control As a well-known sandbox construction game, Minecraft allows players to engage
in intricate building and operations. Therefore, tasks related to building and crafting are important
components of the Minecraft task list. This task always involves precise movement, accurate block
placement, and destruction. For example, the task ”building a nether portal” requires the agent to
build at least a 2× 3 rectangular frame with specific blocks. If the player placed the block in a wrong
position, they should mine that wrong block with the pickaxe and place it again. This demands
precise and accurate control. RL agents need to handle high-dimensional action spaces and achieve
precise control in the environment to accomplish complex tasks. This presents a challenge for the
stability and precision of the agent.

Out-of-distribution Generalization The Minecraft environment is dynamic, filled with various
possible scenarios and conditions. The terrain, ecology, organisms, and even the weather are ever-
changing, and it’s impossible for the agent to encompass all of them in the training data. On the
other hand, due to the fact that the vast majority of training data consists of reasonable behaviors, the
model’s free exploration or learning errors make it prone to encountering environments not present in
the training data, such as falling into the lava when mining the diamond. How to enable the model
to generalize to out-of-distribution environments and adapt to the complexity of the ever-changing
open-world is a notable challenge.

Compositional Generalization To adapt to the long-horizon and varied tasks in Minecraft, the
model needs to have the ability of compositional generalization. For example, when the training set
includes data crafting sticks from planks and crafting ladders from sticks, we hope the model can
generalize the ability to craft ladders from planks. The Minecraft environment offers nearly infinite
combinations of tasks, with the majority of them not appearing in the training set. Accomplishing
these tasks poses a significant challenge to the model’s compositional generalization capability.
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C.6 COMMUNITY AND RESOURCES

The game Minecraft boasts a vast and active community where players share rich experiences,
creativity, and problem-solving techniques. This communal sharing environment provides a massive
resource pool for agents, enabling them to draw knowledge, inspiration, and skills from the community.
By engaging with the community, agents can tap into the wisdom of diverse players, enhancing their
ability to perform tasks more comprehensively and effectively in the open-world setting.

Furthermore, the Minecraft community has fostered a wealth of mods and plugins, allowing players
to customize their gaming experiences. This provides agents with diverse and targeted training
and testing scenarios, aiding in the development of their adaptability to different environments.
The creative spirit and resource-sharing ethos within the community further enrich the learning
experience for agents, enabling them to draw upon and apply information from a wide-ranging
community. Therefore, as a community-driven platform, Minecraft offers abundant social and
knowledge resources for the training and testing of open-world agents.

C.7 SAFE AND CONTROLLED

Minecraft provides a safe and controlled virtual world, offering an ideal space for model learning.
The safety of this environment allows models to learn in virtual reality without the potential risks
associated with real-life situations. Additionally, Minecraft offers a high degree of controllability,
enabling researchers to customize tasks and adjust environmental parameters to precisely manage
the learning scenarios for models. This control is advantageous for the agent to learn and optimize
performance in specific tasks. Therefore, as a secure and controlled virtual environment, Minecraft
offers a unique and adaptable training platform for reinforcement learning models.

Table 7: Partial definition and examples for task category.
Category Definition Example

Crafting Task

The tasks accomplished through the in-game inventory interface
Typically require specific functional blocks to complete, such as Craft to diamond pickaxe
crafting (requiring a crafting table), enchanting (requiring Enchant book
an enchanting table), potion brewing (requiring a brewing stand), smelting Craft to baked potato
(requiring a furnace) and so on. Players need to accurately drag Craft to awkward potion
items using the mouse to their respective slots and then press the confirm key.

Navigation Task

Find a zombie
Navigation or movement tasks involve finding specific terrain, ecosystems, Find blackstone
creatures, items, or other targets. Find forest

Find village

Mining Task

Mine dirt
The task of breaking blocks, and extracting resources like ores, sometimes Mine grass
requiring specific tools such as an iron pickaxe. Mine diamond ore

Mine dragon egg

Tool-Use Task

The tasks primarily involve using the in-game interaction key (i.e., Eat bread
right mouse button). to interact with items, such as eating food, planting, Breed a cow
feeding animals, and using specific blocks like crafting tables. Interact with crafting table

Light TNT

Building Task

Building and construction tasks involve building various shapes and Bbuild a tower
structures. The final outcome of the construction may not be identical Build a fence
and usually allowing for a degree of openness and creativity. Build a Nether Portal

Build a castle

Trapping Task

A special type of interactive task between creatures and agent, often Trap a zombie with a boat
aimed at restricting the movement of entities, such as guiding creatures, Hook a sheep using fishing rod
controlling their paths, breeding, etc. This may involve the use of tools Bring a cow into nether
such as boats, leads, fishing rod or other related items. Trap a creeper in house

Motion Task

Sneak
Tasks that focused on the action of agent itself as the goal, mostly Drop an item
operations or skills that player used in games. Dive deeply

MLG water bucket

Decoration Task

Clean the weeds
Tasks aimed at enhancing the visual appeal of the game environment, Light up a cave
Often associated with creative aspects. Decorate the home

Hang item
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C.8 COMPOSITION OF ATOMIC TASK

Our atomic task list exhibits high diversity. By combining atomic tasks with “and” (
∧

) and “or”(
∨

)
grammar, or added constraints like “when, where, how”, we can generate a vast array of complex
tasks in the Minecraft environment. We conducted research on tasks used in previous Minecraft work,
all of which can be expressed using this method by our atomic tasks. Table 10 shows some examples
of complex tasks expressed as combinations of atomic tasks.

Table 8: Examples of decomposition of tasks recently used in work in Minecraft to atomic tasks.For
arbitrary task t, ‘[t]’ means an atomic task t or the decomposition of task t to atomic tasks. Once we
deduced the expression of [t], we are able to use [t] to express the decomposition of more complicated
tasks, thus omitting the need for complicated and repetitive expressions.

literature Task Decomposition

Cai et al. (2023a)

Mine oak wood [find oak wood] and [mine oak wood]
Hunt sheep [find a sheep] and [mine oak wood]
Mine dirt [find dirt] and [mine dirt]

Obtain wool ([find a sheep] and [hunt a sheep]) or ([find a sheep] and [shear sheep]) or
([find a spider] and [craft to white wool])

Lifshitz et al. (2023)

Collect seeds ([find grass] and [mine grass]) or ([find tall grass] and [mine tall grass])

Chop a tree

([find oak log] and [mine oak log]) or ([find spruce log] and [mine spruce
log]) or ([find birch log] and [mine birch log]) or ([find jungle log] and
[mine juggle log]) or ([find acacia log] and [mine acacia log]) or ([find dark
oak log] and [mine dark oak log]) or ([find stripped spruce log] and [mine
stripped spruce log]) or ([find striped birch log] and [mine stripped birch
log]) or ([find stripped jungle log] and [mine stripped jungle log]) or ([find
stripped acacia log] and [mine stripped acacia log]) or ([find stripped dark
oak log] and [mine stripped dark oak log]) or ([find stripped oak log] and
[mine stripped oak log])

Baker et al. (2022)

Obtain crafting table [chop tree] and [craft to planks] and [craft to crafting table]

Mine diamond

[chop tree] and [obtain crafting table] and [craft to wooden pickaxe] and
[find stone] and [mine stone] and [craft to stone pickaxe] and [find iron
ore] and [mine iron ore] and [craft to furnace] and [find coal ore] and
[mine coal ore] and [craft to iron ingot] and [craft to iron pickaxe] and
[find diamond ore] and [mine diamond ore].

D DIFFICULTY SCORES

D.1 HUMAN ANNOTATION

To get an annotation for task difficulty scores of our selected tasks in difficulty and essence, we
designed and distributed a questionnaire to collect what human players who are familiar with
Minecraft think about them. The questionnaire includes two parts, the quiz part and the annotation
part. The quiz part contains five multiple-choice questions with 25 options to test their familiarity with
Minecraft; each correctly answered option is worth 1 point. Then we filtered out the questionnaires
with a correct rate of less than 75%, and then considered their investigation parts for the remaining
questionnaires. The quiz is shown in Table 9. We distributed the questionnaires in the Minecraft
community and collected a total of 76, with 76 of them were valid.

In the annotation part, the respondents are asked to rate each selected task in the five dimensions:
time consumption, creativity, novelty, intricacy, and visual diversity. We inform the annotators that
the first two points are as the name implies, novelty stands for how rare or uncommon you think in
real game scene, and intricacy means the extent to which the task is considered to require precise
control. We also give some examples: if a player’s mouse is not sensitive enough, how much will the
difficulty of this task increase? The last point, visual diversity, refers to whether or not you will see
rich visual information when completing this task. We use the respondents’ evaluations of these five
dimensions to reflect the diversity and representativeness of the tasks we selected and to verify that
our selection of these tasks to evaluate Minecraft agents is reasonable.
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Table 9: The quiz in our questionnaire, is used to judge the respondents’ familiarity with Minecraft.
The problems are adapted from Milani et al. (2023).

No. Question Options

1 A bed can

A. speed up the night.
B. change the respawn location.
C. be crafted from drops of a certain animal in the game.
D. can be crafted by a furnace, but cannot be crafted by a crafting table.

2 You can acquire EXP when

A. killing hostile mobs.
B. mining trees.
C. jumping on a coal ore block.
D. mining coal.
E. enchanting a diamond sword.

3 What mobs can deal damage to the player?

A. Skeletons.
B. Zombies.
C. Sheep.
D. Pigs.
E. Creepers.
F. Enderman.

4 What items can be eaten?

A. Apples.
B. Dirt.
C. Beef.
D. Wheat.
E. Breads.
F. Spider eyes.

5
If you mine a block with a bare hand, what
kinds of block can drop the corresponding
item?

A. Wooden logs.
B. Wooden planks.
C. Iron ore.
D. Coal ore.

D.2 ANNOTATED DIFFICULTY

The annotated difficulty scores are shown in Figure 8.

E TASK ANNOTATION

We use stratified sampling for different task groups, making the selection of tasks for each group
diverse and representative, and at the same time, focus on the different groups fairly. More precisely,
for each task group r, our selected task T meets

T |r ∼ P(t|r)

and for each task t,

S0|t ∼ P(s0|t)

The former represents the representativeness and diversity of tasks in each group, which has been
demonstrated by the high entropy of the sampled tasks. Later we will elaborate on how to manipulate
our environment configurations to try to make the distribution of s0 conform to the latter formula as
much as possible.

In order to compare the performance of the model output with the performance of human players,
video data of human players is needed. We will also annotate the videos we recorded.

E.1 MANIPULATIONS OF A TASK

The initial state of a task contains all the information an agent can utilize condition on the agent
“plans” to do the task (not only the valid input but also what it can derive or perceive), including the
observed 2D pixels of the game scene, the inventories and the coordinate (which can be perceived
when pressing F3, especially the y dimension). The inventories I include what items are necessary
for the task In, otherwise, the agent won’t plan to do the given task in a real game, and other random
inventories Ir. This is what we can manipulate, and we need to make these random variables as close
as possible to the real distribution in the game.
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Figure 8: The annotated difficulty score for each task.
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E.1.1 OBSERVATION AND COORDINATE

For a fixed version of the Minecraft game, these two elements can be defined by the seed of the
world, the coordinate, and the facing direction. The seed of the world is completely independent
of other variables, so it can be selected arbitrarily. The facing direction is the same as what it was
before teleported to the task scene, which is random and we do not manipulate it. If a coordinate
is set to be a proper spawn location when testing a given task in a given world, it needs to meet
some preconditions, which can be biome names supported within the game or other restrictions. For
example, in the mission climb the mountain, the agent needs to spawn in stony shore, a
kind of biome in the game, while running to a village, the location should be close to one.

We list a series of location coordinates for each selected seed corresponding to each precondition we
need. Each (seed, precondition) pair can correspond to different location coordinates and can be used
in different tasks. When we set up the environment configuration files, we only specify the world
seed and preconditions, and when the world is loaded and generated, the location will be randomly
selected from this list that meets the precondition.

E.1.2 INVENTORIES

The inventories I include what items are essential for completing task In, and other random invento-
ries Ir as a distractor. In is also a random variable since there are different ways to approach the
same goal. For example, the agent can use an iron pickaxe or diamond pickaxe to mine a diamond
ore. We looked at different ways to accomplish the same task and tried to include as many of them as
possible, testing different In. As for Ir, to reduce the difficulty of some task tests, we do not set Ir,
and for other task tests, we randomly sampled initial inventories from game snapshots of contractor
data of VPT.

E.2 HUMAN VIDEOS FOR TASKS

Human videos serve two purposes - they are used as reference videos for GROOT, and they are used
for comparison with the trajectory videos generated by the agent models. For each task, we choose
three world seeds - 19961103, 20010501, and 12345, and for each (task, seed) pair, we manipulate
what we can manipulate as described above, and have three environment configuration files. For each
environment configuration file, we record a human video and use the first file of seed 19961103 for
GROOT citegroot reference video.

F PROGRAMMATIC METRICS FOR STUDIED TASKS

Metrics During our evaluation, we use the scripts to record information for each video, including
items that are crafted, used, broken, and mined, blocks that are mined, entities that are killed, and
horizontal and vertical offset. With the scripts, some tasks can be evaluated using programmatic
metrics in a fully automated manner, thus saving time and human resources. Table 10 shows examples
of tasks in our experiments and their corresponding metrics. The threshold for the task ’Explore the
world’ is 50 units, while for the task ’Climb the mountain,’ it is 20 units in seed1 and 30 units in
seed2.

TrueSkill Rating We also evaluate and compare the previous agents through the TrueSkill rating
system. It was developed by Microsoft Research and is currently used in matchmaking and ranking
services on Xbox LIVE. It takes the uncertainty of the players’ ability into consideration and models
the score of a player as a Gaussian distribution N (µ, σ2), then uses the Bayesian inference algorithm
to measure a player’s score, where µ is the average skill of the player and σ is the standard deviation
of a play’s performance. A real skill of the player is between µ± 2σ with 95% confidence. The result
of TrueSkill Rating is shown in Figure 9.

G MINECRAFT ENVIRONMENT SIMPLIFICATION IN PREVIOUS WORKS

In our evaluation mechanism, we require the agent’s observation space and action space similar
to a human player playing in front of a device. In other words, all the information that needs to
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Task Metric

Build snow golem Success rate
Build pillar Success rate to build a pillar at with least 5 blocks

Build dig3fill1 Success rate
Build nether portal Success rate
Build a waterfall Success rate
Craft to ladder Success rate

Craft to crafting table Success rate
Craft to clock Success rate
Craft to cake Success rate

Enchant diamond sword Success rate
Combat zombies Success rate
Combat spiders Success rate

Combat skeletons Success rate
Combat enderman Success rate

Hunt a sheep Success rate

Mine grass Success rate when the number of grass blocks and tall grass blocks
mined in total exceeds the threshold.

Mine obsidian Success rate
Mine dirt Number

Mine diamond ore Success rate
Mine iron ore Success rate

Explore the world Success rate when the horizontal offset is greater than the threshold.
Find a forest Success rate to stay in forest for last 10s
Find a village Success rate to stat to village for last 10s
Find diamond Success rate

Climb the mountain Success rate when the height offset is greater than the threshold.
Drink harming potion Success rate

Carve pumpkin Success rate
Make fire with flint and steel Success rate

Make obsidian by water Success rate
Sleep in bed Success rate

Dye a sheep and then shear the sheep Success rate
Mine diamond from scratch Success rate

Craft to crafting table from scratch Success rate
Till the land and then plant wheat seeds Success rate

Table 10: The programmatic metric for each task.

Figure 9: Comparison of Agent TrueSkill Ratings on Different Groups of Tasks

be perceived comes from the pixels displayed on the screen, and the underlying control relies on
simulating mouse and keyboard operations. The only difference is that the degree of freedom is
slightly lower, that is, the keyboard operations only allow the types shown in Table 6. However,
in order to develop a Minecraft agent more efficiently, some previous works did not meet these
requirements. Some benchmarks simplified the observation space and action space, and some
previous agents further simplified the benchmarks. Some of them reduced the freedom of operation
by changing the action space, others utilized some additional information within the game that cannot
be obtained from the pixels.

G.1 PREVOIUS BENCHMARKS

MineRL MineRL (Guss et al., 2019b) is a benchmark for Minecraft agent competition, and there
are different unrelated tasks to evaluate. Before version 0.4.4, MineRL offered different action spaces
and observation spaces for each task, and for each task, the spaces are exactly what is needed to
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Figure 10: The TrueSkill evaluation results for the compared agents and human.

complete this track. After version 1.0.0, the observation space is the same as in this paper, and the
action space is similar to ours, except for two high-level actions - “pickItem” and “swapHands”.

MineDojo The observation space of MineDojo (Fan et al., 2022) simplifies the environment to
a large extent. Apart from the ego-centric RGB frames, it can obtain the 3D voxels, nearby tools,
damage sources, and lidar, which are extra in-game information, equipment, inventory, life statistics,
GPS location, and compass, which should be derived from the pixels. As for the action space, some
high-level actions are encapsulated such as “craft” and “equip”.

BEDD The observation space of BEDD (Milani et al., 2023) is the same as ours. It requires
actions to directly simulate mouse and keyboard operations but does not limit whether to encapsulate
high-level actions.

G.2 PREVIOUS AGENTS

VPT VPT (Baker et al., 2022) does little to simplify the environment. The only difference between
VPT and our benchmark is that VPT disables F3 key, but it does not make use of the information in it.

DEPS The experiment of DEPS contains two parts. Both MineRL and MineDojo benchmarks have
been tested and each experiment follows the action space and observation space of the corresponding
benchmark.

Voyager The information used by Voyager (Wang et al., 2023a) is less similar to human players.
Voyager runs in a Minecraft world by incrementally building a skill library, which stores action
programs, whose code is generated by GPT-4 (Achiam et al., 2023). The observation of Voyager
includes the feedback of GPT-4 and it knows its inventory directly.

GITM Ghost in the Minecraft Zhu et al. (2023b) The observation space is the same as MineDojo
and the action space is also structured. Some actions are very high-level, such as “explore”.

Steve-1 Steve-1 has the same observation space and action space as VPT.

Groot Groot has the almost same observation space and action space as VPT, except dropping
items is not allowed (i.e., the Q key is disabled).
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Figure 11: Video comparison website.

G.3 HUMAN RATING SYSTEM

The human rating systems are shown in Fig11 and Fig12. Take video comparison website as an
example, it is designed to evaluate agent performance by presenting two videos side by side, enabling
human raters to directly compare their behaviors for the same task. The page is structured into several
modules:

1. Task description module: positioned at the top-right, this module specifies the task to be evaluated
(e.g., survive shield: Use a shield to ward off zombies). It ensures that raters understand the objective
of the task before scoring.

2. Video display module: two videos are presented side by side. Each video provides a replay of the
agents’ gameplay. This visual design helps raters observe agent behaviors, mistakes, or innovative
strategies in real-time.

3. Scoring panel: located below the videos, the scoring panel allows raters to assess agent performance
across six dimensions.For each dimension, raters can choose which agent performed better, mark a
tie, or indicate that neither agent took relevant actions.

4. Input and submission module: at the top-center, the name input box collects rater identifiers
to ensure traceability. The Submit Button at the bottom sends completed ratings to the database,
contributing to the dataset used for benchmarking.
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Figure 12: Individual video rating website.
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G.4 PROMPT FOR CONFIGURATION GENERATION

1 You are an expert of Minecraft, and I am a new Minecraft player.
2 I will give you a task name. you should generate a task description and

give me all the necessary things I need for completing the task.
3

4 I will give you the following information:
5 The task I want to complete: ...
6 You should perform the following steps to help me:
7 1. Generate a description of how to do the task.
8 2. Tell me all valid items, mobs, biomes and all the necessary things to

complete task;
9 3. Formulate step.2 information as cheat commands;

10 4. Randomly generate one or two related but not necessarily cheat
commands.

11 5. Don't always generate the cheat commands for necessary items at the
front and place random commands at the back. Shuffle their order.

12 6. Only output one sentence task description, one sentence of step.2 and
custom\_init\_commands

13

14 e.g. The task I want to complete: Trade for iron helmet.
15 You should respond in the format as described as below:
16 - Task description: Trade with a villager to obtain an iron helmet using

the items
17 you have in your inventory.
18 - In order to trade for iron helmet, we need at least 5 emerald and a

armorer nearby.
19 - custom_init_commands:
20 - /give @s minecraft:armor_stand 2
21 - /give @s minecraft:emerald 10
22 - /summon villager ˜2 ˜ ˜5 {Profession:"minecraft:armorer",VillagerData

:{profession:
23 "minecraft:armorer"}}
24 - /give @s minecraft:diamond 64
25

26 e.g. The task I want to complete: craft a crafting table.
27 You should respond in the format as described as below:
28 - Task description: Open inventory and craft a crafting table.
29 - In order to craft a crafting table, we need at least 4 planks.
30 - custom_init_commands:
31 - /give @s minecraft:oak_planks 64
32 - /give @s minecraft:bread 16
33 - /time set night
34

35 e.g. The task I want to complete: mine iron_ore.
36 You should respond in the format as described as below:
37 - Task description: Find and mine the iron_ore use the right tool.
38 - In order to mine iron_ore, we need at least a stone pickaxe or a better

one, and have iron_ore nearby.
39 - custom_init_commands:
40 - /give @s minecraft:stone_pickaxe
41 - /execute as @p at @s run fill ˜2 ˜2 ˜3 ˜1 ˜5 ˜4 coal_ore
42 - /execute as @p at @s run fill ˜-5 ˜-2 ˜-1 ˜ ˜ ˜-3 iron_ore
43 - /give @s minecraft:wooden_pickaxe
44

45 e.g. The task I want to complete: flying trident on a rainy day.
46 You should respond in the format as described as below:
47 - Task description: flying trident on a rainy day.
48 - In order to flying trident on a rainy day, we need a trident enchanted

with the
49 riptide enchantment, and set the weather in rainy mode.
50 - custom_init_commands:
51 - /weather rain
52 - /give @p minecraft:trident
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53 - /give @p minecraft:trident{Enchantments:[{id:"minecraft:riptide",lvl
:1}]} 3

54 - /give @p minecraft:fire_charge{Enchantments:[{id:"minecraft:riptide",
lvl:1}]} 3

55

56 Note:
57 - You should provide accurate information and executable cheat commands

of Minecraft.
58 - The quantity of items in the cheat command should be more than what is

required. For example, the task need at least 10 emerald, provide
15 instead.

59 - You should provide all the tools and environments required for
completing the task.

60 - Attention, there are certain items that cannot be directly summoned,
such as trees, sugar cane, etc.

61 - Do not give me the final target things directly in my inventory.
62 - Some crafting tasks are not completed using the crafting table, they

could be done with tools like the furnace, enchanting table, or
brewing stand and so on. You need to select the appropriate tool.

63 - Remember to provide a crafting table, furnace, enchanting table,
brewing stand or similar items, if the task requires it.

64 - When use /fill command, ensure not to generate them in inaccessible
locations (such as high in the sky), and be extremely cautious not
to suffocate the agent.

65 - For pick-up task, you can design the item that can be directly pick up
by hand, like dirt or poppy.

Listing 1: Prompt for Configuration Generation

G.5 PROMPT FOR VIDEO COMPARISON

1 You are an expert in Minecraft and excel at evaluating agents in the AI
field.

2 I will give you a task name, a grading criterion for this task, and two
videos (Video A and Video B) of an agent performing the task. The
grading criterion has several major criteria (***) and several
evaluation rules under each major criterion.

3 You need to carefully compare the agent's performance in Videos A and B
according to the evaluation rules and output one of the following:

4 "A is better", "B is better", "tie", or "both are bad".
5

6 The more the agent complies with the rules in the criteria, the better
their performance is.

7

8 Output "A is better" when A performed better according to the evaluation
rules.

9 Output "B is better" when B performed better according to the evaluation
rules.

10 Output "tie" when both videos demonstrate similar capabilities.
11 Output "both are bad" when both videos have hardly done anything related

to the rules or have performed very poorly.
12

13 Before output the decisions, you should list the relevant evidence from
videos to support your decisions (within 80 words), do not simply
copy the phrases from the rules.

14 Please make the decision across six major criteria, including task
progress, material selection and usage, action control, error
recognition and correction, creative attempts, and task completion
efficiency.

15

16 You should follow the following output format to organize your output.
xxx is the placeholder. Evidence can be more than one. The output
format should be as follows:

17 Task Progress:
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18 - evidence xxx
19 result: xxx
20

21 Action Control:
22 - evidence xxx
23 result: xxx
24

25 Error Recognition and Correction:
26 - evidence xxx
27 result: xxx
28

29 Creative Attempts:
30 - evidence xxx
31 result: xxx
32

33 Task Completion Efficiency:
34 - evidence xxx
35 result: xxx
36

37 Material Selection and Usage:
38 - evidence xxx
39 result: xxx
40

41 Overall results:
42 - Task Progress: xxx
43 - Action Control: xxx
44 - Error Recognition and Correction: xxx
45 - Creative Attempts: xxx
46 - Task Completion Efficiency: xxx
47 - Material Selection and Usage: xxx
48

49 Notes:
50

51 If the evaluation rules include "e.g.", it is only an example and you
should not be limited to the listed "e.g.". All phenomena that
conform to the major criteria should be considered.

52

53 Task progress considers only the completion of key steps of the task and
is unrelated to artistic qualities or similar aspects.

Listing 2: Prompt for Video Comparison

G.6 PROMPT FOR INDIVIDUAL VIDEO RATING

1 You are an expert in Minecraft and excel at evaluating agents in the AI
field.

2 I will give you a task name, a grading criterion for this task, and a
video of an agent performing the task.

3

4 The grading criterion has several major criteria (***) and several
evaluation rules under each major criterion.

5 You need to score the agent's operations in the video based on the
evaluation rules. The more the agent complies with the rules in the
criteria, the higher the score it receives.

6

7 - If you think the agent's behavior does not relate to the stated rule,
score None.

8 - If you think the agent's behavior barely relates to the stated rule,
score Barely.

9 - If the agent's behavior is partially related to the rules, score
Partially.

10 - If the agent's behavior is mostly related to the rules, score Mostly.
11 - If the agent's behavior is completely related to the rules, score

Completed.
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12

13 If you believe the agent complies with the rule, you should list the
relevant evidence from the video (within 50 words). Do not simply
copy the phrases from the rules.

14 Assign an appropriate score six major criteria, including task progress,
material selection and usage, action control, error recognition and
correction, creative attempts, and task completion efficiency.

15

16 The output format should be as follows:
17

18 Task Progress:
19 - evidence xxx
20 Score: xxx
21

22 Action Control:
23 - evidence xxx
24 Score: xxx
25

26 Error Recognition and Correction:
27 - evidence xxx
28 Score: xxx
29

30 Creative Attempts:
31 - evidence xxx
32 Score: xxx
33

34 Task Completion Efficiency:
35 - evidence xxx
36 Score: xxx
37

38 Material Selection and Usage:
39 - evidence xxx
40 Score: xxx
41

42 Overall Scores:
43 - Task Progress: xxx
44 - Action Control: xxx
45 - Error Recognition and Correction: xxx
46 - Creative Attempts: xxx
47 - Task Completion Efficiency: xxx
48 - Material Selection and Usage: xxx
49

50 Notes:
51

52 - If the evaluation rules include "e.g.," it is only an example and you
should not be limited to the listed "e.g." All phenomena that conform
to the major criteria should be considered.

53

54 - Task progress considers only the completion of key steps of the task
and is unrelated to artistic qualities or similar aspects.

Listing 3: Prompt for individual video rating
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G.7 PSEUDO-CODE EXAMPLES

1 const doc = yaml.load(fs.readFileSync(task_conf, 'utf8'));
2 // Extract the item name from the task description
3 const item_name = task_description.split('craft_a_')[1];
4 // Execute each initialization command to set up the environment
5 doc.custom_init_commands.forEach(command => {
6 bot.chat(command);
7 });
8 // Find the recipe for crafting the specified item
9 const recipe = bot.recipesFor(item_name, craftingTable);

10 // Attempt to craft the item
11 try {
12 await bot.craft(recipe, count, craftingTablePosition);
13 console.log(`${count} ${item_name} crafted successfully`);
14 } catch(err) {
15 console.error('Failed to craft item:', err);
16 }

Listing 4: Mineflayer Craft Task Pseudo-Code

1 from mcu_benchmark import MinecraftWrapper, VLM_Evaluator
2 from utility import load_config, check_success_and_save_video
3 from models import agent_creator
4

5 # Step 1: Load task configuration for the benchmark
6 config = load_config("build_house.yaml")
7 # Step 2: Initialize the environment with MinecraftWrapper
8 env = MinecraftWrapper(config['env'], level=config['level'])
9 # Step 3: Initialize the agent (using custom model path and weights)

10 agent = agent_creator(model_path, weight_path).cuda()
11 agent.eval() # Set the agent to evaluation mode
12 # Step 4: Get the initial state for the agent
13 state = agent.initial_state()
14 # Step 5: Start the environment and reset
15 obs, info = env.reset()
16 terminated, truncated = False, False
17 rollout_info = []
18 # Step 6: Agent's rollout
19 while not terminated and not truncated:
20 # Get action from the agent and update state
21 action, state = agent.get_action(obs, state)
22 # Step the environment with the agent's action
23 obs, terminated, truncated, info = env.step(action)
24 # Save frames (visual feedback from the environment)
25 rollout_info.append(info)
26 # Check if the agent succeeded in the task programmatically
27 success, video_path = check_success_and_save_video(rollout_info)
28 # Step 7: Evaluate the agent using a Vision-Language Model (VLM)
29 vlm_evaluator = VLM_Evaluator()
30 vlm_score = vlm_evaluator.evaluate(video_path, 'build_criteria.txt')
31 print(f"Success: {success}. VLM evaluation score: {vlm_score}")

Listing 5: MCU Evaluation Process Pseudo-Code
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G.8 CASE STUDY

The following case clarifies the impact of each metric on evaluating generalization performance.
Metrics such as task progress and material selection assess basic task alignment, while action
control and task efficiency provide insights into optimization strategies. Error correction and creative
attempts, in contrast, measure higher-order generalization skills. These are critical for assessing
agents in open-ended and complex scenarios, as they reveal resilience to failure and capacity for
novel strategies.

While Video B outperformed Video A across most metrics, the weaknesses in creativity and error
correction indicate areas where even high-performing agents fall short. Incorporating tailored training
modules and broader tasks emphasizing these dimensions will enhance the benchmark’s utility for
developing and evaluating generalist agents.

1 Task Progress:
2 - Video A: The agent collects dirt blocks and places them vertically but

does not reach a reasonable height.
3 - Video B: The agent collects dirt blocks, places them vertically, and

reaches a reasonable height.
4 result: B is better
5

6 Action Control:
7 - Video A: The agent places some blocks horizontally and in unrelated

locations.
8 - Video B: The agent places blocks vertically without unnecessary actions
9 result: B is better

10

11 Error Recognition and Correction:
12 - Video A: The agent does not correct incorrectly placed blocks.
13 - Video B: The agent does not make any noticeable errors that need

correction.
14 result: B is better
15

16 Creative Attempts:
17 - Video A: The agent does not show any creative attempts.
18 - Video B: The agent does not show any creative attempts.
19 result: tie
20

21 Task Completion Efficiency:
22 - Video A: The agent takes a longer time with unnecessary actions.
23 - Video B: The agent completes the task efficiently without unnecessary

actions.
24 result: B is better
25

26 Material Selection and Usage:
27 - Video A: The agent uses dirt blocks but places some blocks horizontally

and in unrelated locations.
28 - Video B: The agent exclusively uses dirt blocks and places them

appropriately.
29 result: B is better
30

31 Overall results:
32 - Task Progress: B is better
33 - Action Control: B is better
34 - Error Recognition and Correction: B is better
35 - Creative Attempts: tie
36 - Task Completion Efficiency: B is better
37 - Material Selection and Usage: B is better

Listing 6: Video Comparison Evaluation Results
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1 **Task Progress:**
2 - Evidence: The agent placed two snow blocks vertically and a carved

pumpkin on top, but no Snow Golem was created.
3 - Score: Partially
4

5 **Action Control:**
6 - Evidence: The agent placed multiple unnecessary snow blocks around the

structure.
7 - Score: Barely
8

9 **Error Recognition and Correction:**
10 - Evidence: The agent did not correct the placement of the carved pumpkin

after failing to create a Snow Golem.
11 - Score: Barely
12

13 **Creative Attempts:**
14 - Evidence: No creative attempts or decorations observed.
15 - Score: None
16

17 **Task Completion Efficiency:**
18 - Evidence: The agent took excessive time with unnecessary placements and

failed to complete the task.
19 - Score: Barely
20

21 **Material Selection and Usage:**
22 - Evidence: Correct materials (snow blocks and carved pumpkin) were used,

but not effectively.
23 - Score: Partially
24

25 **Overall Scores:**
26 - Task Progress: Partially
27 - Action Control: Barely
28 - Error Recognition and Correction: Barely
29 - Creative Attempts: None
30 - Task Completion Efficiency: Barely
31 - Material Selection and Usage: Partially

Listing 7: Individual Video Evaluation Results
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