
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS EVALUATING GENERALIST AGENTS: AN AU-
TOMATED BENCHMARK IN OPEN WORLD

Anonymous authors
Paper under double-blind review

ABSTRACT

Evaluating generalist agents presents significant challenges due to their wide-
ranging abilities and the limitations of current benchmarks in assessing true gen-
eralization. We introduce the MineCraft Universe (MCU), a fully automated
benchmarking framework set within the open-world game Minecraft. MCU dy-
namically generates and evaluates a broad spectrum of tasks, offering three core
components: 1) a task generation mechanism that provides high degrees of freedom
and variability, 2) an ever-expanding set of over 3K composable atomic tasks, and
3) a general evaluation framework that supports open-ended task assessment. By
integrating large language models (LLMs), MCU dynamically creates diverse envi-
ronments for each evaluation, fostering agent generalization. The framework uses a
vision-language model (VLM) to automatically generate evaluation criteria, achiev-
ing over 90% agreement with human ratings across multi-dimensional assessments,
which demonstrates that MCU is a scalable and explainable solution for evaluating
generalist agents. Additionally, we show that while state-of-the-art foundational
models perform well on specific tasks, they often struggle with increased task
diversity and difficulty.

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated remarkable progress in the field
of AI (Touvron et al., 2023; Achiam et al., 2023). The release of the GPT series (Brown et al.,
2020) has significantly reshaped AI research, moving the focus away from task-specific models
toward the development of foundation models. (Bubeck et al., 2023). These models excel across
a diverse set of tasks and are highly instructable, marking a substantial leap forward in versatility
and adaptability. The next step in this evolution is the development of Generalist Agents (Bubeck
et al., 2023). So, what is a Generalist Agent? From the perspective of users, the ideal generalist agent
should embody a multifaceted utility, seamlessly integrating a spectrum of complex services. For
instance, users typically prefer asking ChatGPT for a range of services like searching, translation,
writing, coding, etc., rather than relying on numerous specialized apps. This preference underscores
the potential for a “single-brain” style generalist agent, which intriguingly aligns with neuroscience
insights (Mountcastle, 1978; Zhu et al., 2020; Taylor, 2005), offering a two-way benefit. Beyond
that, generalist agent extends its capabilities by being able to interact with its environment, directly
influencing and adapting to the real world. This interaction capability bridges the gap between passive
task execution and active decision-making in complex, dynamic settings (Reed et al., 2022; Durante
et al., 2024; Oertel et al., 2020). Therefore, we think that generalists should have following two
characteristics: 1) possess the generalization capability to manage diverse tasks; and 2) exhibit robust
interactivity and adaptability in the real-world challenges.

Creating a generalist agent presents significant challenges. Early efforts attempted to create a “one-fits-
all” network (Schmidhuber, 2018) with life-long learning strategies but struggled with basic tasks due
to catastrophic forgetting (McCloskey & Cohen, 1989). Recent meta-reinforcement learning (meta-
RL) studies (Finn et al., 2017; Hospedales et al., 2021; Lake & Baroni, 2023) has shown potential
in endowing models with human-like abilities for systematic generalization, but challenges such as
scalability, sample inefficiency, and limited performance in complex environments persist (Parmar
et al., 2023; Hospedales et al., 2021). Recent efforts have shifted towards pretraining large foundation
models on extensive internet-scale datasets (Cai et al., 2023b; Baker et al., 2022), achieving significant
advances in tackling more complex and diverse tasks in open-world environments. However, these

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison between MCU and related benchmarks for testing generalization
Environmental-level Task-level Evaluation-level

Benchmark Open-world Procedure
generation

Dynamic
task generation

Task
Verification

Task
composability

Tunable
difficulty

Auto eval
open-ended task

DmLab (Beattie et al., 2016) × × × ✓ × ✓ ×
Procgen (Cobbe et al., 2020) × ✓ ✓ × × ✓ ×
Crafter (Hafner, 2021) ✓ ✓ × × × × ×
Xland (Team et al., 2021) ✓ ✓ × × × × ×
DYVAL Zhu et al. (2023a) × ✓ ✓ ✓ ✓ × ×
Minedojo Fan et al. (2022) ✓ ✓ × × × × ✓
MCU (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

models exhibit strong performance only on a constrained set of tasks, leaving their true generalization
capabilities unproven.

In light of these challenges, the need for rigorous evaluation methods becomes apparent. While
benchmarks like DmLab-30(Beattie et al., 2016) and Procgen(Cobbe et al., 2020) have made strides
with multi-tasks learning and procedural generation, they fall short in assessing agent within com-
petitive environments (Stanley et al., 2017; Parmar et al., 2023). Minedojo(Fan et al., 2022) and
Crafter(Hafner, 2021), have pushed forward in open-world contexts, they lack sufficient task dy-
namism and verification mechanisms. Other works(Zhu et al., 2023a; Zhou et al., 2020) push
boundaries with dynamic task generation and composition, yet constrained by text-only modality of
the tasks. The CRAB framework Xu et al. (2024) introduces a cross-environment benchmark that
leverages multimodal language models to perform tasks across various GUI environments. However,
the above benchmarks often face limitations in evaluating open-ended tasks due to the absence of
clear completion signals, making it difficult to test agents on more creative and adaptive challenges.
A comparison of these benchmarks is provided in Table 1.

To address these limitations, we introduce our benchmark, MineCraft Universe (MCU), which
offers high degrees of freedom in task design and evaluation. Minecraft, as an open-world platform,
provides a rich and diverse set of challenges, including tasks such as Trade (logical reasoning), Mining
(physical interaction), Combat (strategic planning), Building (artistic creation), Trapping (precision
control), and Redstone (complex-knowledge application). This variety provides agents with ample
opportunities to explore and learn across diverse scenarios. At the task level, we collect over 3000
atomic, composable tasks, with the potential to infinite expansion. By leveraging large language
models (LLMs), each task is dynamically generated and uniquely instantiated during each evaluation,
promoting essential generalization skills in agents. Tunable difficulty is also involved to ensure more
flexible testing. Furthermore, we propose a domain-general, vision-language model (VLM)-based
evaluation method capable of assessing open-ended tasks, even those without explicit end signals.
Crucially, our method automates the whole pipeline of task generation, verification, and evaluation,
enabling scalable benchmarking (Figure 1), which paves the way for comprehensive evaluation of
generalist agents. We adhere to the criteria outlined in Section2 to develop our benchmark.

2 BENCHMARK DESIDERATA

Based on the aforementioned challenges, we argue that three keystones should be introduced to
benchmarking generalist agents.

First, diversity is the key. The emergence of human-like general intelligence is inextricably tied to
diverse environments (Taylor, 2005). Environmental diversity drives evolutionary pressures, fostering
the development of complex cognition, technological innovation, and adaptability (Elmqvist et al.,
2012; Zhu et al., 2020). Similarly, diverse challenges stimulate the capacities of agents, pushing
them to generalize and perform across a wide array of tasks and conditions. However, in reality,
their capabilities are vastly different. In our MCU benchmark, we incorporate two types of diversity:
1) intra-task diversity: Each task should embody a high degree of variability and randomness,
providing freedom to truly test the agent’s adaptive skills. 2) inter-task diversity: The benchmark
should encompass a broad spectrum of task categories, representing the diverse challenges agents are
likely to encounter in real-world environments.

Second, task quality deserves attention. As the demand for automatic generation grows, some
approaches (Cheng et al., 2024; Fan et al., 2022), rely heavily on large language models (LLMs)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Atomic Task

MINE
Mine Dirt
Mine birch log
…
CRAFT
Craft oak planks
Craft Stone Axe
…
DIET
Eat beef
Drink potion
…
COMBAT
Combat a wolf
Hunt a sheep
…
DECORATION
Decorate the wall
Lay carpet
…
BUILD
Build a house
Build a waterfall
…

LLM-based Env Generator

task_description: use iron pickaxe to mine
redstone ore
custom_init_commands:
- /give @s minecraft:stone_pickaxe #random
- /give @s minecraft:iron_pickaxe #necessary
-/execute as @p at @s run fill ~-2 ~ ~
 ~2 ~ ~ minecraft:redstone_ore #necessary
-/give @s minecraft:torch 64 #random

Refine config

Task
sets

Code as env
initialization

New tasks

Agents Set

STEVE-1

VPT

Future Agents …

VLM-based Evaluator

Policy rollouts

- Evidence: The agent locate the redstone ore…
- Overall: Excellent
- Evidence: The agent mine efficiently…
- Action Control: Excellent
- Evidence: …
- Materia Usage: …
- …

Task
descriptions

An example of procedure-generated open world

Figure 1: Overview of MCU automated benchmarking pipeline.

or procedural methods to generate numerous tasks and their corresponding initial conditions, yet it
remains questionable whether these initial conditions can actually lead to the task’s solution Yang
et al. (2024). For instance, a task such as “mine diamond” cannot be completed with wooden pickaxe.
Hence, we introduce a task generation approach based on soft constraints and a verification pipeline.
Although we cannot guarantee that every task can be solved, we can ensure that more than 95% of
the tasks are solvable.

Third, an automatic evaluation system is indispensable for fostering the development of generalist
agents. Open-ended tasks (Stanley et al., 2017; Standish, 2003), by their very nature, lack well-
defined end states or straightforward success signals, necessitating reliance on human evaluation or
handcrafted metrics, which are labor-intensive and time-consuming(Dubois et al., 2024). Therefore,
automatic evaluation systems that enable the large-scale evaluation of generalist agents across
complex, open-ended tasks is required.

To make our automatic evaluation effective, we meet the following two criteria: 1) evaluations must
be reliable, providing accurate assessments that align closely with human judgments. This requires
the system to identify the key points of task completion, ensuring that the results are both consistent
and interpretable; 2) evaluations are multi-dimensional. Beyond success rates, which only capture
a binary measure of task completion, we need more granular such as overall skills, task efficiency,
error correction, and fine-grained control of actions.

3 THE AUTOMATED BENCHMARKING PIPELINE

In this section, we will introduce our benchmarking pipeline. To achieve diversity in section2, we
adopt Minecraft, an open-world environment, as our platform and propose an automatic task
generation method to maximize task randomness. To ensure task quality, we define atomic tasks
and introduce an automatic verification method to guarantee the solvability of the tasks. In order to
conduct large-scale task evaluations, we propose an automatic evaluation method to alleviate the
burden on humans and provide multi-dimensional assessment metrics.

3.1 MINECRAFT AS AN OPEN-WORLD ENVIRONMENT

For human player, there is not a pre-defined goal in Minecraft. For example, players are allowed
to mine ores, craft items, build architectures, combat enemies, explore freely in the varied world
with diverse biomes. Previous researches proposed classical tasks such as Obtain Diamond (Guss
et al., 2019a) and Find Cave (Milani et al., 2023), but the possible tasks are endless which makes the
multi-task evaluation insufficient. Furthermore, the broad open-ended tasks cover a wide spectrum
of challenges in AI research, such as long-horizon decision making (Jin et al., 2023), precise
control (Zhang et al., 2020), OOD generalization (Yang et al., 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

combat_sheep_plains_iron_armors_diamond_sword_shield:
 category: combat
 guidance: '1. Find a sheep.
 2. Get close to the sheep.
 3. Hit the sheep with your hand or a weapon.
 4. The sheep will die and you will get 1-3 pieces of mutton.'
 prompt: hunt a sheep in plains with a diamond sword, shield...

creative:1236:
 collection: youtube
 prompt: build a nether portal

creative:699:
 collection: youtube
 prompt: make a nether portal.

task_description: decorate the cave
custom_init_commands:
- /give @s minecraft:torch 10
- /give @s minecraft:poppy 10
- /give @s minecraft:item_frame 2
- /give @s minecraft:flower_pot 5
- /give @s minecraft:red_dye 5

task_description: hunt a sheep with
diamond_sword
custom_init_commands:
- /give @s minecraft:diamond_sword
- /summon minecraft:sheep ~5 ~ ~

task_description: hunt a sheep with
wooden_sword
custom_init_commands:
- /give @s minecraft:wooden_sword
- /summon minecraft:sheep ~8 ~ ~
- /summon minecraft:wolf ~ ~ ~2
- /give @s minecraft:golden_apple 8

MINEDOJO Task Examples

MCU Task Examples (Ours)

Build a life-sized replica
of your house in Minecraft

Design and build a transpo-
rtation system for your city

Create a working calculator
out of redstone

Only executable for programmatic task

Support open-ended tasks Simulate real game playing Different difficulty level

Highly repetitive Not solvable

Figure 2: A comparison between the “tasks” in our MCU and Minedojo (Fan et al., 2022). We
investigate the task list provided by Minedojo2 and identify several issues. For example, only
programmatic tasks that have clear reward signal can be executable in the benchmark; many tasks in
their list are repetitive (both No.1236 and No.699 are “build nether portal”); and a large amount of
tasks in the creative tasks are not solvable even by human. To address this, our MCU benchmark can
create executable configurations for open-ended tasks, and ensure intra-task and inter-task diversity
to simulate real game playing in different difficulty levels, while preserving solvability of tasks.

3.2 AUTOMATIC TASK GENERATION

3.2.1 ATOMIC TASK

As demonstrated above, diversity is a crucial characteristic of effective benchmarks. Intuitively, this
suggests that more tasks should be included. However, if tasks consistently overlap in skill assessment
(e.g., mine stone with a wooden pickaxe, mine stone with a stone pickaxe, and mine stone with a
golden pickaxe Fan et al. (2022)), they merely test the same fundamental skill with minor variations.
This leads to an artificial inflation of task quantity without contributing meaningfully to the evaluation
of generalization. In our work, we introduce the concept of an atomic task, which is characterized by
distinct challenges aimed at promoting genuine generalization. An atomic task is defined by two core
properties:

Goal-oriented definition. An atomic task T is a basic unit defined exclusively by its goal g,
independent of the methods, tools, or specific environmental conditions. During evaluation, the
atomic task is instantiated, which induces a task-specific initial state distribution P(s0|g) (see 3.2.2).
For example, the atomic task “mine stone” is goal-centric, and across different evaluation batches, it
may be instantiated into different s0 states, such as “mine stone with a wooden pickaxe” or “mine
stone with a stone pickaxe on the rainy day.” However, all of these instances correspond to the same
atomic task, ensuring the independence between different atomic tasks .

Composability. Atomic tasks can be combined to form more complex tasks by using logical operators
such as “and” (

∧
) and “or” (

∨
), or by introducing constraints like “when,” “where,” and “how.” For

instance, an agent could be tasked to “[mine oak log] or [mine grass] bare-handed and then [craft
sticks],” where “[]” denotes individual atomic tasks. This compositional approach enables a vast task
space to be explored, leveraging the combinatorial complexity of atomic goals.

The above two properties enable us to generate endless distinctive tasks. We collect over 3,000
atomic tasks3 that represent unique functionalities in Minecraft. These tasks span a wide spectrum
in Minecraft domain and can compose almost all the feasible tasks for junior human players. The
annotated atomic tasks will also be released to community and researchers can DIY their open-ended
tasks using atomic tasks as building blocks freely.

3The set is still growing.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Generate the initial config
of sheep hunting.

GPT-4o

Environment initialization

task_description: use diamond sword
to hunt the sheep.
custom_init_commands:
- /give @s minecraft:diamond_sword
- …

Self-verification
module

Error code refine

Generate the rating criteria
for hunting sheep with a
diamond sword.

Automatic task generation

Automatic evaluation

Verified initial
environments

GPT-4o

Multi-dimensional criteria

Overall: the key steps …
- identify and approaches sheep
- …

Action control: execute actions…
- …

Key frames
GPT-4v

Overall:
- evidence: the agent locate…
- results: excellent
Action Control:
- evidence: …
- results: …

Evaluation results

Sample

Figure 3: Automatic pipeline of task generation and performance evaluation.

3.2.2 LLM-POWERED SCENE GENERATION

For a given atomic task T , we automatically generate a task-specific initial state distribution P(s0|T)
that meets two key criteria:

• The initial state distribution exhibits high diversity.
• They need to be formulated into executable files within Minecraft.

To achieve above objectives, we propose a scalable task generation pipeline powered by LLMs,
coupled with an automatic verification process to ensure accuracy. LLMs provide scalability beyond
human-written programs, generating a broader spectrum of task scenarios by integrating broad
knowledge and creativity.

As illustrated in Figure 3, we input the atomic task and few-shot examples into GPT-4O, expecting
it to generate a specific task description (used as instructions for LLM-based agents (Lifshitz et al.,
2023) and for generating evaluation criteria 3.3), along with a set of executable “cheat commands”
that initialize the environment configuration. This initial configuration includes various attributes such
as the spawn point, inventory, equipment, items in the agent’s main hand and off-hand, nearby entities,
time of day, weather conditions, and more. For example, if the atomic task is to mine diamonds, the
initial environment would include nearby diamond ore and an iron pickaxe in the agent’s inventory.
To increase task diversity, we introduce random additional conditions related to the task (e.g., placing
other ores nearby) and shuffle item arrangements to prevent predictable patterns.

To address common errors generated by LLMs, we integrate soft constraints into the prompts. LLMs
often struggle with numerical accuracy and game-specific rules. To mitigate this, we implement
constraints to guide the outputs. For example, when generating scenes for crafting, where exact
materials are required (e.g., three wool blocks and three wooden planks), we instruct LLMs to generate
a surplus to account for their insensitivity to quantities. Constraints also prevent the generation of
inaccessible structures (e.g., via the /fill command), maintaining environmental integrity. Essential
elements like crafting tables and furnaces are consistently reminded to ensure usability.

3.2.3 AUTOMATIC VERIFICATION PIPELINE

To ensure the quality of generated task, Mineflayer (PrismarineJS, 2024) is employed as a super-agent
to conduct task verification. We validate generated scenes by executing tasks T within an initial
environment s0 for a maximum duration d = 60 seconds. Let V(g, s0, d) represent the task execution
process. If the agent successfully completes the task within the time limit, the scene is validated. If
V(g, s0, d) results in failure (i.e., the task is not completed within d), an error signal ϵ is sent back

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

to the LLM. This feedback, denoted as F(ϵ), prompts the LLM to generate a revised scene s′0. The
process ensure that the generated scenes meet benchmark standards for accuracy and usability.

3.3 AUTOMATIC EVALUATION

In open-world scenarios, traditional benchmarks often fall short due to the diverse and open-ended
nature of tasks. In this section, We introduce an automated evaluation method designed to scale
task assessments beyond the limitations of human judgment. Our framework consists of two main
components. (1) Criteria generation: establishing clear, task-specific evaluation dimensions. (2)
Scoring based on criteria: using these predefined dimensions to infer “scoring points” from videos of
agent performance (see Figure 3).

Criteria generation We define six key dimensions for evaluating agent performance:

• Task progress: measures critical steps and factors required for task completion.

• Action control: evaluates the agent’s ability to avoid unrelated or unnecessary actions.

• Material usage: evaluates the ability in the selection and application of materials.

• Task efficiency: focuses on minimizing unnecessary repetitions and optimizing strategies.

• Error recognition: assesses the agent’s capacity to identify and correct its own errors.

• Creative attempts: recognizes innovative approaches taken by the agent in task execution.

The LLMs can autonomously generate tailored criteria for each task. This dynamic approach
allows for efficient, task-specific evaluation standards across a wide variety of tasks. These six
metrics provide a comprehensive view of the agent’s capabilities, offering insights into both strategic
execution and adaptive problem-solving.

Scoring with criteria Given the task T and initial states P(s0|g), an agent A will rollout the
trajectories based on its policy A : (s0; g) 7→ (a0, s1, a1, · · · , at, st), where {si}ti=0 are past and
current states, and {aj}tj=0 are past and current actions. We store the agent’s rollout trajectories
in video format. In the evaluation phase, we leverage the VLM to analyze agent performance. To
optimize resource utilization, we extract one frame from every n frames of the video. While this
sampling approach may result in a certain degree of performance loss, it is possible to achieve a
trade-off between resource conservation and evaluative efficacy hat aligns with researcher’s specific
conditions.

We input the sampled frames and task-specific criteria into VLM. To ensure rigor, VLM provides
evidence and explanations before assigning a score (?). It evaluates each dimension by identifying
supporting evidence from the video to justify the rating. We define the scoring intervals for each
criterion as follows: very poor, poor, fair, good, and excellent. This structured scoring scale helps the
VLM intuitively interpret performance levels, promoting consistent and detailed assessments that
lead to more instructive resuplts.

4 EXPERIMENTS

To show that our MCU is implementable in real evaluation practice, we first validate the rationality of
the automatic evaluation methods by comparing their judgments with human assessments. Subse-
quently, to investigate the capabilities of the existing agents, we conduct experiments in accordance
with the task design principles outlined in Section 3.

4.1 AUTOMATIC EVALUATION

We implemented two distinct evaluation methods: comparative assessment and individual rating.

• Comparative assessment: it allows for direct comparison between two videos.

• Single rating: it scores individual video, quantifying the overall skill set of the agent.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

These two approaches each have their own utility. Comparative assessment can facilitate the evaluation
of an agent’s improvement across different training iterations or enables the comparison between
different agents combined with an Elo rating system. Individual rating provides a clear and intuitive
representation of the agent’s performance, allowing for the identification of specific strengths and
areas for improvement.

Our video sets consisted of 60 tasks, featuring over 500 trajectories from both agent simulations and
human gameplay videos. This presents a challenge for automated evaluation methods. Unlike the
majority of previous work, which typically contrasted successful and unsuccessful trajectories, our
dataset predominantly consists of trajectories from similar agents across different rollouts. These
trajectories exhibit highly similar poses for many steps, thereby increasing the evaluative complexity.
We hire 20 experts in the field of Minecraft to annotate data, with each person contributing one hour
of annotation work.

Comparative assessment We randomly sample two videos from the same task for each evaluation
instance. Participants are then prompted to vote on the comparative quality of the videos, with
options ranging from “a is better,” “b is better,” “tie,” to “both are bad.” This methodology allows
for the pairing of any videos that complete the same task, creating an extensive sample space for
analysis. Automated evaluation metric exhibits strong concordance with human assessments across
all dimensions (Table 3). Our methodology demonstrates a marked improvement over MineClip,
which finetune on large-scale Minecraft videos based on CLIPopenai model (Table 2).

Table 2: The automatic evaluation results align with human judgments across a variety of tasks.
Numbers represent the F1 scores for classifying the better trajectory.

Model Survive Build Craft Tool Collect Explore Average
MineClip (Fan et al., 2022) 11.0 45.0 44.0 44.0 73.0 0.0 44.0
Ours (w/o criteria) 100.0 73.0 53.0 100.0 49.0 100.0 73.0
Ours (w criteria) 100.0 85.0 62.0 58.0 73.0 100.0 80.0

Table 3: The automatic evaluation results align with human judgments across different dimensions.
Metric Task Progress Action Error Recog. Creative Efficiency Material Average

F1 Score 80.0 96.0 86.0 100.0 92.0 91.0 90.8

Single rating In an experiment spanning five independent rating scales, the concordance between
VLM and human assessment, as indicated by Kendall’s τ , stands at a robust 0.78, with a P-value of
1.70× 10−15 (see Figure 4). Our unified rating system demonstrates reliable performance on creative
tasks, including ’build’ and ’find’, providing meaningful insights into open-ended evaluations. How-
ever, for meticulous tasks such as ’craft’, which require acute attention to detail and the recognition
of minor elements, the system’s efficacy is somewhat diminished. Enhancements may be achieved by
increasing the frame sampling rate from the current one frame per thirty.

4.2 HOW CAPABLE ARE THE EXISTING AGENTS?

To show that our MCU is implementable in real evaluation practice and investigate how capable the
existing agents are, we conduct experiments following the guidance of the task design principles
introduced in Section 2.

4.2.1 EXPERIMENTAL SETTINGS

Minecraft Agents. We compare four powerful agents in Minecraft, which have been pre-trained
on large-scale Minecraft video datasets to ensure generalizability: (1) VPT(bc), which is a behavior
cloning model fine-tuned from earlygame keyword data of YouTube video pre-training(VPT) (Baker
et al., 2022); (2) VPT(rl), which is a RL fine-tuned model based on earlygame keyword to maximizing
the reward of obtaining diamond in Minecraft; (3) STEVE-I (text) (Lifshitz et al., 2023), which
follows text instructions to solve tasks; and (4) GROOT (Cai et al., 2023b), which solves a task by
watching a reference video. More model details can be found in Cai et al. (2023b).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Human and VLM scores for various task variants demonstrate a consistent trend. When
VLM scores, it extracts one image per every 30 frames, which may lead to a certain degree of
information loss.

Task Settings. To verify intra-task diversity and inter-task diversity proposed in Section 2, we select
a diverse range of tasks and establish a gradient of difficulty levels ranging from simple to hard within
each task. We randomly choose 30 atomic tasks and 5 diverse compositional tasks to evaluate the
agents capability. The representative tasks include “drink hurting potion”, which is very novel as
players rarely do this in Minecraft because it will hurt themselves, and “prepare a birthday present”,
which is not pre-defined in Minecraft and highly creative. Moreover, we provide three settings of
difficulty level: simple, medium, and hard. The higher the difficulty level, the greater the number of
factors that can impede the completion of tasks.

4.2.2 INTER-TASK GENERALIZATION

For ease of presentation, we categorize tested tasks into six major categories, which include many
sub-categories, such as tool-use with sub-tasks like drink, carve, compose, etc., each assessing
different types of skills (Figure 5). We test each task at three levels of difficulty, with 10 rollouts for
each, and averaged their success rates. While agents show satisfactory performance on specific tasks
like “find forest” and “mine grass,” giving an illusion of impressive inter-task generalization, their
performance deteriorates when faced with a broader spectrum of challenges, particularly in areas
such as “craft” and “build.” Notably, there is a consistent failure among all agents to execute tasks
involving structured construction, exemplified by the “build nether portal” task. Furthermore, tasks
requiring extensive knowledge and meticulous operational control, such as “compose obsidian,” pose
considerable difficulties. These results underscore the need for progress in spatial understanding and
fine motor control as we advance towards the development of a generalist agent.

exploring find forest find diamond find villages0.0

0.5

1.0

su
cc

es
s_

ra
te

navigation
Agents

groot
steve-1
vpt-bc
vpt-rl

drink sleep flint&steel carve compose obsidian0.0

0.5

1.0

su
cc

es
s_

ra
te

tool-use
Agents

groot
steve-1
vpt-bc
vpt-rl

crafting table diamond dye&shear sheep till&plant seeds0.0

0.5

1.0

su
cc

es
s_

ra
te

compositional
Agents

groot
steve-1
vpt-bc
vpt-rl

grass dirt iron ore diamond ore obsidian0.0

0.5

1.0

su
cc

es
s_

ra
te

mine
Agents

groot
steve-1
vpt-bc
vpt-rl

Figure 5: Testing performance across a multitude of task types, averaging from 3 difficulty levels,
with 10 trial runs for each task. Video instructions are offered to Groot, text instructions are offered
to Steve-1, and no instructions are offered to VPT.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

combat_zombie mine_grass
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

0.20
0.10

0.00

1.00

0.80

0.30

groot
Simple
Medium
Hard

build_pillar craft_cake
0.0

0.2

0.4

0.6

0.8

1.0

0.30
0.20

0.10

0.70

0.00 0.00

steve-1
Simple
Medium
Hard

hunt_sheep find_forest
0.0

0.2

0.4

0.6

0.8

1.0

0.20 0.20
0.10

0.60

0.30

0.10

vpt_bc
Simple
Medium
Hard

Figure 6: Generalization performance from ’simple’ to ’hard’ level. Results averaged from 10 trails.

We believe this vast performance gap between different level is worth highlighting. It reveals a
crucial hidden flaw in training on environments that follow a fixed mode. These results underscores
the necessity for developing not just basic competence in straightforward scenarios, but also the
advanced resilience and discernment essential for successfully navigating the intricate and distracting
challenges presented by more complex environments.

Table 4: Average performance across all tasks in different dimensions.
Metric Task Progress Action Error Recog. Creative Efficiency Material Average

Vpt-rl 34.61 31.50 10.31 3.62 23.43 28.25 21.97
Vpt-bc 34.45 29.69 9.65 6.35 19.38 38.02 22.26
Steve-1 41.84 38.84 15.26 7.90 24.40 38.15 27.73
Groot 48.39 42.77 16.23 9.58 31.71 46.25 32.99

The averaged performance of Groot, steve-1 and VPT model across all tasks shows in Table 4. It can
be observed that the Groot model performs the best, with its ranking consistent with that of humans
elo rating Figure 10. However, all models show poor performance in error recognition and creativity
dimensions. This indicates that there is still significant room for improvement in these aspects for the
agents.

4.2.3 INTRA-TASK GENERALIZATION

We randomly selected two tasks where each agent performed well under the “simple” setting and
investigated their performance under “medium” and “hard” difficulties. In our observations, the
performance of the agents shows a significant decline as the difficulty increases (Figure 6), indicating
that their generalization and robustness to interference are currently inadequate.

Taking “craft cake” as an example, Steve-1 exhibits remarkable proficiency in the simple mode, where
the crafting table is readily available in hand. However, this proficiency does not scale well with
increased difficulty levels. In the medium mode, where the crafting table in the inventory, and the hard
mode, where additional items are present in hand, Steve-1 struggles to maintain focused execution,
and becoming distracted by irrelevant information and displaying a lack of robust judgment. For
agents that receive video instruction, such as Groot, relies heavily on instruction videos in many
scenarios. For instance, during a test to “mine grass” where the grass is actually at its feet, but the
instructional video shows the grass in front, Groot will still move to the front and perform the mining
action as if that is where the target is located.

In Table 5, we can observe varying degrees of decline across multiple dimensions, but there is an
increase in material usage. Analysis indicates that in the hard mode, the redundancy of items has led
to an increase in the agent’s usage and exploration of different tools, consequently resulting in a rise
in the scores.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Performance changes across multiple dimensions in simple and hard modes.

Task Task Progress Action Control Efficiency Material Usage

Simple Hard ∆ Simple Hard ∆ Simple Hard ∆ Simple Hard ∆

enchant sword 62.50 60.00 -2.50 31.25 30.00 -1.25 18.75 17.00 -1.75 25.00 50.00 25.00
build portal 81.25 50.00 -31.25 50.00 40.00 -10.00 43.75 40.00 -3.75 43.75 60.00 16.25
mine iron ore 56.25 60.00 3.75 43.75 55.00 11.25 31.25 45.00 13.75 62.50 70.00 7.50
craft to cake 37.50 35.00 -2.50 31.25 25.00 -6.25 25.00 20.00 -5.00 37.50 25.00 -12.50
carve pumpkin 35.00 20.00 -15.00 35.00 25.00 -10.00 15.00 10.00 -5.00 40.00 30.00 -10.00
combat skeleton 25.00 20.00 -5.00 25.00 20.00 -5.00 16.67 10.00 -6.67 25.00 15.00 -10.00
mine dirt 50.00 65.00 15.00 40.00 40.00 0.00 20.00 25.00 5.00 40.00 20.00 -20.00
sleep in bed 85.00 50.00 -35.00 40.00 60.00 20.00 40.00 45.00 5.00 45.00 60.00 15.00
build dig3fill1 55.00 62.50 7.50 55.00 43.75 -11.25 40.00 37.50 -2.50 60.00 56.25 -3.75

average 55.00 47.94 -7.06 39.03 37.08 -1.94 27.43 28.61 -0.34 42.08 43.89 1.81

5 RELATED WORK

Minecraft as Test Bed Various test beds exist for multimodal generalist agents, such as Alf-
World (Shridhar et al., 2020) and BabyAI (Chevalier-Boisvert et al., 2018). However, Minecraft,
due to its openness and high degree of freedom, serves as a crucial platform for testing generalist
agents on infinite tasks, leading to the emergence of specific benchmarks. MineDojo (Fan et al., 2022)
introduced a suite of 1560 creative tasks defined by natural language instructions, but it suffers from
significant redundancy and overly complex tasks that challenge practical evaluation (Lin et al., 2023).
BEDD (Milani et al., 2023) presents five tasks that cover different Minecraft aspects, primarily aimed
at the MineRL BASALT competition (Shah et al., 2021). By decomposing the evaluation framework,
BEDD enables detailed assessments of agent performance across subgoals and characteristics like
human likeness.

Efforts to Generalist Many agents have been developed to interact with Minecraft environ-
ments (Baker et al., 2022; Wang et al., 2023d;a; Cai et al., 2023b). Some focus on short-term
task execution; for instance, Baker et al. (2022) employs imitation learning from YouTube videos,
enhanced by reinforcement learning for specific tasks, but it is not a multi-task agent. Lifshitz et al.
(2023) utilizes pretrained VPT and the vision-language model MineCLIP (Fan et al., 2022) to follow
human instructions. These agents typically leverage pre-trained large language models (LLMs), like
GPT-4 (Achiam et al., 2023) or ChatGPT (Ouyang et al., 2022), to generate action plans and execute
tasks via existing low-level controllers (Wang et al., 2023d; Zhu et al., 2023b; Wang et al., 2023c;a;
Ding et al., 2023). However, current LLMs, especially open-source models like LLaMA (Touvron
et al., 2023), often lack the necessary knowledge of the Minecraft environment, highlighting the
importance of enhancing their knowledge base for the development of generalist agents.

LLM-as-Judge Large Language Models (LLMs) (Achiam et al., 2023; Wang et al., 2023b) have
been explored as cost-effective alternatives to human evaluation. While LLMs exhibit certain biases,
such as position bias and verbosity bias (Shi et al., 2023; Zheng et al., 2023), recent advancements
have mitigated these issues through techniques like providing few-shot examples to calibrate the
models’ scoring mechanisms (Kim et al., 2023; Li et al., 2023). Recently, state-of-the-art models
have demonstrated high agreement rates with human evaluators (Liu et al., 2023), underscoring their
potential to replicate human judgment in complex scenarios. The scalability and cost-efficiency
offered by LLM-based evaluation address critical challenges in open-world domains (Stanley et al.,
2017; Standish, 2003), providing a promising direction for future research and application.

6 CONCLUSION

In this work, we present the MCU framework, an automated benchmarking methodology that inte-
grates task generation, verification, and evaluation. With evaluation results achieving an agreement
rate exceeding 90%, it becomes possible to conduct large-scale assessments of diverse tasks. More-
over, MCU reveals critical limitations in the generalization capabilities of current agents, highlighting
the urgent need for more comprehensive and rigorous benchmarks. We anticipate that MCU will
contribute to the advancement of more versatile and truly generalist agents, empowering the research
community to expand the frontiers of agent generalization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. arXiv preprint arXiv:2206.11795, 2022.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, John A. Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuan-Fang Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4. ArXiv, abs/2303.12712, 2023. URL https://api.semanticscholar.org/
CorpusID:257663729.

Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Open-world multi-task control
through goal-aware representation learning and adaptive horizon prediction. arXiv preprint
arXiv:2301.10034, 2023a.

Shaofei Cai, Bowei Zhang, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Groot: Learning to
follow instructions by watching gameplay videos. arXiv preprint arXiv:2310.08235, 2023b.

Zhili Cheng, Zhitong Wang, Jinyi Hu, Shengding Hu, An Liu, Yuge Tu, Pengkai Li, Lei Shi,
Zhiyuan Liu, and Maosong Sun. Legent: Open platform for embodied agents. arXiv preprint
arXiv:2404.18243, 2024.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020.

Ziluo Ding, Hao Luo, Ke Li, Junpeng Yue, Tiejun Huang, and Zongqing Lu. Clip4mc: An rl-friendly
vision-language model for minecraft. arXiv preprint arXiv:2303.10571, 2023.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems, 36,
2024.

Zane Durante, Bidipta Sarkar, Ran Gong, Rohan Taori, Yusuke Noda, Paul Tang, Ehsan Adeli,
Shrinidhi Kowshika Lakshmikanth, Kevin Schulman, Arnold Milstein, et al. An interactive agent
foundation model. arXiv preprint arXiv:2402.05929, 2024.

Thomas Elmqvist, Edward Maltby, Tom Barker, Martin Mortimer, Charles Perrings, James Aronson,
Rudolf De Groot, Alistair Fitter, Georgina Mace, Jon Norberg, et al. Biodiversity, ecosystems and
ecosystem services. In The Economics of Ecosystems and Biodiversity: Ecological and economic
foundations, pp. 41–111. Routledge, 2012.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended
embodied agents with internet-scale knowledge. Advances in Neural Information Processing
Systems Datasets and Benchmarks, 2022.

11

https://api.semanticscholar.org/CorpusID:257663729
https://api.semanticscholar.org/CorpusID:257663729

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

William H Guss, Cayden Codel, Katja Hofmann, Brandon Houghton, Noboru Kuno, Stephanie
Milani, Sharada Mohanty, Diego Perez Liebana, Ruslan Salakhutdinov, Nicholay Topin, et al.
Neurips 2019 competition: the minerl competition on sample efficient reinforcement learning
using human priors. arXiv preprint arXiv:1904.10079, 1(8), 2019a.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela Veloso,
and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations. arXiv
preprint arXiv:1907.13440, 2019b.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Emily Jin, Jiaheng Hu, Zhuoyi Huang, Ruohan Zhang, Jiajun Wu, Li Fei-Fei, and Roberto Martı́n-
Martı́n. Mini-behavior: A procedurally generated benchmark for long-horizon decision-making in
embodied ai. arXiv preprint arXiv:2310.01824, 2023.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained eval-
uation capability in language models. In The Twelfth International Conference on Learning
Representations, 2023.

Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-learning
neural network. Nature, 623:115 – 121, 2023. URL https://api.semanticscholar.
org/CorpusID:264489248.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge
for evaluating alignment. arXiv preprint arXiv:2310.05470, 2023.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith. Steve-1: A generative
model for text-to-behavior in minecraft. arXiv preprint arXiv:2306.00937, 2023.

Haowei Lin, Zihao Wang, Jianzhu Ma, and Yitao Liang. Mcu: A task-centric framework for
open-ended agent evaluation in minecraft. arXiv preprint arXiv:2310.08367, 2023.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 24:109–165, 1989. URL
https://api.semanticscholar.org/CorpusID:61019113.

Stephanie Milani, Anssi Kanervisto, Karolis Ramanauskas, Sander Schulhoff, Brandon Houghton,
and Rohin Shah. Bedd: The minerl basalt evaluation and demonstrations dataset for training and
benchmarking agents that solve fuzzy tasks. arXiv preprint arXiv:2312.02405, 2023.

Vernon B. Mountcastle. An organizing principle for cerebral function : the unit module and
the distributed system. 1978. URL https://api.semanticscholar.org/CorpusID:
59731439.

Catharine Oertel, Ginevra Castellano, Mohamed Chetouani, Jauwairia Nasir, Mohammad Obaid,
Catherine Pelachaud, and Christopher Peters. Engagement in human-agent interaction: An
overview. Frontiers in Robotics and AI, 7:92, 2020.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

12

https://api.semanticscholar.org/CorpusID:264489248
https://api.semanticscholar.org/CorpusID:264489248
https://api.semanticscholar.org/CorpusID:61019113
https://api.semanticscholar.org/CorpusID:59731439
https://api.semanticscholar.org/CorpusID:59731439

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jitendra Parmar, Satyendra Chouhan, Vaskar Raychoudhury, and Santosh Rathore. Open-world
machine learning: applications, challenges, and opportunities. ACM Computing Surveys, 55(10):
1–37, 2023.

PrismarineJS. mineflayer: Create Minecraft bots with a powerful, stable, and high level JavaScript
API. https://github.com/PrismarineJS/mineflayer, 2024.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

Jürgen Schmidhuber. One big net for everything. ArXiv, abs/1802.08864, 2018. URL https:
//api.semanticscholar.org/CorpusID:3514932.

Rohin Shah, Cody Wild, Steven H Wang, Neel Alex, Brandon Houghton, William Guss, Sharada
Mohanty, Anssi Kanervisto, Stephanie Milani, Nicholay Topin, et al. The minerl basalt competition
on learning from human feedback. arXiv preprint arXiv:2107.01969, 2021.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context. In
International Conference on Machine Learning, pp. 31210–31227. PMLR, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Russell K Standish. Open-ended artificial evolution. International Journal of Computational
Intelligence and Applications, 3(02):167–175, 2003.

Kenneth O Stanley, Joel Lehman, and Lisa Soros. Open-endedness: The last grand challenge you’ve
never heard of. While open-endedness could be a force for discovering intelligence, it could also
be a component of AI itself, 2017.

John G. Taylor. Jeff hawkins and sandra blakeslee, on intelligence, times books (2004). Artif.
Intell., 169:192–195, 2005. URL https://api.semanticscholar.org/CorpusID:
205692516.

Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob
Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-ended
learning leads to generally capable agents. arXiv preprint arXiv:2107.12808, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu Li, Jinan Xu,
Jianfeng Qu, and Jie Zhou. Is chatgpt a good nlg evaluator? a preliminary study. arXiv preprint
arXiv:2303.04048, 2023b.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-world multi-task
agents with memory-augmented multimodal language models. ArXiv, abs/2311.05997, 2023c.
URL https://api.semanticscholar.org/CorpusID:265129059.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and select:
Interactive planning with large language models enables open-world multi-task agents. arXiv
preprint arXiv:2302.01560, 2023d.

13

https://github.com/PrismarineJS/mineflayer
https://api.semanticscholar.org/CorpusID:3514932
https://api.semanticscholar.org/CorpusID:3514932
https://api.semanticscholar.org/CorpusID:205692516
https://api.semanticscholar.org/CorpusID:205692516
https://api.semanticscholar.org/CorpusID:265129059

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie,
Yongchao Chen, Shilong Liu, Bochen Qian, et al. Crab: Cross-environment agent benchmark for
multimodal language model agents. arXiv preprint arXiv:2407.01511, 2024.

Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential for
unseen goal generalization of offline goal-conditioned rl? In International Conference on Machine
Learning, pp. 39543–39571. PMLR, 2023.

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick
Haber, Ranjay Krishna, Lingjie Liu, et al. Holodeck: Language guided generation of 3d embodied
ai environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16227–16237, 2024.

Zhongzhong Zhang, Erkan Kayacan, Benjamin Thompson, and Girish Chowdhary. High precision
control and deep learning-based corn stand counting algorithms for agricultural robot. Autonomous
Robots, 44(7):1289–1302, 2020.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum. The design and implementation of xiaoice,
an empathetic social chatbot. Computational Linguistics, 46(1):53–93, 2020.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval:
Graph-informed dynamic evaluation of large language models. arXiv preprint arXiv:2309.17167,
2023a.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world
enviroments via large language models with text-based knowledge and memory. arXiv preprint
arXiv:2305.17144, 2023b.

Yixin Zhu, Tao Gao, Lifeng Fan, Siyuan Huang, Mark Edmonds, Hangxin Liu, Feng Gao, Chi Zhang,
Siyuan Qi, Ying Nian Wu, Joshua B. Tenenbaum, and Song-Chun Zhu. Dark, beyond deep: A
paradigm shift to cognitive ai with humanlike common sense. ArXiv, abs/2004.09044, 2020. URL
https://api.semanticscholar.org/CorpusID:207913770.

14

https://api.semanticscholar.org/CorpusID:207913770

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

B MINECRAFT ENVIRONMENT SETTING

In the regular Minecraft game, the server (or ”world”) always runs at 20Hz while the client’s rendering
speed can typically reach 60-100Hz. To ensure consistency with the server, the frame rate is fixed at
20 fps for the client. The action and observation spaces in our environment are identical to what a
human player can operate and observe on their device when playing the game. These details will be
further explained in subsequent subsections. Additionally, diagnostic information such as in-game
stats, contents of the agent’s inventory, and whether any in-game GUI is open is provided by the
environment. This information can only be used for tracking, recording, and evaluating purposes but
cannot serve as inputs to evaluated agents.

B.1 MINECRAFT GAME WORLD SETTING

We have chosen to conduct the test in Minecraft version 1.16.5’s survival mode. During this open-
world experiment, the agent may encounter situations that result in its death, such as being burned by
lava or a campfire, getting killed by hostile mobs, or falling from great heights. When this happens,
the agent will lose all its items and respawn at a random location near its initial spawn point within
the same Minecraft world or at the last spot it attempted to sleep. Importantly, even after dying, the
agent retains knowledge of its previous deaths and can adjust its actions accordingly since there is no
masking of policy state upon respawn.

Figure 7: Minecraft game observation.

B.2 OBSERVATION SPACE

The observation space for a human player is limited to the raw pixels visible on the display screen. It
does not include any hidden information from the game world, such as hidden blocks or nearby mobs.
Additionally, any information contained in the pixels must be perceived by the model rather than
directly given, including inventories and health indicators. Human players can access this information
by pressing F3, which should be considered part of the game screen. There are no restrictions on
optional parameters that human players can adjust in the display settings, such as field of view, GUI
scale (controlling the size of in-game GUI), and brightness. The rendering resolution of Minecraft is
640x360; however, it is recommended to resize images to lower resolutions for better discernibility
and computational efficiency.

B.3 ACTION SPACE

The action space is also consistent with human-playing settings, i.e., mouse and keyboard controls.
These actions include key presses, mouse movements, and clicks. The specific binary actions that
are triggered by keypress are shown in Table Table 6. In addition to actions triggered by keypresses,
the action space also includes mouse movements. Similar to human gameplay, when there are no
in-game GUIs open, moving the mouse along the X and Y axes changes the agent’s yaw and pitch
respectively. However, when a GUI is open, camera actions shift the position of the mouse cursor.
The mouse movements are relative and adjust their position or camera angle based on their current
state.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Binary actions included in the action space. More details can be found at Minecraft wiki
page5.

Action Human action Description
forward W key Move forward.

back S key Move backward.
left A key Strafe left.

right D key Strafe right.
jump space key Jump.

inventory E key Open or close inventory and the 2x2 crafting grid.
sneak shift key Move carefully in the current direction of motion. In the GUI it acts

as a modifier key: when used with an attack it moves item from/to the
inventory to/from the Hotbar, and when used with craft it crafts the
maximum number of items possible instead of just 1.

sprint ctrl key Move fast in the current direction of motion.
attack left mouse button Attack; In GUI, pick up the stack of items or place the stack of items

in a GUI cell; when used as a double click (attack - no attack - attack
sequence), collect all items of the same kind present in inventory as a
single stack.

use right mouse button Place the item currently held or use the block the player is looking at. In
GUI, pick up the stack of items or place a single item from a stack held
by the mouse.

drop Q key Drop a single item from the stack of items the player is currently holding.
If the player presses ctrl-Q then it drops the entire stack. In the GUI, the
same thing happens except for the item the mouse is hovering over.

hotbar.[1-9] keys 1 – 9 Switch active item to the one in a given hotbar cell.
show debug screen F3 key See the chunk cache, the memory usage, various parameters, the player’s

map coordinates, and a graph that measures the game’s current frame
rate.

C WHY MINECRAFT IS SUITABLE FOR GENERALIST AGENT?

C.1 COMPLEXITY

The environment in Minecraft is highly complex, encompassing various elements such as blocks,
creatures, terrain, vegetation, and more. This complexity poses diverse challenges for agents in this
environment, requiring them to learn to adapt and address a wide array of intricate tasks. The intricate
nature of the environment provides generalist agents with abundant learning opportunities, enabling
them to flexibly navigate through different scenarios.

C.2 OPEN-ENDEDNESS

Minecraft offers a vast open world where players can freely explore various regions. This openness
exposes agents to limitless potential environments, requiring them to possess exploration and naviga-
tion capabilities. In an open world, a generalist agent must be able to adapt to new terrains, scenes,
and situations. In this open-ended environment, it becomes more convenient to select tasks with
varying difficulty levels, each presenting unique dimensions of challenge. This allows us to evaluate
the agent’s performance in a targeted manner, assessing its proficiency across various abilities.

C.3 DYNAMISM AND UNPREDICTABILITY

Compared to some static, text-based, or vision-language based test environments, the dynamism and
unpredictability of Minecraft provide unique advantages for the training and testing of intelligent
agents. The in-game environment is filled with dynamic changes and unknown factors, including
day-night cycles, the random appearance of creatures, diverse terrains, and more. This dynamism
and unpredictability necessitate that the agents adapt flexibly to various scenarios and possess the
ability to handle unexpected events, thereby better cultivating their generalization skills for complex
environments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.4 CREATIVITY AND INNOVATION

Minecraft allows for a high degree of creativity and innovation. The abundance of open-ended tasks,
such as construction and decoration, provides agents with ample space to unleash their creativity. By
exploring various ways to achieve goals, agents cultivate innovative abilities in addressing diverse
and complex challenges.

C.5 BROAD CHALLENGE COVERAGE

Minecraft, with its outstanding freedom and depth of tasks in an open-world setting, is well-suited as
a training and testing platform for a generalist agent. In general, agents in the Minecraft environment
may encounter the following four primary challenges.

Long-horizon Decision Making In the Minecraft environment, tasks can break into a sequence of
subtasks. For instance, to achieve the goal of mining diamonds, players need to complete various
subtasks including chopping the trees, crafting a crafting table, obtaining a pickaxe, and searching
for diamonds. The sequences of subtasks for a task are not necessarily the same; rather, they can
be entirely different. For example, to complete the task of ”obtaining wool,” the typical approach
is to kill sheep. However, if there are no sheep nearby, players might need to kill spiders to obtain
string, then use the string to craft wool, or even directly trade with villagers for wool. Different
environments lead to different subtask sequences, placing a challenge on the agent’s ability for
long-horizon decision-making.

In this context, agents must have the capability to predict and plan future environments and actions,
instead of mere reactions to the current state. Long-horizon decision-making in Minecraft requires
agents to understand the complex spatial and temporal relationships within the game environment. The
diverse and dynamic nature of tasks, combined with the multitude of possible approaches, demands
that agents develop a comprehensive understanding of the environment to effectively navigate through
various steps and reach their goals.

Precise Control As a well-known sandbox construction game, Minecraft allows players to engage
in intricate building and operations. Therefore, tasks related to building and crafting are important
components of the Minecraft task list. This task always involves precise movement, accurate block
placement, and destruction. For example, the task ”building a nether portal” requires the agent to
build at least a 2× 3 rectangular frame with specific blocks. If the player placed the block in a wrong
position, they should mine that wrong block with the pickaxe and place it again. This demands
precise and accurate control. RL agents need to handle high-dimensional action spaces and achieve
precise control in the environment to accomplish complex tasks. This presents a challenge for the
stability and precision of the agent.

Out-of-distribution Generalization The Minecraft environment is dynamic, filled with various
possible scenarios and conditions. The terrain, ecology, organisms, and even the weather are ever-
changing, and it’s impossible for the agent to encompass all of them in the training data. On the
other hand, due to the fact that the vast majority of training data consists of reasonable behaviors, the
model’s free exploration or learning errors make it prone to encountering environments not present in
the training data, such as falling into the lava when mining the diamond. How to enable the model
to generalize to out-of-distribution environments and adapt to the complexity of the ever-changing
open-world is a notable challenge.

Compositional Generalization To adapt to the long-horizon and varied tasks in Minecraft, the
model needs to have the ability of compositional generalization. For example, when the training set
includes data crafting sticks from planks and crafting ladders from sticks, we hope the model can
generalize the ability to craft ladders from planks. The Minecraft environment offers nearly infinite
combinations of tasks, with the majority of them not appearing in the training set. Accomplishing
these tasks poses a significant challenge to the model’s compositional generalization capability.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.6 COMMUNITY AND RESOURCES

The game Minecraft boasts a vast and active community where players share rich experiences,
creativity, and problem-solving techniques. This communal sharing environment provides a massive
resource pool for agents, enabling them to draw knowledge, inspiration, and skills from the community.
By engaging with the community, agents can tap into the wisdom of diverse players, enhancing their
ability to perform tasks more comprehensively and effectively in the open-world setting.

Furthermore, the Minecraft community has fostered a wealth of mods and plugins, allowing players
to customize their gaming experiences. This provides agents with diverse and targeted training
and testing scenarios, aiding in the development of their adaptability to different environments.
The creative spirit and resource-sharing ethos within the community further enrich the learning
experience for agents, enabling them to draw upon and apply information from a wide-ranging
community. Therefore, as a community-driven platform, Minecraft offers abundant social and
knowledge resources for the training and testing of open-world agents.

C.7 SAFE AND CONTROLLED

Minecraft provides a safe and controlled virtual world, offering an ideal space for model learning.
The safety of this environment allows models to learn in virtual reality without the potential risks
associated with real-life situations. Additionally, Minecraft offers a high degree of controllability,
enabling researchers to customize tasks and adjust environmental parameters to precisely manage
the learning scenarios for models. This control is advantageous for the agent to learn and optimize
performance in specific tasks. Therefore, as a secure and controlled virtual environment, Minecraft
offers a unique and adaptable training platform for reinforcement learning models.

Table 7: Partial definition and examples for task category.
Category Definition Example

Crafting Task

The tasks accomplished through the in-game inventory interface
Typically require specific functional blocks to complete, such as Craft to diamond pickaxe
crafting (requiring a crafting table), enchanting (requiring Enchant book
an enchanting table), potion brewing (requiring a brewing stand), smelting Craft to baked potato
(requiring a furnace) and so on. Players need to accurately drag Craft to awkward potion
items using the mouse to their respective slots and then press the confirm key.

Navigation Task

Find a zombie
Navigation or movement tasks involve finding specific terrain, ecosystems, Find blackstone
creatures, items, or other targets. Find forest

Find village

Mining Task

Mine dirt
The task of breaking blocks, and extracting resources like ores, sometimes Mine grass
requiring specific tools such as an iron pickaxe. Mine diamond ore

Mine dragon egg

Tool-Use Task

The tasks primarily involve using the in-game interaction key (i.e., Eat bread
right mouse button). to interact with items, such as eating food, planting, Breed a cow
feeding animals, and using specific blocks like crafting tables. Interact with crafting table

Light TNT

Building Task

Building and construction tasks involve building various shapes and Bbuild a tower
structures. The final outcome of the construction may not be identical Build a fence
and usually allowing for a degree of openness and creativity. Build a Nether Portal

Build a castle

Trapping Task

A special type of interactive task between creatures and agent, often Trap a zombie with a boat
aimed at restricting the movement of entities, such as guiding creatures, Hook a sheep using fishing rod
controlling their paths, breeding, etc. This may involve the use of tools Bring a cow into nether
such as boats, leads, fishing rod or other related items. Trap a creeper in house

Motion Task

Sneak
Tasks that focused on the action of agent itself as the goal, mostly Drop an item
operations or skills that player used in games. Dive deeply

MLG water bucket

Decoration Task

Clean the weeds
Tasks aimed at enhancing the visual appeal of the game environment, Light up a cave
Often associated with creative aspects. Decorate the home

Hang item

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.8 COMPOSITION OF ATOMIC TASK

Our atomic task list exhibits high diversity. By combining atomic tasks with “and” (
∧

) and “or”(
∨

)
grammar, or added constraints like “when, where, how”, we can generate a vast array of complex
tasks in the Minecraft environment. We conducted research on tasks used in previous Minecraft work,
all of which can be expressed using this method by our atomic tasks. Table 10 shows some examples
of complex tasks expressed as combinations of atomic tasks.

Table 8: Examples of decomposition of tasks recently used in work in Minecraft to atomic tasks.For
arbitrary task t, ‘[t]’ means an atomic task t or the decomposition of task t to atomic tasks. Once we
deduced the expression of [t], we are able to use [t] to express the decomposition of more complicated
tasks, thus omitting the need for complicated and repetitive expressions.

literature Task Decomposition

Cai et al. (2023a)

Mine oak wood [find oak wood] and [mine oak wood]
Hunt sheep [find a sheep] and [mine oak wood]
Mine dirt [find dirt] and [mine dirt]

Obtain wool ([find a sheep] and [hunt a sheep]) or ([find a sheep] and [shear sheep]) or
([find a spider] and [craft to white wool])

Lifshitz et al. (2023)

Collect seeds ([find grass] and [mine grass]) or ([find tall grass] and [mine tall grass])

Chop a tree

([find oak log] and [mine oak log]) or ([find spruce log] and [mine spruce
log]) or ([find birch log] and [mine birch log]) or ([find jungle log] and
[mine juggle log]) or ([find acacia log] and [mine acacia log]) or ([find dark
oak log] and [mine dark oak log]) or ([find stripped spruce log] and [mine
stripped spruce log]) or ([find striped birch log] and [mine stripped birch
log]) or ([find stripped jungle log] and [mine stripped jungle log]) or ([find
stripped acacia log] and [mine stripped acacia log]) or ([find stripped dark
oak log] and [mine stripped dark oak log]) or ([find stripped oak log] and
[mine stripped oak log])

Baker et al. (2022)

Obtain crafting table [chop tree] and [craft to planks] and [craft to crafting table]

Mine diamond

[chop tree] and [obtain crafting table] and [craft to wooden pickaxe] and
[find stone] and [mine stone] and [craft to stone pickaxe] and [find iron
ore] and [mine iron ore] and [craft to furnace] and [find coal ore] and
[mine coal ore] and [craft to iron ingot] and [craft to iron pickaxe] and
[find diamond ore] and [mine diamond ore].

D DIFFICULTY SCORES

D.1 HUMAN ANNOTATION

To get an annotation for task difficulty scores of our selected tasks in difficulty and essence, we
designed and distributed a questionnaire to collect what human players who are familiar with
Minecraft think about them. The questionnaire includes two parts, the quiz part and the annotation
part. The quiz part contains five multiple-choice questions with 25 options to test their familiarity with
Minecraft; each correctly answered option is worth 1 point. Then we filtered out the questionnaires
with a correct rate of less than 75%, and then considered their investigation parts for the remaining
questionnaires. The quiz is shown in Table 9. We distributed the questionnaires in the Minecraft
community and collected a total of 76, with 76 of them were valid.

In the annotation part, the respondents are asked to rate each selected task in the five dimensions:
time consumption, creativity, novelty, intricacy, and visual diversity. We inform the annotators that
the first two points are as the name implies, novelty stands for how rare or uncommon you think in
real game scene, and intricacy means the extent to which the task is considered to require precise
control. We also give some examples: if a player’s mouse is not sensitive enough, how much will the
difficulty of this task increase? The last point, visual diversity, refers to whether or not you will see
rich visual information when completing this task. We use the respondents’ evaluations of these five
dimensions to reflect the diversity and representativeness of the tasks we selected and to verify that
our selection of these tasks to evaluate Minecraft agents is reasonable.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: The quiz in our questionnaire, is used to judge the respondents’ familiarity with Minecraft.
The problems are adapted from Milani et al. (2023).

No. Question Options

1 A bed can

A. speed up the night.
B. change the respawn location.
C. be crafted from drops of a certain animal in the game.
D. can be crafted by a furnace, but cannot be crafted by a crafting table.

2 You can acquire EXP when

A. killing hostile mobs.
B. mining trees.
C. jumping on a coal ore block.
D. mining coal.
E. enchanting a diamond sword.

3 What mobs can deal damage to the player?

A. Skeletons.
B. Zombies.
C. Sheep.
D. Pigs.
E. Creepers.
F. Enderman.

4 What items can be eaten?

A. Apples.
B. Dirt.
C. Beef.
D. Wheat.
E. Breads.
F. Spider eyes.

5
If you mine a block with a bare hand, what
kinds of block can drop the corresponding
item?

A. Wooden logs.
B. Wooden planks.
C. Iron ore.
D. Coal ore.

D.2 ANNOTATED DIFFICULTY

The annotated difficulty scores are shown in Figure 8.

E TASK ANNOTATION

We use stratified sampling for different task groups, making the selection of tasks for each group
diverse and representative, and at the same time, focus on the different groups fairly. More precisely,
for each task group r, our selected task T meets

T |r ∼ P(t|r)

and for each task t,

S0|t ∼ P(s0|t)

The former represents the representativeness and diversity of tasks in each group, which has been
demonstrated by the high entropy of the sampled tasks. Later we will elaborate on how to manipulate
our environment configurations to try to make the distribution of s0 conform to the latter formula as
much as possible.

In order to compare the performance of the model output with the performance of human players,
video data of human players is needed. We will also annotate the videos we recorded.

E.1 MANIPULATIONS OF A TASK

The initial state of a task contains all the information an agent can utilize condition on the agent
“plans” to do the task (not only the valid input but also what it can derive or perceive), including the
observed 2D pixels of the game scene, the inventories and the coordinate (which can be perceived
when pressing F3, especially the y dimension). The inventories I include what items are necessary
for the task In, otherwise, the agent won’t plan to do the given task in a real game, and other random
inventories Ir. This is what we can manipulate, and we need to make these random variables as close
as possible to the real distribution in the game.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 8: The annotated difficulty score for each task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.1.1 OBSERVATION AND COORDINATE

For a fixed version of the Minecraft game, these two elements can be defined by the seed of the
world, the coordinate, and the facing direction. The seed of the world is completely independent
of other variables, so it can be selected arbitrarily. The facing direction is the same as what it was
before teleported to the task scene, which is random and we do not manipulate it. If a coordinate
is set to be a proper spawn location when testing a given task in a given world, it needs to meet
some preconditions, which can be biome names supported within the game or other restrictions. For
example, in the mission climb the mountain, the agent needs to spawn in stony shore, a
kind of biome in the game, while running to a village, the location should be close to one.

We list a series of location coordinates for each selected seed corresponding to each precondition we
need. Each (seed, precondition) pair can correspond to different location coordinates and can be used
in different tasks. When we set up the environment configuration files, we only specify the world
seed and preconditions, and when the world is loaded and generated, the location will be randomly
selected from this list that meets the precondition.

E.1.2 INVENTORIES

The inventories I include what items are essential for completing task In, and other random invento-
ries Ir as a distractor. In is also a random variable since there are different ways to approach the
same goal. For example, the agent can use an iron pickaxe or diamond pickaxe to mine a diamond
ore. We looked at different ways to accomplish the same task and tried to include as many of them as
possible, testing different In. As for Ir, to reduce the difficulty of some task tests, we do not set Ir,
and for other task tests, we randomly sampled initial inventories from game snapshots of contractor
data of VPT.

E.2 HUMAN VIDEOS FOR TASKS

Human videos serve two purposes - they are used as reference videos for GROOT, and they are used
for comparison with the trajectory videos generated by the agent models. For each task, we choose
three world seeds - 19961103, 20010501, and 12345, and for each (task, seed) pair, we manipulate
what we can manipulate as described above, and have three environment configuration files. For each
environment configuration file, we record a human video and use the first file of seed 19961103 for
GROOT citegroot reference video.

F PROGRAMMATIC METRICS FOR STUDIED TASKS

Metrics During our evaluation, we use the scripts to record information for each video, including
items that are crafted, used, broken, and mined, blocks that are mined, entities that are killed, and
horizontal and vertical offset. With the scripts, some tasks can be evaluated using programmatic
metrics in a fully automated manner, thus saving time and human resources. Table 10 shows examples
of tasks in our experiments and their corresponding metrics. The threshold for the task ’Explore the
world’ is 50 units, while for the task ’Climb the mountain,’ it is 20 units in seed1 and 30 units in
seed2.

TrueSkill Rating We also evaluate and compare the previous agents through the TrueSkill rating
system. It was developed by Microsoft Research and is currently used in matchmaking and ranking
services on Xbox LIVE. It takes the uncertainty of the players’ ability into consideration and models
the score of a player as a Gaussian distribution N (µ, σ2), then uses the Bayesian inference algorithm
to measure a player’s score, where µ is the average skill of the player and σ is the standard deviation
of a play’s performance. A real skill of the player is between µ± 2σ with 95% confidence. The result
of TrueSkill Rating is shown in Figure 9.

G MINECRAFT ENVIRONMENT SIMPLIFICATION IN PREVIOUS WORKS

In our evaluation mechanism, we require the agent’s observation space and action space similar
to a human player playing in front of a device. In other words, all the information that needs to

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Task Metric

Build snow golem Success rate
Build pillar Success rate to build a pillar at with least 5 blocks

Build dig3fill1 Success rate
Build nether portal Success rate
Build a waterfall Success rate
Craft to ladder Success rate

Craft to crafting table Success rate
Craft to clock Success rate
Craft to cake Success rate

Enchant diamond sword Success rate
Combat zombies Success rate
Combat spiders Success rate

Combat skeletons Success rate
Combat enderman Success rate

Hunt a sheep Success rate

Mine grass Success rate when the number of grass blocks and tall grass blocks
mined in total exceeds the threshold.

Mine obsidian Success rate
Mine dirt Number

Mine diamond ore Success rate
Mine iron ore Success rate

Explore the world Success rate when the horizontal offset is greater than the threshold.
Find a forest Success rate to stay in forest for last 10s
Find a village Success rate to stat to village for last 10s
Find diamond Success rate

Climb the mountain Success rate when the height offset is greater than the threshold.
Drink harming potion Success rate

Carve pumpkin Success rate
Make fire with flint and steel Success rate

Make obsidian by water Success rate
Sleep in bed Success rate

Dye a sheep and then shear the sheep Success rate
Mine diamond from scratch Success rate

Craft to crafting table from scratch Success rate
Till the land and then plant wheat seeds Success rate

Table 10: The programmatic metric for each task.

Figure 9: Comparison of Agent TrueSkill Ratings on Different Groups of Tasks

be perceived comes from the pixels displayed on the screen, and the underlying control relies on
simulating mouse and keyboard operations. The only difference is that the degree of freedom is
slightly lower, that is, the keyboard operations only allow the types shown in Table 6. However,
in order to develop a Minecraft agent more efficiently, some previous works did not meet these
requirements. Some benchmarks simplified the observation space and action space, and some
previous agents further simplified the benchmarks. Some of them reduced the freedom of operation
by changing the action space, others utilized some additional information within the game that cannot
be obtained from the pixels.

G.1 PREVOIUS BENCHMARKS

MineRL MineRL (Guss et al., 2019b) is a benchmark for Minecraft agent competition, and there
are different unrelated tasks to evaluate. Before version 0.4.4, MineRL offered different action spaces
and observation spaces for each task, and for each task, the spaces are exactly what is needed to

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

human groot steve-1 vpt_bc vpt_rl0

10

20

30

40

50

Tr
ue

Sk
ill

Ra
tin

g

Comparison of Agent TrueSkill Ratings

Figure 10: The TrueSkill evaluation results for the compared agents and human.

complete this track. After version 1.0.0, the observation space is the same as in this paper, and the
action space is similar to ours, except for two high-level actions - “pickItem” and “swapHands”.

MineDojo The observation space of MineDojo (Fan et al., 2022) simplifies the environment to
a large extent. Apart from the ego-centric RGB frames, it can obtain the 3D voxels, nearby tools,
damage sources, and lidar, which are extra in-game information, equipment, inventory, life statistics,
GPS location, and compass, which should be derived from the pixels. As for the action space, some
high-level actions are encapsulated such as “craft” and “equip”.

BEDD The observation space of BEDD (Milani et al., 2023) is the same as ours. It requires
actions to directly simulate mouse and keyboard operations but does not limit whether to encapsulate
high-level actions.

G.2 PREVIOUS AGENTS

VPT VPT (Baker et al., 2022) does little to simplify the environment. The only difference between
VPT and our benchmark is that VPT disables F3 key, but it does not make use of the information in it.

DEPS The experiment of DEPS contains two parts. Both MineRL and MineDojo benchmarks have
been tested and each experiment follows the action space and observation space of the corresponding
benchmark.

Voyager The information used by Voyager (Wang et al., 2023a) is less similar to human players.
Voyager runs in a Minecraft world by incrementally building a skill library, which stores action
programs, whose code is generated by GPT-4 (Achiam et al., 2023). The observation of Voyager
includes the feedback of GPT-4 and it knows its inventory directly.

GITM Ghost in the Minecraft Zhu et al. (2023b) The observation space is the same as MineDojo
and the action space is also structured. Some actions are very high-level, such as “explore”.

Steve-1 Steve-1 has the same observation space and action space as VPT.

Groot Groot has the almost same observation space and action space as VPT, except dropping
items is not allowed (i.e., the Q key is disabled).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 11: Video comparison website.

G.3 HUMAN RATING SYSTEM

The human rating systems are shown in Fig11 and Fig12. Take video comparison website as an
example, it is designed to evaluate agent performance by presenting two videos side by side, enabling
human raters to directly compare their behaviors for the same task. The page is structured into several
modules:

1. Task description module: positioned at the top-right, this module specifies the task to be evaluated
(e.g., survive shield: Use a shield to ward off zombies). It ensures that raters understand the objective
of the task before scoring.

2. Video display module: two videos are presented side by side. Each video provides a replay of the
agents’ gameplay. This visual design helps raters observe agent behaviors, mistakes, or innovative
strategies in real-time.

3. Scoring panel: located below the videos, the scoring panel allows raters to assess agent performance
across six dimensions.For each dimension, raters can choose which agent performed better, mark a
tie, or indicate that neither agent took relevant actions.

4. Input and submission module: at the top-center, the name input box collects rater identifiers
to ensure traceability. The Submit Button at the bottom sends completed ratings to the database,
contributing to the dataset used for benchmarking.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 12: Individual video rating website.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

G.4 PROMPT FOR CONFIGURATION GENERATION

1 You are an expert of Minecraft, and I am a new Minecraft player.
2 I will give you a task name. you should generate a task description and

give me all the necessary things I need for completing the task.
3

4 I will give you the following information:
5 The task I want to complete: ...
6 You should perform the following steps to help me:
7 1. Generate a description of how to do the task.
8 2. Tell me all valid items, mobs, biomes and all the necessary things to

complete task;
9 3. Formulate step.2 information as cheat commands;

10 4. Randomly generate one or two related but not necessarily cheat
commands.

11 5. Don't always generate the cheat commands for necessary items at the
front and place random commands at the back. Shuffle their order.

12 6. Only output one sentence task description, one sentence of step.2 and
custom_init_commands

13

14 e.g. The task I want to complete: Trade for iron helmet.
15 You should respond in the format as described as below:
16 - Task description: Trade with a villager to obtain an iron helmet using

the items
17 you have in your inventory.
18 - In order to trade for iron helmet, we need at least 5 emerald and a

armorer nearby.
19 - custom_init_commands:
20 - /give @s minecraft:armor_stand 2
21 - /give @s minecraft:emerald 10
22 - /summon villager ˜2 ˜ ˜5 {Profession:"minecraft:armorer",VillagerData

:{profession:
23 "minecraft:armorer"}}
24 - /give @s minecraft:diamond 64
25

26 e.g. The task I want to complete: craft a crafting table.
27 You should respond in the format as described as below:
28 - Task description: Open inventory and craft a crafting table.
29 - In order to craft a crafting table, we need at least 4 planks.
30 - custom_init_commands:
31 - /give @s minecraft:oak_planks 64
32 - /give @s minecraft:bread 16
33 - /time set night
34

35 e.g. The task I want to complete: mine iron_ore.
36 You should respond in the format as described as below:
37 - Task description: Find and mine the iron_ore use the right tool.
38 - In order to mine iron_ore, we need at least a stone pickaxe or a better

one, and have iron_ore nearby.
39 - custom_init_commands:
40 - /give @s minecraft:stone_pickaxe
41 - /execute as @p at @s run fill ˜2 ˜2 ˜3 ˜1 ˜5 ˜4 coal_ore
42 - /execute as @p at @s run fill ˜-5 ˜-2 ˜-1 ˜ ˜ ˜-3 iron_ore
43 - /give @s minecraft:wooden_pickaxe
44

45 e.g. The task I want to complete: flying trident on a rainy day.
46 You should respond in the format as described as below:
47 - Task description: flying trident on a rainy day.
48 - In order to flying trident on a rainy day, we need a trident enchanted

with the
49 riptide enchantment, and set the weather in rainy mode.
50 - custom_init_commands:
51 - /weather rain
52 - /give @p minecraft:trident

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

53 - /give @p minecraft:trident{Enchantments:[{id:"minecraft:riptide",lvl
:1}]} 3

54 - /give @p minecraft:fire_charge{Enchantments:[{id:"minecraft:riptide",
lvl:1}]} 3

55

56 Note:
57 - You should provide accurate information and executable cheat commands

of Minecraft.
58 - The quantity of items in the cheat command should be more than what is

required. For example, the task need at least 10 emerald, provide
15 instead.

59 - You should provide all the tools and environments required for
completing the task.

60 - Attention, there are certain items that cannot be directly summoned,
such as trees, sugar cane, etc.

61 - Do not give me the final target things directly in my inventory.
62 - Some crafting tasks are not completed using the crafting table, they

could be done with tools like the furnace, enchanting table, or
brewing stand and so on. You need to select the appropriate tool.

63 - Remember to provide a crafting table, furnace, enchanting table,
brewing stand or similar items, if the task requires it.

64 - When use /fill command, ensure not to generate them in inaccessible
locations (such as high in the sky), and be extremely cautious not
to suffocate the agent.

65 - For pick-up task, you can design the item that can be directly pick up
by hand, like dirt or poppy.

Listing 1: Prompt for Configuration Generation

G.5 PROMPT FOR VIDEO COMPARISON

1 You are an expert in Minecraft and excel at evaluating agents in the AI
field.

2 I will give you a task name, a grading criterion for this task, and two
videos (Video A and Video B) of an agent performing the task. The
grading criterion has several major criteria (***) and several
evaluation rules under each major criterion.

3 You need to carefully compare the agent's performance in Videos A and B
according to the evaluation rules and output one of the following:

4 "A is better", "B is better", "tie", or "both are bad".
5

6 The more the agent complies with the rules in the criteria, the better
their performance is.

7

8 Output "A is better" when A performed better according to the evaluation
rules.

9 Output "B is better" when B performed better according to the evaluation
rules.

10 Output "tie" when both videos demonstrate similar capabilities.
11 Output "both are bad" when both videos have hardly done anything related

to the rules or have performed very poorly.
12

13 Before output the decisions, you should list the relevant evidence from
videos to support your decisions (within 80 words), do not simply
copy the phrases from the rules.

14 Please make the decision across six major criteria, including task
progress, material selection and usage, action control, error
recognition and correction, creative attempts, and task completion
efficiency.

15

16 You should follow the following output format to organize your output.
xxx is the placeholder. Evidence can be more than one. The output
format should be as follows:

17 Task Progress:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

18 - evidence xxx
19 result: xxx
20

21 Action Control:
22 - evidence xxx
23 result: xxx
24

25 Error Recognition and Correction:
26 - evidence xxx
27 result: xxx
28

29 Creative Attempts:
30 - evidence xxx
31 result: xxx
32

33 Task Completion Efficiency:
34 - evidence xxx
35 result: xxx
36

37 Material Selection and Usage:
38 - evidence xxx
39 result: xxx
40

41 Overall results:
42 - Task Progress: xxx
43 - Action Control: xxx
44 - Error Recognition and Correction: xxx
45 - Creative Attempts: xxx
46 - Task Completion Efficiency: xxx
47 - Material Selection and Usage: xxx
48

49 Notes:
50

51 If the evaluation rules include "e.g.", it is only an example and you
should not be limited to the listed "e.g.". All phenomena that
conform to the major criteria should be considered.

52

53 Task progress considers only the completion of key steps of the task and
is unrelated to artistic qualities or similar aspects.

Listing 2: Prompt for Video Comparison

G.6 PROMPT FOR INDIVIDUAL VIDEO RATING

1 You are an expert in Minecraft and excel at evaluating agents in the AI
field.

2 I will give you a task name, a grading criterion for this task, and a
video of an agent performing the task.

3

4 The grading criterion has several major criteria (***) and several
evaluation rules under each major criterion.

5 You need to score the agent's operations in the video based on the
evaluation rules. The more the agent complies with the rules in the
criteria, the higher the score it receives.

6

7 - If you think the agent's behavior does not relate to the stated rule,
score None.

8 - If you think the agent's behavior barely relates to the stated rule,
score Barely.

9 - If the agent's behavior is partially related to the rules, score
Partially.

10 - If the agent's behavior is mostly related to the rules, score Mostly.
11 - If the agent's behavior is completely related to the rules, score

Completed.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

12

13 If you believe the agent complies with the rule, you should list the
relevant evidence from the video (within 50 words). Do not simply
copy the phrases from the rules.

14 Assign an appropriate score six major criteria, including task progress,
material selection and usage, action control, error recognition and
correction, creative attempts, and task completion efficiency.

15

16 The output format should be as follows:
17

18 Task Progress:
19 - evidence xxx
20 Score: xxx
21

22 Action Control:
23 - evidence xxx
24 Score: xxx
25

26 Error Recognition and Correction:
27 - evidence xxx
28 Score: xxx
29

30 Creative Attempts:
31 - evidence xxx
32 Score: xxx
33

34 Task Completion Efficiency:
35 - evidence xxx
36 Score: xxx
37

38 Material Selection and Usage:
39 - evidence xxx
40 Score: xxx
41

42 Overall Scores:
43 - Task Progress: xxx
44 - Action Control: xxx
45 - Error Recognition and Correction: xxx
46 - Creative Attempts: xxx
47 - Task Completion Efficiency: xxx
48 - Material Selection and Usage: xxx
49

50 Notes:
51

52 - If the evaluation rules include "e.g.," it is only an example and you
should not be limited to the listed "e.g." All phenomena that conform
to the major criteria should be considered.

53

54 - Task progress considers only the completion of key steps of the task
and is unrelated to artistic qualities or similar aspects.

Listing 3: Prompt for individual video rating

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

G.7 PSEUDO-CODE EXAMPLES

1 const doc = yaml.load(fs.readFileSync(task_conf, 'utf8'));
2 // Extract the item name from the task description
3 const item_name = task_description.split('craft_a_')[1];
4 // Execute each initialization command to set up the environment
5 doc.custom_init_commands.forEach(command => {
6 bot.chat(command);
7 });
8 // Find the recipe for crafting the specified item
9 const recipe = bot.recipesFor(item_name, craftingTable);

10 // Attempt to craft the item
11 try {
12 await bot.craft(recipe, count, craftingTablePosition);
13 console.log(`${count} ${item_name} crafted successfully`);
14 } catch(err) {
15 console.error('Failed to craft item:', err);
16 }

Listing 4: Mineflayer Craft Task Pseudo-Code

1 from mcu_benchmark import MinecraftWrapper, VLM_Evaluator
2 from utility import load_config, check_success_and_save_video
3 from models import agent_creator
4

5 # Step 1: Load task configuration for the benchmark
6 config = load_config("build_house.yaml")
7 # Step 2: Initialize the environment with MinecraftWrapper
8 env = MinecraftWrapper(config['env'], level=config['level'])
9 # Step 3: Initialize the agent (using custom model path and weights)

10 agent = agent_creator(model_path, weight_path).cuda()
11 agent.eval() # Set the agent to evaluation mode
12 # Step 4: Get the initial state for the agent
13 state = agent.initial_state()
14 # Step 5: Start the environment and reset
15 obs, info = env.reset()
16 terminated, truncated = False, False
17 rollout_info = []
18 # Step 6: Agent's rollout
19 while not terminated and not truncated:
20 # Get action from the agent and update state
21 action, state = agent.get_action(obs, state)
22 # Step the environment with the agent's action
23 obs, terminated, truncated, info = env.step(action)
24 # Save frames (visual feedback from the environment)
25 rollout_info.append(info)
26 # Check if the agent succeeded in the task programmatically
27 success, video_path = check_success_and_save_video(rollout_info)
28 # Step 7: Evaluate the agent using a Vision-Language Model (VLM)
29 vlm_evaluator = VLM_Evaluator()
30 vlm_score = vlm_evaluator.evaluate(video_path, 'build_criteria.txt')
31 print(f"Success: {success}. VLM evaluation score: {vlm_score}")

Listing 5: MCU Evaluation Process Pseudo-Code

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

G.8 CASE STUDY

The following case clarifies the impact of each metric on evaluating generalization performance.
Metrics such as task progress and material selection assess basic task alignment, while action
control and task efficiency provide insights into optimization strategies. Error correction and creative
attempts, in contrast, measure higher-order generalization skills. These are critical for assessing
agents in open-ended and complex scenarios, as they reveal resilience to failure and capacity for
novel strategies.

While Video B outperformed Video A across most metrics, the weaknesses in creativity and error
correction indicate areas where even high-performing agents fall short. Incorporating tailored training
modules and broader tasks emphasizing these dimensions will enhance the benchmark’s utility for
developing and evaluating generalist agents.

1 Task Progress:
2 - Video A: The agent collects dirt blocks and places them vertically but

does not reach a reasonable height.
3 - Video B: The agent collects dirt blocks, places them vertically, and

reaches a reasonable height.
4 result: B is better
5

6 Action Control:
7 - Video A: The agent places some blocks horizontally and in unrelated

locations.
8 - Video B: The agent places blocks vertically without unnecessary actions
9 result: B is better

10

11 Error Recognition and Correction:
12 - Video A: The agent does not correct incorrectly placed blocks.
13 - Video B: The agent does not make any noticeable errors that need

correction.
14 result: B is better
15

16 Creative Attempts:
17 - Video A: The agent does not show any creative attempts.
18 - Video B: The agent does not show any creative attempts.
19 result: tie
20

21 Task Completion Efficiency:
22 - Video A: The agent takes a longer time with unnecessary actions.
23 - Video B: The agent completes the task efficiently without unnecessary

actions.
24 result: B is better
25

26 Material Selection and Usage:
27 - Video A: The agent uses dirt blocks but places some blocks horizontally

and in unrelated locations.
28 - Video B: The agent exclusively uses dirt blocks and places them

appropriately.
29 result: B is better
30

31 Overall results:
32 - Task Progress: B is better
33 - Action Control: B is better
34 - Error Recognition and Correction: B is better
35 - Creative Attempts: tie
36 - Task Completion Efficiency: B is better
37 - Material Selection and Usage: B is better

Listing 6: Video Comparison Evaluation Results

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

1 **Task Progress:**
2 - Evidence: The agent placed two snow blocks vertically and a carved

pumpkin on top, but no Snow Golem was created.
3 - Score: Partially
4

5 **Action Control:**
6 - Evidence: The agent placed multiple unnecessary snow blocks around the

structure.
7 - Score: Barely
8

9 **Error Recognition and Correction:**
10 - Evidence: The agent did not correct the placement of the carved pumpkin

after failing to create a Snow Golem.
11 - Score: Barely
12

13 **Creative Attempts:**
14 - Evidence: No creative attempts or decorations observed.
15 - Score: None
16

17 **Task Completion Efficiency:**
18 - Evidence: The agent took excessive time with unnecessary placements and

failed to complete the task.
19 - Score: Barely
20

21 **Material Selection and Usage:**
22 - Evidence: Correct materials (snow blocks and carved pumpkin) were used,

but not effectively.
23 - Score: Partially
24

25 **Overall Scores:**
26 - Task Progress: Partially
27 - Action Control: Barely
28 - Error Recognition and Correction: Barely
29 - Creative Attempts: None
30 - Task Completion Efficiency: Barely
31 - Material Selection and Usage: Partially

Listing 7: Individual Video Evaluation Results

33

	Introduction
	Benchmark Desiderata
	The Automated Benchmarking Pipeline
	Minecraft as an Open-world Environment
	Automatic Task Generation
	atomic task
	LLM-powered scene generation
	Automatic verification pipeline

	Automatic evaluation

	Experiments
	Automatic Evaluation
	How Capable Are the Existing Agents?
	Experimental settings
	Inter-task Generalization
	Intra-task Generalization

	Related Work
	Conclusion
	Appendix
	Minecraft Environment Setting
	Minecraft Game World Setting
	Observation Space
	Action Space

	Why Minecraft is Suitable for Generalist Agent?
	Complexity
	Open-endedness
	Dynamism and Unpredictability
	Creativity and Innovation
	Broad challenge coverage
	Community and Resources
	Safe and Controlled
	Composition of Atomic Task

	Difficulty Scores
	Human Annotation
	Annotated Difficulty

	Task Annotation
	Manipulations of a Task
	Observation and Coordinate
	Inventories

	Human Videos For Tasks

	Programmatic Metrics for Studied Tasks
	Minecraft Environment Simplification in Previous Works
	Prevoius Benchmarks
	Previous Agents
	Human rating system
	Prompt for configuration generation
	Prompt for video comparison
	Prompt for individual video rating
	Pseudo-Code Examples
	Case study

