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ABSTRACT

VLM-based mobile agents are increasingly popular due to their capabilities to
interact with smartphone GUIs and XML-structured texts and to complete daily
tasks. However, existing online benchmarks fail to get stable critical reward
signals under dynamic environmental changes, and neglect the influence of noise
components and interactive instructions. Offline benchmarks evaluate the agents
through single-path trajectories, which stand in contrast to the inherently multi-
solution characteristics of GUI tasks. To address these limitations, we introduce
SMAN-Bench, a benchmark designed to evaluate agents under Single-path, Multi-
path, Ambiguous, and Noisy task settings. We employ a slot-based instruction
generation method to match templates with GUI trajectories from an existing, graph-
structured, unlabeled mobile corpus. SMAN-Bench includes a common task split,
with offline multi-path evaluation to assess the agent’s ability to obtain step rewards
during task execution. It contains a noisy split based on pop-ups and ad apps, and
a contaminated split to simulate a realistic noisy environment. Furthermore, an
ambiguous instruction split with preset Q&A interactions is released to evaluate
the agent’s proactive interaction capabilities. Our evaluation encompasses mobile
agent frameworks such as AppAgent-v1, Mobile-Agent-v2, and Mobile-Agent-E,
and includes both open-source and closed-source mobile fundamental models, as
well as several multimodal thinking models.

1 INTRODUCTION

LLM-based mobile agents (Wang et al., 2023; Ding, 2024) are increasingly popular due to their
capability to interact directly with mobile Graphical User Interfaces (GUIs) and their potential to
manage daily tasks autonomously. Unfortunately, LLM-based agents cannot well comprehend the
mobile GUI structure and widget functionality, base on text such as Visual-Hierarchical, XML,
HTML, or Accessible-Visited Trees. Recent studies (Ma et al., 2024; Zhang et al., 2024a) indicate
VLMs can provide a more comprehensive understanding of GUIs. This has led to mobile benchmark
replacing foundational models with VLMs, resulting in benchmarks for end-to-end mobile tasks
based on GUI pages (Wang et al., 2024c; Xu et al., 2024a; Rawles et al., 2024).

Existing VLM-based Agent benchmarks can be divided into two categories: (1) Online evaluation
involves the agent executing operations on a real device based on the user’s high-level instructions.
These benchmarks directly determine the success rate by checking the widget values in the final GUI
and allow agents to complete tasks through multi-path. However, due to the instability of the device
environment, such as OS updates, APP updates, and user preference records, online benchmarks
(Murthy et al., 2024; Deng et al., 2024; Wang et al., 2024c) step rewards are fluctuating and unstable.
Meanwhile, task evaluation often depends on the process rather than the final page alone, as two
failed tasks may represent very different completion progress, making a purely outcome-based
comparison unfair across different agents. (2) Offline evaluation uses static datasets where the
golden path is pre-executed on the device, with actions and screenshots saved offline. The agent
generates the current action based on each step’s GUI, instructions, and action history, which action
trajectory is formulated as single-path. Although offline benchmarks (Chai et al., 2024; Cheng et al.,
2024; Rawles et al., 2023) are more practical for training, considering the diversity of agent task
solutions, the agent’s good performance may only represent a good fit to the preferences encoded in
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Table 1: Comparison of SMAN-Bench to other benchmarks.

Benchmarks # Inst. Language # Avg
Steps

# Screen-
shots

Path Online
Environ.?

Ambi.
Noise

Interac.
Inst.

PIXELHELP 187 EN 4.2 ∼800 Single ✗ ✗ ✗
MOTIF 480 EN 4.5 ∼21K Single ✗ ✗ ✗
AMEX 341 EN&CN 12.8 ∼104K Single ✗ ✗ ✗
SCREENSPOT ∼1,200 EN&CN 1 ∼600 Dot ✗ ✗ ✗
MOBILEAIBENCH * EN * * Dot ✗ * ✗
AGENTBENCH 100 EN 20 ∼2k Multiple ✓ ✗ ✗
GUI ODEYSSEY 7,735 EN 15.4 * Single ✗ ✗ ✗
MOBILE-BENCH 832 CN * 14,144 Multiple ✓ ✗ ✗
MVISU-BENCH 404 EN&CN * * Multiple ✓ ✗ ✓
SPA-BENCH 340 EN&CN * * Multiple ✓ ✗ ✗
ANDROIDLAB 10.5k EN 8.98 94.3k Multiple ✓ ✗ ✗
ANDROIDWORLD 116 EN * * Multiple ✓ ✗ ✓

SMAN-BENCH 12,856 EN&CN 7.28 ∼48k Both ✗ ✓ ✓

the current benchmark annotations instead of handling multi-path solutions. This limitation causes
some agents (Li et al., 2024b) that achieve exceptionally high performance on certain benchmarks
to perform poorly in real-world scenarios, while also exhibiting overly simplistic decision-making.
More critically, benchmarks such as MobileAgentBench (Wang et al., 2024c) and AutoDroid (Wen
et al., 2024) are constructed on real devices and evaluated within Google apps using the Android
Accessibility Service; these apps feature overly clean pages without task-irrelevant ads, buttons, and
pop-ups. In real-world scenarios, users may not be able to provide such precise and full instructions
all at once (Wang et al., 2024f).

To address the above problems, we form a new benchmark named SMAN-Bench with the following
data and methods: (1) Instruction Annotation Method: To connect one instruction with several
trajectories, we use the GIAS to construct 12k instructions with the unlabeled action sequences based
on the random walk graph-structured corpus named Mobile3M (Wu et al., 2024a). Each instruction is
generated via task templates and slot information based on the corresponding trajectories. (2) Offline
Multi-path Evaluation: Combining the advantages of both online and offline environments, we
propose a multi-path evaluation approach. We allow the agent to execute in a single-path manner and
compare the result with the golden path. Alternatively, the agent is also allowed to perform action
search within the graph corpus and accumulate step rewards, as it does during online evaluation. (3)
Realistic Noisy Environment: To explore the effect of noise, we collect an additional sub-dataset
named SMAN-Bench-Noisy from apps that are heavily contaminated by advertisement noise. Several
apps with substantial ads and pop-ups are specifically selected, including static pop-ups, dynamic
video ads, and redirecting advertisement links. Additionally, we also contaminate AITZ Zhang
et al. (2024b) by inserting ads into original normal trajectories to build AITZ-Noise. (4) Active
Interactive Evaluation: We also construct a sub-dataset named SMAN-Bench-Ambiguous, which
allows agents to ask when necessary during task execution. Full instructions are pre-constructed and
then progressively simplified into ambiguous instructions through slot-based extraction. Questions
and answers are built based on slot information and then assigned to the corresponding GUIs.

Our evaluation of general-purpose multimodal models is conducted on three agent frameworks:
AppAgent-v1 (Li et al., 2024c), Mobile-Agent-v2 (Ding, 2024), and Mobile-Agent-E (Wang et al.,
2025c). Moreover, we include mobile-domain agents trained with continual pre-training, SFT, and RL
(Lu et al., 2025a; Luo et al., 2025; Lu et al., 2024; Qin et al., 2025). Finally, we place special emphasis
on examining how slow-thinking multimodal models perform in mobile scenarios, analysing whether
the reasoning pattern is effective. Overall, our work makes four main contributions:

• We construct a cross-system benchmark named SMAN-Bench based on Mobile3M’s graph structure
corpus and propose a slot-based instruction generation method named GIAS.

• We propose an offline multi-path evaluation method and leverage slot-based key node annotations
to enable stable assessment of step rewards.

• We introduce SMAN-Bench-Noisy to support realistic noisy evaluation by collecting data from
noisy apps, enabling robust assessment under challenging environments.
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• We propose SMAN-Bench-Ambiguous to facilitate active interactive evaluation, where agents are
allowed to ask clarification questions during execution.

Scenario 1: Common Task

Instruction: Play the song "cry on my shoulder" on the music app.

Instructions are 
generated by GPT-4o

Evaluation 1: Single path

Trajectories filtered 
from unlabeled corpus

Ins. and traject. 
matching

Quality Verification 
and Agent Evaluation

Ins: Find the 
most popular 
Song in QQ 

music

Instruction

The intention of this action 
is to enter the popular 

music recommendation 
page

This is the main interface of QQ Music, 
which contains various types of music 

and recommended playlists.

Action Intent

Page Description

Evaluation 2: Multi path

Trajectory 1

Trajectory 2

The same 
instruction can be 
matched with 
multiple trajectories, 
and use different 
applications and 
final pages.

Trajectory 3 Equivalent key 
node page

Equivalent 
key node 
as the final 
page

Merge

Figure 1: The overview of SMAN-Bench, the entire pipeline framework for data construction and
filtering, and the distinction between single-path and multi-path evaluation methods.

2 RELATED WORK

2.1 MOBILE AGENTS

Large language models (Achiam et al., 2023) emerge as autonomous agents (Li et al., 2024b; Wen
et al., 2023) in the mobile domain and garner considerable attention. With the rapid development of
vision-language models (VLMs), multimodal researchers build mobile GUI agents (Yang et al., 2023;
Zheng et al., 2024) and multi-agent frameworks (Ding, 2024; Li et al., 2024c; Wang et al., 2024b)
based on closed-source VLMs. Meanwhile, some researchers focus on training agents with stronger
element grounding (Cheng et al., 2024; Hong et al., 2024; Wu et al., 2024b), page navigation (Niu
et al., 2024; Lu et al., 2024; Gou et al., 2024), GUI understanding (Chai et al., 2024; You et al., 2024;
Baechler et al., 2024) and task planning capabilities (Zhang et al., 2024c; Nong et al., 2024; Xu et al.,
2024b) based on open-source VLMs. In addition, Digirl (Bai et al., 2024) and Distrl (Wang et al.,
2024e) uses joint online and offline reinforcement learning to enhance the generalization of mobile
agents and mitigate performance degradation when facing APP updates and unseen APPs. Some
researchers (Qinghong Lin et al., 2024) explore optimizing VLM structures. For example, Dorka
(Dorka et al., 2024) optimizes the encoder by incorporating historical images and actions as input.

2.2 MOBILE AGENT BENCHMARKS

As shown in Table 1, AndroidEnv (Toyama et al., 2021) and MobilEnv (Zhang et al., 2023) are the
first to create LLM agent evaluation environments based on reinforcement learning. Mobile-Bench
(Deng et al., 2024) and AppBench (Wang et al., 2024a) introduce online benchmarks combining
API and GUI, while MobileAgentBench (Wang et al., 2024c) establishes the first fully automated
multimodal benchmark for VLM-based GUI agents. More offline benchmarks (Li et al., 2020a;
Burns et al., 2021; Murthy et al., 2024) are released, which are primarily categorized into GUI
understanding and task-oriented. (1) For task-oriented benchmarks, AITW (Rawles et al., 2023) and
AITZ (Zhang et al., 2024b) create large-scale benchmarks based on Google apps, while AMEX (Chai
et al., 2024) supplements these benchmarks by adding data for GUI understanding with similar app
types. ScreenSpot (Cheng et al., 2024), Mobile3M (Wu et al., 2024a), and GUIOdyssey (Lu et al.,
2024) focus on more granular element grounding and task planning. (2) Rico (Deka et al., 2017)
is the first non-annotated GUI corpus, followed by ScreenQA (Hsiao et al., 2022), Widget Caption
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(Li et al., 2020b), and Screen2words (Wang et al., 2021), which is for Q&A, widget understanding,
and page summarization. Subsequently, Mind2web (Deng et al., 2023) incorporates additional GUI
data of varying sizes, and Meta-GUI (Sun et al., 2022) provides tasks for multi-round dialogues.
Recently, more online benchmarks (Xu et al., 2024a; Rawles et al., 2024; Chen et al., 2024a; Wang
et al., 2025a; Huang et al., 2025) have been released to evaluate agents in real environments, such as
smartphones, PCs, and web browsers.

3 SMAN-BENCH BENCHMARK

3.1 MOBILE3M GRAPH-STRUCTURED CORPUS

Mobile3M (Wu et al., 2024a) is a large-scale Chinese&English mobile UI corpus constructed from
49 widely used third-party applications, each with more than ten million active users. The dataset
was collected on Android emulators using Appium-based automated interactions and explored with
BFS random walk and breadth-first strategies. Each UI page consists of both a screenshot and its
corresponding XML document, while interactions such as click, input, and scroll were recorded to
build state transitions. In total, the dataset contains 3,098,786 UI pages and approximately 20 million
interaction actions, organized into directed graphs, where nodes represent UI pages and edges denote
transition actions. To reduce redundancy, a unique-page detection mechanism based on Action Space
and pixel differences (BM25) (Robertson et al., 2009) was applied, which improves exploration
efficiency and naturally converts the exploration tree into graph structures. The dataset spans a wide
range of categories, including travel, lifestyle, and shopping, with relatively balanced distributions,
ensuring diversity and representativeness. Unlike prior datasets that only provide isolated pages or
chain-structured traces, Mobile3M’s graph organization captures the complexity of real-world app
interactions, supporting multi-path reasoning and graph-based modeling. More details are described
in Appendix C, and the data distribution is shown in Figure 7 and Figure 6.

Scenario 2: Noisy Task
Q：Please help me find Beijing's air quality index for tomorrow on Caiyun Weather.

The Caiyun Weather 
app was selected for 
noise collection 
because it has 
additional ads
content.

Closing the ad or 
directly clicking the 
button related to the 
task is correct. 
Visiting the ad will 
result in a jump.

Scenario 3: Ambiguous Task
Q: Help me find some detailed information about my favorite singer.

OK, I will do it and I 
will ask you questions 

if necessary.

Which APP you 
want to use?

QQmusic.
Cui Jian, 

Male, Inland, 
Rock.

The singer’s 
name, gender, 

nationality 
and style?

I think the 
mission is 

accomplished.

interactive 
confirmation that 
the task has been 
completed is also 
necessary.

Figure 2: The SMAN-Bench includes another two types of tasks: Noisy-split, and Ambiguous-
split, and demonstrates the process of instruction generation and manual annotation for each task. In
Noisy-split, the GUIs with orange shading represent noise.

3.2 MULTI-PATH EVALUATION

In the multi-path evaluation setting, a mobile agent can freely explore within the pre-executed and
collected graph corpus, provided that the maximum step limit is not exceeded. As shown in Figure 1,
several discrete single trajectories are merged into a unified graph, where the merged nodes correspond
to the key states of the current instruction. The merging criteria are mainly twofold: (1) Action space
and pixel differences (BM25) thresholds (Wu et al., 2024a), which are used to identify the same page
(e.g., the main interface of an app may differ slightly across sessions but is considered equivalent).
(2) Consistency in button values in the Android XML/Accessibility, where pages are regarded as
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equivalent if buttons share the same values (Xie et al., 2024) (e.g., searching the same keyword across
different browsers produces pages that are merged into one key node). Since pre-execution cannot
cover all possible search results, we provide a predefined query pool for instructions, and any search
beyond this pool is regarded as invalid. As shown in Figure 2, noisy tasks allow the agent to return
to the graph within a limited number of steps. This contrasts with the single-path setting, where
advertisements are directly closed, because not all ads are irrelevant to the current task.

3.3 DATA CONSTRUCTION

Generating common instructions from action trajectories. For the Mobile3M graph corpus,
the key challenge is annotating instructions for each trajectory that closely align with the intended
actions. Building on Netscape (Murty et al., 2024)’s fine-tuning of web agents to eliminate redundant
actions from action sequences, two key points for pairing trajectories and instructions are the Intent
Understanding and the Slot Matching between different GUIs: (i) Using the intent behind actions
reduces ambiguity, since coordinate-based actions without GUI pages cannot reproduce scenes
accurately. For instance, buttons with the same textview may differ in meaning: in Figure 9, the same
“plus” button corresponds to adding “Hazelnut Latte” or “Cookie Mocha”. (ii) Filling predefined
templates with slot information provides reward signals at key nodes. As GUI agent tasks are
inherently multi-path, single-path annotations with unstable preferences can cause performance drops
on unseen tasks. Slot filling allows one template to match multiple trajectories that share key nodes,
forming the basis of multi-path evaluation. Building on the above findings, we propose a slot-based
instruction annotation method named GIAS (Generating Instructions From Action Sequences), which
is shown in Figure 1. The whole process is as follows: (1) multi-path sampling based on fixed start
and end GUIs; (2) GUI content annotation; (3) action intent inference; (4) extracting slot information
from GUI changes; (5) filling instruction templates with the slot; (6) deduplication and simplification.
To ensure device diversity, we expanded the evaluation to include additional Android and iOS systems,
specifically iOS 18.5, HarmonyOS 5.0, and HyperOS 3.0.

（A）Online Evaluation

MacBook Pro M4 

16GB+512GB 

Midnight version

（B）Offline Multi-path Evaluation

ProM416GB+512GB Midnight

I want a 16GB+512GB MacBook Pro M4 
in the Midnight version.

slot1 slot2

slot3

No further 
slot need 
checked

slot1

slot2

slot3

slot1 slot2 slot3

Figure 3: Unlike Online Evaluation, offline multi-
path evaluation checks both process and final GUI
as reward signals.

Noisy app and ambiguous instruction data.
SMAN-Bench-Noisy is primarily derived from
manual annotation and contamination in exist-
ing data: (1) For manual annotation, we select
apps from third-party markets; these apps con-
tain unavoidable ads and pop-ups. When per-
forming actions on these apps, we do not handle
the following scenarios in advance: login, up-
date, permission settings, ad pop-ups, and VIP
subscriptions. In some instructions, to test the
agent’s response in unexpected situations, we
deliberately click on ad pages incorrectly to see
if it can recover from divergent paths. All noisy
steps and their redirect pages are additionally
marked, making this subset adaptable for agents
with a rollback mechanism as well. (2) For data
contamination, we randomly insert at least one
ad (randomly collected from the Google Store app) into AITZ (Zhang et al., 2024b) trajectories,
which is a high-quality subset of AITW (Rawles et al., 2023). For SMAN-Bench-Ambiguous, we
first construct the full instructions, annotate action trajectories, and remove slot information to build
ambiguous instructions. Multiple sets of interactive Q&A are assigned to corresponding GUIs. For
example, as shown in figure 3, the full instruction is: ‘I want a 16GB + 512GB MacBook Pro M4 in
the Midnight version.’, while the ambiguous instruction is: ‘I want to buy a MacBook.’. Information
such as “16GB + 512GB”, “Pro M4”, and “Midnight version” are treated as three slots, each assigned
to the corresponding GUI for step reward. More details can be seen in the appendix E.7.

3.4 DATA STATISTICS

The apps and categories in SMAN-Bench remain consistent with Mobile3M, comprising 15 categories
and 49 apps, with each category containing at least the top three apps by download volume. As shown
on the left part of Figure 4, QQMusic and Kugou account for over 70% of the monthly downloads
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in the music app category, which are selected as representative music apps in our dataset. Common
split includes 12,854 instructions and 800 templates generated by GIAS, which are divided by action
steps: simple tasks (1-6 steps) and complex tasks (7-15 steps). As shown in the middle part of
Figure 4, there are 9,620 simple tasks with an average of 5.62 steps and 3,234 complex tasks with
an average of 8.21 steps. Figure 12 shows the task distribution. We strive for a difficulty balance,
but some apps, like Netmail (an email tool), still have an imbalance because sending an email often
entails multiple steps to complete essential information fields, resulting in a relatively long interaction
process that cannot be easily classified as a simple task. From a categorical perspective, shopping
apps (DuApp) have a higher proportion of complex tasks compared to simple tasks. In contrast, since
Baicizhan features a clean page and straightforward functionality (vocabulary learning), constructing
task instructions from templates with fewer slots. The noisy and ambiguous splits each contain 100
instructions, while these noisy data come from another 20 highly noisy apps and each trajectory in
the ambiguous split includes at least 5 additional manually constructed Q&A. As shown in Table
16, pre-setting Q&A is strictly aligned with the missing slot information. The average trajectory
lengths are 12.74 for the noise tasks and 7.53 for the ambiguous. Furthermore, we randomly insert
one of 150+ ads at a step within one of the 2,504 trajectories in AITZ. Each trajectory in AITZ-Noisy
contains only a single injected advertisement, whereas trajectories in Noisy split include at least five
noisy steps, along with additional non-task-related pages such as authorisation, tutorials, redirection
pages, and in-app purchase services. More details are in Appendix E.7.

QQ Music

37.9%
Kugou

40.4%

Kuwo

16.9%

Migu

3.7%

Qianqian Queting

1.1%

Others

0.1%

App Downloads Distribution (10K units)
(Highlighting QQ Music and Kugou)
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Figure 4: Download volume distribution of music APPs in one month, on the left. The distribution of
tasks and their respective step counts, in the middle. The full distribution of apps and their sampled
distribution, on the right.

4 EXPERIMENT

4.1 SETUP

Models. For SMAN-Bench common, noisy, and ambiguous splits, we experiment agent frameworks
such as AppAgent-v1, MobileAgent-v2 and MobileAgent-E with different fundamental VLMs:
InternVL2-40B (Chen et al., 2024b), LLAVA-72B-NEXT (Li et al., 2024a), Qwen2-VL-72B (Wang
et al., 2024d), Llama3.2-90B (Dubey et al., 2024), Qwen-VL-Max, GPT-4o (Achiam et al., 2023),
and GPT-4v. For opensourced mobile agents, we use Cogagent (Hong et al., 2024), UGround-7B
(Gou et al., 2024), OS-Atlas-7B (Wu et al., 2024b), UI-Tars (Qin et al., 2025), Kimi-VL (Team et al.,
2025), DeepSeek-VL2 (Wu et al., 2024c), Opencua-32B (Wang et al., 2025b) GUI-R1 (Luo et al.,
2025), UI-R1 (Lu et al., 2025a), UI-S1 (Lu et al., 2025b), and GUI-G1 (Zhou et al., 2025). For
reasoning VLMs, we select GLM-4.1v-thinking, Qwen-QVQ-plus, OpenAI o3, Claude-3.7-Sonnet,
DeepSeek-R1(HTML) and Doubao-Thinking-pro (Guo et al., 2025).

Settings. To reduce cost, only zero-shot evaluations are done on a subset split of Random-800, which
has a similar sub-split distribution to the full split. As shown in Figure 4, the distribution of step and
app categories in Random-800 is fully consistent with that of the full dataset, and 800 instructions
correspond one-to-one to 800 predefined instruction templates. Simple and complex splits set the
maximum number of steps to 20 and 25. In ambiguous tasks, direct queries about the next-step
decision or the specific function of a button are rejected; only supplementary information relevant
to the instruction is allowed to be provided. Unlike Appagent, we annotate the widget types using
specific numbers (Figure 11).

Metrics. We follow metrics proposed in MobileAgentBench (Wang et al., 2024c) and AUTO-UI
(Zhang & Zhang, 2023),
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Table 2: General VLMs with mobile agent framework results on SMAN-Bench Common, Noisy and
Ambiguous splits. Type is used in the single-path, while SE is used in the multi-path evaluation.

Models Cate. Common-Simple Common-Complex Noisy Data Ambiguous Data
Type↑/SE↓ Step. Acc SR Type↑/SE↓ Step. Acc SR Type↑/SE↓ Step. Acc SR Type↑/SE↓ Step. Acc SR

Single-Agent Framework: AppAgent-v1

InternVL2-40B Single 82.4 35.7 1.0 85.1 38.4 1.5 60.4 12.7 0.0 76.7 29.0 1.0
Multi 5.8 43.0 10.1 4.4 46.0 6.5 - - - - - -

LLAVA-72B-NEXT Single 93.2 7.4 0.0 87.7 7.8 0.0 70.4 2.7 0.0 82.3 4.8 0.0
Multi 6.2 1.9 0.0 4.5 5.1 0.0 - - - - - -

Qwen2-VL-72B Single 95.2 60.3 21.1 93.5 53.8 5.0 78.0 24.4 3.0 91.2 43.5 8.0
Multi 5.2 62.8 20.6 4.4 58.9 7.0 - - - - - -

Qwen-VL-Max Single 94.7 58.6 20.5 91.2 54.7 7.5 77.1 24.3 3.0 90.3 48.5 9.0
Multi 5.9 67.6 12.6 4.3 63.1 9.6 - - - - - -

Llama3.2-VL-90B Single 86.4 22.4 2.6 87.0 24.3 1.0 69.7 11.2 0.0 85.4 15.5 0.0

GPT-4v Single 91.2 24.0 6.0 90.8 25.2 1.0 72.7 17.4 0.0 88.6 20.5 1.0
Multi 6.1 29.7 3.0 4.5 29.4 1.5 - - - - - -

GPT-4o Single 80.4 57.6 18.5 79.2 50.6 11.5 72.3 18.2 1.0 94.7 33.9 6.0
Multi 5.3 61.8 19.8 4.4 61.7 16.5 - - - - - -

Multi-Agents Framework: MobileAgent-v2

InternVL2-40B Single 84.5 19.3 0.0 80.7 26.4 0.5 64.3 9.1 0.0 76.0 16.3 0.0
Multi 6.0 27.6 3.5 4.4 32.6 3.5 - - - - - -

Qwen2-VL-72B Single 91.5 50.5 13.0 91.6 49.0 4.5 75.8 20.7 1.0 86.2 40.8 7.0
Multi 5.4 54.9 15.1 4.4 58.6 8.0 - - - - - -

Qwen-VL-Max Single 74.2 17.0 3.0 68.8 12.3 2.0 66.5 4.2 0.0 66.6 9.0 0.0
Multi 5.4 29.6 4.5 4.3 24.8 3.0 - - - - - -

Llama3.2-VL-90B Single 62.4 16.6 1.0 67.0 17.5 0.0 63.7 9.7 0.0 64.3 8.3 0.0

GPT-4v Single 90.8 22.9 3.8 90.6 28.3 0.5 62.5 12.6 0.0 91.0 15.6 0.0
Multi 6.0 17.8 5.4 4.5 11.8 0.0 - - - - - -

GPT-4o Single 91.9 53.5 13.5 92.3 50.5 17.0 77.1 25.5 2.0 91.6 39.7 12.0
Multi 4.9 57.6 25.5 4.2 56.3 17.5 - - - - - -

Multi-Agents Framework: MobileAgent-E

InternVL2-40B Single 87.2 37.4 2.0 93.4 39.1 2.5 80.3 23.1 4.0 87.0 32.6 7.0
Multi 5.5 46.2 9.5 4.2 46.7 8.5 - - - - - -

Qwen2-VL-72B Single 92.3 62.5 23.0 93.2 61.4 15.0 88.9 32.7 7.0 91.0 58.8 15.0
Multi 4.8 60.2 18.4 4.2 63.8 12.0 - - - - - -

Qwen-VL-Max Single 90.6 71.5 32.5 94.8 66.3 25.5 86.2 61.6 21.0 96.3 62.5 29.0
Multi 3.7 77.1 29.5 3.1 78.8 33.5 - - - - - -

Llama3.2-VL-90B Single 78.2 29.8 4.0 87.2 32.4 6.5 80.7 22.1 3.0 79.8 23.4 2.0

GPT-4o Single 94.8 70.3 27.5 96.4 68.4 19.0 81.2 54.8 14.0 92.6 53.4 24.0
Multi 3.9 77.7 30.5 3.8 70.4 26.5 - - - - - -

Success Rate (SR): Nsuccess/Mtasks, judged by whether the agent reaches the final pages in multi-
path evaluation or all actions are correct in single-path evaluation.

Step Efficiency (SE): Sactual/Smin, where Sactual is the number of actual steps to complete a task,
and Smin is the task’s minimal annotated steps. This metric expresses whether the agent performs
unnecessary or redundant actions in multi-path evaluation.

Step Accuracy (Step.Acc): Stp/Sgt, where Stp is the number of predicted actions that match the
golden actions in single-path evaluation. This metric also reflects the step reward when the actions
are compared with the keynodes in multi-path evaluation.

TYPE Accuracy: Sttp/Sgt, where Sttp is the number of predicted actions that match the type of
golden actions. We use TYPE to check whether the action types are correct.

4.2 DATA QUALITY VERIFICATION

Due to the random walk involved in the former, the instruction trajectories may include redundant
actions, whereas the latter requires checking whether the noise is handled correctly and the quality
of the Q&A. Therefore, we design a data quality verification experiment shown in Table 8 and
Table 9. Only 8% of the data constructed in the complex split are found to be suboptimal. This is
primarily due to more slots in complex instruction templates, which makes unnatural semantics after
filling. Semantic alignment does not influence invalid steps between the instructions and the actual
trajectories. Therefore, we only manually revised these instructions to ensure that the random-800
subset meets the quality requirements.

4.3 MAIN RESULT

Agent frameworks. As shown in Figure 5 and Table 2, AppAgent-v1 outperforms in single-path
evaluations, whereas MobileAgent-v2 excels in multi-path scenarios. This is because single-path
evaluation presets the correct historical action and guides agents focus on the current page. In multi-
path, agents’ actions depend on their previous decision and pages, so agents are more prone to being
trapped in mistaken execution trajectories. MobileAgent-v2’s reflection and expectation mechanism
effectively mitigates this problem. With dynamic knowledge injection and planning, Mobile-Agent-E
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Figure 5: Performance on different backbones and agent frameworks.

Table 3: Results on SMAN-Bench Common, Noisy, and Ambiguous splits. Agents include three
categories: Continuous pre-training mobile agents, RL-based mobile agents, and reasoning agents.

Models Cate. Common-Simple Common-Complex Noisy Data Ambiguous Data
Type Step. Acc SR Type Step. Acc SR Type Step. Acc SR Type Step. Acc SR

Continuous Pre-training Mobile Agents

CogAgent-18B Single 75.6 20.9 13.0 62.3 20.8 6.0 57.2 16.2 1.0 72.4 30.6 11.0
UGround-7B Single 73.0 39.5 17.0 73.8 36.0 10.0 71.2 32.8 2.0 79.9 47.0 20.0
UI-Tars-7B-dpo Single 75.3 41.8 19.0 75.9 37.8 12.0 73.2 35.6 4.0 81.8 49.4 23.0
OS-Atlas-7B-pro Single 82.1 51.5 28.0 83.5 50.6 18.0 81.2 45.3 2.0 86.4 52.3 24.0
Kimi-VL-A3B Single 75.1 21.7 12.0 61.8 21.5 6.5 56.9 15.8 1.0 71.7 29.9 11.0
DeepSeek-VL2 Single 72.6 38.8 16.0 73.1 35.2 9.5 70.5 32.1 2.0 79.2 46.1 19.0
UI-Tars-72B-dpo Single 94.3 64.2 32.0 96.0 63.5 24.0 94.5 59.8 7.0 92.5 66.0 30.0
GUI-OWL-7B Single 94.7 71.2 37.5 96.0 68.4 28.5 90.8 52.4 6.0 93.8 67.2 31.0
UI-TARS-1.5-7B Single 98.2 72.2 39.0 97.1 77.5 38.5 98.0 67.3 15.0 99.0 78.4 42.0
OpenCUA-32B Single 98.0 73.1 39.0 97.4 76.2 38.0 96.0 65.8 13.5 98.2 79.2 43.0

RL-based Mobile Agents

UI-R1-3B Single 76.5 42.7 18.5 74.8 39.1 10.5 72.6 33.9 6.0 80.9 47.8 21.5
GUI-R1-3B Single 77.2 40.9 20.0 76.4 38.6 11.0 74.1 36.8 5.5 82.1 48.6 22.5
GUI-G1-3B Single 82.4 50.8 25.5 84.1 52.3 19.0 80.6 48.7 16.5 85.3 54.9 23.0
GUI-R1-7B Single 92.8 62.7 30.5 94.2 61.9 22.5 92.7 58.1 5.5 90.9 64.3 28.5
UI-S1-7B Single 95.7 65.8 33.0 97.5 65.1 25.5 96.1 61.5 8.5 94.2 67.5 31.5

Reasoning Mobile Agents

GLM-4.1v-Thinking Single 78.4 42.8 17.5 80.7 44.6 17.0 71.3 30.2 2.5 77.8 44.9 18.0
Qwen-QVQ-plus Single 90.7 48.8 24.5 89.9 52.8 18.0 88.1 44.4 6.5 92.2 64.4 29.0
OpenAI o3-2025-04-16 Single 94.2 68.1 33.0 95.5 58.2 21.5 90.7 52.2 9.0 94.9 72.3 33.5
Claude 3.7 Sonnet Single 98.4 74.4 38.0 98.0 76.1 38.5 95.5 59.2 10.0 99.0 77.3 41.0
Doubao-1.5-Thinking-pro Single 98.2 75.8 39.0 98.1 77.3 38.5 95.9 60.1 14.0 99.0 78.0 41.5
Claude 4.5 Sonnet Single 98.9 76.2 39.0 98.5 77.1 39.0 98.5 69.2 15.5 99.0 78.3 43.0

surpasses the other two frameworks on most metrics, though models with shorter context windows
(e.g., Llama3.2-VL-90B) show performance drops due to limited in-context learning.

Backbones. As shown in Table 2, Qwen and GPT series models show superior performance in
commom tasks, while others perform relatively poorly (50-70% compared to 20-40%). Due to the
weaker instruction-following and grounding capabilities of smaller models, their overall performance
is limited. The differences in planning ability across models are relatively minor, as reflected in the
comparable TYPE accuracy. For one model, the multi-path SR is generally higher than the single-path
counterpart, further indicating that multi-path evaluation better reflects the model’s true capability.

Mobile Agents. As shown in Table 3, compared with agent frameworks, different mobile
agents—despite variations in their action spaces—exhibit substantially stronger grounding capabili-
ties, leading to superior overall performance relative to purely framework-based approaches. At the
same time, their reasoning outputs are more concise, and the average reasoning steps are significantly
reduced to roughly one-fifth of the original pipeline. Notably, the RL-based GUI-G1-3B achieves
performance comparable to the pretrained OS-Atlas-7B-pro, highlighting the potential of online rein-
forcement learning for improving generalization. General-purpose multimodal thinking models, such
as Doubao-1.5-Thinking-pro, perform on par with specialized mobile agents (e.g., OpenCUA-32B).
When such thinking models are integrated into the above frameworks, no performance gains are
observed, suggesting a potential equivalence between frameworks and inherent thinking patterns.

4.4 NOISY TASK RESULT

Out-domain SMAN-Bench-Noisy results. For noisy data, the results in the third block of Table 2
demonstrate that only a few VLMs complete a task. All VLMs exhibit a declining trend in Step.Acc,
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Table 4: Results on AITZ-Noise. Qwen2-VL and OS-Atlas are evaluated on AITZ and AITZ-Noise.

Agent Benchmark General Google App Install Web Shopping Total
Step. Acc Noisy Step. Acc Noisy Step. Acc Noisy Step. Acc Noisy Step. Acc Noisy

Qwen2-VL-7B Normal 38.5 - 44.8 - 60.0 - 45.1 - 46.9
Noise 37.3 15.4 42.2 17.2 54.7 20.5 42.1 17.1 43.9 17.4

OS-Atlas-7B Normal 41.9 - 46.4 - 60.5 - 46.3 - 48.6
Noise 38.8 21.8 41.7 19.7 56.4 23.5 43.8 23.6 45.1 21.7

Table 5: Ablation study on SMAN-Bench-Ambiguous.

Model AppAgent (Full) AppAgent (Ambig.) MobileAgent (Full) MobileAgent (Ambig.)
Type StepAcc Type StepAcc Type StepAcc Type StepAcc

InternVL2-40B 70.8 21.6 76.7 (+5.9) 29.0 (+7.4) 61.5 8.3 76.0 (+15.5) 16.3 (+8.0)
Qwen2-VL-72B 82.9 41.5 91.2 (+8.3) 43.5 (+2.0) 80.3 38.5 86.2 (+5.9) 40.8 (+2.3)
Qwen-VL-Max 81.2 39.3 90.3 (+9.1) 48.5 (+9.2) 57.6 3.3 66.6 (+9) 9.0 (+5.7)
Llama3.2-VL-90B 67.9 7.6 85.4 (+17.5) 15.5 (+7.9) 57.8 4.0 64.3 (+6.5) 8.3 (+4.3)
GPT-4v 72.8 15.9 88.6 (+15.8) 20.5 (+4.6) 84.6 13.9 91.0 (+6.4) 15.6 (+1.7)
GPT-4o 79.7 31.9 94.7 (+15) 33.9 (+2) 87.7 38.4 91.6 (+3.9) 39.7 (+1.3)

particularly LLAVA and Qwen2-VL, while this phenomenon is also observed in open-source agents,
due to the absence of noise in their training data. Unlike AITZ-Noise, the ads in Noisy-App are more
dynamic and variable which as shown in Figure 16. Specifically, these noises exhibit the following
three features: (1) After the pop-up ad countdown ends, the ad disappears automatically, and the
agent’s delayed instructions may cause accidental taps; (2) Some video ads cannot be closed during
the early viewing stages; (3) The mis-taps caused by real ad noise may trigger app redirection.

Out-domain AITZ-noisy results. As shown in Table 4, the Step.Acc of Qwen2-VL and OS-Atlas
decreased by an average of 3.0% and 3.5% from AITZ normal to in-domain AITZ-Noisy. Given that
the Noisy step accuracy is 17.4% and 21.7%, this indicates that open-source agents fail to learn the
features of advertisements because a few ads still exist in their training data. They exhibit almost
no generalization capability on transferred noisy data, even when only the background screenshot
changes. When agents become trapped in a page unrelated to the current task, they struggle to
determine how to proceed next. More details can be found in Appendix D.3.

4.5 AMBIGUOUS INSTRUCTION ABLATION STUDY

As shown in the far-right column of Table 5, all agents exhibit improved performance, even 17.5%,
when supplied with more informative context through step-by-step Q&A. Ablation results demonstrate
that the active interaction module can help agents effectively ignore irrelevant content in task
instructions for the current step. This is because full instructions may affect the agent’s ability
to identify tasks on the current page accurately. In contrast, ambiguous instructions with step-by-step
Q&A help the agent better comprehend the page and execute more appropriate actions. However,
it is worth noting that not all agents benefit from this mechanism. Weaker VLMs (e.g., InternVL,
+5.9%) struggle to generate effective questions, while stronger VLMs (e.g., GPT-4o, +3.9%) are
already capable of effective planning and decision-making without additional support. VLMs with
intermediate performance, such as LLaMA3.2-VL-90B, benefit more from this mechanism (+17.5%).
Meanwhile, end-to-end agents struggle to formulate and explore questions aligned with the predefined
settings, highlighting a critical limitation and a promising avenue for future research.

5 CONCLUSION

In this paper, we propose SMAN-Bench, a realistic and comprehensive mobile agent benchmark that
includes common instruction trajectories, noisy app split, noisy contaminated split, and ambiguous
instruction split. We also propose a novel slot-based trajectory annotation method without human
evaluation, named GIAS, and an offline multi-path evaluation method, which can assess the agent’s
ability to obtain step rewards more accurately. This benchmark provides a foundation for evaluating
and optimizing GUI agent studies focused on multi-path solutions searching, noise robustness, and
proactive interaction.
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ETHICS STATEMENT

We have rigorously refined our dataset to remove any elements that could compromise personal
privacy, thereby guaranteeing the highest level of protection for individual data. All data annotations
were completed by crowdsourced volunteers, to whom we paid $0.5 per step as compensation and
provided the necessary training. The human evaluation of our work was carried out through a
meticulously randomized selection of IT professionals. This process ensured a gender-balanced and
educationally diverse panel, reflecting a wide spectrum of perspectives and expertise.

REPRODUCIBILITY STATEMENT

All evaluation code, prompts, and datasets used in this paper are open-source. The code and data
are mounted and stored on GitHub and HuggingFace platforms, respectively. The full experimental
setup is detailed in Section 4.1 and Appendix E. Unless noted, all experiments use the same settings.
Overall, these practices make our results reproducible.
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A MOBILE TASK FORMULATION

For mobile agents, there are four essential capabilities: (i) Overall Planning to determine the action
step sequences. (ii) Action Thought to produce an action description at each step (e.g., “open the
flight detail page”), (iii) Element Grounding to identify a widget (e.g., “[Click](x1,y1)”) on the GUI,
(iiii) Action Reflection to determine whether the next GUI matches the expectation.

ât =


[x1, y1, x2, y2], ât ∈ Click

{↑, ↓,←,→} , ât ∈ Scroll

text, ât ∈ Type

(1)

Given a mobile screenshot S (e.g., a Ctrip screenshot on Android) and a task T (e.g., “Book a
flight ticket from Chengdu to Beijing Sep.15 for me.”), a GUI agent should generate a sequence of
executable actions. Specifically, at time step t, the agent should select an action at from the action
space A, which includes three types of actions: (1) Click. (2) Scroll. (3) Input. Based on the current
environment observation St, the action history H1:t−1={â1, â2, ..., ât−1}, and the last step refection
ft−1, the GUI agent will generate plan Pt:

Pt =
{
â
(1)
t · · · â

(n)
t | (â1, · · · , ŝt−1), ft−1,St

}
(2)

where Pt represents the planning of the next n actions starting from the current step. The environment
observation St comprises an HTML document textt and a mobile screenshot imaget.

B THE FULL RELATED WORKS

B.1 MOBILE AGENTS

Large language models (Achiam et al., 2023) emerge as autonomous agents (Li et al., 2024b; Wen
et al., 2023) in the mobile domain and garner considerable attention. With the rapid development of
vision-language models (VLMs), multimodal researchers build mobile GUI agents (Yang et al., 2023;
Zheng et al., 2024) and multi-agent frameworks (Ding, 2024; Li et al., 2024c; Wang et al., 2024b)
based on closed-source VLMs. Meanwhile, some researchers focus on training agents with stronger
element grounding (Cheng et al., 2024; Hong et al., 2024; Wu et al., 2024b), page navigation (Niu
et al., 2024; Lu et al., 2024; Gou et al., 2024), GUI understanding (Chai et al., 2024; You et al., 2024;
Baechler et al., 2024) and task planning capabilities (Zhang et al., 2024c; Nong et al., 2024; Xu et al.,
2024b) based on open-source VLMs. In addition, Digirl (Bai et al., 2024) and Distrl (Wang et al.,
2024e) uses joint online and offline reinforcement learning to enhance the generalization of mobile
agents and mitigate performance degradation when facing APP updates and unseen APPs. Some
researchers (Qinghong Lin et al., 2024) explore optimizing VLM structures. For example, Dorka
(Dorka et al., 2024) optimizes the encoder by incorporating historical images and actions as input.

B.2 OFFLINE MOBILE AGENT BENCHMARKS

As shown in Table 1, AndroidEnv (Toyama et al., 2021) and MobilEnv (Zhang et al., 2023) are the
first to create LLM agent evaluation environments based on reinforcement learning. Mobile-Bench
(Deng et al., 2024) and AppBench (Wang et al., 2024a) introduce online benchmarks combining
API and GUI, while MobileAgentBench (Wang et al., 2024c) establishes the first fully automated
multimodal benchmark for VLM-based GUI agents. More offline benchmarks (Li et al., 2020a;
Burns et al., 2021; Murthy et al., 2024) are released, which are primarily categorized into GUI
understanding and task-oriented. (1) For task-oriented benchmarks, AITW (Rawles et al., 2023) and
AITZ (Zhang et al., 2024b) create large-scale benchmarks based on Google apps, while AMEX (Chai
et al., 2024) supplements these benchmarks by adding data for GUI understanding with similar app
types. ScreenSpot (Cheng et al., 2024), Mobile3M (Wu et al., 2024a), and GUIOdyssey (Lu et al.,
2024) focus on more granular element grounding and task planning. (2) Rico (Deka et al., 2017) is
the first non-annotated GUI corpus, followed by ScreenQA (Hsiao et al., 2022), Widget Caption (Li
et al., 2020b), and Screen2words (Wang et al., 2021), which is for Q&A, widget understanding, and
page summarization. Subsequently, Mind2web (Deng et al., 2023) incorporates additional GUI data
of varying sizes, and Meta-GUI (Sun et al., 2022) provides tasks for multi-round dialogues.
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B.3 ONLINE MOBILE AGENT BENCHMARKS

Recently, more online benchmarks (Xu et al., 2024a; Rawles et al., 2024; Chen et al., 2024a; Wang
et al., 2025a; Huang et al., 2025) have been released to evaluate agents in real environments, such
as smartphones, PCs, and web browsers. Existing OS-level benchmarks, such as OSWorld (Xie
et al., 2024), focus on open-ended, long-horizon computer-use tasks on desktop operating systems.
AndroidWorld (Rawles et al., 2024), by contrast, provides 20 applications and 116 programmatically
generated daily tasks within a controlled Android emulator, along with structured reward signals,
enabling reproducible evaluation of mobile GUI agents. AndroidLab (Xu et al., 2025b) further
extends this line of work by operating in real or near-real Android environments and constructing
large families of tasks from composable atomic skills, thereby systematically assessing an agent’s
generalization across task compositions and across applications.

B.4 GRAPH-BASED GUI AGENT BENCHMARKS

Figure 6: Categories and apps used in
the Mobile3M Dataset

Recent efforts in evaluating GUI-based and web-oriented
agents have produced several benchmarks that differ sub-
stantially in task domains, instruction sources, graph-
structured trajectory modeling, and reward assignment
strategies. ColorBench (Liang et al., 2025) focuses on
long-horizon, cross-app search and query tasks driven
by manually written instructions. It adopts VLM-based
page-content descriptions and embeds them to compute
similarity scores for node merging, while rewarding agents
through sub-task verification of necessary actions in both
online and mixed evaluation environments. WebGraphE-
val (Qian et al., 2025), in contrast, targets shopping and
web-retrieval scenarios within WebArena, where multiple
agent trajectories for the same task are aligned and merged
by comparing action-sequence similarity. Rewards for
intermediate steps are back-propagated solely from the
correctness of the final answer, enabling offline evaluation
enhanced with LLM-as-judge. CRAB (Xu et al., 2025a)
extends to heterogeneous environments such as calendars,
maps, and general web interfaces; its instructions are pro-
duced through reverse DAG task decomposition, and node alignment is handled across devices.
Rewards are obtained by verifying environment states after sub-tasks, and evaluation is conducted
through cross-system online interaction. OmniBench (Bu et al., 2025) further broadens the domain to
office automation, video editing, and complex web tasks. It also uses reverse DAG decomposition but
merges trajectory nodes to generate high-quality instructions, supported by additional intent signals
instead of explicit reward modeling. Its evaluation emphasizes sub-task–level assessment. Overall,
these benchmarks reveal a diverse design landscape—from instruction construction and trajectory
graph fusion to reward propagation and evaluation modes—highlighting the need for more unified
and robust frameworks for training and assessing long-horizon multimodal agents.

As shown in Table 6, compared with previous benchmarks, SMAN-Bench (ours) targets more realistic
everyday mobile scenarios, including music, travel, search, and shopping—spanning a broader set of
apps. Instead of relying on handcrafted tasks or constrained trajectories, we construct instructions
through online log filtering and Gias-based synthesis. For trajectory consolidation, SMAN-Bench
combines action-space validity checking with page-content clustering, enabling more reliable merging
of semantically equivalent states. Reward assignment is also more fine-grained: slot-based matching
automatically identifies the correct action and downstream key-node page, allowing both intermediate
rewards and final-answer evaluation in a fully offline setting. These designs make SMAN-Bench a
more scalable and realistic benchmark for long-horizon GUI agents.

C MOBILE3M DATASET

Mobile3M is a large-scale dataset designed to systematically explore and analyze the functionality of
mobile applications through UI-based interactions. It provides a comprehensive representation of
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Benchmark Task Type Instruction
Source

Graph Node Merging
Strategy

Key-Node Rewarding

ColorBench Search & query;
cross-app long-
horizon tasks

Manually writ-
ten instructions

VLM-based page de-
scription; embedding
similarity used to merge
nodes

Sub-task decom-
position; verifying
necessary actions for
reward

WebGraph Shopping & re-
trieval in web
tasks

WebArena tasks Multiple agent trajecto-
ries merged by action-
sequence similarity

Final-answer correct-
ness back-propagated to
earlier steps

CRAB Calendar, map,
web

Reverse DAG
decomposition
to generate
instructions

Cross-device node
alignment

Sub-task decompo-
sition; reward via
checking environment
state

OmniBench Office, video
editing, web

Reverse DAG
decomposition

Trajectory-node merg-
ing for instruction gen-
eration

None; additional intent
signals ensure data qual-
ity

SMAN-
Bench
(ours)

Everyday tasks:
music, travel,
search, shop-
ping; more app
categories

Online log fil-
tering + GIAS-
based synthesis

Action-space validity
checking + page-
content clustering

Slot-based matching to
locate correct action and
downstream key-node
page; rewarding equiv-
alent actions

Table 6: Comparison of SMAN-Bench with existing graph-based and task-oriented GUI agent
benchmarks.

Category APP Unique Nodes All Nodes Action Steps All Nodes(%)

Living anjuke 57,286 190,102 1,334,428 6.13%

Living wuba 38,667 147,009 903,586 4.74%

Living smarthome 12,595 42,961 304,816 1.39%

Travel ctrip 63,449 187,079 1,217,304 6.04%

Travel Qunar 42,462 161,005 1,211,015 5.20%

Shopping vipshop 72,468 168,531 1,036,086 5.44%

Shopping xiaomiShop 21,666 99,770 755,718 3.22%

Shopping duapp 18,925 38,926 223,379 1.26%

Transport didi 12,786 84,865 637,400 2.74%

Transport cainiao 20,593 73,132 480,223 2.36%

Transport gaodeMap 13,674 59,142 319,377 1.91%

Transport BaiduMap 13,552 54,322 280,498 1.75%

Browser UCMobile 40,618 88,220 615,049 2.85%

Browser baiduBrowser 36,016 70,282 401,348 2.27%

Browser QQBrowser 18,500 44,006 218,828 1.42%

Browser tencentnews 23,408 38,241 224,804 1.23%

System taptap 24,759 105,461 624,941 3.40%

System qqpimsecure 8,997 42,691 379,926 1.38%

System ludashi 2,773 32,474 219,804 1.05%

System qqdownloader 10,517 28,502 151,824 0.92%

System calculator 4,265 15,819 97,005 0.51%

System
supercaculato

r
690 1,369 5,444 0.04%

Music ximalaya 34,995 103,395 577,032 3.34%

Music kugou 40,043 94,271 504,368 3.04%

Music QQmusic 5,545 17,539 64,211 0.57%

Category APP Unique Nodes All Nodes Action Steps All Nodes (%)

Reader seekbooks 15,902 70,266 563,882 2.27%

Reader QQReader 22,588 63,458 472,509 2.05%

Reader zhuishushenqi 14,737 63,210 392,903 2.04%

Reader pdfreader 495 1,507 5,211 0.05%

Social xiaohongshu 45,324 85,362 525,519 2.75%

Social zhihu 21,766 57,261 373,756 1.85%

Social QQ 7,051 20,600 141,969 0.66%

Education zuoyebang 19,884 70,661 507,146 2.28%

Education Xiaoyuan 10,727 56,806 393,395 1.83%

Education Youdao 8,756 35,121 206,035 1.13%

Education Baicizhan 4,196 16,383 88,500 0.53%

Office wpsOffice 11,156 73,739 486,661 2.38%

Office Netmail 5,544 32,308 260,682 1.04%

Office tonghuashun 6,410 30,722 163,297 0.99%

Office QQmail 712 1,590 4,597 0.05%

Video bili 46,080 91,891 471,940 2.97%

Video qqlive 12,497 22,601 99,677 0.73%

Video kuaishou 7,126 12,115 59,373 0.39%

Picture androidesk 28,432 59,228 418,773 1.91%

Picture mtxx 19,718 55,324 419,055 1.79%

Health
medicinehelpe

r
15,046 83,832 547,880 2.71%

Health keep 7,730 22,500 117,124 0.73%

Weather pureweather 25,252 79,283 610,695 2.56%

Weather cloudweather 1,956 3,904 19,339 0.13%

15 49 998,334 3,098,786 20,138,332 100%

Figure 7: The data distribution in Mobile3M.

user interface (UI) elements, interactions, and app navigation patterns. Mobile3M is characterized by
the following key features:

(1) Scale and Diversity
Mobile3M includes over 20 million user interactions, covering 3 million screenshots and correspond-
ing XML documents. These data are organized into directed graphs for 49 widely-used Chinese apps,
where nodes represent UI pages, and edges capture user actions.
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(2) Detailed UI Representation
Each UI page is described by both a screenshot and an XML document. The XML documents provide
detailed structural information, including UI elements (e.g., buttons, text fields), their hierarchical
relationships, and layout properties such as bounding boxes.

(3) Action Space
The dataset defines three fundamental user actions—click, scroll, and input—to simulate real-world
app interactions. Each UI page contains an action space derived from its interactable elements,
facilitating comprehensive modeling of user behaviors.

(4) Graph-Based Organization
Mobile3M employs a breadth-first search (BFS) algorithm to explore app functionality, representing
the exploration results as graphs. This structure enables the identification of app workflows, the
relationship between UI pages, and the possible transitions triggered by user actions.

(5) Efficiency and Optimization
To enhance exploration efficiency, Mobile3M incorporates a “unique page” mechanism that eliminates
duplicates by comparing UI pages using a combination of element and pixel-based similarity thresh-
olds. This reduces the exploration space, prevents redundant actions, and avoids cyclic sequences,
ensuring more diverse and meaningful data coverage.

(6) Balanced Action Distribution
The dataset emphasizes balanced representation of user actions by prioritizing underrepresented
interactions, such as input. For example, random keywords are introduced for input actions, and
scroll actions are executed in multiple directions to capture diverse app behaviors.

(7) Task-Oriented Exploration
Inspired by APPAgent, the dataset leverages a random walk algorithm to systematically interact with
UI elements and record transitions between pages. The exploration process captures action traces,
enabling task-driven navigation and detailed understanding of app functionalities.

D DATA ANALYSIS AND CONSTRUCTION

D.1 GIAS

The whole process is as follows: (1) multi-path sampling based on fixed start and end GUIs; (2) GUI
content annotation; (3) action intent inference; (4) extracting slot information from GUI changes; (5)
filling instruction templates with the slot; (6) deduplication and simplification. The entire process
is explained in detail in Algorithm 1. Specifically, we choose paths that start from nodes with the
same name in Mobile3M and end at homogeneous nodes with different names (Homogeneous nodes
refer to pages whose similarity or the number of identical UI elements exceeds the threshold (Lu
et al., 2006)). Considering its diversity, each trajectory includes at least two different types of actions
and minimises the proportion of intermediate homogeneous pages. Throughout the entire annotation
process, only the verification step involves a closed-source model, while all other steps are performed
by open-source models without any human intervention. More details on GIAS are in Appendix D.

D.2 GIAS PROMPT

Input Format

You will be provided with a series of user interaction histories, each consisting of a caption describing
the current page and an action performed by the user.

Your Task

Analyze each action and the corresponding page caption to determine what action was taken on that
page. Summarize these actions into a task description, which should be a request. For example:

•“I want to see what VIP privileges are available.”
•“Help me find pants on sale.”
•“Tell me what items are in my shopping cart.”

Important Notes:
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Algorithm 1 GIAS Algorithm

Require: Start Page, P0; End Page, Pt; Trajectory σ; Page Description D; GUI Pages, s; Action, a; Action
Intent, T ; Page Slot, C; Instruction, I; Task, T ;

Ensure: Prompt, P ; Few Shot Cases, FS ; Verified Flag, Q; Instruction Templates, γ;
1: Select

σi = {si1 , si2 , . . . , sit−1}, sij ∼ P0:t, for j = 1, . . . , t− 1

2: for each sij ∈ σi do
3: for j = 0 : t do
4: Dsij ← VLM(sij , Pt) ▷ Get text descriptions from GUIs
5: Tij:j+1 ← Dsij ,Dsi,j+1 , a(sij → si,j+1) ▷ Get indent between two actions
6: Cij:j+1 ← Dsij ,Dsi,j+1 ▷ Get Page Slot based on pre-settings
7: Iij ← (Ci:t, Ti:t) ∼ Uniform(γ) ▷ Fill Templates with the slot
8: end for
9: end for

10: for each pair of instructions (Ii, Ij) in I do
11: if Sim(Ii, Ij) ≥ τ then
12: Discard Ij from I ▷ Make sure there are no highly similar instructions
13: end if
14: end for
15: T , Q← Veri {I, P, FS} ▷ for all Trajectories σi, ensuring no redundant steps
16: return T

1. The task description and the sequence of actions should have a logical relationship.

2. The task description should be phrased as a request, reflecting the goal of the actions taken.

3. Actions and captions should be analyzed in sequence to deduce the user’s objective.

Output Format

“step-by-step description”: “Provide a series of interactions, where each entry corresponds to a
screenshot caption of the current phone screen and the action performed on that page.”

“concise task”: “Summarize the user’s overall goal based on the step-by-step description.”

Example

Caption 1:
This image shows a screenshot of a shopping application interface.

Action 1:
Click(Skincare Set)

Caption 2:
This image shows a screenshot of a shopping application interface. At the top, there is a search
bar with the text “Skincare Set.” Additionally, at the bottom of the page, there is a navigation bar
with options like “All Products,” “New Arrivals,” “Moisturizing,” “Dry Skin,” “Niacinamide,” and

“Hyaluronic Acid.” The current state is “All Products.”

Action 2:
Click(New Arrivals)

Caption 3:
This image shows a screenshot of a shopping application interface. At the top, there is a search bar
with the text “Skincare Set.” Additionally, there is a navigation bar at the bottom with options like

“All Products,” “New Arrivals,” “Moisturizing,” “Dry Skin,” “Niacinamide,” and “Hyaluronic Acid.”
The current state is “New Arrivals.” Below are multiple product recommendations.

Action 3:
Click(Ad)

Caption 4:
This image shows a product detail page. At the top, there is a pink banner that reads “Buy a set and
get 13 items free,” along with a product photo.
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Output:

“step-by-step description”:

1. Click the “Skincare Set” product under the “Beauty” subcategory of “Recommended.”

2. On the Skincare Set search results page, click the “New Arrivals” tab.

3. On the product details page, click the “Ad” tab.

“Concise task”:
Help me find the latest skincare set that is on promotion.

New Input and Task

Now, based on the following input, please generate the “step-by-step description” and “concise
task”:

{trajectory_description}

D.3 DATA CONTAMINATION

The collected advertisements are shown in Figure 10. We embed them into the normal dataset and
applied background whitening. We ensure that the elements that should have been clicked on the
current page are no longer visible after the contamination. When splitting the training and test
data, the position of the embedded advertisements is randomly assigned. However, the types of
advertisements in the training data are largely consistent with those in the test data, and the same
advertisements maintain consistent embedding positions.

Table 7: Qwen2-VL and OS-Atlas fine-tuned on AITZ-Noise, AITW, or AITZ and evaluation on
AITZ-Noise(Out-domain). Metric “Noisy” means out-domain noisy step accuracy.

Agent Training Data General Google App Install Web Shopping Total
Step. Acc Noisy Step. Acc Noisy Step. Acc Noisy Step. Acc Noisy Step. Acc Noisy

Normal Data Supervised Fine-tuning

Qwen2-VL-7B AITZ 37.33 15.38 42.18 17.11 54.68 20.45 42.06 17.14 43.84 17.46
OS-Atlas AITZ 38.81 21.79 41.61 19.73 56.37 23.57 43.71 23.57 45.16 21.62

In-domain Noise Supervised Fine-tuning

Qwen2VL AITZ + Noisy 43.07 77.56 47.63 73.68 60.64 75.76 44.02 75.00 48.20 75.79
OS-Atlas AITZ + Noisy 44.92 82.05 49.64 76.32 63.06 79.55 48.01 78.57 50.99 79.56

Out-domain Noise Supervised Fine-tuning

Qwen2VL AITZ + Noisy 37.18 50.64 45.18 41.89 57.45 53.38 42.32 50.00 44.96 49.90
OS-Atlas AITZ + Noisy 41.75 53.85 45.47 48.65 60.27 60.90 47.28 55.71 48.69 55.47

E EXPERIMENT DETAILS

E.1 BASELINE MODEL DEMONSTRATION

AppAgent Below is the prompt we used. We did not re-adapt or adjust the prompt for different base
models to ensure fairness.

1 I will give you the screenshot of a mobile app, the clickable UI element is labeled
2 with a letter 'c' and the number <ui_element> on the screen. The tag of each element is located

at the center of the
3 element. Clicking on this UI element is a necessary part of proceeding with a larger task,

which is to <task_description>.
4 In order to realize this larger task, you must first realize the current task <current_task_desc>

in current screenshot.
5 Your task is to describe the functionality of the UI element concisely in one or two sentences.

Notice that your
6 description of the UI element should focus on the general function. For example, if the UI

element is used to navigate
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Figure 8: Contaminated datasets are constructed by inserting advertisements and whitening the
background of the original GUI screenshots.

Figure 9: The red boxed areas represent identical graphical controls and identical textual controls,
which can create ambiguity in the action history.

7 to the chat window with John, your description should not include the name of the specific
person. Just say:

8 "Clicking this area will navigate the user to the chat window". Never include the tag of the
9 UI element in your description. You can use pronouns such as "the UI element" to refer to the

element.

Listing 1: Click Document Template

1 I will give you the screenshot of a mobile app, the clickable UI element is labeled
2 with a letter 'c' and the number <ui_element> on the screen. The tag of each element is located

at the center of the
3 element. Clicking on this UI element is a necessary part of proceeding with a larger task,

which is to <task_description>.
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Figure 10: A collection of pop-up ads, collected from Google service official apps, third-party market
apps, and mobile apps in mainland China.

Figure 11: Appagent GUI labeled method.

4 In order to realize this larger task, you must first realize the current task <current_task_desc>
in current screenshot.
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5 Your task is to describe the functionality of the UI element concisely in one or two sentences.
Notice that your

6 description of the UI element should focus on the general function. For example, if the UI
element is used to navigate

7 to the chat window with John, your description should not include the name of the specific
person. Just say:

8 "Clicking this area will navigate the user to the chat window". Never include the tag of the
9 UI element in your description. You can use pronouns such as "the UI element" to refer to the

element.

Listing 2: Click Documentation Template

1 A documentation of this UI element generated from previous demos is shown below. Your
2 generated description should be based on this previous doc and optimize it. Notice that it is

possible that your
3 understanding of the function of the UI element derived from the given screenshots conflicts

with the previous doc,
4 because the function of a UI element can be flexible. In this case, your generated description

should combine both.
5 Old documentation of this UI element: <old_doc>

Listing 3: Refine Documentation Suffix

1 You are an agent that is trained to perform some basic tasks on a smartphone. You will be
given a

2 smartphone screenshot. The interactive clickable UI elements on the screenshot are labeled
with tags starting from "c1".

3 The interactive scrollable UI elements on the screenshot are labeled with tags starting from "s1
".The tag of each

4 interactive element is located in the center of the element. Every screenshot I've given you is a
screenshot after

5 executing the correct action.
6

7 You can call the following functions to control the smartphone:
8

9 1. click(element: str)
10 This function is used to click an UI element shown on the smartphone screen.
11 "element" is a tag assigned to an UI element shown on the smartphone screen.
12 A simple use case can be click(c5), which taps the UI element labeled with "c5".
13

14 2. input(text_input: str)
15 This function is used to insert text input in an input field/box. text_input is the string you want

to insert and must
16 be wrapped with double quotation marks. A simple use case can be text("Hello, world!"),

which inserts the string
17 "Hello, world!" into the input area on the smartphone screen. This function is usually callable

when you see a screenshot
18 about text inputing.
19

20 3. scroll(element: str, direction: str)
21 This function is used to scroll an UI element shown on the smartphone screen, usually a scroll

view or a slide bar.
22 "element" is a tag assigned to an UI element shown on the smartphone screen. "direction" is a

string that
23 represents one of the four directions: up, down, left, right. "direction" must be wrapped with

double quotation
24 marks.
25 A simple use case can be swipe(s21, "up"), which scroll up the UI element labeled with "s21".
26
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Table 8: Quality verification results. Crowdsourced annotations verified by agent professionals.

Metric Simple Complex Noisy Ambiguous

Annotation Step 5.62 8.21 12.74 7.53
Evaluation Step 5.57 8.07 12.69 7.43

Win Rate↑ 96.0 92.0 100.0 100.0
SE↓ 1.01 1.02 1.00 1.01

Table 9: App counts and proportions in full and subset datasets.

App Full Subset Full (%) Sampled (%)

BaiduMap 52 2 0.43 0.56
QQBrowser 447 13 3.72 3.67
anjuke 2773 82 23.11 23.16
baiduBrowser 682 20 5.68 5.65
bili 2658 78 22.15 22.03
kugou 943 28 7.86 7.91
medicinehelper 831 25 6.93 7.06
taptap 1570 46 13.08 12.99
vipshop 893 26 7.44 7.34
ximalaya 1151 34 9.59 9.60

27 <ui_document>
28 The task you need to complete is to <task_description>, to complete this task you should

perform current task
29 <current_task_desc>. Your past actions to proceed with this task are summarized as follows: <

last_act>
30 Now, given the documentation and the following labeled screenshot, you need to think and

call the function needed to
31 proceed with the task. Your output should include three parts in the given format:
32 Observation: <Describe what you observe in the image>
33 Thought: <To complete the given task, what is the next step I should do>
34 Action: <The function call with the correct parameters to proceed with the task.>
35 Summary: <Summarize your past actions along with your latest action in one or two sentences

. Do not include the
36 tag in your summary>
37 You can only take one action at a time, so please directly call the function.

Listing 4: Task Template

E.2 SAMPLED DATA QUALITY VERIFICATION
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Figure 12: The task distribution chart is sorted by the number of simple tasks in descending order.
The average steps for both simple and complex tasks in each app remain relatively balanced.

E.3 SAMPLING REPRESENTATIVENESS

To construct a representative evaluation subset, we perform stratified sampling from the full dataset,
with application-level proportions preserved. As detailed in Table 9, the sampled subset closely
mirrors the original distribution across a diverse range of applications. Despite a substantial reduction
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Benchmark Data Source Music Travel Shopping Office/Tools

Mobile-Bench Deng
et al. (2024)

Online log filtering 93 92 98 –

WebArena Zhou et al.
(2023)

Human-written +
template-generated

– – 88 90

AndroidWorld Rawles
et al. (2024)

Human-written +
template-generated

90 85 93 –

SMAN-Bench (ours) Real logs + template-
generated

92 96 90 93

Table 10: Comparison of benchmarks, data sources, and category coverage quality.

in data volume, the relative proportions of key apps (e.g., anjuke, bili, taptap) remain nearly identical
between the full dataset and the sampled subset (e.g., 23.11% vs. 23.16%, 22.15% vs. 22.03%). This
strong alignment demonstrates the effectiveness of our sampling strategy in maintaining distributional
fidelity. By preserving both frequent and less frequent app categories, the subset ensures that
evaluation results remain reflective of real-world deployment conditions. Consequently, this sampled
dataset serves as a compact yet reliable benchmark for downstream agent performance analysis.

E.4 HUMAN EVALUATION STUDY ON CONSISTENCY

To assess the consistency between our synthesized instructions and real user behavior, we conducted an
additional human evaluation study. The experimental setup is as follows: we invited four professional
colleagues who frequently use music, travel, shopping, and office applications, respectively. Each
evaluator was asked to assess 400 instructions sampled from these four domains. For comparison,
we also provided them with instruction sets of the same categories from other existing benchmarks.
The evaluation criterion was whether an instruction matches what they would naturally say when
interacting with their mobile voice assistant. The results are shown in Table 10.

E.5 DISCUSSION

Table 11: Qwen2-VL, Cogagent, and OS-Atlas evaluated on AITZ-Noise. Metric “Noisy” means
in-domain noisy step accuracy. More Experiments can be seen in Table 7.

Agent Training Data General Google App Install Web Shopping
Step. Acc Noisy SR Step. Acc Noisy SR Step. Acc Noisy SR Step. Acc Noisy SR

Supervised Fine-tuning Setting(LoRA)

CogAgent-18B AITW(CoaT) 40.4 - 11.5 38.1 - 11.3 45.2 - 17.3 39.1 - 13.4
Qwen2-VL-7B AITZ(CoaT) 36.1 - 8.3 39.1 - 11.2 50.9 - 20.7 41.8 - 15.2
Qwen2-VL-7B AITZ-Noise 39.8 98.0 11.7 42.3 99.0 16.6 60.9 100 30.4 41.5 99.0 13.3
OS-Atlas-7B AITZ-Noise 46.2 99.0 18.7 50.2 99.5 21.3 62.4 100 33.0 44.8 99.0 17.3

Supervised Fine-tuning Setting(Full)

Qwen2-VL-7B AITZ-Noise 43.2 96.0 15.6 46.2 97.5 19.8 64.2 98.5 35.6 50.9 98.0 22.3
OS-Atlas-7B AITZ-Noise 47.2 98.0 19.0 47.1 99.0 22.3 66.7 99.0 38.0 51.8 99.0 23.5

Solving in-domain noise through post-training. We are more focused on whether increasing the
proportion of noisy training data can address the in-domain noisy problem. As shown in Table 11,
Qwen2-VL, compared to the original AITZ training data, shows a Step.Acc improvement of 3.7%,
3.2%, 10.0%, -0.3% and SR improvement of 3.4%, 5.4%, 9.7%, -1.9% on the four sub-tasks. At the
same time, full parameter fine-tuning outperforms LoRA in overall results but performs slightly worse
than LoRA on noise step processing (an average of 1.5% lower). After training, the agent is able to
correctly handle the vast majority of noisy steps (with an accuracy greater than 97%), demonstrating
the effectiveness of training with noisy data.

Unusable noises. We exclude the keyboard-occlusion noise type from our evaluation. Under the
current evaluation protocol, VLM agents take both the GUI screenshot and the parsed HTML as input.
The handwriting keyboard occludes part of the on-screen content in the GUI image, whereas the
same content remains fully accessible in the HTML DOM, leading to inconsistent visibility signals
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and additional confounding. As shown in Fig. 13, in the dictionary app the words contour and trailer
are visually blocked by the handwriting keyboard in the GUI screenshot, but they are still exposed in
the parsed HTML.

E.6 BEHAVIORAL ANALYSIS OF GUI AGENTS.

To better understand the behavioral characteristics of current GUI agents, we conduct an analysis
along three major dimensions: repeated loops, hallucinated interactions, and navigation inconsistency.
These analyses cover both single-path and multi-path settings and are evaluated across a diverse set
of frontier VLM-based agents.

Analysis of Repeated Loops in Multi-Path Tasks. In our benchmark, single-path tasks follow a pre-
defined, deterministic sequence of actions; therefore, no repeated loops can occur. By contrast, multi-
path tasks allow free path selection, making repeated loops a natural indicator of unstable decision-
making or inefficient exploration. We adopt an n-gram–based repetition metric to characterize these
behaviors. For each trajectory, we compute: (1) Repeat Length: average length of repeated action
subsequences. (2) Repeat Count: average number of repeated subsequences. (3) Length-2 Count:
frequency of minimal oscillations (e.g., “next–back”).

Table 12: Repeated-loop statistics on simple tasks.

Model Repeat Length Repeat Count Length-2 Count

Qwen2.5-7B 2.0845 1.6901 1.16
Qwen2-72B 3.0048 2.4105 1.9657
GPT-4o 0.6351 0.4844 0.2375
GLM-4.1 1.6714 1.2571 0.5667

Table 13: Repeated-loop statistics on complex tasks.

Model Repeat Length Repeat Count Length-2 Count

Qwen2.5-7B 3.2210 2.4842 2.00
Qwen2-72B 4.8108 3.4241 3.42
GPT-4o 0.1194 0.0895 0.04
GLM-4.1 1.9142 1.2285 0.2766

Hallucinated Interactions. We further study interaction hallucination, where an agent predicts the
correct action type but executes an incorrect action instance. We quantify hallucination frequency
using:

Hallucination Ratio = 1− Step Accuracy
Type Accuracy

.

A large ratio indicates difficulty grounding predicted actions onto the GUI.

Table 14: Hallucination analysis across simple and complex tasks.

Model Cat. Type S. Step S. Halluc. S. Type C. Step C. Halluc. C.

CogAgent-18B Single 75.6 20.9 72.3 62.3 20.8 66.6
UGround-7B Single 73.0 39.5 45.8 73.8 36.0 51.2
UI-Tars-7B-dpo Single 75.3 41.8 44.4 75.9 37.8 50.1
OS-Atlas-7B-pro Single 82.1 51.5 37.2 83.5 50.6 39.4
Kimi-VL-A3B Single 75.1 21.7 71.1 61.8 21.5 65.2
DeepSeek-VL2 Single 72.6 38.8 46.5 73.1 35.2 51.8
UI-Tars-72B-dpo Single 94.3 64.2 31.9 96.0 63.5 33.8
GUI-OWL-7B Single 94.7 71.2 24.8 96.0 68.4 28.7
UI-TARS-1.5-7B Single 98.2 72.2 26.4 97.1 77.5 20.1
OpenCUA-32B Single 98.0 73.1 25.4 97.4 76.2 21.7
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html:<node index="0" text="contour" 
resource-id="com.eusoft.eudic:id/list_word" 
class="android.widget.TextView" 
package="com.eusoft.eudic" content-desc="" 
checkable="false" checked="false" 
clickable="false" enabled="true" 
focusable="false" focused="false" 
scrollable="false" long-clickable="false" 
password="false" selected="false" 
bounds="[114,1816][275,1881]" />

<node index="0" text="trailer" resource-
id="com.eusoft.eudic:id/list_word" 
class="android.widget.TextView" 
package="com.eusoft.eudic" content-desc="" 
checkable="false" checked="false" 
clickable="false" enabled="true" 
focusable="false" focused="false" 
scrollable="false" long-clickable="false" 
password="false" selected="false" 
bounds="[114,1970][233,2035]" />

Figure 13: A type of noise rendered unusable when the text and image information conflict.

Navigation Inconsistency. Navigation confusion is evaluated using:(1) StepAcc / SR: a high ratio
indicates correct micro-actions but poor global navigation. (2) Path Efficiency: ratio between actual
and optimal path lengths.

We report results on multi-path tasks:

Table 15: Navigation inconsistency analysis on multi-path tasks.

Model SE StepAcc S. SR S. StepAcc/SR StepAcc C. SR C.

InternVL2-40B 5.8 43.0 10.1 4.2 46.0 6.5
Qwen2-VL-72B 5.2 62.8 20.6 3.0 58.9 7.0
Qwen-VL-Max 5.9 67.6 12.6 5.3 63.1 9.6
GPT-4v 6.1 29.7 3.0 9.9 29.4 1.5
GPT-4o 5.3 61.8 19.8 3.1 61.7 16.5

E.7 TEST CASE STUDY

1. Common-Simple

2. Common-Complex

Figure 15 shows a Common-Complex case of SMAN-Bench and the GIAS results are as follows:

1. On the “My Gold” page of the mobile app, click the “Category” tab to enter the book
category page.

2. On the category page, select the “Plot” category under the “Boys” tab.
3. In the plot category, select the “Return of the Strong” category to enter the list of books in

this category.
4. In the “Return of the Strong” category, select the book “The First War God of the North.”
5. On the book details page of “The First War God of the North,” click the rating of 8.1 to view

the ratings and reviews.
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Instruction: Help me find the current popular audiobook content and browse 

different audiobook categories.

Step-by-step description:\n1. In the main interface of the music app, click the "Audiobook" 

option to enter the audiobook area.\n2. In the audiobook page, swipe up to browse different 

audiobook content.\n3. Continue swiping in the audiobook page to view more audiobook 

categories and content.\n

Figure 14: Common-Simple test case.

6. On the review page, click “Must-see masterpiece” to view specific book review details.
7. Enter the comment “Science Fiction” on the book review details page and submit it.

Task: Help me find and evaluate a book called “The First War God of the North”, view its ratings
and related reviews, and add your own feedback under specific reviews.

3. Noisy Data

4. AITZ-Noisy

5. Ambiguous Data

5. Slot-Template Based Instructions From the table 17, we can observe that the issue of slot-
based instructions sounding “programmatic” or “mechanical” indeed exists, and is predominantly
concentrated in complex tasks with a larger number of slots. Long and logically structured instructions
are difficult to generate through templates, as they typically require coherent dependencies between
earlier and later parts of the instruction.

5. Input words When collecting data, each app category is associated with a predefined query pool
containing 200 queries. These predefined inputs are aligned with the category and actual functionality
of the corresponding app. Table 18 presents two illustrative (and slightly reduced) examples from
these query pools.

F LIMITATIONS

Although multi-path validation similar to that on online machines was achieved on SMAN-Bench,
the diverse range of text inputs cannot be exhaustively covered, which differentiates it from online
machines. Advanced agents such as AutoGLM (Liu et al., 2024) and others deployed by smartphone
manufacturers could not be tested due to permission restrictions.

G USAGE OF LLM STATEMENT

This paper utilized an LLM to improve the clarity and fluency of the text.
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Figure 15: Common-Complex test case.

Instruction: Please help me find Beijing's air quality index for tomorrow on 

Caiyun Weather.

Figure 16: Noisy Data test case. The red shadow in the GUI screenshot are advertisements, pop-ups,
or tutorial noise steps.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 17: AITZ-Noisy test case. The red shadow GUI screenshot in the trajectory is artificially
inserted noise.

Table 16: Test cases study on SMAN-Bench-Ambiguous.

Ambiguous Instruction Find information about a movie

Q: Which app should be used? A: Use Douban.
Q: Which app does this page belong to? A: Douban.
Q: In which section should I search? A: Movies.
Q: Do you want to browse a specific rank-
ing?

A: Yes.

Q: For which time period? A: Upcoming releases.
Q: How should it be ranked? A: By popularity.
Q: Which movie do you want to check? A: The most popular upcoming movie.
Q: What information do you need? A: A complete summary.

Full Instruction Find the most popular upcoming movie on Douban

Ambiguous Instruction Find a midnight snack

Q: Which app should be used? A: Use Ele.me.
Q: Would you like to filter by specific snack
categories, speed,

A: Find new items from the nearest store that can

Q: Any other conditions? A: deliver within 30 minutes.
Q: Do you have a specific price range? A: No specific price range.
Q: Do you have a preferred cuisine or taste? A: No preference, just quick delivery within 30 minutes.
Q: Which section should you search? A: Food delivery.
Q: What are the speed requirements? A: Within 30 minutes.
Q: What are the distance requirements? A: Nearest store.

Full Instruction Find a new delivery item from the nearest store on Ele.me
that can deliver within 30 minutes.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Type Slot # Slot-template based LLM-vised Human-annotated Quality

Easy case 1 Open “QQ Browser”
for me.

Open the “QQ
Browser” mobile
app for me.

Open the “QQ Browser”
mobile app for me.

Good

Normal
case

2 Set an alarm for
“tomorrow morning”
at “7:30”.

Use the clock app
to set an alarm for
“tomorrow morning”
at “7:30”.

Please wake me up at
“7:30 tomorrow morn-
ing” using an alarm, and
keep the phone in sleep
mode before that.

Fair

Difficult
case

4 Book a flight
containing “this
week”, “Friday”,
and “Beijing” to
“Guangzhou”.

Book a direct flight
from Beijing to
Guangzhou on
“Friday this week”.

Book a direct flight
from Beijing to
Guangzhou this Friday,
prioritizing shortest
flight time and secon-
darily optimal price.

Poor

Table 17: Instruction complexity across slot count, generation method, and quality level.

App
Name

Category Pre-defined Words

Ctrip Travel [[Beijing to Shanghai, Chengdu round trip Seoul], [Harbin, Beijing, Japan, New
York, Chengdu], [Singapore 4-day tour, Tibet self-driving tour], [Direct flights,
Connecting flights], [High-end hotel chains, Budget hotels, Huazhu Club, Marriott,
Sheraton], [Popular attractions, Folk culture, Itinerary planning, Food sharing],
[Ancient town folk culture, Local festival events], [World heritage sites, National
5A scenic spots], [Ski resorts, Island vacation spots], [Food districts, Night mar-
ket exploration], [Hiking trails, Mountain camping sites], [Family-friendly routes,
Elder-friendly itineraries], [Budget travel tips, Premium customized travel], [Free-
travel pitfalls guide, Public transport guide], [New Year travel plans, Weekend short
trips], [Local transfer schemes, Best sightseeing order], [Must-eat lists, Street food
exploration], [Michelin restaurant recommendations, Seafood buffet picks], [Local
breakfast guide, Night-market snacks collection], [Café map, Dessert shop check-
ins], [Specialty food rankings, Niche food sharing]]

QQ
Music

Music [[Jay Chou songs, JJ Lin albums, G.E.M. hit singles], [Faye Wong classics, Beyond
classics, Mayday live versions], [New releases, Top singles chart, Pop hits chart],
[KTV hot songs, Bar singer selections], [Dance tracks, DJ mixes, Electronic beats],
[Wedding BGMs, Love confession songs, Romantic BGMs], [High-quality loss-
less, Spatial audio, Master tape quality], [Live versions, Remixes, Demo versions],
[Instrumental versions, Pure music, Humming tracks], [Copyright versions, Exclu-
sive tracks], [Song ID by listening, Melody-humming recognition], [Lyrics search,
Keyword-based song search], [Beat-based search, Mood-based search], [Cover-
image search, Audio-snippet search], [Official MVs, Live performances, HD stage
videos], [Music short videos, Trending edit BGMs], [Physical albums, Vinyl records,
Digital album purchase], [Viral challenge BGMs, TikTok hits, Xiaohongshu trending
music], [Gaming battle themes, eSports BGMs], [Study-focus white noise, ASMR
white noise], [Children’s songs, Early education music], [Yoga/meditation BGMs,
Relaxing natural sound effects]]

Table 18: Pre-defined word groups for Ctrip and QQ Music in English.
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