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Abstract

The performance of learning-based object detection algorithms, which attempt
to both classify and locate objects within images, is determined largely by the
quality of the annotated dataset used for training. Two types of labelling errors
are prevalent: objects that are incorrectly classified (categorization noise) and
inaccurate bounding boxes (localization noise); both errors typically occur together
in large-scale datasets. In this paper, we propose a distillation-based method to train
object detectors that takes into account both categorization and localization noise.
The key insight underpinning our method is that the early-learning phenomenon –
in which models trained on noisy data with mixed clean and noisy labels tend to
first fit to the clean data, and memorize the noisy labels later – manifests earlier
for localization noise than for categorization noise. We propose a method that uses
models from the early-learning phase (before overfitting to noisy data occurs) as
a teacher network. A plug-in module implementation compatible with general
object detection architectures is developed, and its performance is validated against
the state-of-the-art using PASCAL VOC, MS COCO and VinDr-CXR medical
detection datasets.

1 Introduction

(a) Localization noise (b) Categorization noise (c) Combined noise
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Figure 1: Comparison of label noise types in object
detection: (a) Localization only. (b) Categorization
only. (c) Combined localization and categorization
noise.

Object detection is a fundamental task in computer
vision that requires both accurate classification
and precise localization of objects within images.
Object detection is essential for autonomous driv-
ing [12, 54, 53], medical imaging [20, 58, 37] and
many other applications that rely on knowing both
the type and location of objects in images.

With few exceptions, methods for object detection
are now almost entirely based on neural network
models, e.g., [43, 46, 35, 6, 44, 26] trained on
large image datasets such as PASCAL VOC [11]
and MS COCO [30]. While network architectures
and algorithms for data processing and training
may still affect object detection performance, by and large the performance of object detectors is
determined mostly by the size and quality of the datasets [38].
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Figure 2: Overview of the ELDET workflow. The early-stage model is initially trained on a dataset
with noisy labels until memorization occurs at the tloc-th training iteration. Once the early-learning
phase terminates for the localization task, a teacher model (blue), initialized from the current state of
the student model (orange), is employed to guide subsequent training through knowledge distillation
with its parameters frozen. The teacher model is progressively updated using an exponential moving
average (EMA) of the student parameters after each iteration. Concurrently, the classification head
is actively updated with a small momentum prior to the memorization phase for classification at
iteration tcls.
Acquiring high-quality annotations for large-scale datasets is difficult. Even with recently available
methods for auto-labelling and label assist [64, 10], some manual effort is unavoidable, and human
labeling errors are often the main source of noisy labels [55, 52]. The two main types of labeling
errors are misclassification (categorization noise) and inaccurate bounding boxes (localization noise).
In large-scale, crowd-sourced annotations [13, 63] both errors frequently occur together; for instance,
labeling errors of the type shown in Figure 1 are quite common. As observed in [31, 3], the
performance of object detection models that are overfit to such incorrect labels can be significantly
degraded.

For the simpler task of image classification, numerous methods address noisy labels in [32, 34, 23,
25, 2, 27]. In comparison, only a few works address noisy labels in object detection, with the focus
typically on a single type of noise (categorization or localization) rather than both simultaneously. For
example, Liu et al. [36] propose a method to mitigate categorization noise by excluding unreliable
samples, while Bär et al. [3] introduce a localization label refinement network to correct box errors.
These approaches are limited in real-world settings where both types of noise often appear together.

In this paper, we propose a method to train object detectors that takes into account both categorization
and localization noise in the annotations. The key insight underpinning our method is the early-
learning phenomenon [32] – in which models trained on noisy data with mixed clean and false
labels have been observed to first fit to the clean data, and that the false labels are memorized later –
manifests differently for classification and localization errors. Specifically, we observe that models
tend to memorize localization error earlier than categorization noise.

Leveraging this observation, we propose an object detection training algorithm based on knowledge
distillation [19, 50], in which models from the early-learning phase (before overfitting occurs to noisy
data) act as teacher networks. Specifically, once the early-learning phase terminates, we copy the
model to create a frozen teacher network, while a student model continues training on the noisy
data. To detect the transition from early-learning to memorization, we fit an exponential parametric
curve to training metrics and identify the transition point when the curve’s gradient significantly
decreases [31, 33]. The teacher network is updated by an exponential moving average (EMA) of
the student’s parameters to train informative features from clean samples while maintaining robust
knowledge. We further adjust EMA momentum for the classification and localization heads to handle
the distinct early-learning termination points between these tasks effectively. This self-distillation
workflow [21] helps the current model focus on learning from clean data while avoiding overfitting to
noisy labels. The overview is illustrated in Figure 2.

We develop a practical implementation of our proposed method in the form of a plug-in module,
compatible with various object detection architectures including both anchor-based [46, 44] and
anchor-free models [49]. Our approach does not require architecture-specific modifications, making
it widely applicable. We evaluate our approach on PASCAL VOC and MS COCO with noise
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simulations. Additionally, we assess the domain robustness of our framework on the VinDr-CXR
medical detection dataset [39], demonstrating its adaptability to specialized domains. Extensive
experimental results demonstrate that our method significantly improves detection performance
in noisy environments, effectively handling simultaneous classification and localization noise in
real-world object detection tasks.

2 Related Works

Object Detection. Object detection has primarily evolved along two directions: anchor-based [35,
65, 43] and anchor-free detectors [22, 66, 6]. Anchor-based detectors such as RetinaNet [46] and
Faster R-CNN [44] use pre-defined anchor boxes as reference points to predict objects. In contrast,
anchor-free detectors like FCOS [49] remove the dependency on anchor boxes by directly predicting
object locations, which results in simpler architectures and reduced computational demands.

These methods can also be categorized into one-stage and two-stage detectors. One-stage detectors
(e.g., RetinaNet [46] and Generalized Focal Loss (GFL) [26]) aim to directly predict class probabilities
and bounding box coordinates from the entire image in a single shot. Two-stage detectors (e.g.,
Faster R-CNN [44] and Cascaded R-CNN [5]) first generate region proposals and then refine them
for accurate prediction. Given these significant architectural differences, methods that can effectively
integrate with both structures are clearly needed [57]. To this aim, our proposed approach is designed
as a plug-in module that can be readily incorporated into most existing architectures.

Transition from Early Learning to Memorization Under Noisy Annotations. Liu et al. [32]
observe the following early-learning phenomenon in deep learning models: during the initial stages of
training, model gradients are dominated by clean labels, while memorization of noisy labels emerges
in later stages. Based on this observation, they propose a regularization technique that leverages the
predictions of earlier models to limit the impact of noisy labels.

Building on this foundation, several works have aimed to develop robust models under noisy annota-
tions for image classification [34, 25, 2, 27]. Han et al. [15] introduce Co-teaching, in which two
networks are trained simultaneously using the small-loss instances selected by its peer network. Li
et al. [23] propose DivideMix, which models the distribution of losses to separate clean and noisy
samples, then applies semi-supervised learning techniques to utilize both sets effectively.

Extending the concept to segmentation, Liu et al. [33] introduce an Adaptive Early Learning Cor-
rection (ADELE) framework for the weakly-supervised setting. ADELE monitors class-specific
transitions from early-learning to memorization, refining noisy labels with pseudo-labels generated
from early-phase model predictions for each class. While segmentation and object detection both
require localization and classification, ADELE’s focus on pixel-wise annotations and class-specific
early learning is more suited to segmentation tasks where localization involves fine-grained pixel
boundaries. In contrast, object detection involves both the accurate localization of bounding boxes
and the classification of entire regions within the box, making it challenging to directly apply ADELE
to this domain. Thus, when applying early learning to object detection with noisy labels, what is
needed is a specialized approach that addresses the unique challenges of noisy labels.

Object Detection with Noisy Annotations. Some recent works that propose to train robust object
detectors under noisy labels include [48, 24, 7]. Liu et al. [36] propose an adaptive framework which
identifies reliable examples in noisy data by measuring instance-level domain properties and adjusting
the training accordingly. While their approach effectively mitigates the impact of domain shifts with
noise, it focuses primarily on domain adaptation scenarios and may not fully address the challenges
posed by noisy labels in general object detection tasks.

ORSOD [31] introduces a dynamic loss decay mechanism to enhance the robustness of oriented
object detection with noisy labels by adaptively reducing the influence of high-loss samples. However,
ORSOD primarily addresses categorization noise and does not account for localization noise, which
can significantly impact detection accuracy in real-world scenarios where both types of noise are
present. In contrast, Bär et al. [3] propose a Localization Label Refinement Network (LLRN) to
refine the noisy coordinates of bounding boxes. LLRN focuses on correcting localization errors
by training a separate network to predict more accurate bounding boxes, which are then used to
update the training data. While effective for localization noise, LLRN overlooks categorization noise,
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Figure 3: Evaluation results on training samples under localization (blue) or categorization noise
(green) with class-agnostic and ground-truth box allocation metric, respectively. Red stars mark
early-learning termination points for each metric of RetinaNet on PASCAL VOC with a noise ratio
of 40%.

which presents clear limitations in real-world scenarios. In contrast to prior works, our approach
simultaneously tackles both types of noise.

Knowledge Distillation. Knowledge distillation has been widely adopted to transfer informative
features from a high-performance model (teacher) to an efficient network (student) [19]. Several
works have proposed a distillation framework for object detection that improves the performance of
small detectors [8, 51, 59]. Wang et al. [50] propose an efficient approach named CrossKD, which
propagates the intermediate features of the student network to the heads of the teacher models. This
cross-head approach enables task-oriented knowledge transfer between networks, improving the
student’s performance without significantly increasing computational costs.

In self-knowledge distillation [14, 56, 61, 21, 59, 28], a model serves as both teacher and student,
gradually refining knowledge by jointly learning from the ground truth and past predictions of the
model itself. Works adopting the co-teaching framework [15, 4, 29] demonstrate that self-knowledge
distillation can address noisy labels by distilling knowledge from the model itself. While these
works have shown promising results, they often suffer from high computational costs due to training
multiple models simultaneously.

3 Priority in Memorization: Localization Over Classification

The dual-task nature of object detection—classification and localization—lead us to hypothesize
that detectors may prioritize the coupled objectives differently when training under noisy labels. To
investigate this phenomenon, we conduct empirical experiments to monitor how object detectors
internalize noisy labels across the two tasks.

Specifically, we adopt task-specific metrics to independently monitor detector performance while
isolating the impact of noise on each task. First, we evaluate detectors in a class-agnostic (CA)
manner, treating all objects as a single category. This evaluation prevents potential interference from
classification errors. For categorization noise, we replace the predicted bounding box coordinates
with the corresponding ground truth if the overlap between the two exceeds a certain threshold.
This ground-truth box allocation (GTBA) effectively alleviates the influence of localization errors,
allowing for a more accurate assessment of classification performance. Details are discussed in
Section 4.1.

As illustrated in Figure 3, our findings reveal a critical aspect of model behavior under noisy labels
for object detection. We observe that the memorization of localization noise occurs significantly
earlier than the memorization of categorization noise. This finding suggests that the model tends
to focus on spatial aspects during the early learning phase, while requiring longer training times for
classification. Based on this finding, we propose a technique that suppresses noise memorization
across the two tasks.
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4 Methods

In this section, we discuss our approach for training robust object detectors in the presence of noisy
labels. We exploit the early learning phenomenon [32] to address the challenges posed by both
localization and categorization noise.

4.1 Early-Learning and Memorization

As discussed in Section 3, the early learning phenomenon manifests differently in object detection for
the two key tasks of localization and classification. Specifically, models tend to memorize localization
noise earlier than categorization noise. To accurately capture any task-specific patterns, we employ
specialized metrics that independently monitor the training progress of each task.

For localization, we utilize a class-agnostic (CA) metric that treats all detected objects as belonging
to a single category (e.g., "object"). This evaluation isolates localization performance without the
confounding influence of classification errors, allowing us to monitor how the model learns spatial
information over time. For classification, we introduce a Ground Truth Box Allocation (GTBA)
approach. Inspired by Moon et al. [60], we replace the box coordinates of the model prediction with
the ground truth box if the Intersection over Union (IoU) between them exceeds a certain threshold
τ . This allocation effectively eliminates the impact of localization errors, enabling a more accurate
assessment of classification performance under noisy label conditions.

By employing these task-specific metrics, we can effectively discern the distinct dynamics of early-
learning across localization and classification tasks, and determine the appropriate moments to
intervene during training.

4.2 Early Learning Phase Detection

To detect the transition from early learning to memorization for each task, we follow Liu et al. [33] in
fitting an exponential parametric function to model the rate of change with respect to the performance
on noisy training sets over training:

f(t) = a
(
1− e−b·tc

)
, (1)

where t represents the training epoch, and a > 0, b ≥ 0, and c ≥ 0 are parameters that are fitted to
the observed data. This parametric form captures the performance trend of the model on the training
dataset.

To detect the transition point from early-learning to memorization, we monitor the relative change in
the derivative of the metric. Specifically, the transition is identified when the rate of change deviates
significantly from the initial learning gradient, as formalized by the following condition:

|f ′(1)− f ′(t)|
|f ′(1)|

> γ, (2)

where γ is a threshold capturing the deviation from the initial learning rate. When this condition is
met, it indicates that the model dynamics have shifted and it begins to memorize noisy annotations.
Using this method, we determine the transition epochs tloc and tcls for localization and classification
respectively, based on the metrics in Section 4.1.

4.3 Early Learning Guidance via Distillation

Knowledge Distillation. To mitigate the effects of noisy labels and prevent memorization, we
propose an early learning guidance mechanism. This mechanism involves using the model obtained
at the end of the early learning phase as a teacher network in a knowledge distillation framework [19,
50, 21]. The teacher network, which has not yet overfitted to noisy labels, guides the current student
model during subsequent training, helping it avoid overfitting to noise. The student model continues
training on the noisy dataset but receives guidance from the teacher model to focus on learning
from clean data. The distillation process is implemented by minimizing the divergence between
the predictions of the teacher model and the student model. Specifically, we define the knowledge
distillation loss:

Lkd = Lkd
cls + Lkd

loc, (3)
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where Lkd
cls and Lkd

loc are the distillation losses for classification and localization, respectively. The
total loss function for training the student model is then defined as

Ltotal = Ldet + λLkd, (4)
where Ldet is the original detection loss between the student predictions and the noisy ground-truth
annotations, and λ is a hyperparameter that balances the detection loss and the distillation loss.

To enhance the efficiency of the distillation process, we adopt the CrossKD framework [50]. CrossKD
allows for knowledge transfer between the teacher and student models by propagating the intermediate
features of the student network to the teacher’s detection heads. This cross-head approach enables
task-oriented knowledge transfer without significant computational overhead.

Teacher Model Update via EMA. To ensure that the teacher model remains a reliable source
of guidance throughout training, co-teaching frameworks [15, 29] that propagate gradients to both
teacher and student networks can be used. However, this dual-training approach incurs high com-
putational costs, as it requires training two models simultaneously. Instead, we update the teacher
model using an exponential moving average (EMA) of the student model’s weights without updating
it directly. The EMA update rule is defined as follows:

θteacher ← αθteacher + (1− α)θstudent, (5)
where θteacher and θstudent represent the weights of the teacher and student models, respectively, and
α is the decay rate. Typically α is set close to 1 to ensure that the teacher model updates slowly,
preserving its robustness to noisy labels. However, since the teacher model is initialized after the
early-learning phase ends for localization but before it concludes for classification, using a high decay
rate on the classification head can potentially hinder its performance. To preclude this possibility,
we apply a small decay rate of α = 0.1 specifically to the classification head during this period.
This enables faster updates for the classification head, which allows classification performance to
sufficiently converge before memorization occurs without compromising noise robustness.

Our framework combines EMA updates with knowledge distillation to enable effective teacher
guidance and robust training, mitigating noisy label effects in object detection.

5 Experiments

5.1 Experimental Settings

Noise Simulations. To evaluate the robustness of object detectors under noisy labels, we sim-
ulate both localization and categorization noise. For localization noise, we perturb the ground
truth bounding box coordinate while keeping its category [3]. Given a ground truth box b =
(xmin, ymin, xmax, ymax), the noisy box bnoisy is calculated as:

bnoisy =
[
xmin + δx ymin + δy xmax + δ′x ymax + δ′y

]⊤
. (6)

where δx, δy, δ
′
x, δ

′
y are sampled from uniform distributions scaled by box size with magnitude

controlled by ϵ = 0.5, corresponding to up to 50% perturbation relative to width or height.

For categorization noise, we randomly replace the true class label ci of each object with an incorrect
label c′i drawn uniformly from all other possible classes C \ {ci}:

c′i ∼ U(C \ {ci}). (7)
We apply these noise simulations to a random subset of the training data with various levels of 20%,
30%, and 40%.

Datasets. We conduct our experiments on PASCAL VOC [11] and MS COCO, which is a widely
used benchmark for object detection. Following the standard protocol [49], we use the VOC 2007
and VOC 2012 trainval sets (16,551 images) for training, and perform evaluation on the VOC
2007 test set (4,952 images). MS COCO is a large-scale dataset with 80 object categories, featuring
over 330K images and more than 2.5 million labeled instances. We use the COCO 2017 version,
training on the train split (118K images) and evaluating on the val split (5K images).

To further validate the robustness of our approach, we run experiments on VinDr-CXR medical object
detection dataset [40]. VinDr-CXR dataset consists of 15,000 chest X-ray images annotated with
14 classes, which represent various thoracic disease findings and abnormalities. For all datasets, we
apply the aforementioned noise simulations only to the training data while keeping the validation and
test sets with clean annotations.

6



Table 1: Comparison of performance under noise annotations on Pascal VOC reported as AP@50.
The results are shown for localization, categorization and combined noise with noise levels at 20%,
30%, and 40% as well as the clean setting. For each detector, the best AP scores are highlighted in
bold, with the second-best scores underlined.

Detector Method Clean
Localization Noise Categorization Noise Combined Noise

20% 30% 40% 20% 30% 40% 20% 30% 40%

RetinaNet

- 75.07 74.00 73.83 73.13 70.67 69.03 67.43 70.27 68.07 65.63
ORSOD [31] 75.41 74.17 73.97 73.43 71.13 68.90 67.33 70.37 66.57 65.47
ADELE [33] 74.69 73.67 74.10 71.03 71.03 69.23 67.07 70.13 68.20 65.87

ELDET (ours) 76.52 76.23 76.30 74.80 73.66 73.71 68.21 74.53 73.67 68.82

FCOS

- 72.23 71.00 70.67 70.60 67.37 64.97 62.63 66.57 63.33 60.13
ORSOD [31] 71.63 68.99 70.99 70.94 67.55 64.47 62.80 67.36 63.06 60.51
ADELE [33] 71.59 71.20 70.70 70.57 67.53 65.40 62.67 66.73 63.87 60.70

ELDET (ours) 72.00 73.40 72.80 74.10 68.43 66.13 63.73 68.67 65.03 62.43

Faster R-CNN

- 73.89 69.48 69.49 69.25 66.95 65.15 63.65 66.68 64.84 62.02
ORSOD [31] 70.77 68.91 68.94 68.88 66.40 64.84 63.40 65.85 64.24 63.01
ADELE [33] 71.48 69.15 68.54 68.91 67.76 65.65 63.59 68.83 65.28 62.61

ELDET (ours) 73.34 71.92 71.81 70.12 69.40 67.60 66.33 69.09 66.83 64.28

GFL

- 73.00 73.23 71.68 71.50 69.54 66.18 62.77 67.70 64.69 56.30
ORSOD [31] 74.11 73.87 73.12 72.51 69.92 67.71 63.64 68.49 64.73 61.28
ADELE [33] 73.05 73.82 73.46 72.29 69.14 67.49 64.19 68.41 66.04 62.71

ELDET (ours) 75.28 75.23 74.57 74.44 69.68 67.57 65.35 69.82 66.77 63.57

Table 2: Comparison of performance under noise annotations on MS COCO val2017, reported as
AP@50. The results are shown for localization, categorization and combined noise with noise levels
at 20%, 30%, and 40% as well as the clean setting. The best AP scores are highlighted in bold.

Detector Method Clean
Localization Noise Categorization Noise Combined Noise

20% 30% 40% 20% 30% 40% 20% 30% 40%

RetinaNet - 44.41 43.97 42.61 43.12 41.86 40.66 39.90 42.61 42.33 41.95
ELDET (ours) 45.95 44.96 44.87 44.74 43.51 41.98 40.31 44.51 43.23 42.99

FCOS
- 44.02 44.34 44.36 43.11 41.91 41.73 39.26 43.16 42.66 42.13

ELDET (ours) 45.89 45.17 44.94 44.83 43.36 42.66 41.02 44.39 43.70 43.59

Faster R-CNN
- 43.55 42.80 42.86 42.48 40.36 39.26 37.21 40.91 40.83 39.57

ELDET (ours) 44.79 44.00 43.51 43.49 41.42 39.47 38.20 42.72 42.06 40.30

GFL
- 47.24 47.19 46.08 45.17 45.32 44.53 43.31 46.30 45.58 44.81

ELDET (ours) 49.56 48.77 47.43 46.64 47.05 45.59 44.78 47.47 46.93 45.58

Baselines. We compare ELDET with two baselines:

• ORSOD [31]: ORSOD addresses categorization noise by dynamically excluding samples with
high classification loss during training, which prevents the model to memorize noisy samples with
large loss.

• ADELE [33]: We extend the role of ADELE to object detection under noisy annotations. Specifi-
cally, detectors begin to be supervised by the pseudo-label from the early-models instead of raw
noisy labels.

5.2 Experimental Results

We use the mean Average Precision at an Intersection over Union (IoU) threshold of 0.5 (AP@50)
for PASCAL VOC and COCO, and 0.4 (AP@40) for VinDr-CXR. To validate the compatibility of
our method with various architectures, we conducted experiments with different detectors including
RetinaNet [46], FCOS [49], Faster R-CNN [44] and GFL [26].

PASCAL VOC. Table 1 presents a quantitative comparison of ELDET against baseline methods
on PASCAL VOC. ELDET consistently outperforms the comparison models across all scenarios.
Notably, ELDET using the RetinaNet significantly surpasses all existing baselines with a large
gap under the combined noise condition with a 40% noise level. This substantial improvement
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Figure 4: Qualitative results of ELDET on the training set of PASCAL VOC, where green boxes
represent the predictions of our method and red boxes indicate the noisy annotations. Our model
effectively avoids memorizing both localization and categorization noise.

Table 3: Comparison of detection performance
under various noise levels on VinDr-CXR. Best
AP scores are highlighted in bold.

Detector ELDET
Combined Noise

20% 30% 40%

RetinaNet – 29.54 27.44 26.75
✓ 31.09 29.61 31.06

FCOS
– 28.51 27.09 25.32
✓ 34.40 32.55 32.74

Faster R-CNN
– 30.97 29.16 27.87
✓ 32.91 32.52 31.61

GFL
– 29.06 26.76 26.65
✓ 36.29 33.90 27.60

Table 4: Ablation study of task-specific metrics
on PASCAL VOC with noise ratio of 40% using
RetinaNet.

Class-agnostic Ground-truth
Box Allocation AP

(1) – – 66.13
(2) ✓ – 67.93
(3) – ✓ 65.70
(4) ✓ ✓ 68.82

underscores superior capability of ELDET to simultaneously handle both types of noise. Qualitative
results are illustrated in Figure 4

In contrast, ORSOD and ADELE exhibit limited effectiveness in managing both types of noise.
According to the original experimental results of ORSOD, it demonstrate negligible performance
gain when integrated with certain architectures (e.g., ReDet [16]), which indicates the low robustness
of dynamic loss decay across different detectors. On the other hand, ADELE, which is initially
designed for weakly-supervised settings where the ground truth mask quality is notably low, corrects
the ground truth with early-learning phase predictions when memorization begins. However, this
substitution can occur performance drop in our setting because direct supervision from early-phase
predictions may prevent the model from effectively learning informative features.

COCO. Table 2 shows that incorporating ELDET consistently improves AP on the MS COCO
dataset compared to the baseline without it. These gains on a large-scale benchmark underscore the
robustness of our method and demonstrate its ability to generalize to complex, real-world data.

VinDr-CXR. As shown in Table 3, ELDET maintains its superior performance over the baselines on
VinDr-CXR dataset. It is notable that ELDET boosts the performance of FCOS from 25.32 to 32.74
under a 40% combined noise condition. It shows the robustness and adaptability of our proposed
method in challenging settings with complex noise patterns in medical imaging. By effectively
handling noisy annotations in multi-domain, ELDET showcases its potential for widespread scenarios
across various fields where annotation noise is prevalent to happen.

Ablation Study on Task-Specific Early Learning. We conduct an ablation study on PASCAL
VOC with a 40% noise ratio using RetinaNet to evaluate the contribution of each metric discussed
in Section 4.1. Table 4 summarizes the results under different configurations: (1) without any task-
specific metric, (2) using only the class-agnostic (CA) metric for localization, (3) utilizing only the
ground-truth box allocation (GTBA) metric for classification, and (4) leveraging both CA and GTBA
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Figure 5: Performance of RetinaNet (green) com-
pared to the setting with ELDET (blue) on the
PASCAL VOC training samples. Both models
are trained on datasets with 20% combined noisy
labels yet evaluated on the original clean anno-
tations. Solid lines represent evaluation on the
samples with noisy labels during training, while
dashed lines represent evaluation on clean data.

Table 5: Accuracy (%) of noisy label filtering
by comparing predictions on noisy samples with
the clean labels, evaluated on PASCAL VOC
training set using RetinaNet with 20% noise.

ELDET
Noise Type

Localization Categorization

- 73.74 22.66
✓ 80.98 74.71

Table 6: Ablation study of exponential moving
average (EMA) of student parameters to update
the teacher network. The results are evaluated on
PASCAL VOC using RetinaNet with 40% noise.

EMA
Noise Type

Localization Categorization Combination

- 73.73 66.90 66.03
✓ 74.53 73.67 68.82

metrics. Our final setting with both techniques achieves the best performance, which indicates that
task-specific monitoring effectively contributes to robust learning under noisy conditions. The CA
manner mitigates the impact of categorization noise, while the GTBA evaluation safeguards detectors
against localization noise. The proposed combination of metrics enable ELDET to successfully detect
the transition from the early-learning phase to memorization for each task respectively.

Robustness to Noisy Annotations. Figure 5 illustrates the performance comparison between
RetinaNet and our setting with ELDET when trained on noisy PASCAL VOC but evaluated on the
clean labels after each epoch. For example, the solid blue line denotes the evaluation-with-clean
performance of ELDET on training-with-noise samples with 20% noise ratio. This experiment
assesses the ability to resist overfitting to noisy annotations and generalize to clean labels. RetinaNet
without ELDET shows a significant drop on evaluation-with-clean for training-with-noise samples
(solid green line), which implies the occurrence of memorization to the noisy labels. In contrast,
ELDET with high accuracy throughout training demonstrates the robustness in avoiding memorization
of noise and its effectiveness in generalizing to clean label even unseen while training. A slight
performance drop at the beginning of distillation is observed, which reflects the typical transient
instability in early distillation stages caused by conflicting supervision and the delayed stabilization
of the EMA teacher.

Noisy Annotation Filtering for Data Curation. In addition, we probe the effectiveness of ELDET
in validating the quality of annotations on PASCAL VOC using RetinaNet with a noise ratio of 20%.
To measure how successfully models identify noisy labels, we compare the model predictions with
the original clean ground truth on noisy samples.

In the case of categorization noise, a prediction is considered to be correct if the class prediction is
same with the original category. For localization noise, a prediction is valid if IoU compared to the
clean box surpasses a threshold of 0.65. The results in Table 5 reveal that detectors with ELDET not
only produce accurate predictions on noisy data but also demonstrate a strong capacity to distinguish
between clean and noisy annotations. This capability highlights the potential utility of ELDET for
identifying and filtering out noisy labels, which suggests practical applications in data curation or
data cleaning.

Effect of EMA on Knowledge Distillation. We evaluate the impact of the exponential moving
average (EMA) on our framework on PASCAL VOC using RetinaNet with a noise ratio of 40%.
The teacher network without EMA is not updated after early-learning phase with frozen parameters.
Table 6 shows that incorporating EMA significantly improves performance across all noise settings.
The improvement in the case of categorization noise shows that the teacher network suffers from
limited classification performance in the early-learning phase but that EMA effectively overcomes
this limitation. These results underscore the effectiveness of EMA in enhancing the teacher guidance.
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Table 7: Performance of ELDET on Deformable
DETR under combined noise conditions on PAS-
CAL VOC (AP@50).

Method Clean 20% Noise 30% Noise 40% Noise

Baseline 74.27 68.60 65.39 62.52
ELDET 74.52 68.82 65.84 62.91

Table 8: Performance comparison of DINO
with query denoising vs. ELDET on PASCAL
VOC (40% noise ratio, AP).

Method Clean Loc. Cat. Combined

Query Denoising 75.37 74.26 67.16 66.26
ELDET 76.72 75.63 67.83 68.29

Table 9: Hyperparameter sensitivity analysis for our proposed method under different noise conditions.
Results are evaluated on the PASCAL VOC dataset using RetinaNet with 40% noise. The table
reports performance across various values of τ and γ. The best AP scores are highlighted in bold,
with the second-best scores underlined.

τ γ
Noise Type

Localization Categorization Combination

0.1 0.9 74.53 73.67 68.82
0.3 0.9 76.67 70.55 73.46
0.5 0.9 75.41 67.71 66.68
0.1 0.7 76.11 73.07 73.39
0.1 0.8 75.69 73.39 71.81

Transformer-based Detectors. To further demonstrate the generality of ELDET as a plug-and-play
module across different architectures, we evaluate it on transformer-based detectors. The results
verify ELDET’s effectiveness in transformer-specific denoising frameworks and its robustness under
challenging noisy conditions. For Deformable DETR [67] on PASCAL VOC with combined noise
(as shown in Table 7), ELDET consistently improves performance over the baseline across all noise
levels, highlighting its capability to strengthen DETR-based models. Furthermore, to benchmark
against native transformer denoising, we replace DINO’s query denoising [62] with ELDET and
evaluate on PASCAL VOC at 40% noise across all scenarios (Table 8). ELDET surpasses the native
method under every noisy condition, with a notable improvement under combined noise (68.29
vs. 66.26 AP). These results validate ELDET’s strong adaptability to label noise and confirm its
seamless integration into transformer-based detectors such as DINO, extending its applicability
beyond convolutional architectures.

Impact of Hyperparameters We conduct ablation studies on two key hyperparameters in our
ELDET framework: the IoU threshold τ used in the Ground Truth Box Allocation (GTBA) process,
and the deviation threshold γ used for early-learning phase detection. Table 9 presents the Average
Precision (AP) scores under different settings of τ and γ across localization, categorization, and
combined noise types. While certain configurations like τ = 0.3 and γ = 0.9 achieve the highest AP
under localization and combined noise, the first line with τ = 0.1 and γ = 0.9 provides strong and
balanced performance across all noise conditions.

6 Conclusion

This paper introduced ELDET, a self-knowledge distillation framework that leverages the early-
learning phenomenon to address both localization and categorization noise in object detection. By
using early-stage models as teacher networks, ELDET effectively mitigates the memorization of noisy
labels, resulting in improved robustness and performance across diverse datasets such as PASCAL
VOC, MS COCO and VinDr-CXR. The proposed framework is compatible with various detection
architectures, making it practical for real-world applications. Future research could explore extending
ELDET to video object detection or integrating it into active learning pipelines for automated data
curation.
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Justification: The main claims made in the abstract and introduction are fully supported by
the technical contributions and experimental results presented in the paper.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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Question: Does the paper discuss the limitations of the work performed by the authors?
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only tested on a few datasets or with a few runs. In general, empirical results often
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Justification: [NA]
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all necessary information to reproduce the main experimental
results that support our claims, including model architecture, training schedule, hyperparam-
eters, and dataset.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We intend to release anonymized code with the camera-ready version. At
submission time, the code is not included in the supplementary material.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include all experimental details in the supplementary material, such as
hyperparameter values, implementation-specific choices (e.g., optimizer, batch size, number
of training epochs).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance
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Answer: [No]
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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the experiments?

Answer: [Yes]
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Answer: [Yes]

Justification: We discuss potential future directions stemming from our work.
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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11. Safeguards
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Answer: [NA]

Justification: Our work does not involve the release of models or datasets
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all external assets used in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We plan to release the new assets introduced in this work, along with proper
documentation, at the time of the camera-ready submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve any human subjects or crowdsourcing experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve any experiments with human subjects, and
therefore does not require IRB or equivalent ethical approval.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Limitations

While our framework demonstrates robust empirical gains under controlled noisy settings, several
limitations remain. First, the foundational assumption of our method that localization and categoriza-
tion exhibit temporally distinct early learning behaviors is based on empirical observations. Although
supported by quantitative trends, a theoretical explanation of this phenomenon is beyond the scope of
this work and remains an open question. Second, the categorization noise is synthetically generated
by uniformly sampling incorrect labels from the set of classes excluding the ground truth. While
this is a common strategy in prior work, it does not reflect the structured or semantically biased
errors that typically arise in real-world annotation processes. Third, the detection of early-learning
phase transitions is performed using curve fitting and gradient slope change, following the heuristic
methodology proposed in prior work [33]. However, this procedure is sensitive to the choice of a
hyperparameter such as the slope threshold γ, which can alter the estimated transition point and
downstream performance. These limitations underscore the need for more realistic noise modeling,
theoretically grounded dynamics analysis, and robust, data-adaptive mechanisms for to identify
learning phase transitions.

Table 10: Training resource comparison (training time and GPU memory usage) across various
detectors and methods.

Dataset Detector Method Training time (hours) Memory Usage (GB)

PASCAL VOC
(20 classes)

RetinaNet

- 2.51 11,418
ORSOD [31] 3.96 12,135
ADELE [33] 4.11 11,496

ELDET 4.23 17,967

FCOS

- 2.13 10,507
ORSOD [31] 3.67 10,666
ADELE [33] 4.05 10,631

ELDET 3.59 14,892

MS COCO
(80 classes) RetinaNet

- 8.03 11,418
ELDET 15.43 17,967

B Compute Resources

All experiments were conducted using GPUs with 24GB VRAM (NVIDIA RTX 3090 and 4090). Our
framework maintains a teacher model that is initialized at the end of the localization early learning
phase and subsequently updated via exponential moving average (EMA) of the student model’s
parameters. Unlike co-teaching methods that require simultaneous gradient updates to two networks,
our approach avoids full dual-model training. Instead, it only requires forward passes through the
frozen teacher resulting in moderate memory and compute overhead roughly equivalent to running a
single training model alongside a lightweight inference model.

To quantitatively assess computational efficiency, we measured both total training time and GPU
memory usage across different configurations. One computational consideration in our setup is the
monitoring of early-learning dynamics. To detect phase transitions in learning, we compute validation
metrics on the entire training set at every epoch. This process, while crucial to identify transition
points accurately, incurs additional time cost especially for large-scale datasets such as MS COCO
[30]. This behavior is primarily due to the need for per-epoch validation over the entire training set
to detect the early-learning transition point—a step required by all these methods rather than being
specific to ELDET.

As shown in Table 10, both ADELE and ORSOD exhibit training time increases comparable to
ELDET, primarily due to this per-epoch validation process shared across methods. Although ELDET
shows a slightly larger memory footprint, this is mainly due to the additional teacher network used
for knowledge distillation. Since the teacher model remains frozen and participates only in forward
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passes without backpropagation, the actual computational overhead remains modest. Overall, the
additional cost of ELDET is comparable to that of other robust-learning frameworks and is acceptable
given the consistent performance improvements observed across datasets.

C Detailed Experimental Settings

C.1 Implementation Details

Our proposed method is implemented using the MMDetection framework [9] built on PyTorch [42].
All input images are resized to 512× 512 for consistency. Training is conducted using Stochastic
Gradient Descent (SGD) with a momentum of 0.9 and a weight decay of 10−4. The learning rate
follows a step schedule, decreasing by a factor of 10 at predefined epochs, except for MS COCO [30]
where only a linear scheduler is used. For PASCAL VOC [11] and MS COCO, the learning rate is set
to 0.01, and the training spans 12 epochs with a batch size of 32. In contrast, for VinDr-CXR [40], the
learning rate is set to 0.005, and the training spans 20 epochs with a batch size of 16. We exclude the
“No finding” class in VinDr-CXR data for fair comparison of noisy training scenario. All detectors
are initialized with a ImageNet [47] pre-trained ResNet-50 [17], and trained on NVIDIA GPUs.

C.2 ELDET Hyperparameter Details

For the ground-truth box allocation (GTBA), we set the IoU threshold τ = 0.1, replacing predicted
box coordinates with ground-truth locations when the IoU exceeds τ . We consider the model to begin
memorizing noisy labels when the relative change in the derivative of the performance metric exceeds
the criterion with γ = 0.9. The exponential moving average (EMA) momentum α is set to 0.999
for the overall model and adjusted to αcls = 0.1 for the classification head during the period after
localization memorization and before memorizing categorization noise. Other hyperparameters are
same as the original setting (e.g., the loss weight λ of MMDetection†.

C.3 Baselines

ORSOD [31] tackles categorization noise by adopting a dynamic decay mechanism to progressively
down-weight the top-k samples with the highest classification loss. The dynamic loss decay function
is defined as

LDLD =

{
Lcls(X), if ti < tel,

α · Lcls(Xk) + Lcls(Xr), if ti ≥ tel,
(8)

where Lcls is the classification loss, Xk and Xr represent the top-k and remaining samples, respec-
tively, ti denotes the current training epoch, and tel is the early-learning termination epoch. The decay
factor α is defined as:

α = exp

(
− c

ti − tel

)
, (9)

where c is a constant controlling the rate of decay (set to 10 in our experiments). This adaptive
mechanism ensures that high-loss samples have reduced impact in later training epochs, which
promotes more stable and noise-resilient learning. However, a limitation of ORSOD is that it only
suppresses the classification loss without explicitly addressing localization noise in the annotations,
which may limit its effectiveness in handling noisy box-level annotations.

ADELE [33] was originally developed for semantic segmentation tasks with noisy annotations,
leveraging the observation that early-learning concludes at different times for each class. By updating
the labels of pixels where the model’s prediction score exceeds a certain threshold (e.g., 0.8) at the
class-specific early-learning endpoints, ADELE effectively refines noisy annotations, enabling robust
segmentation performance even in the presence of noise. To adapt ADELE for object detection, we
modified the approach to account for the inherent differences between segmentation and detection
tasks. Instead of utilizing class-specific early-learning endpoints, we defined a unified early-learning
endpoint across all classes. At this point, model predictions are used to refine annotations by replacing

†https://github.com/open-mmlab/mmdetection

2

https://github.com/open-mmlab/mmdetection


Table 11: Evaluation on the compatibility with various knowldege distillation techniques. The results
are evaluated on PASCAL VOC using RetinaNet with 40% noise. The best AP scores are highlighted
in bold, with the second-best scores underlined.

KD
Noise Type

Localization Categorization Combination

- 70.27 68.07 65.63
CrossKD [50] 74.53 73.67 68.82

FGD [59] 73.11 67.85 66.61
OFD [18] 73.36 67.50 66.03

noisy labels with more reliable predictions that meet strict criteria: (1) a prediction score of at least
0.5, and (2) an Intersection-over-Union (IoU) exceeding 0.5 with the corresponding ground-truth
bounding box. For such cases, both the coordinates and the class label of the original ground truth
are updated to match the model’s prediction.

C.4 Knowledge Distillation Loss Functions

We adopt the knowledge distillation loss functions used in CrossKD [50] to guide the student models
in mimicking the un-memorized knowledge of teacher models. For RetinaNet [46], we use the
Quality Focal Loss [26] for classification and the Generalized IoU Loss [45] for localization. In the
case of FCOS [49], the classification loss is implemented with Focal Loss [46], while the localization
loss employs IoU Loss. For Faster R-CNN [44], the classification loss is based on KL Divergence,
and the localization loss uses L1 Loss. Lastly, for GFL [26], the classification loss is also Quality
Focal Loss, but the localization loss relies on KD Divergence Loss. These loss functions ensure
effective knowledge transfer by aligning the outputs of the student models with those of early-phase
teacher models.

D Additional Experimental Results

D.1 Compatible with Different Distillation Techniques

To demonstrate the flexibility of our ELDET framework, we investigate its compatibility with various
knowledge distillation techniques beyond CrossKD [50]. Specifically, we integrate FGD [59] and
OFD [18] into our framework and evaluate their performance under different types of noise.

As shown in Table 11, integrating FGD and OFD into our framework yields improvements over
the baseline without distillation under localization and the combined noise. These improvements
indicate that our ELDET framework is compatible with different KD techniques and can benefit
from them. However, CrossKD consistently outperforms the other distillation methods across all
noise types. These results suggest that while our framework can effectively incorporate various KD
methods, CrossKD provides the most substantial improvements in our experiments. This superiority
may be attributed to CrossKD’s ability to facilitate task-oriented knowledge transfer without only
focusing on transferring fine-grained feature embeddings from the teacher. Anagnostidis et al. [1]
found that neural networks are tolerant to label noise except in the last layer, which indicates the
vulnerability of the later layers of detectors to noisy annotations. In other words, direct distillation
from the classification head of the teacher to that of the student using CrossKD can mitigate the
memorization of noisy labels unlike other approaches.

D.2 EMA Decay Rates

We analyze the impact of the momentum α, αcls and the exponential moving average (EMA) update
cycle of the student parameters for the update of the teacher network. Table 12 shows that a small
momentum of α = 0.9 reduces performance, suggesting that a strong momentum is crucial to
maintaining the stability of the teacher network. Similarly, setting αcls = 0.999 or αcls = 1.0 (i.e.,
updating the classification head slowly before early-learning terminates for classification task) results
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Table 12: Evaluation of the EMA (Exponential Moving Average) strategy with varying parameters
α, αcls, and interval settings. Results are reported as AP@50 on the PASCAL VOC dataset using
RetinaNet with 40% combined noise. The table highlights the performance impact of different EMA
configurations. The best AP scores are highlighted in bold, with the second-best scores underlined.

α αcls Interval AP@50

0.999 0.1 1 68.82
0.999 0.1 3 68.60
0.999 0.1 5 68.52
0.9 0.1 1 65.54

0.999 0.999 1 66.88
1.0 1.0 1 66.03

Table 13: Detection performance comparison under various noise levels on Oxford Pets using
RetinaNet. Best AP scores are highlighted in bold.

ELDET Noise Level Localization Noise Categorization Noise Combined Noise

- 30% 89.30 79.40 84.30
✓ 30% 89.90 83.60 88.50
- 50% 81.00 76.80 66.50
✓ 50% 85.90 78.60 79.50
- 70% 79.10 71.40 64.00
✓ 70% 83.10 80.10 85.90

in lower AP. This confirms that using a smaller decay rate αcls = 0.1 for the classification head is
important to allow it to adapt more quickly, preventing the teacher from lagging behind the student’s
learning on classification tasks.

D.3 Qualitative Examples on VinDr-CXR

Figure 6 presents a qualitative comparison of the detection results of the baseline FCOS [49] and
our proposed ELDET method on the VinDr-CXR [40] training set. This comparison underscores
the inherent challenges associated with localization and categorization anomalies in medical images.
Despite the presence of noisy labels, the detector utilizing ELDET demonstrates significantly better
alignment with the ground-truth annotations compared to the baseline FCOS. It highlights the effec-
tiveness of our method in mitigating the adverse effects of both localization and categorization noise.
Furthermore, this result emphasizes the robustness of ELDET in diverse domains, demonstrating its
applicability not only to real-world images but also to the challenging domain of medical imaging.

D.4 Results on Smaller Datasets

Although we have already evaluated our method on the relatively small dataset, VinDr-CXR [40],
which contains more than ten thousand samples, we further investigated whether the proposed
approach remains effective on smaller datasets. We conducted additional experiments on the Oxford
Pets [41], which consists of 27 classes with approximately 200 images for each class. As shown in
table 13, applying ELDET led to consistently higher performance compared to the baseline without
ELDET.

D.5 Distinctive Early Learning Termination.

We further investigate when the model begins to memorize noisy annotations for localization and
classification tasks respectively. As reported in Table 14, models tends to memorize localization noise
significantly earlier compared to categorization noise on PASCAL VOC and COCO with various
detectors. This observation outlines the necessity of our task-specific guidance mechanism which
indicates the appropriate moment to initiate teacher-student distillation for each task.
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Table 14: Termination epochs of the localization (tloc) and classification (tcls) early-learning phases,
and their difference.

Dataset Detector Noise Level tloc tcls Difference

PASCAL VOC
(20 classes)

RetinaNet
20% 3 7 +4
30% 4 4 +0
40% 4 11 +7

FCOS
20% 3 9 +6
30% 4 10 +6
40% 3 11 +8

Faster R-CNN
20% 7 8 +1
30% 4 11 +7
40% 3 4 +1

GFL
20% 3 8 +5
30% 3 9 +6
40% 6 12 +6

Average - 3.92 8.67 +4.75

MS COCO
(80 classes)

RetinaNet
20% 8 8 +0
30% 4 6 +2
40% 5 9 +4

FCOS
20% 4 8 +4
30% 4 8 +4
40% 3 8 +4

Faster R-CNN
20% 6 11 +5
30% 5 11 +6
40% 6 12 +6

GFL
20% 7 12 +5
30% 8 8 +0
40% 4 12 +8

Average - 5.42 9.42 +4
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Ground truth Baseline ELDET (ours)

Figure 6: Qualitative Analysis of FCOS on the VinDr-CXR training set. Blue boxes denote model
predictions, while red boxes with bold outline represent ground truth annotations. The left panel
illustrates the original clean annotations, the middle panel displays predictions from the baseline
FCOS, and the right panel shows model outputs with our proposed ELDET. Dotted red boxes
in the middle and right panels highlight noisy labels encountered during training. Our proposed
ELDET method demonstrates superior capability in mitigating the effects of both localization and
categorization noise.
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