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ABSTRACT

Hopfield networks are associative memory (AM) systems, designed for storing
and retrieving patterns as local minima of an energy landscape. In the classical
Hopfield model, an interesting phenomenon occurs when the amount of train-
ing data reaches its critical memory load — spurious states, or unintended stable
points, emerge at the end of the retrieval dynamics. These particular states often
appear as mixtures of the stored patterns, leading to incorrect recall. In this work,
we examine diffusion models, commonly used in generative modeling, from the
perspective of AMs. The training phase of diffusion model is conceptualized as
memory encoding (training data is stored in the memory). The generation phase is
viewed as an attempt of memory retrieval. In the small data regime the diffusion
model exhibits a strong memorization phase, where the network creates distinct
basins of attraction around each sample in the training set, akin to the Hopfield
model below the critical memory load. In the large data regime, a different phase
appears where an increase in the size of the training set fosters the creation of
new attractor states that correspond to manifolds of the generated samples. Spu-
rious states appear at the boundary of this transition and correspond to emergent
attractor states, which are absent in the training set, but at the same time still have
distinct basins of attraction around them. Our findings provide a novel perspective
on the memorization-generalization phenomenon in diffusion models via the lens
of AMs, which supports the view of diffusion models as AMs operating above the
critical memory load.

1 INTRODUCTION

Hopfield networks are the simplest energy-based models that conceptualize memories as attractor
states corresponding to local minima of the energy function, and the memory retrieval as dynamical
convergence towards those attractor states (Hopfield, 1982; 1984; Amari, 1972). Recently, they
have seen a resurgence of interest due to advances in their memorization capacity. Notably, Dense
Associative Memories (DenseAMs), which are extensions of Hopfield networks with super-linear
memory capacity (Krotov & Hopfield, 2016; 2018), have paved the way for more sophisticated
associative memory (AM) systems (Demircigil et al., 2017; Agliari et al., 2020; Agliari & De Marzo,
2020; Krotov, 2021; Albanese et al., 2022; Millidge et al., 2022; Saha et al., 2023; Hoover et al.,
2023a; Karakida et al., 2024; dos Santos et al., 2024; Albanese et al., 2024) — driven in part by their
connection to the attention mechanism in transformers (Ramsauer et al., 2021; Krotov & Hopfield,
2021; Hoover et al., 2023a).

Simultaneously, generative diffusion models (Sohl-Dickstein et al., 2015) have gained considerable
popularity, due to their flexibility and accuracy in modeling high-dimensional distributions for a
variety of domains —such as image generation (Ho et al., 2020; Song et al., 2020; 2021), audio
(Chen et al., 2020; Kong et al., 2020; Liu et al., 2023), video synthesis (Ho et al., 2022; Singer
et al., 2022; Blattmann et al., 2023; Brooks et al., 2024), and other scientific applications. However,
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despite their effectiveness, diffusion models pose challenges related to privacy and security, as con-
cerns grow about their tendency to replicate training data (Somepalli et al., 2023a;b; Carlini et al.,
2023). Such matters consequently emphasize the need for further understanding of memorization
and generalization behaviors in diffusion models.

Recent works (Hoover et al., 2023b; Ambrogioni, 2024; Raya & Ambrogioni, 2024) have begun
establishing theoretical connections between DenseAMs and generative diffusion models, showing
that the logarithm of the probability of the generated samples in diffusion models can be interpreted
as the energy function commonly used in DenseAM model with the softmax activation. This pro-
vides the opportunity to study spurious patterns — a possible key to understanding the properties of
the memorization-to-generalization transition.

Historically considered as detrimental in AM (Hopfield et al., 1983; Amit et al., 1985; Abu-Mostafa
& St. Jacques, 1985), spurious patterns can be interpreted as interpolations of stored patterns, hint-
ing at the network’s ability to synthesize new patterns from existing training data. This blending of
fundamental memories resembles generative modeling, where the learned representations are used
to generate novel patterns. In this way, spurious patterns offer a fascinating framework for exploring
the balance between memorization — where models store their training data — and generalization,
where they use the underlying features to create genuinely new samples (Kalaj et al., 2024). Study-
ing the conditions under which spurious patterns emerge and how they contribute to the network’s
behaviour can thus shed light on generalization in both AM and contemporary generative models.

Meanwhile, previous studies have investigated memorization in generative models through different
approaches — measuring memorization (Meehan et al., 2020; den Burg & Williams, 2021), examin-
ing capacity limits (Somepalli et al., 2023a;b; Yoon et al., 2023), generalization gaps (Li et al., 2024),
and learning dynamics (Kadkhodaie et al., 2023; Ventura et al., 2024; Achilli et al., 2024; Kamb &
Ganguli, 2024; Ross et al., 2024) — the transition between memorization and generalization phases
remains insufficiently understood.

Contributions. Most of the mentioned prior works on the memorization-to-generalization transition
approach it from a generalization-centric perspective, while viewing memorization as a “small side
effect” of the diffusion models. Our work adopts a complimentary approach by casting the diffusion
modeling pipeline into the AM framework. In this approach the training phase of the diffusion
model is conceptualized as writing into the memory operation and the generation phase as an attempt
of memory recall — where successful recall leads to retrieving training samples (memorization),
while unsuccessful recall results in generating unseen samples (generalization). This point of view
allows us to apply theory developed in DenseAMs for analyzing the memorization-to-generalization
transition. Notably, in DenseAMs, successful memory recall is known to dwindle as the number of
stored data points increases, marked by the emergence of spurious states. Our theory predicts and we
empirically verify that these spurious states must exist in conventional diffusion models trained and
run using standard methods, appearing at the boundary between memorization and generalization
phases.

In accord with previous literature, we find that (1) diffusion models undergo a phase transition from
memorization to generalization as the number of training points increases; (2) at the onset of gen-
eralization we detect the emergence of spurious patterns, which have sizable basins of attraction,
but are not memorized data points; and lastly, unlike previous works on diffusion models, (3) we
provide theoretical descriptions distinguishing these spurious states from memorized and general-
ized patterns in terms of energy landscapes. All of these findings suggest a close parallel between
diffusion models and DenseAMs above the critical storage capacity.

2 DIFFUSION MODELS AND DENSE ASSOCIATIVE MEMORY

Given a dataset of i.i.d. samples y ∈ RN drawn from a target data distribution p(y), diffusion
models are a class of generative models, which aims to approximate p(y) by placing a reversible
process that maps data to noise and back. The mapping to noise (or forward process) is described
by the following Itô Stochastic Differential Equation (SDE) (Song et al., 2021):

dxt = f(xt, t)dt+ g(t)dwt (1)

which transforms the given data distribution (x0 = y) into a simpler one, such as an isotropic
Gaussian distribution. Here, wt is the standaard Wiener process and f(xt, t) denotes the drift term
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that guides the diffusion process, which we will assume to be zero for most part of this paper.
Meanwhile, g(t) represents the diffusion coefficient that controls the noise at each time step t → T .
In contrast, the reverse process, which removes the injected noise at each t step, is described as

dxt = [f(xt, t)− g(t)2∇xt log pt(xt)]dt+ g(t)dw̄t (2)
where dw̄t is the standard Wiener process. To effectively solve this equation, one must reliably
estimate the score ∇x log pt(x) via parameterization of the score as a neural network sθ(xt, t) using
the following objective (Song et al., 2021):

θ∗ = argmin
θ

E
t,y,xt

[
λ(t) ∥sθ(xt, t)−∇xt

log pt(xt|y)∥2
]

(3)

where t ∼ U(1, T ) is sampled from the uniform distribution U over the set {1, 2, . . . , T}, y ∼ p(y)
and xt ∼ p(xt|y). Here p(xt|y) is the forward process and λ(t) is a positive weighting function.

Given the training data distribution, in the variance-exploding setting (f(xt, t) = 0, g(t) = σ) the
marginal probability distribution of new samples can be computed exactly and is given by

p(xt, t) = E
y∼data

[
1

(2πσ2t)
N
2

exp
(
− ∥xt − y∥22

2σ2t

)]
(4)

Assuming the empirical distribution of the data p(y) = 1
K

K∑
µ=1

δ(N)(y − ξµ), where ξµ represents

an individual data point (with data size K), this marginal distribution can be written as

p(xt, t) =
1

K

K∑
µ=1

1

(2πσ2t)
N
2

exp
(
−∥xt − ξµ∥22

2σ2t

)def≡ exp
(
− EDM(xt, t)

2σ2t

)
(5)

where we also defined the energy EDM of diffusion model, which up to state-independent terms (x
independent terms), is equal to

EDM(xt, t) = −2σ2t log

[ K∑
µ=1

exp
(
− ∥xt − ξµ∥22

2σ2t

)]
(6)

As already observed in Ambrogioni (2024), this energy function (6) is closely related to the modern
extensions of Hopfield models or DenseAMs, which have large memory capacity (Krotov & Hop-
field, 2016; Krotov, 2023). Of particular interest here is the energy function of the DenseAM model
studied in Saha et al. (2023) (see also Millidge et al. (2022)):

EAM(x) = −β−1 log

[ K∑
µ=1

exp
(
− β∥x− ξµ∥22

)]
(7)

where β is the inverse “temperature”, which controls the steepness of the energy landscape around
memories ξµ. The energy formulas (6) and (7) highlight a close connection between these two
models, where the data points in the diffusion model play the same role as the memories in AM.
Moreover, the variance of the noise in the forward process acts as the effective temperature β−1 in
AM, while the reverse process mirrors memory retrieval (Hoover et al., 2023b; Ambrogioni, 2024).

While DenseAMs and diffusion models share fundamental similarities, they operate under different
conditions and serve distinct purposes. DenseAMs maintain a constant (typically high) β to ac-
curately recall stored patterns, while diffusion models have time-dependent effective temperatures
in non-equilibrium systems described by Eq. (6) and are designed for pattern syntheses. Despite
these differences, both systems share a crucial property: their fixed points1 align with the original
data points — diffusion models through the reverse process (2), and AMs through high β retrieval
dynamics. Our core message is that the data manifolds in diffusion models emerge when AM net-
works exceed their critical memory capacity, causing distinct memory attraction basins to merge.
At this transition boundary, spurious states emerge, signaling the onset of generalization. Although
DenseAMs theoretically possess exponential memory capacity for uncorrelated patterns, high corre-
lations in real data significantly lower the critical memory load (Cortes et al., 1987; Gutfreund, 1988;
Krogh & Hertz, 1988; Kanter & Sompolinsky, 1987; Van Hemmen, 1997). This theoretical frame-
work unifies our understanding of how both systems transition from memorization to generalization
in the correlated data setting despite their apparent differences.

1We remind the reader that the fixed points retrieved from the reverse process correspond to t = 0.
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Figure 1: Energy landscapes of diffusion models trained on unit circle data with increasing sample
sizes K ∈ {2, 9, 1000}. Generated samples are plotted alongside their energy values defined by
Eq. (6), with vector fields showing the learned score sθ∗(xt, t). Hierarchical clustering is applied to
identify clusters within the generated data, with the energy of each cluster centroid computed. The
rightmost panel shows the theoretical K → ∞ solution from Eq. (13). The progression reveals three
distinct phases: initial memorization with distinct attraction basins around training points (K = 2),
emergence of spurious patterns marking the onset of generalization (K = 9), and finally a fully
generalized regime (K = 1000) characterized by a nearly-flat continuous manifold of low-energy
states.

3 MEMORIZATION-TO-GENERALIZATION IN 2D

To better illustrate the above phenomena, it is instructive to investigate a simple 2-dimensional toy
model (see Fig. (1)), which exhibits many aspects of the memorization-generalization transition.
Imagine that the training data lies on a unit circle. We are interested in exploring how the shape of
the energy function (7) changes as the number of training data points increases.

[K = 1] For a single data point ξ1, Eq. (7) has a single local minimum at that stored pattern.

EAM(x) = −β−1 log
[
exp

(
− β∥x− ξ1∥22

)]
= ∥x− ξ1∥22 (8)

The shape of this energy landscape is independent of the value of β.

[K = 2] For two patterns, the energy is given by

EAM(x) = −β−1 log
[
exp

(
− β∥x− ξ1∥22

)
+ exp

(
− β∥x− ξ2∥22

)]
(9)

While for very large β → ∞ this energy has two local minima corresponding to the stored patterns.
For finite small values of β, there exist configurations of patterns such that the energy has only one
local minimum:

η = argmin
x

EAM(x) (10)

such that this local minimum is different from either of the two stored patterns, i.e., η ̸= ξ1 and
η ̸= ξ2. This “emergent” local minimum is the spurious state.

[K → ∞] Finally, consider the case when the number of training data points is infinite. In this
case they can be described by a continuous density of states:

p(y) =
1

π
δ
(
y21 + y22 − 1

)
(11)

The probability of the generated data is proportional (up to terms independent of the state x) to

p(x) ∼
+∞∫

−∞

dy1dy2 p(y) e
−β∥x−y∥2

2 = e−β(R2+1)I0(2βR) (12)

where I0(·) is a modified Bessel function of the first kind. Refer to Appendix A for more details on
deriving Eq. (12). Thus, the energy of the model is given by

EAM(R,ϕ) = R2 + 1− 1

β
log

[
I0(2βR)

]
≈

β→∞
(R− 1)2 (13)

Notice, the dependence on the angle ϕ completely disappeared from the final result. The local
minima of Eq. (13) form a continuous manifold, corresponding to R = 1. Data samples from the
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Figure 2: The fractions of memorized, spurious, and generalized samples in synthetic sets across
training sizes and different datasets. As the training data size K increases, memorization decreases
while the emergence of spurious patterns follows. The fraction of spurious patterns rises and de-
creases at the boundary between the memorization and generalization phases.

model occupy the vicinity of that manifold, illustrating the fully generalized phase. In the limit of
large β the energy landscape is described by a parabola centered around R = 1.

Two key questions remain regarding this toy model: (1) How many training samples are needed for
the model to transition from memorization to generalization under realistic diffusion conditions? (2)
What role does the neural network modeling the score function sθ(xt, t) play in this transition? To
investigate, we trained a family of diffusion models in this controlled setting (see Appendix B for
details). Each model was trained on a dataset of size K, and the resulting energy landscapes obtained
from Eq. (6) are shown in Fig. (1). For small training data size (e.g., K = 2), the model exhibits
memorization, with energy minima tightly aligned with training samples. At K = 9, we observe the
emergence of spurious states, marking the onset of generalization. Here, the model begins forming
new, non-training local minima in the energy landscape. As the training data size further increases,
full generalization occurs, illustrated at K = 1000, where generated samples closely align with
the true data manifold. The right panel of Fig. (1) compares the numerical energy landscape to the
analytical expression (13), revealing close resemblance between the two at K = 1000.

To better illustrate this transition (detailed in Fig. (2)), we developed detection metrics in Ap-
pendix D and computed the fractions of memorized, spurious, and generalized samples for increas-
ing training data sizes K of different datasets, including MNIST (Deng, 2012), FASHION-MNIST
(Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2014), and LSUN-CHURCH (Yu et al., 2015). The
results in Fig. (2) clearly demonstrate the memorization-to-generalization transition as K increases,
similarly to the toy model in Fig. (1). The collected generated samples of the three sample types,
which come from diffusion models trained on different data sizes K, show distinct features of each
phase (see Fig. (4) in Appendix E). Specifically, memorized samples are copies of the training data
points, spurious ones resemble mixtures of such points while generalized patterns are genuinely
novel, resembling very little to any of the other generated patterns (see figures in Appendix G).
Please refer to sections (D, E, and F) for full details on the experimentation of the mentioned real
datasets and further discussion.

4 CONCLUSION

In this work we established a novel connection between diffusion models and Dense Associative
Memories. We identified emergence of creativity and generalization in diffusion models with a
failure of a successful memory recall. We developed an energy-based theoretical description of dif-
fusion model’s generative capabilities. Using this theory, we identified a novel phase – spurious
states – previously overlooked in the memorization-generalization literature on diffusion models.
We designed a simple (but non-trivial) analytically solvable model (2D toy model) where all the
aspects of this transition can be investigated analytically and tested numerically. Finally, we estab-
lished that diffusion models trained on natural datasets follow the same transition (memorization to
spurious phase to generalization) as predicted by our theory, and as observed in the 2D synthetic
model. Thus, spurious states are real, and the peak of their frequency among the generated samples
marks the onset of generalization as the training set size is increased.
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APPENDIX

Figure 3: A simple illustration depicting the change in the energy landscape as the size of the train-
ing dataset is increased. In the small data regime, the model memorizes the training data points as
local minima of an energy function. When the amount of training data exceeds the memory capac-
ity of the model, spurious patterns are formed and training data points are no longer the minima.
Subsequent increase of the training set size leads to the generalization phase, which is defined by
the formation of continuous manifold of the low energy states. Note, although the energy landscape
in the generalization phase is shown as flat, small bumps are permitted as long as they are small
compared to the thermal noise in the generation phase.

A FURTHER DETAILS OF THE 2D TOY EXAMPLE

In order to obtain the results in Section (3), it is straightforward to introduce polar coordinates for
both the state vector and the training data:{

x1 = R cos(ϕ)

x2 = R sin(ϕ)

{
y1 = r cos(φ)

y2 = r sin(φ)

The integral in equation (12) can then be written as

p(x) ∼
2π∫
0

dφ

∞∫
0

rdr
1

π
δ(r2 − 1)e−β[R2+r2−2Rr cos(φ−ϕ)] = e−β(R2+1)I0(2βR)

and explicitly computed using the definition of the modified Bessel functions (Gradshteyn & Ryzhik,
2014).

B DETAILS OF THE 2D TOY EXAMPLE

This section describes the two-dimensional toy example used in Section (3), including details about
the neural network architecture, training, generation, and computation of the model’s energy. All of
the corresponding code will be made publicly available.

Dataset. To construct the dataset, we uniformly sample points on the unit circle. Concretely, we take
y ∼ p(y) = 1

2π δ(r−1), where r =
√

y21 + y22 is the radius and δ(r−1) is the delta function ensures
that all probability mass lies on radius r = 1. The factor 1

2π guarantees that the angles are sampled
uniformly, relying on the identity δ(

√
y21 + y22−1) = 2δ(y21+y22−1) in p(y) = 1

π δ(y
2
1+y22−1). In

practice, we sample polar coordinates (r, φ) with r = 1 and uniformly sample the angular coordinate
φ from [0, 2π]. We then convert (r, φ) to Cartesian coordinates (y1, y2) using y1 = r cosφ and
y2 = r sinφ.

We first created a data set of K = 60000 points using a fixed random seed, then built smaller subsets
(e.g., K ∈ {2, 4, 9, 1000, 10000}) by progressively adding distinct samples without replacement,
ensuring that each subset is a strict subset of the next. This approach allows us to systematically
examine how the model behaves, as we vary the size of the training set.
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Exact Score. Following Eq. (13) specified in Section (3), energy can be written in closed form,
whose local minima form the continuous data manifold at R = 1 (throughout this paper we use
r for the polar radius of the training data and R for the polar radius of the generated samples).
Furthermore, in the case of many data points or K → ∞, we have p(y) = 1

π δ(y
2
1 + y22 − 1). Since

p(R) ∝ exp−EAM(R), the score can be described as

−∇R log p(R) = ∇RE
AM(R)

= 2R− 2βI1(2βR)

βI0(2βR)

= 2R− 2
I1(2βR)

I0(2βR)

(14)

where EAM(R) is Eq. (13), and I1 and I0 are the first-order and zero-order modified Bessel functions
of the first kind, respectively. With further expansion, the score becomes

∇R log p(R) = 2

(
I1(2βR)

I0(2βR)
−R

)
⇒ ∇x log p(x) = 2

(
I1(2βR)

I0(2βR)
−R

)
x

R
(15)

We implemented Eq. (13) on a 20 × 20 grid to obtain the exact energy and score of the model,
overlaying 1000 samples from the training set. For visualization purposes, we set β = 20, ensuring a
well-defined energy landscape. Additionally, we normalized the energy by subtracting its minimum
value to ensure that the lowest energy point remains at zero.

VE-SDE. To align with the theoretical framework, we employ a variance exploding (VE) SDE of
the form

dxt = σ dwt (16)
where the diffusion coefficient g(t) = σ. Assuming t ∈ (0, 1], the variance of the diffusion kernel
is given by

∫ t

0
g2(s) ds = σ2t, which allows us to construct the corresponding Gaussian kernel

p(xt|y) = N (xt;y, σ
2tI)

However, in practice we used t ∈ [ϵ, 1] with ϵ = 10−5 for numerical stability. The generative
dynamics are given by

dxt =
[
− σ2∇xt

log pt(xt)
]
dt+ σ2 dwt. (17)

where it runs backwards in time to match the description of Song et al. (2021). The deterministic
Probability Flow ODE is

dxt

dt
= −1

2
σ2∇xt log pt(xt) (18)

which shares the same marginal distributions as the SDE in Eq. (17) and is useful for likelihood
estimation.

Model and Training Details. For each training size K in Fig. (1), we use a Unet inspired MLP-
based network to estimate the score sθ(xt, t), without using any down- or up- sampling blocks. The
general architecture includes (1) a Fourier random feature (FRF) timestep embedding layer and a
linear layer which projects the concatenation of FRF timestep embedding and input into a latent
dimension of 256; (2) an encoder which consists of four non-convolutional residual blocks (using
the same latent dimension) with Swish (Ramachandran et al., 2017) activation in between; (3) a
decoder which consists of the same number of residual blocks; and (4) a linear block which projects
the latent variable back to the 2D space.

The network was trained in continuous time (with 1000 discretized steps) with σ = 1 using the
objective function from (Ho et al., 2020; Song et al., 2021). Optimization is performed using the
Adam (Kingma & Ba, 2017) optimizer with a learning rate lr = 10−4. The batch size is set to
min(K, 500). All models are trained for 800, 000 iterations with the maximum batch size of 500.
Meanwhile, we use Euler-Maruyama discretization method (Kloeden et al., 1992) to solve Eq. (17)
of the reverse SDE for the generation of samples.

Empirical distribution. We represent the data as an empirical distribution

p(y) =
1

K

K∑
µ=1

δ(N)(y − ξµ) (19)
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where N is the dimensionality of the data point y. Since xt is drawn from the forward process
distribution p(xt|y) that is conditioned on the data point y, which can be expressed as a Gaussian
kernel N (xt;y, σ

2tI). We can obtain the distribution p(xt, t) as

p(xt, t) =

∫
p(xt | y) p(y) dy =

1

K

K∑
µ=1

∫
N
(
xt;y, σ

2tI
)
δ(N)

(
y − ξµ

)
dy

=
1

K

K∑
µ=1

N
(
xt; ξ

µ, σ2t I
)

=
1

K

K∑
µ=1

1

(2π σ2t)
N
2

exp
(
− ∥xt − ξµ∥22

2σ2t

)
(20)

which is Eq. (5), when the variance of the Gaussian kernel is σ2t.

Likelihood Computation. Following Song et al. (2021) we can compute the log-likelihood
log pθ(x0) given by a diffusion model, with the instantaneous change of variable formula (Chen
et al., 2018), where x0 are the generated samples from the model. Replacing Eq. (17) into the
log-likelihood equation,

log p0(x0; θ) = log pT (xT ) +

∫ T

0

∇ · f̃(xt, t)dt (21)

where f̃(xt, t) = − 1
2σ

2∇xt
log pt(xt). The function f̃(xt, t) came from the above Probability Flow

ODE (Eq. (18)), and ∇· f̃(xt, t) denotes the divergence of the function (or the trace of its Jacobian).

To estimate the likelihood of the model, we integrate ∇ · f̃(xt, t) from a small time ϵ = 10−5 to
T = 1 using a numerical integrator and add the prior logarithmic likelihood to it following Eq. (21).
The divergence term ∇· f̃(xt, t) is computed using the Laplacian, which is computationally feasible
for this toy example, instead of using the Hutchinson trace estimator (Hutchinson, 1989) done in
Song et al. (2021). We use the RK45 method (Dormand & Prince, 1980) implemented in the ODE
solver scipy.integrate.solve ivp from Scipy (Virtanen et al., 2020) to solve the above integral.

Energy Computation. To compute the energy, we use Eq. (6), which can be also computed using
Eq. (21). From the Boltzmann distribution p(x) = 1

Z exp
[
−βE(x)

]
, we obtained log p(x) ∝

−βE(x). In our case the inverse temperature is β = 1
2σ2t . The equation for our VE-SDE thus

becomes
EDM(xt, t) = −2σ2t log p(xt, t) (22)

To visualize the energy landscape, we observe the energy at t = 0.15 which corresponds to β = 3.3.

Sample Clustering. To cluster the generated samples, we use the AgglomerativeClustering
algorithm from scikit-learn, which is a part of SciPy (Virtanen et al., 2020).

C ADDITIONAL DETAILS ON THE LIKELIHOOD OF DIFFUSION
MODELS

For concreteness, we further explain the likelihood computation in Eq. (21) within this section.
Specifically, we want to highlight the formulation done by Song et al. (2021) which resulted in
Eq. (21), and Chen et al. (2018) for the term

∫ T

0
∇ · f̃(x, t)dt in the same equation.

Probability Flow ODE. Suppose we have the following forward process

dxt = f(xt, t)dt+ g(xt, t)dwt (23)

where f(·, t) : RN → RN , g(·, t) : RN → RN×N and N denotes the dimensionality of xt.
Using the derivations done by Song et al. (2021) in their Appendix D, the evolution of the marginal
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probability density pt(xt) is

∂pt(xt)

∂t
= −

N∑
i=1

∂

∂xi

[
fi(xt, t)pt(xt)

]
+

1

2

N∑
i=1

N∑
j=1

∂2

∂xi∂xj

[ N∑
k=1

gij(xt, t)gjk(xt, t)pt(xt)

]
(24)

which corresponds to Fokker-Planck equation (Oksendal, 1992).

∂pt(xt)

∂t
= −

N∑
i=1

∂

∂xi

[
fi(xt, t)pt(xt)

]
+

1

2

N∑
i=1

∂

∂xi

[ N∑
j=1

∂

∂xj

[ N∑
k=1

gij(xt, t)gjk(xt, t)pt(xt)

]]

= −
N∑
i=1

∂

∂xi

[
fi(xt, t)pt(xt)

]
+

1

2

N∑
i=1

∂

∂xi

[
pt(xt)∇ ·

[
g(xt, t)g(xt, t)

⊤]+ pt(xt)
[
g(xt, t)g(xt, t)

⊤]∇xt log pt(xt)

]

= −
N∑
i=1

∂

∂xi

{
fi(xt, t)pt(xt)

− 1

2

[
∇ ·

[
g(xt, t)g(xt, t)

⊤]+ [
g(xt, t)g(xt, t)

⊤]∇xt log pt(xt)

]
pt(xt)

}
= −

N∑
i=1

∂

∂xi

[
f̃i(xt, t)

]
pt(xt)

(25)

where f̃(xt, t) = f(xt, t) − 1
2∇ ·

[
g(xt, t)g(xt, t)

⊤] − 1
2

[
g(xt, t)g(xt, t)

⊤]∇xt
log pt(xt). With

careful inspection of Eq. (25), it is equal to the Liouville equation if the diffusion term g̃(x, t) = 0
and essentially, it is the probability flow ODE:

dxt = f̃(xt, t)dt+ g̃(xt, t)dwt

=

{
f(xt, t)−

1

2
∇ ·

[
g(xt, t)g(xt, t)

⊤]− 1

2

[
g(xt, t)g(xt, t)

⊤]∇xt log pt(xt)

}
dt

(26)

Using Eq. (26), we can derive an appropriate probability flow ODE from the forward process (1)
introduced in the main text. For example, we have the following equation

dxt =

{
f(xt, t)−

1

2
g(t)2∇xt

log pt(xt)

}
︸ ︷︷ ︸

:= f̃(xt,t)

dt (27)

for the toy model where f(xt, t) = 0.

Log-likelihood. Furthermore, if we first take the logarithm of Eq. (25) where

∂ log pt(xt)

∂t
=

1

pt(xt)

∂pt(xt)

∂t
= −

N∑
i=1

∂f̃i(xt, t)

∂xi
= ∇ · f̃(xt, t) (28)

we can compute the log-likelihood of p0(x0) using the following equation

log p0(x0) = log pT (xT ) +

∫ T

0

∇ · f̃(xt, t)dt (29)

where ∇ · f̃(xt, t) is parameterized as ∇ · f̃θ(xt, t) since sθ(xt, t) = ∇xt
log pt(xt; θ). Moreover,

in general the term ∇ · f̃θ(xt, t) is computed via the Hutchinson trace estimator (Hutchinson, 1989),

∇ · f̃θ(xt, t) = Ep(ϵ)

[
ϵ⊤∇xf̃θ(xt, t)ϵ

]
(30)

where ∇xf̃θ(xt, t) denotes the Jacobian of f̃θ(xt, t) and the random variable ϵ satisfies Ep(ϵ)[ϵ] = 0
and Covp(ϵ)[ϵ] = I. However, for the toy model in Section (3), due to its low dimensionality we find
that it is possible to not utilize the Hutchinson trace estimator at all, and instead opt to compute the
trace of the Jacobian without using the noise estimators.
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Figure 4: Examples of memorized, spurious, and generalized samples in their respective columns
for four datasets. For each target image (shown on the left), its top-4 nearest neighbors from the
training set (top row) and the synthetic set (bottom row) are shown to highlight the novelty or the
commonality of the target image with respect to training and synthetic sets. Memorized samples are
duplicates of the training points. Spurious samples are copies of the synthetic set that do not appear
in the training set. Generalized samples do not belong to either of the two sets, indicating that
they are genuinely novel samples that are not generated repeatedly even if the generation process is
performed multiple times.

D DETECTION METRICS

The main goal of our work is to establish the existence of spurious states in diffusion models trained
on natural datasets, not just toy model problems. With this goal in mind we design detection metrics
that can classify any generated sample into one of the three categories: memorized sample, spurious
sample, and generalized sample. Fundamentally, these metrics defined below rely on two datasets:
S — the training dataset used to train the model Gθ∗ and S′ — the synthetic dataset generated from
Gθ∗ , where θ∗ is defined according to Eq. (3). The size of the synthetic set S′ is assumed to be much
bigger than the training set size.

The core intuition comes from the typical energy landscape around these three distinct kinds of
generated samples, see Fig. (3). Memorized samples are elements of the synthetic set S′, which have
duplicates in the training set S. Spurious samples are elements of the synthetic set S′, which have
duplicates in the synthetic set S′, but do not have duplicates in S. In other words, the same spurious
sample appears in the synthetic set more than once. Finally, generalized samples are elements of S′,
which do not have duplicates in both the synthetic set S′ and the training set S.

With this intuition in mind we examine two histograms, see Fig. (5). First, for every element of
the synthetic set S′ the distance to the closest nearest neighbor from the training set S is shown by
the olive histogram. Second, for every element of the synthetic set S′ the distance to the closest
nearest neighbor in the synthetic set S′ is shown by the grey histogram. Both histograms exhibit a
clear bimodal shape, indicating that at least two groups of samples are present in the synthetic set.
This bimodal structure makes it possible to chose two thresholds δm (“m” stands for memorized)
and δs (“s” stands for spurious) to separate the samples forming the two peaks in each histogram.
The left peak of the olive histogram is composed of synthetic samples that are a small distance
away from the training set can therefore be considered as memorized samples. The left peak of the
gray histogram contains synthetic samples that have duplicates in the synthetic set, indicating they
can be memorized if the same sample appears in the training set, or spurious, otherwise. The right
peak of the gray histogram contains generalized samples, and the right peak of the olive histogram
contains generalized and spurious samples. These observations make it possible to formally define
the following detection metrics.

Metric D.1 (Memorization Detection). Following Yoon et al. (2023), we define the memorization
detection metric M. Given a target pattern x̂ ∈ S′ and its first nearest neighbor x1 extracted from
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the training set S according to a distance measure d(·, ·), where a small distance corresponds to high
similarity, metric M detects sample x̂ as memorized if d(x̂,x1) is small.

M(x̂, S) = I
(
d(x̂,x1) ≤ δm

)
(31)

where I represents the indicator function and δm ∈ R is a threshold defined by the distance his-
tograms (see Fig. (5)).

Metric D.2 (Spurious Detection). Given a synthetic sample x̂ and its first nearest neighbor from
the synthetic set x′

1 ∈ S′, the spurious pattern detection metric S identifies instances where the
model generates outputs that do not belong to the training set but have high similarity with samples
from the synthetic set (left peak of the gray histogram in Fig. (5) after the exclusion of memorized
samples)

S(x̂, S, S′) = I
(
d(x̂,x′

1) ≤ δs

)
∧ ¬M(x̂, S) (32)

where δs ∈ R is a threshold value chosen based on the metric d(·, ·) and the gray distance histogram
(see Fig. (5)).

Metric D.3 (Generalization Detection). The sample x̂ is generalized if it is neither memorized nor
spurious

G(x̂, S, S′) = ¬M(x̂, S) ∧ ¬S(x̂, S, S′) (33)

E MEMORIZATION-GENERALIZATION TRANSITION

Using our detection metrics, we computed the fractions of memorized, spurious, and generalized
samples for various sizes of training data for different datasets (see Fig. (2)). These datasets include
MNIST (Deng, 2012), FASHION-MNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2014),
and LSUN-CHURCH (Yu et al., 2015) scaled down to 64 × 64 resolution using center-crop and
down-scale. For each dataset, we trained DDPM-based diffusion models (Ho et al., 2020) for M =
38 different training set sizes obtained by using a fixed random seed to split. The same training
setting as DDPM was used with the exception of using no random flip, modifying batch size, and
the channel multipliers in the Unet backbone to accommodate for the dataset’s dimensionality. For
each model α = 1, ...,M , trained on the training set Sα, a synthetic set S′

α was generated for each
model. To account for duplication, we ensured that each S′

α is four times the size of its corresponding
Sα. Each sample x̂ ∈ S′

α is classified as either memorized, spurious, or generalized using the above
metrics (31), (32), and (33). The fractions of these three pattern types with respect to the size of S′

α
are plotted in Fig. (2). For each dataset our smallest model was trained on the training set of |S1| = 2
data points, and the largest model was trained on the entire original training set SM = S. Please
refer to Appendix (F) for more details on training, selection of data sizes, and detection metrics’
hyperparameters for each dataset.

The results in Fig. (2) clearly demonstrate the transition from memorization to generalization as the
dataset size increases. Meanwhile, the collected samples also show distinct characteristics in each
of the considered phases (see Fig. (4)). Specifically, in the small data regime, we see in Fig. (2)
that the diffusion model predominantly replicates the training data (see the memorized panel of
Fig. (4), or additional samples in Fig. (9) of the Appendix). As the data size surpasses the memo-
rization capacity, e.g., at K = 3931 for CIFAR10 in Fig. (2), we observe a critical transition where
the memorization fraction declines and spurious patterns become prominent. Such patterns exhibit
strong duplication in the synthetic set (see the spurious panel of Fig. (4) and additional samples in
Fig. (10) of the Appendix). The emergence of such patterns aligns with the onset of generalization,
as the model moves away from strictly reproducing the training set and starts generating novel com-
binations of learned features. Subsequent increase of the training set size leads to the decrease of
the fractions of memorized and spurious samples, signaling the transition to the full generalization
regime. At this state, the model completely loses its replication ability and no duplicate samples
are detected in either training or synthetic sets (see the generalized panel of Fig. (4) and additional
samples in Fig. (11) of the Appendix).
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F EXPERIMENTAL DETAILS ON TRANSITION MAPPING

Points Selection. For the computation of Fig. (2), we follow the experiment setup of Yoon et al.
(2023) and conduct a sparse search starting at data size 500 and doubling it all the way to the total
data size |S|, i.e., K = 500, 1000, 2000, . . . , |S|. We then identified two transitional critical points,
A and B (see Table (1)), to conduct a more fine-grained search to elucidate the memorization-
generalization transition. Point A indicates the initial drop in memorization while B signals the
plateauing of memorization. To capture the details of the memorization-generalization transition,
we perform a search of 30 inclusive linearly spaced points, from A to B. For regions outside of the
transition, using linear spacing, we sample 5 points from |S| = 2 to point A, and another 5 points
from B to the total dataset size |S|, inclusively. In other words, we train a separate model for each
selected data size and generate the corresponding evaluation and synthetic sets. Then, for Fig. (2),
we computed the memorization, spurious, and generalization fractions using equations (31), (32),
and (33). The selection process for the values δm and δs is explained below.

Dataset Point A Point B Total
(Data Size) (Data Size) (Data Size)

CIFAR10 2,000 16,000 50,000
LSUN-CHURCH 2,000 16,000 126,227

FASHION-MNIST 4,000 16,000 60,000
MNIST 4,000 32,000 60,000

Table 1: Table showing the critical points A and B of the memorization-generalization transition for
each dataset. We use 30 linearly spaced points between A and B to finely characterize the transition
plots shown in Fig. (2).

Selection of the Distance Metric. For high-dimensional datasets, e.g., CIFAR10 and LSUN-
CHURCH, we utilize LPIPS (Zhang et al., 2018) with the AlexNet (Krizhevsky et al., 2012) back-
bone, as the function d(·, ·) for both memorization and spurious detection metrics (31) and (32). We
selected this approach since it is a commonly used perceptual metric that compares the similarity be-
tween two images based on their feature representations. Moreover, it has been shown to better align
with human judgment of visual similarity, making it ideal for assessing the quality and diversity of
generated samples in these high-dimensional image datasets. For simpler datasets like MNIST and
FASHION-MNIST, where images are single-channel and less complex, we found that L2-distance
suffices for both memorization and spurious detection metrics.

Dataset δm δs
CIFAR10 0.03 0.018

LSUN-CHURCH 0.12 0.05
FASHION-MNIST 4.5 2.5

MNIST 4.5 3.5

Table 2: Table displaying memorized and spurious threshold values in the computation of the tran-
sition plots in Fig. (2).

Selection of Threshold Values δm and δs. The detection thresholds, δm and δs, were set based
on the chosen distance metric d(·, ·) and visual inspection of the distance histograms for bimodality
as mentioned in Appendix (D) of the main text. Moreover, these thresholds were chosen to reflect
the varying visual complexity and feature richness of the datasets, and their values for each dataset
are shown in Table (2). For CIFAR10, we utilized the histograms obtained at K = 7310, which
demonstrate strong bimodality shape, to tune our threshold values to minimize the number of spu-
rious samples classified as memorized samples and vice versa, via manual inspection. For manual
inspection, a general rule we followed — it is better to have more false positives in the generalized
set than the memorized set since spurious samples can be seen as early-generalized samples. Thus,
we observe the least-5 spurious samples and ensure that they do not resemble memorized samples.
We performed the same process for memorized samples. The entire process is then repeated for the
other three datasets. We utilized K = 4896 for LSUN-CHURCH, K = 21379 for MNIST, and
K = 7724 for FASHION-MNIST to select δm and δs. For more details on the selected histograms,
please refer to Figs. (5), (7), (6), and (8).
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Dataset Initial Latent Channel Multipliers Number of Parameters Batch Size Training Iterations
CIFAR10 128 (1, 2, 2, 2) 35.7M 128 500,000

LSUN-CHURCH 96 (1, 1, 2, 2, 4, 4) 61.7M 64 800,000
FASHION-MNIST 128 (1, 2, 2) 24.5M 128 400,000

MNIST 128 (1, 2, 2) 24.5M 128 400,000

Table 3: Table displaying both model and training configurations for each dataset.

Model and Training Details. For each point in our transition plots in Fig. (2), we train a DDPM-
based diffusion model, where the score model is a PixelCNN++ based Unet (Van den Oord et al.,
2016; Salimans et al., 2017). We keep the variances, βmin = 10−4 and βmax = 2 × 10−2, timesteps
T = 1000, and learning rate lr = 2× 10−4 for all models and datasets. Each model has 2 residual
blocks (He et al., 2016) for each down- and up- sampling layer, while an attention block is placed at
16x resolution. We only modified the channel multipliers for each model based on the complexity
of the dataset, see Table (3). If the dataset size is smaller than the specified batch size, we take the
batch size to be equal to that small dataset size. For generation or inference, we use the exponential
moving average (EMA) of each trained model, as delineated in Ho et al. (2020), which was obtained
with the decay value set as 0.9999 during training. We did not use random flipping in the training
of our models since we want our measurements to reflect the training data size at best as random
flipping implicitly increases the number of patterns that the models see during training. However,
we did use dropout (of value 0.1) for the training of CIFAR10, MNIST, and FASHION-MNIST
models. Lastly, for each of the training set Sα, where α = 1, . . . ,M , they are split from the original
dataset given a specific size, using the same random seed value of 3407.

Figure 5: Different sample types across the memorization-to-generalization transition for CIFAR10.
The grey histogram shows the distances between synthetic samples and their nearest neighbors from
the synthetic set S′. The threshold δs is defined as a boundary between the two peaks. The olive
histogram depicts the distances from the synthetic samples to their closest neighbor from the training
set S, with threshold δm separating the two peaks. Memorized samples are located in the left peak
of the olive histogram, below δm. In contrast, generalized and spurious samples appear to the right
of δm (olive histogram). Examples of the generated samples forming each of the four peaks of the
histograms are shown in the inset frames. For each generated sample top-4 nearest neighbor images
from the training set are shown in the top row, and top-4 nearest neighbors from the synthetic set are
shown in the bottom row. Training set size K = 7310 was used in this figure (peak of the frequency
of spurious states), but phenomena discussed are generic and largely independent of this specific
value. The fraction of the memorized, spurious, and generalized samples in the pool of all generated
samples is shown in the bottom left panel as a function of the training set size. The inset shows
amplified spurious fraction (green curve).
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Figure 6: Different sample types across the memorization-to-generalization transition for LSUN-
CHURCH, defined by the spurious and memorized thresholds, δs and δm. The grey histogram shows
the distances between synthetic samples and their nearest neighbors from the synthetic set S′. The
threshold δs is defined as a boundary between the two peaks. The olive histogram depicts the
distances from the synthetic samples to their closest neighbor from the training set S, with threshold
δm separating the two peaks. The threshold δm is chosen much stricter here such that it works well
for all training dataset sizes via visual inspection. Memorized samples are located in the left peak
of the olive histogram, below δm. In contrast, generalized and spurious samples appear to the right
of δm (olive histogram). Examples of the generated samples forming each of the four peaks of the
histograms are shown in the inset frames. For each generated sample top-4 nearest neighbor images
from the training set are shown in the top row, and top-4 nearest neighbors from the synthetic set
are shown in the bottom row. Training set size K = 4896 was used in this figure (at the peak of the
frequency of spurious states), but phenomena discussed are generic and largely independent of this
specific value. The fraction of the memorized, spurious, and generalized samples in the pool of all
generated samples is shown in the bottom left panel as a function of the training set size. The inset
shows amplified spurious fraction (green curve).
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Figure 7: Different sample types across the memorization-to-generalization transition for MNIST,
defined by the spurious and memorized thresholds, δs and δm. The grey histogram shows the dis-
tances between synthetic samples and their nearest neighbors from the synthetic set S′. The thresh-
old δs is defined as a boundary between the two peaks. The olive histogram depicts the distances
from the synthetic samples to their closest neighbor from the training set S, with threshold δm sep-
arating the two peaks. Memorized samples are located in the left peak of the olive histogram, below
δm. In contrast, generalized and spurious samples appear to the right of δm (olive histogram). Ex-
amples of the generated samples forming each of the four peaks of the histograms are shown in the
inset frames. For each generated sample top-4 nearest neighbor images from the training set are
shown in the top row, and top-4 nearest neighbors from the synthetic set are shown in the bottom
row. Training set size K = 21379 was used in this figure, which is slightly past the peak of the
frequency of spurious states. The phenomena discussed are generic and largely independent of this
specific value. The fraction of the memorized, spurious, and generalized samples in the pool of all
generated samples is shown in the bottom left panel as a function of the training set size. The inset
shows amplified spurious fraction (green curve).
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Figure 8: Different sample types across the memorization-to-generalization transition for
FASHION-MNIST, defined by the spurious and memorized thresholds, δs and δm. The grey his-
togram shows the distances between synthetic samples and their nearest neighbors from the synthetic
set S′. The threshold δs is defined as a boundary between the two peaks. The olive histogram de-
picts the distances from the synthetic samples to their closest neighbor from the training set S, with
threshold δm separating the two peaks. Memorized samples are located in the left peak of the olive
histogram, below δm. In contrast, generalized and spurious samples appear to the right of δm (olive
histogram). Examples of the generated samples forming each of the four peaks of the histograms
are shown in the inset frames. For each generated sample top-4 nearest neighbor images from the
training set are shown in the top row, and top-4 nearest neighbors from the synthetic set are shown
in the bottom row. Training set size K = 7724 was used in this figure (at the peak of the frequency
of spurious states), but phenomena discussed are generic and largely independent of this specific
value. The fraction of the memorized, spurious, and generalized samples in the pool of all generated
samples is shown in the bottom left panel as a function of the training set size. The inset shows
amplified spurious fraction (green curve).
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G ADDITIONAL VISUALIZATIONS OF THE THREE SAMPLE TYPES

Figure 9: Visualizations of additional memorized patterns and their top-4 nearest neighbors for
different datasets. The top row illustrates nearest neighbors from the training set while the bottom
row depicts those from the synthetic set. Memorized samples are duplicates of the training set.
During the strong memorization phase, duplicates are also found within the synthetic set. Note,
even though our memorized detection metric (Eq. (31)) does not utilize the synthetic set, we are
showing the nearest neighbors obtained from it, for consistency.
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Figure 10: Visualizations of additional spurious patterns and their top-4 nearest neighbors for dif-
ferent datasets. The top row depicts nearest neighbors from the training set, while the bottom row
shows those from the synthetic set. Spurious patterns are demonstrated to arise from the onset of
generalization where the mixing of training data points begins. Since the model’s generalization is
at its infancy, duplicates of spurious patterns sometimes appear several times in the synthetic set S′,
much like memorized patterns. Additionally, these samples lack the uniqueness to be considered as
generalized samples as the model has yet to fully learn the underlying data distribution.

Figure 11: Visualization of generalized patterns and their top-4 nearest neighbors for different
datasets. The top row illustrates nearest neighbors from the training set while the bottom row de-
picts those from the synthetic set. Generalized samples are novel samples, which have little to no
resemblance to their nearest neighbors in training and synthetic sets.
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