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ABSTRACT

Protein representation learning is a challenging task that aims to capture the struc-
ture and function of proteins from their amino acid sequences. Previous methods
largely ignored the fact that not all amino acids are equally important for protein
folding and activity. In this article, we propose a neural clustering framework
that can automatically discover the critical components of a protein by consider-
ing both its primary and tertiary structure information. Our framework treats a
protein as a graph, where each node represents an amino acid and each edge rep-
resents a spatial or sequential connection between amino acids. We then apply
an iterative clustering strategy to group the nodes into clusters based on their 1D
and 3D positions and assign scores to each cluster. We select the highest-scoring
clusters and use their medoid nodes for the next iteration of clustering, until we
obtain a hierarchical and informative representation of the protein. We evaluate
our framework on four protein-related tasks: protein fold classification, enzyme
reaction classification, gene ontology term prediction, and enzyme commission
number prediction. Experimental results demonstrate that our method achieves
state-of-the-art performance. Our code will be released.

1 INTRODUCTION

Proteins are one of the most fundamental elements in living organisms and make significant con-
tributions to nearly all fundamental biological processes in the cell. Composed of one or several
chains of amino acids [1, 2], proteins fold into specific conformations to enable various biological
functionalities [3]. A multi-level structure of proteins begins with the primary structure, which is
defined by the sequence of amino acids forming the protein backbone [4]. The secondary structure
is determined by hydrogen bonds between distant amino acids in the chain, resulting in substructures
such as α-helices and β-sheets [5]. Tertiary structure arises from folding of secondary structures,
determined by interactions between side chains of amino acids [6]. Lastly, the quarternary structure
describes the arrangement of polypeptide chains in a multi-subunit arrangement [7]. Understand-
ing the structure and function of proteins [8–12] is crucial in elucidating their role in biological
processes and developing new therapies and treatments for a variety of diseases.

While a protein’s conformation and function are primarily determined by its amino acid sequence, it
is important to recognize that not all amino acids contribute equally to these aspects. In fact, certain
amino acids, known as the critical components, play the primary role in determining a protein’s
shape and function [13–19]. Sometimes, even a single amino acid substitution can significantly
impact a protein’s overall structure and function [13, 14]. For example, sickle cell anemia results
from a single amino acid change in hemoglobin, causing it to form abnormal fibers that distort red
blood cell shape. Besides, the critical components of a protein’s primary structure are essential
for its biological activity. For instance, any of the first 24 amino acids of the adrenocorticotropic
hormone (ACTH) molecule is necessary for its biological activity, whereas removing all amino acids
between 25-39 has no impact [15, 16]. Also, proteins with the same critical components perform
the same function, e.g., the insulin A and B chains in various mammals contain 24 invariant amino
acid residues necessary for insulin function, while differences in the remaining amino acid residues
do not impact insulin function [17, 18]. In addition, proteins from the same family often have long
stretches of similar amino acid sequences within their primary structure [19], suggesting that only a
small portion of amino acids that differentiate these proteins are the critical components.

Motivated by the fact that certain amino acids play a more critical role in determining a protein’s
structure and function than the others [13–19], we devise a neural clustering framework for protein
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representation learning. Concretely, it progressively groups amino acids so as to find the most rep-
resentative ones for protein classification. During each iteration, our algorithm proceeds three steps:
spherosome cluster initialization (SCI), cluster representation extraction (CRE), and cluster nomina-
tion (CN). The iterative procedure starts by treating a protein as a graph where each node represents
an amino acid, and each edge represents a spatial or sequential connection between amino acids. In
SCI step (△), all the nodes are grouped into clusters based on their sequential and spatial positions.
Subsequently, in CRE step (□), the information of neighboring nodes within the same cluster are
aggregated into a single representative node, namely medoid node. This step effectively creates an
informative and compact representation for each cluster. Lastly, inCNstep (▽), agraphconvolutional
network (GCN) [20] is applied to score all the clusters, and a few top-scoring ones are selected and their
medoid nodes are used as the input for the next iteration. By iterating these steps ⟳(△□▽), we ex-
plore the protein’s structure and discover the representative amino acids for protein representation,
leading to a powerful, neural clustering based protein representation learning framework.

By embracing the powerful idea of clustering, our approach favorably outperforms advanced competi-
tors. We observe notable improvements of 5.6% and 2.9% in Fmax for enzyme commission number
prediction [8] (§4.1) and gene ontology term prediction [8] (§4.2). Our method also yields remark-
able enhancements of 3.3% and 1.1% in classification accuracy for protein fold classification [21]
(§ 4.3) and enzyme reaction classification [9] (§ 4.4). We also provide comprehensive diagnostic
analyses (§ 4.5) and visual results (§ 4.6), verifying the efficacy of our essential algorithm designs,
showing strong empirical evidence for our core motivation, and confirming the capability of our
algorithm in identifying functional motifs of proteins. We will make our code publicly available.

2 RELATED WORK

Protein Representation Learning. It has been a topic of interest in the field of bioinformatics
and computational biology in recent years. Existing methods for this topic can be broadly catego-
rized into two types: sequence-based and structure-based. Early works on sequence-based protein
representation learning typically apply word embedding algorithms [22, 23] and 1D convolutional
neural networks [21, 24–26]. Though straightforward, these methods neglect the spatial informa-
tion in protein structures. To address this limitation, structure-based methods explore the use of 3D
convolutional neural networks [27–29] and GCNs [8, 10, 11, 30–33] for this task. Recently, some
approaches [11, 33] focus on atom-level representations, treating each atom as a node. The state-of-
the-art performance has been achieved by learning at the amino acid-level [10, 12], indicating that
protein representation is more closely related to amino acids rather than individual atoms.

Despite significant progress made by these existing methods, they treat all amino acids equally. In
sharp contrast, we propose to learn the protein representation by a neural clustering framework. This
allows us to capture the inherent variability and significance of different amino acids, leading to a
more comprehensive and accurate representation of proteins. We are of the opinion that our method
has several potential applications and extensions in the field of protein science. For instance, our
neural clustering approach can benefit protein design by utilizing the learned crucial components to
direct the design of novelprotein sequences [34, 35] thatpossess specificpropertiesor functions.This,
in turn, can facilitate the development of new therapies and treatments for a diverse range of illnesses.

Clustering. Clustering is a fundamental data analysis task that aims to group similar samples to-
gether based on similarity, density, intervals or particular statistical distribution measures of the
data space [36–38]. It helps to identify representative patterns in data which is meaningful for ex-
ploratory data analysis. Traditional clustering methods [39, 40] heavily rely on the original data
representations. As a result, they often prove to be ineffective when confronted with data residing in
high-dimensional spaces, such as images and text documents. Recently, deep learning-based cluster-
ing methods have attracted increased attention, and been successfully applied to various real-world
applications, such as image segmentation [41, 42], unsupervised representation learning [43, 44],
financial analysis [45–47], and text analysis [48–50].

Drawing inspiration from the biological fact that the significance of various amino acids varies, we
propose a neural clustering framework for end-to-end protein representation learning. Our objective
is to leverage the inherent benefits of clustering to identify the representative amino acids. In experi-
ments, we demonstrate the feasibility of our clustering-based method through numerical evaluations
and provide visual evidence to reinforce the underlying motivation behind our approach.
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Figure 1: Overview of our iterative neural clustering pipeline for protein representation learning: (a)
input protein with amino acids, (b) iterative clustering algorithm which repeatedly stacks three steps
⟳(△□▽), (c) output can be seen as the critical amino acids of the protein, (d) output amino acids
used for classification. The details of our iterative neural clustering method can be seen in §3.2.

3 METHODOLOGY

We have stated that the structure and function of a protein are represented by certain critical amino
acids in § 1. This motivates us to regard the protein representation learning task as an amino acid
clustering process, so as to automatically explore the critical components of the protein. Firstly,
some basic concepts used throughout the paper and the task setup are introduced in §3.1. Then, we
elaborate on the neural clustering framework in §3.2. Finally, §3.3 presents our implementation details.

3.1 NOTATION AND TASK SETUP

The problem of protein representation learning can be formalized as follows. A protein is denoted
as a triplet P = (V, E ,Y), where V = {v1, · · · , vN} is the set of nodes representing N amino acids,
E the set of edges representing spatial or sequential connections between amino acids, and Y the
set of labels. The target goal of protein classification is to learn a mapping V → Y . Specifically,
in single-label classification, e.g., protein fold classification and enzyme reaction classification, the
focus is on learning from a collection of examples that are linked to a single label from Y . While
in multi-class classification, e.g., enzyme commission number prediction and gene ontology term
prediction, each examples are associated with multiple labels from Y . In what follows, we use
{x1, · · · ,xN} to denote the features of V , where xn ∈ R256 is the feature vector of amino acid vn.
The feature vector can be derived from various sources, such as the one-hot encoding of amino acid
types, the orientations of amino acids, and the sequential and spatial positions of amino acids. We
use A ∈ {0, 1}N×N to denote the adjacency matrix of V , where An,m = 1 if there exists an edge
between amino acid nodes vn and vm, i.e., en,m ∈ E .

3.2 ITERATIVE CLUSTERING

In our neural clustering framework, we perform iterative clustering on amino acids of the input
protein. Each iteration encompasses three steps, Spherosome Cluster Initialization (SCI), Cluster
Representation Extraction (CRE), and Cluster Nomination (CN), as illustrated in Fig. 1.

Spherosome Cluster Initialization (SCI). For each amino acid, we initialize a cluster by consider-
ing other locally neighboring amino acids within a fixed receptive field. This approach enables the
examination and comprehension of the spatial and sequential associations among amino acids, which
hold paramount significance in determining the structure and functioning of proteins []. Specifically,
for each amino acid vn, we define a cluster as a set of amino acids within a fixed radius r, where vn
is regarded as the medoid node of the cluster. The fixed radius r is a hyperparameter which deter-
mines the extent to which the local amino acid nodes are considered for cluster initialization, and its
impact on the final performance of protein analysis is studied in §4.5. For vn, we denote the set of its
neighbor amino acid nodes asHn = {vn1 , · · · , vnK}. Note that vn ∈ Hn. In the first iteration (t=1),
we conduct SCI process based on all the input N amino acids to form the clusters. In subsequent
iterations (t > 1), we use the nominated Nt−1 amino acids from the previous t−1-th iteration to
initialize the clusters. This allows to focus on exploring the critical components of the protein graph
and avoid redundantly exploring the same areas. The adjacency matrix A is regenerated in each SCI
process with considering the connectivity among amino acids.
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Figure 2: Our neural clustering framework architecture with four iterations. Given a protein, a set
of 1D and 3D amino acids, our method adopts an iterative clustering algorithm to explore the most
representative amino acids. At each iteration, B cluster representation extraction blocks are utilized
to extract cluster features. The clustering nomination operation selects the fraction ω of amino acids
for the next iteration, that Nt=⌊ω ·Nt−1⌋. Details of the framework can be seen in §3.3.

Cluster Representation Extraction (CRE). The second step aims to learn the overall representa-
tion of each cluster Hn by considering all the amino acids within it. Specifically, we construct the
feature representation xn

k of the amino acid node vnk in the clusterHn by:

xn
k = f(gn

k ,o
n
k , d

n
k , sk, ek), (1)

where gn
k = (zk−zn) ∈ R3 denotes relative geometric coordinates, and z indicates the spatial

coordinate; on
k ∈R3 is the 3D orientation vector; dnk =(||zk−zn||2)∈R3 indicates the spatial distance

between vn and vnk ; sk is the sequential order on the amino acid chain that is relative to the beginning
of the protein sequence; ek ∈ R128 denotes amino acid embedding (i.e., one-hot encoding of the
amino acid type) of vnk in the cluster; and f denotes an encoder which is implemented by a multilayer
perceptron. In this way, our neural clustering framework considers both primary (1D sequence-based
distance) and tertiary (3D coordinates and orientations) structure information of proteins. Then, we
utilize the cross-attention mechanism [51] to calculate the attention score γn

k ∈ (0, 1) between the
medoid amino acid node feature xn and all the constituent ones xn

k in the clusterHn:

γn
k =

exp(w[xn,x
n
k ])∑K

k=1 exp(w[xn,xn
k ])

, (2)

where w is a learnable vector, and [·] refers to the concatenation operation. The attention score γn
k

denotes the level of focus of the medoid on other constituent amino acids. Then, the overall cluster
representation x̃n for the clusterHn of node vn is given as:

x̃n =
∑K

k=1
γn
kx

n
k . (3)

Cluster Nomination (CN). To identify the most representative amino acids (i.e., critical compo-
nents) in the protein, we propose a cluster nomination process that learns to automatically select
these critical components based on the cluster representations {x̃n}Nn=1. Specifically, such cluster
nomination process is achieved by a GCN, which takes each cluster representation x̃n as input and
calculates a nomination score φn ∈ (0, 1):

φn = σ(W1x̃n +
∑Nt

m=1
An,m(W2x̃n −W3x̃m)), (4)

where W1,2,3 are learnable parameters and σ is ReLU function. By utilizing self-loops and the
capability to learn functions of local extremas, we are able to score clusters based on both their
global and local significance. The cluster feature is then weighted by the calculated scores:

X̂c = Φ⊙Xc, (5)

where Φ=[φ1, · · · , φNt
]⊤, Xc=[x̃1, · · · , x̃Nt

], and⊙ is broadcasted hadamard product. Based on
the weighted cluster features X̂c and the calculated nomination scores Φ, we select top-Nt clusters
at the t-th iteration. Then, the top-Nt amino acids are utilized to form a new graph, viewed as the
input for the next t+1-th iteration. Here Nt is the number of selected clusters at t-th iteration and is
determined by the cluster nomination fraction ω, denoted as Nt=⌊ω ·Nt−1⌋, that t∈{0, ..., T} and
N0=N . We will illustrate the impact of different values of ω in §4.5.

At each clustering iteration, we estimate cluster membership and centers by considering the sequen-
tial and spatial information of amino acids. Thus it explicitly probes the structures of the portion
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and captures the complex relationships among amino acids. Then, the representative amino acids
(i.e., cluster medoids) are identified and only those most informative ones (which can be viewed as
critical components) are selected for next-iteration clustering, and eventually used for functionality
prediction. After T iterations, a fully connected layer is used to project the feature representations
of the nominated NT amino acids to a |Y|-dimension score vector for classification. Note that the
attention-based selection is implicitly learnt from the supervision signals of the protein classification
task. In a nutshell, our method utilizes an iterative clustering algorithm that repeatedly stacks three
steps: SCI, CRE, and CN. The pseudo code of our algorithm can be found in the appendix.

3.3 IMPLEMENTATION DETAILS

Network Architecture. We progressively nominate NT from N amino acids of the protein by T
iterations (see Fig. 2). We empirically set T =4, suggesting the neural clustering framework consists
of four iterations. At t-th iteration, we stack B = 2 CRE blocks to learn the representation of the
selected Nt amino acids. In this way, our method is also a hierarchical framework that downsamples
amino acids as the iteration proceeds. In order to ensure a large enough receptive field at late itera-
tions, we increase the value of the cluster radius r applied in SCI step as the number of iterations
increases. Concretely, the radii for the four iterations are r, 2r, 3r, and 4r, respectively. We adopt
skip connection [52] per CRE block to facilitate information flow and ease network training. Inspired
by [12, 53, 54], we adopt rotation invariance (detailed in the appendix).
Training Objective. We follow the common protocol in this field [10, 12, 54, 55] to append a
fully connected neural network as the classification head at the tail of network. Softmax activation
and cross-entropy loss are used for single-label classification, while Sigmoid function and binary
cross-entropy loss for multi-label classification.
Reproducibility. We implement our method using PyTorch-Geometric library. For all our experi-
ments, the training and testing are conducted on a single Nvidia RTX 3090 GPU with 24 GB memory
and Intel(R) Xeon(R) Gold 6326 CPU@2.90GHz. More details of the training setup are given in the
appendix. To ensure reproducibility, our full implementations and models will be released.

4 EXPERIMENTS

We evaluate our method on four tasks following previous studies [9, 10, 12]: enzyme commission
(EC) number prediction (§ 4.1), gene ontology (GO) term prediction (§ 4.2), protein fold classi-
fication (§ 4.3), and enzyme reaction classification (§ 4.4). Then, in § 4.5, we present a series of
diagnostic studies. Finally, we provide a set of visual results in § 4.6 for in-depth analysis. More
experimental results and implementation details are provided in the appendix.

4.1 EXPERIMENT ON EC NUMBER PREDICTION

Task and Dataset. Enzyme Commission (EC) number prediction seeks to anticipate the EC num-
bers of diverse proteins that elucidate their role in catalyzing biochemical reactions. The EC num-
bers are chosen from the third and fourth levels of the EC tree, resulting in 538 distinct binary
classification tasks. As in [8], the experimental dataset of this task consists of 15, 550/1, 729/1, 919
proteins in train/val/test set, respectively. For GO term and EC number prediction, we follow
the multi-cutoff splits in [8] to ensure that the test set only contains PDB chains with a sequence
identity of no more than 95% to the proteins in the train set.
Training Setup and Evaluation Metric. EC number prediction can be regarded as a multi-label
classification task. The performance is evaluated by the protein-centric maximum F-score Fmax,
which is based on the precision and recall of the predictions for each protein.
Performance Comparison. We compare our neural clustering method with 11 top-leading methods
in Table 1. As seen, our method establishes a new state-of-the-art on EC number prediction task. It
surpasses CDConv [12] by 5.6% (0.820→0.866) and GearNet [10] by 6.9% (0.810→0.866) in terms
of Fmax. This indicates that our method can learn informative representations of proteins that reflect
their functional roles in catalyzing biochemical reactions.

4.2 EXPERIMENT ON GO TERM PREDICTION

Task and Dataset. GO term prediction aims to forecast whether a protein belongs to certain GO terms.
These terms categorize proteins into functional classes that are hierarchically related and organized
into three sub-tasks [8]: molecular function (MF) term prediction consisting of 489 classes, biological
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Table 1: Fmax on EC and GO prediction and Accuracy (%) on fold and reaction classification. [†]
denotes results taken from [55] and [*] denotes results taken from [9] and [56]. (§4.1-§4.4)

GO Fold ClassificationMethod Publication EC BP MF CC Fold Super. Fam. Avg. Reaction

ResNet [57] NeurIPS 2019 0.605 0.280 0.405 0.304 10.1 7.21 23.5 13.6 24.1
LSTM [57] NeurIPS 2019 0.425 0.225 0.321 0.283 6.41 4.33 18.1 9.61 11.0

Transformer [57] NeurIPS 2019 0.238 0.264 0.211 0.405 9.22 8.81 40.4 19.4 26.6
GCN [58] ICLR 2017 0.320 0.252 0.195 0.329 16.8* 21.3* 82.8* 40.3* 67.3*
GAT [59] ICLR 2018 0.368 0.284† 0.317† 0.385† 12.4 16.5 72.7 33.8 55.6
GVP [33] ICLR 2021 0.489 0.326† 0.426† 0.420† 16.0 22.5 83.8 40.7 65.5

3DCNN [28] Bioinform 2018 0.077 0.240 0.147 0.305 31.6* 45.4* 92.5* 56.5* 72.2*
GraphQA [32] Bioinform 2021 0.509 0.308 0.329 0.413 23.7* 32.5* 84.4* 46.9* 60.8*

New IEConv [56] ICLR 2022 0.735 0.374 0.544 0.444 47.6* 70.2* 99.2* 72.3* 87.2*
GearNet [10] ICLR 2023 0.810 0.400 0.581 0.430 48.3 70.3 99.5 72.7 85.3

ProNet [11] ICLR 2023 - - - - 52.7 70.3 99.3 74.1 86.4
CDConv [12] ICLR 2023 0.820 0.453 0.654 0.479 56.7 77.7 99.6 78.0 88.5

Ours - 0.866 0.474 0.675 0.483 63.1 81.2 99.6 81.3 89.6

process (BP) term prediction including 1, 943 classes, cellular component (CC) term prediction with
320 classes. The dataset contains 29, 898/3, 322/3, 415 proteins fortrain/val/test, respectively.
Training Setup and Evaluation Metric. GO term prediction is also a multi-label classification
task. The protein-centric maximum F-score Fmax is reported.
Performance Comparison. We compare our method with 12 existing state-of-the-art methods for
protein representation learning on the task of predicting the GO term of proteins, where most of
them are CNN or GNN-based methods. The results are shown in Table 1, where our framework
achieves competitive Fmax scores on all three sub-tasks, especially on MF (0.675 vs 0.654) and BP
(0.474 vs 0.453) terms, compared to CDConv [12]. Also, our method is clearly ahead of the second-
best method, GearNet [10], by large margins, i.e., 0.474 vs 0.400 BP, 0.675 vs 0.581 MF, 0.483 vs
0.430 CC. Our new records across the three sub-tasks show that our neural clustering method can
learn rich representations of proteins that capture their functional diversity.

4.3 EXPERIMENT ON PROTEIN FOLD CLASSIFICATION

Task and Dataset. Protein fold classification, firstly introduced in [21], aims to predict the fold
class label of a protein. It contains three different evaluation scenarios: 1) Fold, where proteins be-
longing to the same superfamily are excluded during training, 12, 312/736/718 proteins for train/-
val/ test, 2) Superfamily, where proteins from the same family are not included during training,
12, 312/736/1, 254 proteins for train/val/test, 3) Family, where proteins from the same family
are used during training, 12, 312/736/1, 272 proteins for train/val/test.
Training Setup and Evaluation Metric. Protein fold classification can be seen as a single-label
classification task. Mean accuracy is used as the evaluation metric.
Performance Comparison. In Table 1, we continue to compare our framework with these state-
of-the-art methods on the task of classifying proteins into different fold classes. The fold class
describes the overall shape and topology of a protein. Our framework yields superior performance.
For example, it yields superior results as compared to CDConv [12] by 6.4%, ProNet [55] by 10.4%
and GearNet [10] by 14.8% on the Fold evaluation scenario. Considering that protein fold classifi-
cation is challenging, such improvements are particularly impressive. Across the board, our neural
clustering framework surpasses all other methods of protein fold classification, demonstrating that
our framework can learn robust representations of proteins that reflect their structural similarity.

4.4 EXPERIMENT ON ENZYME REACTION CLASSIFICATION

Task and Dataset. Enzyme reaction classification endeavors to predict the enzyme-catalyzed reaction
class of a protein, utilizing all four levels of the EC number to portray reaction class. We utilize the
datasetprocessedby[9], whichconsistsof384 four-levelECclassesand 29, 215/2, 562/5, 651proteins
fortrain/val/test, where proteins have less than 50% sequence similarity in-between splits.
Training Setup and Evaluation Metric. Enzyme reaction classification is regarded as a single-
label classification task. We adopt Mean accuracy as the evaluation metric.
Performance Comparison. Table 1 presents comparison results of classifying proteins into differ-
ent enzyme reaction classes. In terms of classification accuracy, our neural clustering framework out-
performs the classic GCN-based method by a margin, e.g., GCN [58] by 22.3%, GAT [59] by 34%,
and GrahQA [32] by 28.8%. In addition, it surpasses recent three competitors, i.e., CDConv [12]
(+1.1%), ProNet [55] (+3.2%), and GearNet [10] (+4.3%). In summary, the proposed neural cluster-
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Table 2: Ablative experiments for the neural clustering algorithm.
(a) An off-the-shelf clustering algorithm; (b) A simple average
pooling method; (c) Randomly generate attention score γn

k (§4.5).
GO Fold ClassificationMethod EC BP MF CC Fold Super. Fam. Avg. Reaction

(a) 0.792 0.385 0.579 0.429 43.1 67.1 99.1 69.8 86.8
(b) 0.817 0.452 0.641 0.453 57.2 78.7 99.3 78.4 88.1
(c) 0.765 0.342 0.567 0.415 44.6 69.5 99.2 71.1 86.4

Ours 0.866 0.474 0.675 0.483 63.1 81.2 99.6 81.3 89.6

Table 3: Efficiency comparison
to SOTA competitors on enzyme
reaction classification (§4.5).

Method Acc. Runing Time
New IEConv [56] 87.2% 75.3 ms

GearNet [10] 85.3% OOM
ProNet [11] 86.4% 27.5 ms

CDConV [12] 88.5% 10.5 ms
Ours 89.6% 10.9 ms

ing framework achieves outstanding performance against state-of-the-art methods, suggesting that
our method learns informative representations of proteins that reflect their catalytic activity.

4.5 DIAGNOSE ANALYSIS

Neural Clustering. To demonstrate the effectiveness of neural clustering, we compare it against
three baseline approaches that employ naive methods as replacements. Firstly, we use an off-the-
shelf clustering algorithm, GRACLUS[60], as a baseline (a). Secondly, we replace it with a simple
average pooling method used in CDConv[12] as a baseline (b). Lastly, we replace the attention score
γn
k with a random value as a baseline (c). As shown in Table 2, our method significantly outperforms

all three baselines. Specifically, it surpasses baseline (a) by an impressive 11.5%, baseline (b) by
2.5%, and baseline (c) by 10.2%. The superior performance compared to baseline (a) highlights
the importance of using a learnable clustering approach for effective representation learning. This
demonstrates that our neural clustering is able to capture meaningful patterns and structures in the
protein that are not captured by the off-the-shelf clustering algorithm. Furthermore, the comparison
with baseline (c) supports the notion that learned assignment is more effective than random assign-
ment. This suggests that neural clustering is able to leverage the inherent structure and relationships
within the protein to make informed assignments, leading to improved performance.
Efficiency. We conduct an investigation into the efficiency of our neural clustering-based frame-
work, focusing on its running time for enzyme reaction classification. The mean running time per
prediction was measured using a single Nvidia RTX 3090 GPU and Intel(R) Xeon(R) Gold 6326
CPU @ 2.90GHz, and the results are summarized in Table 3. In particular, GearNet [10], a compet-
ing method known for its high complexity, cannot be trained using the same GPU due to its resource
requirements (OOM). Notably, our method achieves state-of-the-art performance while maintaining
a comparable running time to existing approaches, suggesting the efficiency of our method.
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Figure 3: Performance change
curve with different combina-
tions of ω and r for enzyme re-
action classification.

Initial Clustering Radius. The initial clustering radius r deter-
mines the cluster size formed in SCI step. A larger radius leads to
more amino acids in each cluster, potentially capturing a greater
amount of spatial structural information. However, this also intro-
duces the risk of increased noise within the clusters. Conversely,
a smaller radius results in fewer amino acids being included in
each cluster, which can reduce noise but may also lead to the loss
of some critical information. Therefore, we conducted experi-
ments ranging from 2.0 to 7.0 and assessed the performance on
two tasks: protein fold classification and enzyme reaction classifi-
cation. The experimental results, presented in Fig. 3, indicate that
the optimal performance is achieved when r=4.0, which suggests
a suitable balance between capturing sufficient structural informa-
tion and mitigating the detrimental effects of noise. More specific results can be found in Table 9.
Cluster Nomination Fraction. In CN step, a cluster nomination fraction ω determines the pro-
portion of clusters selected as the medoid nodes for the next iteration. A larger ω means that more
clusters are retained, which may preserve more information but also increase redundancy and com-
plexity. While a smaller ω means that fewer clusters are retained, which may reduce redundancy and
complexity but also lose some information. We experiment with different values of ω from 20% to
70% and report results on protein fold classification and enzyme reaction classification. As shown
in Fig. 3, the best performance is achieved when ω=40%, suggesting a suitable trade-off between
preserving information and reducing redundancy and complexity. See Table 9 for more results.
Number of Iterations. Table 4 also studies the impact of the number of iterations. For enzyme
reaction classification, increasing T from 1 to 4 leads to better performance (i.e., 84.7%→89.6%).
However, the accuracy drops significantly from 89.6% to 86.3% when T is set as 5. This may
be because over-clustering finds insufficient and insignificant amino acids, which are harmful to
representation learning. Similar trends can also be observed in the results of other tasks.
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Table 4: Analysis of adopting different number of iterations (§4.5).
GO Fold Classification

T EC
BP MF CC Fold Super. Fam. Avg.

Reaction

1 0.717 0.402 0.593 0.432 55.7 73.2 97.4 75.4 84.7
2 0.824 0.438 0.642 0.453 60.0 79.2 99.0 79.1 88.1
3 0.855 0.469 0.677 0.480 62.2 80.8 99.3 80.8 89.0
4 0.866 0.474 0.675 0.483 63.1 81.2 99.6 81.3 89.6
5 0.809 0.423 0.605 0.455 58.1 75.7 98.5 77.4 86.3

Table 5: Different u%
missing coordinates (§4.5).

u% Fold Super. Fam.
0% 63.1 81.2 99.6
5% 61.9 79.8 99.5
10% 60.1 78.7 99.5
20% 56.7 76.9 99.3
30% 50.2 73.6 99.2
40% 47.8 71.3 99.0

Table 6: Analysis of the impact of rotation invariance and different numbers of CRE blocks (§4.5).
Rotation GO Fold Classification
Invariant B EC BP MF CC Fold Super. Fam. Avg. Reaction

✔ 1 0.825 0.430 0.618 0.464 57.7 76.3 99.4 77.8 87.6
✔ 2 0.866 0.474 0.675 0.483 63.1 81.2 99.6 81.3 89.6
✔ 3 0.857 0.466 0.669 0.474 61.8 80.2 99.5 80.5 88.9
✘ 2 0.781 0.392 0.614 0.436 56.4 75.3 97.9 76.4 87.1

Percentages of Missing Coordinates. In some cases, the protein structures may have missing co-
ordinates due to experimental errors or incomplete data. To test the robustness of our framework
to handle such cases, we randomly remove a certain percentage u% of coordinates from the protein
structures and evaluate our framework on protein fold classification. The results are shown in Ta-
ble 5, where we can find that our framework still achieves competitive performance when some of
the coordinates are missing. For instance, on the Superfamily evaluation scenario, our framework
achieves an average accuracy of 78.7% when 10% of the coordinates are missing, which is only
slightly lower than the accuracy of 81.2% when no coordinates are missing. This indicates that our
framework can learn robust representations of proteins that are not sensitive to missing coordinates.
Number of CRE Blocks. In our framework, we use B CRE blocks at each clustering iteration
to extract cluster features. We study the impact of using different values of B from 1 to 3 on all
four sub-tasks. We stop using B > 3 as the required memory exceeds the computational limit
of our hardware. The results are shown in Table 6, where we can find that B = 2 achieves the
best performance on all tasks. For instance, on enzyme reaction classification,B = 2 achieves an
accuracy of 89.6%, while if B=1 or B=3, the accuracy drops to 87.6% and 88.9%, respectively.
This suggests that using two CRE blocks is sufficient to capture the cluster information and adding
more blocks does not bring significant improvement but increases the computational cost.
Rotation Invariance. We compare our framework with and without rotation invariance on all four
tasks. The results are shown in Table 6, where we can see that rotation invariance improves the
performance of our framework on all tasks. For example, on protein fold classification, rotation
invariance boosts the average accuracy from 76.4% to 81.3%. This indicates that rotation invariance
can help our framework to capture the geometric information of proteins more effectively and robustly.

4.6 VISUALIZATION

We visualize the protein structure at each iteration in Fig. 4. The color of the node corresponds
to the score calculated in CN step. By using such an iterative clustering algorithm, this method is
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Figure 4: Visualization results of the protein structure at each iteration. The color of the node
denotes the score calculated in CN step. See related analysis in §4.6.
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Figure 5: Clustering results for a protein exhibit variations across EC and GO-MF predictions. (§4.6)

Figure 6: UMAP projection [61] of the learned representation. See related analysis in §4.6.

supposed to explore the critical amino acids of the protein. For example, we examine the protein
‘2i5b.A’, characterized by a complex structure consisting of numerous loops and helices. After the
first iteration of clustering, our method selects some amino acids that are located at the ends or bends
of these loops and helices as the medoid nodes for the next iteration. Subsequently, after the sec-
ond clustering iteration, our method further narrows down the number of amino acids by selecting
those that have high scores. Ultimately, our method identifies a small subset of amino acids with
the highest scores, which are seen as the representative ones for the protein. When comparing the
visualization results of protein chain pairs stemming from the same family or protein, e.g., ‘2i5b.A’
vs ‘2i5b.B’, we observe remarkable similarity in their clustering outcomes, suggesting that they pos-
sess critical amino acids fundamentally determining their respective structures and functionalities.
This further validates that our method is effective in identifying these critical amino acids.
In Fig. 5, we present the clustering results of the same protein for different tasks: EC and GO-MF.
Interestingly, we observe variations in the results for the same protein across different tasks, indi-
cating that different critical components are identified for different functions. Moreover, some parts
are highlighted for both two tasks. This is probably because these parts are informative across tasks.
To further prove that our method can indeed discover some functional motifs of proteins, following
LM-GV [55], we apply UMAP [61] to analyze the learned representation at the penultimate layer
on Enzyme reaction classification and use DBSCAN32 [62] to extract protein clusters. 20 of 384
classes are shown in Fig. 6, where two clusters are selected for detailed analysis. Remarkably, it is
clear thatproteinsoriginatingfromthesameclusterexhibit similar structuralmotifs, asgeneratedbyour
method. This compelling observation underscores the efficacy of our clustering approach in identifying
proteins possessing analogous structural motifs that are related to their enzyme reaction functions.

5 CONCLUSION

In this work, our epistemology is centered on the protein representation learning by a neural clus-
tering paradigm, which coins a compact and powerful framework to unify the community of protein
science and respect the distinctive characteristics of each sub-task. The clustering insight leads us
to introduce new approaches for spherosome cluster initialization, cluster representation extraction,
and cluster nomination based on both 1D and 3D information of amino acids. Empirical results
suggest that our framework achieves superior performance in all four sub-tasks. Our research may
potentially benefit the broader domain of bioinformatics and computational biology as a whole.
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SUMMARY OF THE APPENDIX

This appendix contains additional details for the ICLR 2024 submission, titled “Clustering for Pro-
tein Representation Learning”. The appendix provides more details of our approach, additional
literature review, further discussions, additional experimental results, information on broader im-
pacts, and limitations. These topics are organized as follows:

• §A: Details of Training Setup
• §B: Details of Evaluation Metrics
• §C: Clustering Algorithm
• §D: Rotation Invariance
• §E: Additional Literature Review
• §F: More Quantitative Results
• §G: More Qualitative Results
• §H: Broader Impacts
• §I: Limitations

A DETAILS OF TRAINING SETUP

In our experiments, we train our framework using a SGD optimizer with learning rate of 1e-3 and a
weight decay of 5e-4. Due to memory constraints, we set the batch size to 32, 24, 8, and 8 for EC,
GO, Fold Classification, and Reaction tasks, respectively. The framework comprises four iterations
of clustering, which employ varying numbers of channels at each iteration. For Fold Classification,
we use 256, 512, 1024 and 2048 channels for the four iterations, respectively. For EC, GO and
Reaction, we use 128, 256, 512 and 1024 channels for the four iterations, respectively. The training
process spans 200 or 300 epochs for each dataset, and the best model is selected based on the
validation performance. Details can be seen in Table 7.

In addition, we adopt data augmentation techniques, similar to those used in [9, 12] to augment the
data for fold and reaction classification tasks. Specifically, we apply Gaussian noise with a standard
deviation of 0.1 and anisotropic scaling within the range of [0.9, 1.1] to the amino acid coordinates
in the input data. We also add the same noise to the atomic coordinates within the same amino acid
to ensure that the internal structure of each amino acid remains unchanged.

Table 7: The hyperparameter configurations of our method vary across different tasks. We choose
all the hyperparameters based on their performance on the validation set. See details in §A.

Hyperparameter EC GO-BP GO-MF GO-CC Fold Classification Reaction
batch size 32 24 24 24 8 8
Channels [128,256,512,1024] [128,256,512,1024] [128,256,512,1024] [128,256,512,1024] [256,512,1024,2048] [128,256,512,1024]
# epoch 300 300 300 300 200 200

B DETAILS OF EVALUATION METRICS

We first present the details of evaluation metrics for enzyme commission number prediction and gene
ontology term prediction. The objective of these tasks is to determine whether a protein possesses
specific functions, which can be viewed as multiple binary classification tasks. We define the first
metric as the protein-centric maximum F-score (Fmax). This score is obtained by calculating the
precision and recall for each protein and then averaging the scores over all proteins. To be more
specific, for a given target protein i and a decision threshold λ ∈ [0, 1], we compute the precision
and recall as follows:

precisioni(λ) =

∑
a 1[a ∈ Pi(λ) ∩Gi]∑

a 1[a ∈ Pi(λ)]
, recalli(λ) =

∑
a 1[a ∈ Pi(λ) ∩Gi]∑

a 1[a ∈ Gi]
,

where a represents a function term in the ontology, Gi is a set of experimentally determined function
terms for protein i, Pi(λ) denotes the set of predicted terms for protein i with scores greater than or
equal to λ, and 1[·] ∈ {0, 1} is an indicator function that is equal to 1 if the condition is true.
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Then, the average precision and recall over all proteins at threshold λ is defined as:

precision(λ) =
∑

i precisioni(λ)

M(λ)
, recall(λ) =

∑
i recalli(λ)

N
,

where we use N to represent the number of proteins, and M(λ) to denote the number of proteins
on which at least one prediction was made above threshold λ, i.e., |Pi(λ)| > 0. By combining these
two measures, the maximum F-score is defined as the maximum F-measure value obtained across
all thresholds:

Fmax = max
λ

{
2× precision(λ)× recall(λ)

precision(λ) + recall(λ)

}
.

The second metric, mean accuracy, is calculated as the average precision scores for all protein-function
pairs, which is equivalent to the micro average precision score for multiple binary classification.

C CLUSTERING ALGORITHM

Algorithm 1: Pseudo-code of our neural clustering algorithm
Input : Protein P = (V, E ,Y); Amino acid embedding ej for amino acid vj ∈ V;

Cluster nomination ratio ω; Nomination operator NOMINATE; Index selection
operator INDEXSELECT; Add self-loop operator ADDSELFLOOPS; Spherosome
clustering operator RADIUS; Spherosome clustering radius r; ReLU activation
function σ; Geometric coordinates Pos; Geometric orientations Ori; Sequential
orders Seq

Intermediate: Clustered features Xc and Scored cluster features X̂c; Adjacency matrix A;
Edge index E; Cluster scores vector Φ; Nominated index index

Output : Nominated amino acid features X , coordinates Pos, orientations Ori,
sequential orders Seq

1 for t = 1, 2, 3, 4 do
2 A← RADIUS(Pos, r);
3 E ← ADDSELFLOOPS(A);
4 for n = 1...Nt−1 do
5 x̃n ← 0⃗;
6 for k = 1...K do
7 gn

k ,o
n
k , d

n
k , sk ← (Pos,Ori, Seq);

8 xn
k ← f(gn

k ,o
n
k , d

n
k , sk, ek);

9 γn
k ← softmax(σ([W1xn,x

n
k ]));

10 x̃n ← x̃n + γn
kx

n
k ;

11 end
12 Xc

n ← x̃n;
13 end
14 Φ← GCN(Xc, E);
15 X̂c ← Φ⊙Xc;
16 Nt ← ⌊ω ·Nt−1⌋;
17 index← NOMINATE(Φ, Nt);
18 X,Pos,Ori, Seq ← INDEXSELECT(X̂c, Pos,Ori, Seq, index);
19 end

D ROTATION INVARIANCE

Rotation Invariance. To make our method rotationally invariant, we augment the distance infor-
mation dnk by using a relative spatial encoding [53]:

dnk =
(
d(||zk − zn||), O⊤

n
zk − zn

||zk − zn||
, q(O⊤

n On
k )

)
, (6)
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where On = [bn, jn, bn × jn], bn denotes the negative bisector of angle between the ray (vn−1 −
vn) and (vn+1 − vn), and jn is a unit vector normal to that plane. Formally, we have un =
zn−zn−1

||zn−zn−1|| ∈ R3, bn = un−un+1

||un−un+1|| ∈ R3, jn = un×un+1

||un×un+1|| ∈ R3, where × is the cross product.
The first term in Eq. 6 is a distance encoding d(·) lifted into the radius r, the second term is a
direction encoding that corresponds to the relative direction of vnk → vn, and the third term is
an orientation encoding q(·) of the quaternion representation of the spatial rotation matrix. This
encoding approach allows us to capture both local and global geometric information while being
invariant to different orientations. Related experimental results are seen in Table 6.

E ADDITIONAL LITERATURE REVIEW

Graph Pooling. Graph pooling designs have been proposed to achieve a useful and rational graph
representation. These designs can be broadly categorized into two types [63]: Flat Pooling [64–68]
and Hierarchical Pooling [69–72]. Flat Pooling generates a graph-level representation in a single
step by primarily calculating the average or sum of all node embeddings without consideration of
the intrinsic hierarchical structures of graphs, which causes information loss [73]. On the other hand,
Hierarchical Pooling gradually reduces the size of the graph. Previous graph pooling algorithms, as
variants of GCN, still follow the message passing pipeline. Typically, they are hard to be trained and
need many extra regularizations and/or operations. For example, Diffpool [69] is trained with an
auxiliary link prediction objective. Besides, it generates a dense assignment matrix thus incurring a
quadratic storage complexity. Top-K pooling [70], though also addressing the selection of top nodes,
adopts a Unet-like, graph encoder-decoder architecture, which is much more complicated than our
model but only learns a simple scalar projection score for each node.

In contrast, our clustering-based algorithm is more principled and elegant. It can address the sparsity
concerns of Diffpool and capture rich protein structure information by aggregating amino acids to
form clusters instead of learning from a single node. Furthermore, it sticks to the principle of clus-
tering throughout its algorithmic design: SCI step is to form the clusters by considering geometrical
relations among amino acids; CRE step aims to extract cluster-level representations; CN step is for
the selection of important cluster centers. It essentially combines unsupervised clustering with su-
pervised classification. The forward process of our model is inherently a neural clustering process,
which is more transparent and without any extra supervision.

F MORE QUANTITATIVE RESULTS

Table 8: Fmax on GO term and EC number prediction under different cutoffs. See details in §F.
Cutoff 30% 40% 50% 70% 95% 30% 40% 50% 70% 95%

Method GO-BP GO-MF
CNN [74] 0.197 0.195 0.197 0.211 0.244 0.238 0.243 0.256 0.292 0.354

ResNet [57] 0.230 0.230 0.234 0.249 0.280 0.282 0.288 0.308 0.347 0.405
LSTM [57] 0.194 0.192 0.195 0.205 0.225 0.223 0.229 0.245 0.276 0.321

Transformer [57] 0.267 0.265 0.262 0.262 0.264 0.184 0.187 0.195 0.204 0.211
GCN [58] 0.251 0.250 0.248 0.248 0.252 0.180 0.183 0.187 0.194 0.195

GearNet [10] 0.345 0.347 0.354 0.378 0.403 0.444 0.461 0.490 0.537 0.580
CDConv [12] 0.381 0.390 0.401 0.428 0.453 0.533 0.553 0.577 0.621 0.654

Ours 0.390 0.397 0.405 0.429 0.474 0.551 0.569 0.595 0.629 0.675

Method GO-CC EC
CNN [74] 0.258 0.257 0.260 0.263 0.387 0.366 0.361 0.372 0.429 0.545

ResNet [57] 0.277 0.273 0.280 0.278 0.304 0.409 0.412 0.450 0.526 0.605
LSTM [57] 0.263 0.264 0.269 0.270 0.283 0.247 0.249 0.270 0.333 0.425

Transformer [57] 0.378 0.382 0.388 0.395 0.405 0.167 0.173 0.175 0.197 0.238
GCN [58] 0.318 0.318 0.320 0.323 0.329 0.245 0.246 0.246 0.280 0.320

GearNet [10] 0.394 0.394 0.401 0.408 0.450 0.625 0.646 0.694 0.757 0.810
CDConv [12] 0.428 0.435 0.440 0.451 0.479 0.634 0.659 0.702 0.768 0.820

Ours 0.433 0.442 0.449 0.457 0.483 0.713 0.759 0.795 0.837 0.866

Different Sequence Cutoffs. Experiments in Table 1 use 95% as the sequence identity cutoff for EC
and GO dataset splitting. In addition, we test our method under four lower sequence identity cutoffs
(30%/40%/50%/70%) following [8] and demonstrate the experimental results in Table 8. The pur-
pose of employing various sequence identity cutoffs is to assess the robustness of different models
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Table 9: Analysis of initial clustering radius and nomination fraction. See related analysis in §4.5
Radius r Fold Super. Fam. Reaction

2.0 51.2 67.3 96.5 85.2
3.0 60.3 78.9 99.5 89.1
4.0 63.1 81.2 99.6 89.6
5.0 62.2 80.7 99.6 89.1
6.0 59.4 79.9 99.4 88.2
7.0 56.9 71.2 99.3 87.7

Fraction ω Fold Super. Fam. Reaction
20% 53.2 70.5 98.3 85.9
30% 62.7 81.1 99.6 89.4
40% 63.1 81.2 99.6 89.6
50% 61.0 80.6 99.6 88.9
60% 61.3 79.9 99.4 88.5
70% 60.8 78.6 99.3 88.3

Table 10: Comparison results with existing protein language models. See details in §F.
GO Fold ClassificationMethod Pretraining Dataset EC BP MF CC Fold Super. Fam. Avg. Reaction

DeepFRI [75] Pfam 10M 0.631 0.399 0.465 0.460 15.3 20.6 73.2 36.4 63.3
ESM-1b [76] UniRef50 24M 0.864 0.470 0.657 0.488 26.8 60.1 97.8 61.6 83.1

ProtBERT-BFD [77] BFD 2.1B 0.838 0.279 0.456 0.408 26.6 55.8 97.6 60.0 72.2
IEConv (amino level) [54] PDB 476K - 0.468 0.661 0.516 50.3 80.6 99.7 76.9 88.1

LM-GVP [55] UniRef100 0.21B 0.664 0.417 0.545 0.527 - - - - -
GearNet-Edge-IEConv [10] AlphaFoldDB 805K 0.874 0.490 0.654 0.488 54.1 80.5 99.9 78.2 87.5
IEConv (residue level) [54] - - 0.421 0.624 0.431 47.6 70.2 99.2 72.3 87.2
GearNet-Edge-IEConv [10] - 0.810 0.403 0.580 0.450 48.3 70.3 99.5 72.7 86.6

CDConv [12] - 0.820 0.453 0.654 0.479 56.7 77.7 99.6 78.0 88.5
Ours - 0.866 0.474 0.675 0.483 63.1 81.2 99.6 81.3 89.6

when subjected to diverse hold-out test sets. Lowering the cutoff value indicates a lower degree of
similarity between the training and test sets. Notably, we observe that even at lower cutoff values,
our model consistently achieves the highest performance. This finding underscores the robustness
and generalization capability of our model, as it demonstrates superior performance even when con-
fronted with test sets that exhibit lower similarity to the training data. For example, in EC number
prediction under cutoff 30%, our method outperforms CDConv [12] by 12.5% (0.634→0.713).

Comparison to existing protein language models. Existing protein language models [10, 54, 55,
76, 77] are typically pre-trained with much more data. The network design, training objective,
training data, as well as training protocol are greatly different. Our method aims to learn protein
representation through a clustering scheme that combines unsupervised clustering with supervised
classification. Our contributions are vertical. Thus making a direct comparison seems a little bit
unfair. To further showcase the effectiveness of our method, we compare our algorithm with some
recent protein pretraining language models on fold classification. As shown in Table 10, our method
still yields better results without any pre-training or self-supervised learning. It may be that one or
a few self-supervised tasks are insufficient to learn effective representations, as mentioned in [12].
This also sheds light on the direction of our future efforts: it is interesting to incorporate our algo-
rithm with existing protein language models, as our core idea is principled.

More Datasets and Downstream Tasks. We conducted additional experiments and discussions
on one more newer and comprehensive benchmark (i.e., PROBE [78]) and three additional down-
stream tasks to demonstrate the effectiveness of our method. These tasks include protein inverse
folding, protein-ligand binding affinity prediction, and protein-protein interactions. The results of
these experiments are presented in Table 11, Table 12, Table 13, and Table 14. It is worth noting that
our method consistently outperforms existing state-of-the-art approaches on all datasets and tasks.
For instance, in the inverse folding task, our method achieves a 3.19% improvement in Recovery-All
compared to the current state-of-the-art method, PiFold [79]. Similarly, in the protein-ligand binding
affinity prediction task, our method outperforms the existing state-of-the-art method, Atom3D [29],
by 5.26% (0.553→0.582) on the sequence identity 30% split. Additionally, in the protein-protein in-
teractions task, our method achieves a 2.07% improvement compared to ProNet [11]. These results
highlight the superior performance of our method across multiple downstream tasks. The consistent
improvements obtained provide solid evidence for the effectiveness of our overall algorithm design.

G MORE QUALITATIVE RESULTS

We provide more visualization results of the clustering results at each iteration in Fig. 7. The color
of the node denotes the score calculated in our CN step. For example, in the first row, we can
see that the protein ‘1rco.E’ has a helical structure with some loops. After the first iteration of
clustering, our method selects some amino acids that are located at the ends or bends of these loops
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Table 11: Results on the protein inverse folding task. (§F)
Perplexity ↓ Recovery % ↑

Method Short Single-chain All Short Single-chain All
GCA [80] 7.09 7.49 6.05 32.62 31.10 37.64
GVP [81] 7.23 7.84 5.36 30.60 28.95 39.47

ProteinMPNN [82] 6.21 6.68 4.61 36.35 34.43 45.96
PiFold [79] 6.04 6.31 4.55 39.84 38.53 51.66

Ours 5.89 5.77 4.37 44.47 44.29 54.85

Table 12: Results on the protein-
protein interactions task. (§F)

Method AUROC ↑
Atom3D [29] 0.844

GVP-GNN [33] 0.866
ProNet [11] 0.871

Ours 0.889

Table 13: Results on protein-ligand binding affinity prediction task. See details in §F.
Sequence Identity 30% Sequence Identity 60%

Method RMSE ↓ Pearson ↑ Spearman ↑ RMSE ↓ Pearson ↑ Spearman ↑
Atom3D [29] 1.416 0.550 0.553 1.621 0.608 0.615

DeepDTA [75] 1.866 0.472 0.471 1.762 0.666 0.663
TAPE [57] 1.890 0.338 0.286 1.633 0.568 0.571

ProtTrans [77] 1.544 0.438 0.434 1.641 0.595 0.588
MaSIF [83] 1.484 0.467 0.455 1.426 0.709 0.701
IEConv [9] 1.554 0.414 0.428 1.473 0.667 0.675

ProNet [11] 1.463 0.551 0.551 1.343 0.765 0.761
Ours 1.427 0.578 0.582 1.339 0.773 0.766

and helices as the center nodes for the next iteration. These amino acids may play an important role
in stabilizing the protein structure or interacting with other molecules. After the second iteration
of clustering, our method further narrows down the number of center nodes by selecting those that
have high scores. These amino acids may form functional domains or motifs that are essential for
the protein function. Our method finally identifies a few amino acids that have the highest scores
and are most representative of the protein structure and function. Through visualizing the clustering
results at each iteration, we can explicitly understand how our method progressively discovers the
critical components of different proteins by capturing their structural features in a hierarchical way.

In addition, as shown in the figure, we present pairs of protein chains from the same family or same
protein (i.e., ‘1rco.R’ and ‘1rco.E’, ‘3n3y.B’ and ‘3n3y.C’, ‘6gk9.B’ and ‘6gk9.D’). For example,
we observe that the clustering results of ‘3n3y.B’ and ‘3n3y.C’ (two chains of the same protein)
are very similar, indicating that they have similar critical amino acids that determine their structure
and function. This observation is consistent with the biological reality that proteins from the same
family or same protein often have long stretches of similar amino acid sequences within their primary
structure, suggesting that our method is effective in identifying these critical amino acids.

H BROADER IMPACTS

Our neural clustering framework for protein representation learning has several potential applica-
tions and implications for society. Protein representation learning can help advance our under-
standing of protein structure and function, which are essential for many biological processes and
diseases. By discovering the critical components of proteins, our framework can facilitate protein
design, engineering, and modification, which can lead to the development of novel therapies, drugs,
and biotechnologies. For example, our framework can assist in designing new protein sequences
that exhibit specific properties or functions, such as catalyzing biochemical reactions or binding to
other molecules. This can enable the creation of new enzymes, antibodies, vaccines, and biosensors
that can have a positive impact on human health and well-being.

However, our framework also poses some ethical and social challenges that need to be addressed.
Protein representation learning may raise issues of data privacy, ownership, and security, as protein
data may contain sensitive information about individuals or organisms. For example, protein data
may reveal genetic information, disease susceptibility, or drug response of a person or a population.
Therefore, proper measures need to be taken to protect the privacy and security of protein data
and prevent unauthorized access or misuse. Moreover, protein representation learning may have
unintended consequences or risks for the environment and society, as protein design and engineering
may create novel or modified proteins that have unknown or harmful effects. For instance, protein
design and engineering may introduce new allergens, toxins, or pathogens that can affect human
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Table 14: Results on an additional benchmark (PROBE [78]) for protein representation learning. (§F)
Semantic similarity inference Ontology-based PFP Protein family classification

Method Pretraining Dataset MF BP CC Avg. MF BP CC Avg. Random 50% 30% 15%
ProtVec [22] - 0.19 0.30 0.21 0.23 0.64 0.36 0.38 0.46 0.34 0.31 0.39 0.37

Learned-Vec [23] - 0.41 0.30 0.31 0.34 0.68 0.39 0.41 0.49 0.59 0.60 0.58 0.54
CPCProt [84] - 0.06 0.11 -0.09 0.03 0.65 0.40 0.44 0.50 0.63 0.66 0.62 0.64

MSA-Transformer [85] UniRef50 24M 0.38 0.31 0.30 0.33 0.67 0.47 0.50 0.55 0.67 0.72 0.73 0.63
ProtBERT-BFD [86] BFD 2.1B 0.29 0.32 0.42 0.34 0.85 0.61 0.62 0.69 0.84 0.84 0.84 0.81

ESM-1b [76] UniRef50 24M 0.38 0.42 0.37 0.39 0.83 0.53 0.61 0.66 0.87 0.84 0.92 0.86
ProtXLNet [86] UniRef100 0.21B 0.23 0.31 0.25 0.26 0.82 0.50 0.59 0.63 0.81 0.80 0.85 0.72

ProtALBERT [86] UniRef100 0.21B 0.22 0.37 0.32 0.30 0.89 0.63 0.64 0.72 0.92 0.91 0.92 0.88
ProtT5-XL [86] BFD 2.1B 0.57 0.21 0.40 0.39 0.90 0.66 0.68 0.75 0.92 0.92 0.92 0.90

Ours - 0.54 0.49 0.45 0.50 0.91 0.69 0.72 0.80 0.93 0.92 0.93 0.92
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Figure 7: More visualization results. See related analysis in §G.
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health or biodiversity. Therefore, proper regulations and oversight need to be established to ensure
the safety and responsibility of protein design and engineering.

I LIMITATIONS

Our neural clustering framework for protein representation learning has several limitations that need
to be addressed in future work. First, our framework relies on the availability of protein struc-
tures, which are not always easy to obtain or predict. Although our framework can leverage both
sequence-based and structure-based features, it may lose some information that is only encoded in
the 3D structure. Second, our framework assumes that the critical components of a protein are de-
termined by its amino acid sequence and structure, but it does not consider other factors that may
affect protein function, such as post-translational modifications, interactions with other molecules,
or environmental conditions. Third, our framework does not explicitly account for the evolution-
ary relationships among proteins, which may provide useful information for protein representation
learning. Incorporating phylogenetic information into our framework may enhance its ability to
capture the functional diversity and similarity of proteins.
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