
Prioritizing States with Action Sensitive Return in
Experience Replay

Alexander Keijzer∗
Cognitive Robotics

Delft University of Technology
Delft, The Netherlands

alexanderkeijzer@gmail.com

Bas van der Heijden∗

Cognitive Robotics
Delft University of Technology

Delft, The Netherlands
d.s.vanderheijden@tudelft.nl

Jens Kober
Cognitive Robotics

Delft University of Technology
Delft, The Netherlands
j.kober@tudelft.nl

Abstract

Experience replay for off-policy reinforcement learning has been shown to improve
sample efficiency and stabilize training. However, typical uniformly sampled
replay includes many irrelevant samples for the agent to reach good performance.
We introduce Action Sensitive Experience Replay (ASER), a method to prioritize
samples in the replay buffer and selectively model parts of the state-space more
accurately where choosing sub-optimal actions has a larger effect on the return.
We experimentally show that this can make training more sample efficient and that
similar performance can be reached with smaller parametric function approximators
– like neural networks with few neurons – in environments where they would
otherwise struggle.

1 Introduction
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Figure 1: Toy maze environment where an agent moves
from start S to termination T. The agent can choose
which adjacent square to move to but can only move
back to the square where it came from if there is no
other valid action. The states sampled from a buffer of
transitions are shown in green. After convergence, with
normal experience replay the buffer will likely be filled
with states from the whole maze. Previous work focused
function approximator expressiveness on relevant states
by prioritizing on-policy data. We introduce a method to
prioritize “decision points” for the agent to further focus
this expressiveness.

Reinforcement learning aims to find a policy
that maximizes cumulative reward. This is of-
ten done through learning a compact represen-
tation of the value of states or state-action pairs
in an environment by interacting with it. How-
ever, environment interactions can be costly and
therefore necessitate efficient data use. Lin’s
introduction of experience replay in reinforce-
ment learning [13] promotes efficient use and
reuse of collected experience. A replay buffer
stores transition samples from environment inter-
actions, aiding sample efficiency and stabilizing
training [14, 15]. Typically, learning of the value
function in off-policy reinforcement learning is
approached like a supervised learning problem
where stochastic gradient descent is used to train
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function approximations such as neural networks. In supervised learning, data is usually sampled
uniformly, however, for imbalanced datasets there are techniques to change the sampling distribution
[7]. With reinforcement learning, we have a similar issue as not every sample is equally relevant for
learning a good policy. Lambert et al. [12] showed that in model-based reinforcement learning, a
model that better explains the transition data (with higher likelihood) does not necessarily allow a
better policy to be found on it. There is an objective mismatch when training. This is also the case for
a value function in off-policy reinforcement learning with function approximators. A lower value
function error on the contents of a uniformly sampled buffer does not necessarily mean a better policy
will result from it.

When using localized representations for the value network, such as in tabular reinforcement learning,
replaying these irrelevant samples leads to computational overhead, but it does not impact the accuracy
in the vital parts of the state-action space. However, many popular off-policy algorithms use global
parametric function approximators like neural networks instead. Updates in irrelevant parts of the
state-action space then yield a global effect, as these are often trained with stochastic gradient descent
and minimize the mean square error across a batch of experiences [25]. Particularly in the case of
smaller function approximators, such as neural networks with few neurons, the limited expressiveness
that could have been allocated to model performance-critical areas is spent on inconsequential regions
of the state-action space.

Off-policy algorithms may therefore, despite their ability to learn from experiences under different
policies, still be influenced by the sampling distribution and buffer content when using global function
approximators. To illustrate this, consider an extreme case: an agent would not see any performance
improvement if it is trained using a replay buffer that contains states that the agent would never
come across during rollouts. Other works have limited replay of states and/or actions unlikely under
the current policy, the “off-policyness”, which will reduce the replay of irrelevant samples and can
improve performance [17, 23, 24]. However, just increased sampling of on-policy data does not
prioritize what is really relevant: the importance of modeling these experiences accurately for the
agent’s performance during evaluation. A toy example that shows how we would ideally focus the
approximators’ expressiveness is shown in Fig. 1. In this example, an optimal policy could be learned
with data from only 5 states while it is likely the replay buffer will contain data from all 30 states.

In this paper, we define a modeling importance criterion that measures sensitivity on return of taking
a suboptimal action and introduce Action Sensitive Experience Replay (ASER), a method to change
the replay distribution to match this criterion for off-policy reinforcement learning algorithms that use
a state-action value function. This allows us to focus the expressiveness of function approximators
on important parts of the state-space. We argue that while fitting the observation distribution (i.e.
minimizing the total modeling error of the data collected by the agent along its rollouts) might seem
logical, it is likely not the best strategy to achieve the maximum return efficiently. Since this leaves
deprioritized parts of the state-space with lower accuracy, we use n-step returns to bootstrap only to
states that are adequately modeled. We experimentally show that we find sample efficiency and/or
final performance gains: (i) in a simple case, such as the maze in Fig. 1 where importance is given,
this effective reduction of the state-space allows for significant improvements, (ii) when we transfer a
learned importance criterion from a previously trained policy, (iii) in some cases, when learning the
importance criterion during training.

2 Related Work

There have been several different proposals for non-uniform sampling or reweighting of replay buffers.
Some, like CER [27], add extra samples to a uniform sampled batch while others change the sampling
distribution altogether. Most techniques are aimed to satisfy one of the following four objectives.

Firstly, a common aim is to reduce the off-policyness of the selected samples for replay. This may
improve learning speed and stability. Previous works estimate the off-policyness using importance
weights [17] or multiple buffers [23] and then clip gradients or reweight experiences. In [24],
off-policyness is instead reduced by sampling multiple batches and taking the most similar state
distribution. Possible drawbacks of selecting mostly on-policy data are reduced robustness to policy
or environment changes. Our approach does not prioritize on-policyness specifically, however, these
approaches may work well together by further reducing the amount of modeled states.
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Another objective may be to prioritize samples that are modeled poorly by the value function.
Previous works [4, 22] propose prioritizing the replay of experiences based on their TD-error, which
is analogous to how unexpected the transition is to the value function. This integrates new experience
faster and, like our approach, will prioritize states where the value function is volatile but can
potentially focus the limited expressiveness on irrelevant parts of the state-space (reducing the final
performance and convergence rate).

Heuristics can also be used to enforce good coverage of transition dynamics. For example, [20]
introduce prioritized sampling based on Shannon’s entropy of the state space vector. Other variants
include selecting on reward [10] and state coverage [9]. Some of these works may do the opposite
of our approach and the works described before, as, instead of focusing replay, they often enforce a
broader coverage of the state space. In some cases, this may be preferred to increase robustness to
environment changes, avoid catastrophic collapse, or for transfer learning.

Lastly, instead of using rules-based strategies to do prioritization, a learning-based approach to select
experience from the buffer can be used. In [18, 26], training a replay policy to maximize the increase
in cumulative reward by selecting transitions to train the agents’ policy on is proposed. An interesting
observation in these works is that these learning methods prefer replaying recent, likely on-policy,
data. These methods, however, cannot learn a prioritization similar to our approach as the learning
methods do not have the information needed as input.

Next to what the goal of prioritization is previous works differ in how they implement prioritization.
The approach used by some works discussed here [17, 23] is reweighting errors to, for example, take
larger update steps for more prioritized data. Instead, the sampling distribution can also be changed
so more prioritized samples are seen more often [4, 20, 22]. With very large batch sizes and many
update steps per new sample, these approaches will converge to effectively the same. Since this is
often not the case we use the latter approach, however, reweighting may work too.

Most works discussed here prioritize samples from a first-in-first-out buffer. Instead, works such as
[9] change in what order data is removed from the replay buffer as they often have a limited capacity.
While this may also benefit our approach, we only change how a fixed-size buffer is sampled, not
how data is removed.

Finally, our method makes use of n-step returns for off-policy reinforcement learning algorithms. A
common way of accounting for the bias towards off-policy data introduced by n-step returns is by
using importance sampling or tree backup [25]. We do not use these approaches as we argue our
method naturally limits the impact of this bias (see Sect. 3.3).

3 Action Sensitive Experience Replay (ASER)

ASER aims to focus the expressiveness of function approximators used in off-policy reinforcement
learning by changing the sampling distribution of the replay buffer. To do this, our method consists
of three additions to standard algorithms. Firstly, a formal definition of the modeling importance
criterion based on the Q-function of the algorithm is given in Sect. 3.1. Then, this criterion is used
to change the sampling distribution as described in Sect. 3.2. Lastly, due to the changed sampling
distribution, we need to skip over some states when bootstrapping as described in Sect. 3.3. In Sect.
3.4 we show the implementation of ASER for SAC [8].

3.1 Modeling Importance Criterion

The modeling importance could be formalized in many ways, depending on reward distribution,
action authority, etc. What is explored here is a measure to find areas of the state-action space
where choosing a wrong action greatly affects the expected return for continuous state and action
spaces. We define a function p : Rn → R+ that maps the state space s to the modeling importance.
A possible modeling importance could be the norm of the second derivative of the Q-function to
the action a at the optimal action. A highly negative concavity at the peak of the Q-function gives
a local proxy for the rate of decrease in expected return when choosing a sub-optimal action. For
multi-dimensional actions, a matrix norm of the Hessian could be used instead. However, there are
multiple issues with using this definition as the modeling importance. It is often not trivial to find the
peak of the Q-function in continuous domains. Taking the estimated optimal action in actor-critic
methods instead, for example, may not exactly coincide with the peak of the Q-function and therefore
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give inaccurate values. Even if the peak of the Q-function could be found, the concavity is a local
metric. The second-order derivatives may be large while the total value decrease is small.

Q(a)

a

â*

(a) High importance

Q(a)

a

â*

(b) Low importance

Figure 2: Visualization of Q-functions over
actions where â∗ is the estimate of the opti-
mal action according to the policy. A good
importance metric differentiates these, even
though metrics like a second derivative may
locally be similar. The dotted red line shows
an approximation of this function, where a
scaled entropy or variance could be a good
metric, for example.

Therefore, a less local metric for this value loss is needed.
A solution to this is to approximate the Q-function over
actions for every state with a tractable function where we
could use metrics like entropy or variance. Fig. 2 shows
examples of Q-functions where we would like a high dif-
ference in importance. The assumption here, however, is
that the reinforcement learning algorithm used will model
the reduction in expected return accurately. From exper-
iments, we found that this is not generally the case. For
example, we see that with ϵ-greedy exploration, DQN may
find what the best action is but will likely not accurately
model the value of selecting a sub-optimal action. On the
other hand, maximum entropy reinforcement learning al-
gorithms, such as SAC [8], have a built-in incentive to find
the sensitivity of their actions and perform more randomly
in parts of the state space where the effect on the expected
return is smaller.

In this paper, we investigate the effectiveness of using the
learned entropy of a policy trained via SAC as the crite-
rion for modeling importance. We motivate this choice in
Sec. 3.4.

3.2 Sampling Prioritization

The modeling importance criterion is used to select what
priority samples should be selected for replay. Similarly
to PER [22], the selection is stochastic depending on the criterion and we introduce a hyperparameter
α that scales the prioritization of samples. The chance of selecting a sample i is:

P (i) =
pαi∑
k p

α
k

. (1)

Sweeping the entire buffer to select data is too computationally expensive, therefore their prioritization
will be updated with the current criterion when they are sampled. New experience samples are
introduced into the buffer with the maximum prioritization that exists inside the buffer. This prioritizes
integrating new experiences quickly, although this effect is limited.

Since PER’s prioritization criterion is based on the TD-error, which depends on what next state the
transition ends up in, a bias will be introduced that needs to be annealed during training. PER does
this using importance sampling. The modeling importance criterion we introduce only depends on
the current state, which is independent of any stochasticity in the environment, which means we
do not need this correction. We change the distribution of states that is replayed compared to the
distribution of states that is seen by the agent during rollouts, this will introduce a bias in modeling
errors but not in value convergence.

3.3 Bootstrapping

Due to prioritization, some states get replayed more frequently, causing less precise Q-function
estimates in less-replayed areas. In such cases with our prioritization scheme, states where actions
minimally impact expected returns are less accurately estimated. In essence, lower accuracy should
not be a problem, precisely because actions have minimal effect here. However, it can still cause
issues due to how off-policy algorithms typically use bootstrapping to update the Q-function. The
commonly used TD(0) update rule has the form

Q(st,at)← Q(st,at) + β(rt + γQ(st+1,at+1)︸ ︷︷ ︸
Qtarg(st,at)

−Q(st,at)), (2)

with learning rate β, discount rate γ, state st, action at, reward rt received after transitioning from
state st, and action at+1 usually derived from “greedy” policy π̄(st+1). This rule adjusts the Q-
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function towards the target Qtarg(st,at), an estimate of the true Q(st,at) value. Bootstrapping helps
lower variance and speeds up convergence. However, it also introduces a bias due to any estimation
error in Q(st+1,at+1). If not addressed, our prioritization scheme could worsen this bias. Prioritized
states that transition to unimportant ones may use these unimportant states’ inaccurate Q-function
estimates as bootstrap targets, hindering the convergence of important states to their true values. Fig.
3 illustrates this, where important (green) states are separated by unimportant (white) ones. Since the
unimportant states are rarely sampled, their Q-function values remain static and are likely inaccurate.
Using these inaccurate Q-function values for bootstrapping introduces considerable bias into the
Q-function updates of important states.

To counteract this effect, we propose an adaptive n-step returns scheme. An n-step returns scheme
extends the TD(0) update rule in Equation (2) by aggregating rewards over n future steps, instead of
using only the immediate reward, as defined in

Qtarg(st,at) = rt + γrt+1 + γ2rt+2 + ...+ γn−1rt+n−1 + γnQ(st+n,at+n), (3)

with action at+n usually derived from “greedy” policy π̄(st+n). Rather than bootstrapping to the
immediate next state, which may be unimportant and inaccurately modeled, we unroll n-steps forward
until we encounter a well-modeled state, as visualized in Fig. 3. Since it is difficult to know if
a state is accurately modeled, we use our importance criterion as a proxy to gauge the expected
accuracy of its Q-function. Thus, a state qualifies as a bootstrap target if its importance criterion
exceeds a threshold b. As a result, n is not constant but varies with each experience sample. A
maximum bootstrap length h limits the unrolling distance if many transitions in a trajectory have low
importance.

(a) Standard bootstrap-
ping

(b) Importance n-step
bootstrapping

Figure 3: Bootstrapping visualized with arrows in the toy
maze environment. White states, which are not modeled
accurately due to the prioritized sampling, are skipped
when boostrapping to avoid pulling this badly modeled
data into the well-modeled green states.

Selecting a fixed threshold b for every task is
challenging and requires tuning. Instead, we dy-
namically set the threshold based on the impor-
tance criterion distribution in an unprioritized
sample batch. Specifically, we set b to the k-th
percentile of the importance criterion distribu-
tion. Hence, a state is deemed important if its im-
portance criterion surpasses k percent of states
in the sampled batch. During training, we start
with a low percentile k and gradually increase it,
recognizing that early importance metrics may
be unreliable. The increment in k is governed
by a bounded linear function,

k = min(km, kss), (4)

where km is the maximum percentile, ks is the
slope, and s denotes the number of training timesteps.

It is important to note this n-step bootstrapping will cause the bootstrap target to be dependent on the
policy that collected it. A different policy may have taken a different trajectory by taking different
actions and have collected different rewards. This will result in a bias towards older policies that are
still in the buffer with off-policy reinforcement learning algorithms. There are ways to solve this, for
example, with importance sampling or tree backup [25]. We argue, however, that this effect is limited
since the policy dependency is only in areas where actions have a limited effect on the expected
return. As soon as a state is encountered where a different policy would have a significant effect, it is
used to bootstrap instead. A different policy would therefore only have a limited effect on the value
of the bootstrap target.

3.4 Combining ASER with SAC

We integrate ASER with the Soft Actor-Critic (SAC) algorithm [8], using SAC’s learned policy
entropy as our importance criterion. SAC is an off-policy algorithm that optimizes a stochastic policy.
A central feature of SAC is entropy regularization. The policy is trained to maximize a trade-off
between expected return and entropy, a measure of randomness in the policy. This encourages the
agent to explore actions around its perceived optimal strategy, provided that this exploration does not
significantly compromise the expected return. If being very accurate is crucial for reaching its goal,
the agent will act in a more predictable way, with low randomness. However, if the agent can act
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Algorithm 1: ASER
Input: Replay buffer D of samples T = (s,a, r, s′, d) with prioritization p, training timesteps t
Parameters :Maximum horizon h, maximum target percentile km, target percentile slope ks,

discount factor γ
1 for each gradient step do
2 Sample with P (i) = pαi /

∑
j p

α
j a batch of transitions B = {(s,a, r, s′, d)i} from D;

3 b← top k-th percentile of p(s′) for every T ∈ B, where k = min(km, kss);
4 for each T = (s,a, r, s′, d)i ∈ B do
5 n← 1;
6 while p(s′) < b and not d and n < h do
7 (r̂, ŝ′, d̂)← from next transition in trajectory from buffer D;
8 Modify T with: r ← r + γnr̂; s′ ← ŝ′; d← d̂;
9 n← n+ 1;

10 end
11 end
12 Normal gradient step with batch B of modified transitions T with bootstrap discount γn;
13 Update in D prioritization p for every T ∈ B with p(s);
14 end

freely in certain situations without hurting its overall performance, it will do so. Hence, if the agent
finds that its actions in a certain state have no impact on the expected return, it will act completely
random. We argue that such states are less important for an agent to replay, primarily because the
agent’s behavior in these states does not impact overall performance; therefore, there is little to learn.
This rationale motivates our choice to use policy entropy as the modeling importance criterion in
ASER. Specifically, we use the probability of the mode of SAC’s Gaussian policy as a proxy for the
policy’s entropy, defined as

p(s) = π(a∗|s) (5)
where a∗ is the greedy (or mode) of the policy π. It provides a scalar metric for multi-dimensional
actions. Moreover, this can be efficiently determined through a single evaluation of the policy, unlike
metrics that necessitate the computationally expensive calculation of the Q-function’s Hessian. For
consistency, we additionally incorporate the entropy terms from SAC’s Q-value targets into the
rewards specified in Equation (3) when employing n-step returns.

The complete algorithm for ASER is described in Algorithm 1. ASER can be used as a replacement
for uniform sampling used in other reinforcement learning algorithms with a suitable importance
criterion. We use a replay buffer of transition tuples state s, actions a, reward r, next state s′ and end
of episode (or done flag) d with prioritization p. For every gradient step, ASER modifies the batch
of transitions before they are used in the normal gradient step of the algorithm. The only change
that needs to be done to the algorithm it is implemented on is that any bootstrapping will need to be
discounted according to the bootstrap length used by ASER, so with γn instead of simply γ. Other
than updating the prioritization, the buffer contents are not modified.

4 Results

In the following section, we introduce the setup of our experiments and the Maze environment in
Sect. 4.1 and then show the effect of ASER on this environment in Sect. 4.2. Results that show
the dependency on reward function or environment definition and an ablation study of the sampling
prioritization and n-step bootstrapping are given in Sect. 4.3.

4.1 Maze environment and experiment setup

We test ASER within a maze four time larger than that represented in Fig. 1 and 3. In this environment,
the agent must move from start S to termination T. The agent can move to adjacent squares, but may
only return to the square it came from if there is no other valid action, i.e., when reaching a dead-end.
Therefore, in many states, the chosen action will have no effect, as every action leads to the same
next state, but in some choosing the wrong action will result in the agent eventually reaching a dead
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end. This means that the neural network only needs to model these decision-sensitive areas and can
ignore the other states. SAC is continuous in state and action space and this environment is discrete.
Therefore, states are mapped uniformly onto a continuous axis between 0 and 1. For the action space,
four valid actions [UP, DOWN, LEFT, RIGHT] are defined and mapped to the values [0, 0.25, 0.5,
0.75]. The agent can opt for an action as a continuous value within the range [0, 1], which is then
mapped to the nearest valid action. For instance, should the agent choose a value of 0.4 with only
[UP, RIGHT] as valid options, the outcome will be a RIGHT action. We initially show the maze
with a reward function where a penalty is applied every time the agent reaches a dead end. Since
the reward function has a significant effect on ASER, in Sect. 4.3 we also show the effect when the
reward is given when reaching the end of the maze linearly decreasing with the timesteps spent to get
to the end.

To show the effectiveness of only learning action-sensitive parts of the state space, we also compare
the effect of our method with prior information about the sensitivity of actions. To do this, we create
an “oracle” that has perfect information about the sensitivity of actions. This oracle is used instead of
the modeling importance metric p(s) from Equation (5), where a decision point has an importance of
1 and all other states have an importance of 0. Another way to use prior information is to use the
importance criterion from a previously trained policy instead of learning it while training.

We build upon the algorithm implementations of Stable Baselines 3 [19]. To create a fair comparison
we run hyperparameter optimization for every algorithm on the shown environments. For this, we use
Optuna [2] and maximize the sum of the average total reward of multiple rollouts in the evaluation
environment during training to optimize for speed of convergence and final performance. Tables
with all hyperparameters, both optimized values and SB3 defaults, can be found in Appendix A. We
present all the sample efficiency graphs according to the recommendations of Agarwal et al. [1],
using the interquartile mean with a 95% stratified bootstrap confidence interval from 16 training runs.

4.2 ASER on Maze environment

In Fig. 4 we show the sample efficiency curves for SAC with standard experience replay, Prioritised
Experience Replay, ASER with a learned selection criterion, and ASER with the oracle. All of these
agents use a small, 24-neuron policy and critic network. SAC with standard replay struggles to
reliably converge in the Maze environment with these small networks, even after hyperparameter
optimization. It appears that at some point additional training samples no longer improve the agent’s
performance. A possible reason for this is that too much of the limited expressiveness of the neural
network is used to model parts of the state-space with no impact on performance, as actions do
not affect return there. Filling the replay buffer with more data will not be beneficial, as the neural
network needs to filter out portions of these data to effectively incorporate it. When ASER has access
to the oracle it only replays and bootstraps to decision points in the maze. With this oracle, we see a
large increase in sample efficiency.

Figure 4: Sample efficiency comparison between SAC
with standard replay, PER, ASER with an online
learned importance criterion, and ASER with an impor-
tance criterion from an “oracle” on the Maze environ-
ment with a small, 24-neuron actor and critic network

Figure 5: Sample efficiency comparison between SAC
with uniform sampling, PER, and ASER with an online
learned importance criterion on the Maze environment
with a two-layer 256-neuron actor and critic network.
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Figure 6: Sampling
count relative to uniform
with ASER in the Maze
environment where blue
is less sampling and red
is more sampling than
uniform.

Figure 7: Bootstrap dis-
tance with ASER for
the Maze environment
where darker is a shorter
distance. E.g. in the top
row, bootstrapping dis-
tance decreases with the
distance to the decision
point.

Figure 8: Sample efficiency comparison between abla-
tions of SAC ASER on the Maze environment.

When the modeling importance criterion is not given, and therefore learned while training, we still
see an improvement in performance against uniform sampling. ASER more quickly and consistently
converges to the best policy. Since the importance now needs to be estimated by interacting with the
environment performance picks up later compared to the oracle. PER struggles in this environment,
with performance slightly below uniform sampling. Fig. 5 shows that when training a larger
network of two layers of 256 neurons there is still a significant sample efficiency, stability, and final
performance gain for ASER compared to standard experience replay and PER, but the effect is smaller
than with a small network. In general, this increased expressiveness allows for more sample-efficient
and stable learning compared to the smaller network.

In Fig. 6 and 7 we show, respectively, the sampling prioritization and the variable step bootstrapping
of ASER with learned importance. In the best case, these should reflect Fig. 1c and 3b. We see
very similar behavior in the sampling, where decision points have been learned and are prioritized,
although with some effect on nearby states. The bootstrapping figure is less clear but gives a similar
picture, especially in the bottom and top rows it is clear that it is bootstrapping to decision points and
termination as the distance lowers the closer we get to these points.

4.3 Ablation and limitations

(a) Sparse reward (b) Denser reward

Figure 9: Comparison of the value function (top) and
probability of the mode (bottom) between a sparse dis-
counted reward at termination and a denser reward with
a penalty each time the agent encounters a dead end. In
the denser reward scenario figures (right), there is more
immediate feedback resulting in a clearer difference in
next state value at decision points and therefore a more
accurate importance metric.

Sample efficiency curves for ablation of both
prioritization and n-step bootstrapping with a
predetermined importance criterion are shown
in Fig. 8. We see that the most significant
efficiency improvement comes from variable
step bootstrapping, with a smaller improvement
from the prioritization. Both features are needed
to properly “compress” the environment and
achieve stable convergence. We also show the
effect of fixed 10-step returns to make sure the
performance improvements shown are not only
caused by this longer return. 10-step returns
were chosen using parameter optimization as ex-
plained in Sect. 4.1. Somewhat surprisingly 10-
step SAC with uniform sampling still performs
well even though this will introduce bias in the
value estimation to older policies in the buffer
without importance sampling or tree backup.

In ASER, the value difference between actions
is crucial to learn a good importance. This is
heavily influenced by the reward function design.
Fig. 9 displays identical mazes with differing
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Figure 10: Sample efficiency comparison between SAC
with uniform sampling, PER, and ASER with an online
learned importance criterion on the Maze environment
with a sparse reward function.

Figure 11: Sample efficiency comparison between SAC
with uniform sampling, PER, ASER with an online
learned importance criterion, and ASER with a pre-
trained importance criterion on the Pendulum environ-
ment with a small, 24-neuron actor and critic network.

rewards: one awards only at the end, the other penalizes for turning around when reaching a dead-end.
In the former, ASER’s performance stagnates as indicated in Fig. 10, due to a less clear differences
in the importance criterion.

In the Pendulum environment from OpenAI Gym [5], performance differences are smaller, however,
some increased sample efficiency can still be achieved with pretraining, as shown in Fig. 11. Online
learned ASER is unable to achieve performance gains, possibly due to being unable to stably learn the
importance criterion. In classical control environments, such as the shown Pendulum environment,
the difference in importance between states is less clear than in the Maze environment. In these
environments, the importance can also depend more on the policy. Especially when pretraining this
may have a detrimental effect on performance as the newly trained policy may find a different path
through the state space making different states important to the agent.

5 Conclusion

In this paper, we have presented Action Sensitive Experience Replay (ASER) which changes the
experience replay distribution to prioritize states where the return is especially sensitive to non-optimal
actions. This strategic reallocation of modeling resources enables parametric function approximators
– such as neural networks – to focus their limited expressiveness on regions of the state-space that are
most relevant for the agent’s performance.

Our findings show improvements in sample efficiency, stability, and final performance, particularly
when the action’s sensitivity is either known in advance. When learning the sensitivity during training
or carrying the sensitivity over from a previously trained policy we still observed some improvements.
The improvements are more pronounced when the number of parameters in the function approximator
is constrained. In order to achieve these performance improvements, our method does require
environments to have rewards shaped in a way that results in clear changes in the value in some states

By focusing RL agents on key state-space areas, they can learn effective policies in larger domains
without expanding function approximators. This could enhance performance with smaller neural
networks, aiding in multi-task RL. For instance, our method may obviate the need for policy distilla-
tion [21]. It may also be useful in transfer learning, particularly sim-to-real transfer. A pretrained
importance criterion could be more robust than a policy that is prone to simulator overfitting [6, 11,
16].

We realize that the evaluation of our method is limited to a small number of environments in this
paper. A larger study may give a better overview of the implications and possible limitations of our
method. As shown, environments with clear differences in importance benefit most from our method.
Therefore, we expect that some environments in the Atari 2600 benchmark suite [3] would work well
with our method. This, along with an implementation on a discrete action-space algorithm like DQN,
would be an interesting direction for future development.
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A Hyperparameters

Table 1: Optimized Hyperparameters Values Maze Small Network

Standard PER ASER Oracle ASER

λ Learning Rate 2.480e−2 5.192e−2 1.594e−2 3.215e−2

γ Discount Factor 9.770e−1 9.549e−1 9.358e−1 9.5267e−1

τ Target Smoothing Coefficient 1.914e−3 9.203e−2 1.965e−2 7.399e−2

α Sample Prioritization - 3.414e−1 1.409e−1 1.032

h Max Bootstrap Length - - 6 8
km Bootstrap Target Percentile Maximum - - 73.54% 85.06%
ks Bootstrap Target Percentile Slope - - 5.457e−1 4.457e−1

Table 2: Optimized Hyperparameters Values Maze Large Network

Standard PER ASER Oracle ASER

λ Learning Rate 1.439e−2 1.350e−2 3.904e−3 1.725e−2

γ Discount Factor 9.696e−1 9.097e−1 9.827e−1 9.226e−1

τ Target Smoothing Coefficient 1.013e−2 3.151e−2 7.655e−2 5.741e−2

α Sample Prioritization - 9.473e−2 3.593e−1 5.384e−1

h Max Bootstrap Length - - 8 11
km Bootstrap Target Percentile Maximum - - 71.87% 39.73%
ks Bootstrap Target Percentile Slope - - 1.739e−2 9.736e−1

Table 3: Optimized Hyperparameters Values Maze Reward at Termination

Standard PER ASER

λ Learning Rate 1.246e−2 3.106e−2 1.935e−3

γ Discount Factor 9.599e−1 9.821e−1 9.720e−1

τ Target Smoothing Coefficient 1.536e−2 8.151e−2 6.833e−2

α Sample Prioritization - 3.908e−1 1.501e−1

h Max Bootstrap Length - - 17
km Bootstrap Target Percentile Maximum - - 43.31%
ks Bootstrap Target Percentile Slope - - 6.508e−4
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Table 4: Optimized Hyperparameters Values Pendulum

Standard PER ASER Pretrained ASER

λ Learning Rate 3.281e−2 1.200e−2 2.196e−2 5.365e−2

γ Discount Factor 9.357e−1 9.447e−1 9.244e−1 9.273e−1

τ Target Smoothing Coefficient 7.518e−2 2.538e−3 6.764e−2 4.648e−2

α Sample Prioritization - 2.538e−1 1.829e−1 1.961e−1

h Max Bootstrap Length - - 2 1
km Bootstrap Target Percentile Maximum - - 77.05% 69.57%
ks Bootstrap Target Percentile Slope - - 1.444e−3 1.064e−4

Table 5: Stable Baselines 3 Defaults

Replay Buffer Size 1e6

Env. Steps Before Learning Starts 100
Batch Size 256
Gradient Steps Per Env. Step 1
Entropy Coefficient Learned
Target Entropy -1
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