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Abstract

This paper proposes a novel approach for op-
timizing the performance of a machine trans-
lation system. By paraphrasing an input into
multiple different phrases, that maintain the se-
mantic meaning, and ranking them using only
source-side information, we show that perfor-
mance can be significantly improved. Experi-
ments on the IWSLT En-De and En-NI datasets
show that the family of Flan-T5 models can be
improved by several COMET points, a notable
gain in performance. Furthermore, this can be
combined with traditional output-side rankers
on n-best list outputs to obtain further gains.

1 Introduction

Transformer-based autoregressive systems have
achieved state-of-the-art performance in many se-
quence tasks (Vaswani et al., 2017) including (mul-
tilingual) Machine Translation (MT) (Xue et al.,
2021; Costa-jussa et al., 2022), Text Summariza-
tion & Generation (Chung et al., 2022) and Speech
Recognition (Chiu et al., 2018; Gulati et al., 2020;
Radford et al., 2022). By training these systems
using the next-token prediction of a single refer-
ence sequence, impressive performance can be
obtained. However, two issues plague such ap-
proaches. Firstly, in tasks such as MT and Text
Summarization, there exist several plausible an-
swers for every input but the model is trained to
allocate all probability mass to a single reference
(Zhang et al., 2020; Liu et al., 2022). Secondly,
such systems suffer from exposure bias; the model
is only trained to predict the next token conditioned
on a reference back-history, but not its own gener-
ations (Williams and Zipser, 1989; Bengio et al.,
2015; Lamb et al., 2016; Gu et al., 2019; Wiseman
et al., 2016; Kim and Rush, 2016).

A direct consequence of the above-mentioned
issues is the uncalibrated confidence scores that are
produced by such systems. Prior work has found

that although good performance can be achieved,
the confidence scores across a set of hypotheses
(generated through beam search) correlate weakly
with the quality of the hypotheses (Fathullah et al.,
2023; Zhao et al., 2023). One family of approaches
that attempts to solve this modify the training ap-
proach to incorporate several targets and allocate
a probability mass that correlates with the quality
of the target (Liu et al., 2022; Zhao et al., 2023).
However, while such approaches improve the corre-
lation between confidence and quality, they require
modifying the parameters of the system. When
operating foundation models that are either highly
expensive to train, or are hidden behind applica-
tion program interfaces (APIs), such approaches
become less practical (Raffel et al., 2020; Brown
et al., 2020; Touvron et al., 2023a,b; Achiam et al.,
2023; Anil et al., 2023).

We take an alternative approach based on rank-
ing models (Shen et al., 2004). The main aim of
a ranker system is to select the best hypothesis in
a decoding set generated by a model, according to
some predetermined performance metric. This is
traditionally achieved by training such a system,
conditioned on the input and hypothesis, to output
scores that are directly correlated with the quality
of the hypothesis (Shen et al., 2004; Och et al.,
2004; Salazar et al., 2020; Lee et al., 2021). While
prior work, to the best of our knowledge, aims to
rank the outputs of a system, we propose paraphras-
ing inputs and choosing the one that would lead
to the best hypothesis. By maintaining the seman-
tic meaning of an input sequence, a paraphrased
version could, for example, trigger an MT system
to generate better translations. Experiments on
IWSLT translation datasets (Cettolo et al., 2017)
show that paraphrasing indeed has the potential to
improve translation performance for large founda-
tion models (such as Flan-T5 (Raffel et al., 2020))
and can be further improved by combining it with
output ranking to obtain better results.
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Figure 1: Ranking setup. On the input side, a ranker picks the paraphrase that should give the best decoding.
Optionally, the NMT model could also produce a set of decodings which an output-side ranker can rank. Note
that the output ranker explicitly incorporates the paraphrased information.

2 Background

In this current paradigm of large foundation mod-
els that often are hidden behind APIs, approaches
that aim to modify the parameters of the system are
either expensive or not possible. Instead, methods
that aim to modify the input or select the best output
have become more practical. In the field of Ma-
chine Translation, there has been a range of work
on improving the quality of translations through
the use of auxiliary networks that aim to rank a set
of hypotheses (Shen et al., 2004; Och et al., 2004;
Salazar et al., 2020; Lee et al., 2021). The work of
Salazar et al. (2020) used masked language mod-
els (MLMs) (Devlin et al., 2019; Liu et al., 2019;
Conneau et al., 2020) to rank candidates. Their
approach was centred around masking one token at
a time and extracting the log-likelihood to obtain
an overall confidence score. While this approach
is expensive and is not directly tailored to ranking
hypotheses, they showed it was possible to obtain
better performance using off-the-shelf MLMs. Fur-
thermore, Lee et al. (2021) proposed fine-tuning
MLMs to directly produce scores correlated with
the metric of interest. By conditioning an MLM
(with parameters @) on the source input & and a hy-
pothesis w; € U in a candidate list, it is tasked with
producing scores o(u;|x, 8) such that the resulting
distribution:

exp (o(u;|x, 6))
> ueu €xp (o(u|z, 0))

matches the target distribution derived from perfor-
mance metric m such as COMET:

p(uilz,0) =

exp (m(u;, r|x)/T)

1
o exp (wurlo) 1)

where r is the reference for some input . While
effective, this approach relies on crafting a target
distribution with some predetermined temperature
T which could affect training and performance. Fi-
nally, the work of Fathullah et al. (2023) showed it
was possible to fine-tune MLMs to predict the per-
formance of a translation system using only source
information. This was achieved by taking a batch
of inputs & € X, their corresponding decodings u
and references 7 and trained the system o(x|0) to
achieve a high correlation with the metric of inter-
est m(u, r|x). Note that such a system is used to
compare different instances while traditional rank-
ing systems compare different hypotheses for the
same instance.

3 Paraphrasing Inputs

At the core of our proposal, we ask the follow-
ing question: Can we improve the performance
of a translation system by modifying the input?
Our answer to this requires two components: (1) a
mechanism for modifying inputs, in our case a para-
phrasing system which can modify a sentence while
maintaining its semantic meaning. (2) a model for
evaluating whether a new paraphrase would trig-
ger better translations or not. If both components
can be obtained, then it would be possible to mod-
ify an input, evaluate whether it is a high-quality
modification, and pass it on to the MT system for
translation and achieve better results, see Figure 1.
The first component is trivial, efficient paraphras-
ing systems (Vladimir Vorobev, 2023) exist and
can be used off-the-shelf from HuggingFace (Wolf
et al., 2019) for our task. The second component
can be seen as an input ranking system. Taking



Table 1: COMET performance of various trained and oracle rankers on the INSLT-2017 En-De test set. The
first block shows the use of an input-side ranker with greedy decoding of the NMT system. The second block
shows an additional use of an output-side ranker on the beam output. The Fraction Improved column refers
to the fraction of the dataset that was improved through input paraphrasing and ranking.

Greedy Decoding Beam Search Decoding

Model Fraction Input &

Base. Input Improved Base. Input Ouptut output
Flan-T5 Small 46,8 51.1 (+4.3) 52.9% 538 55.1 57.3 58.3 (+4.5)
- oracle ’ 58.0 (+11.2) 78.5% ) 61.0 62.3 68.0 (+14.2)
Flan-T5 Base 577 614 (+3.7) 47.0% 6.1 64.7 65.6 68.3 (+6.2)
- oracle ’ 68.4 (+10.7) 75.2% ' 68.9 699 747 (+12.6)
Flan-T5 Large 65.0 679 (+2.7) 37.2% 677 70.9 71.7 74.1 (+6.4)
- oracle ’ 74.5 (49.5) 69.6% ' 75.2 7577  79.8 (+12.1)
Flan-T5 XL 69.3 71.7 (+2.4) 26.8% 69.6 72.0 73.5 75.6 (+6.0)
- oracle ’ 777 (+8.4) 65.5% ’ 77.1 77.9 81.6 (+12.0)
Flan-T5 XXL 724 74.2 (+1.8) 24.8% 743 76.0 77.7 78.8 (+4.5)
- oracle ’ 79.8 (+7.4) 62.3% ' 80.8 80.6 83.7 (+9.4)

only input-side information its task is to discrimi-
nate between different paraphrases and locate the
one that would induce the best translation. From
this perspective, our approach draws inspiration
from Fathullah et al. (2023); Lee et al. (2021) on
metric estimation using input-side information and
discriminative ranking.

Let  be some input and let &; € X be a
set of paraphrases that include the original in-
put. For each paraphrase x; the MT system gen-
erates a decoding u; with a performance metric
m; = 7(u;, r|x), where r is the reference trans-
lation for x. The task of the input-ranker is to
take the input-side information and predict a score
0; = o(x, x;|@) that is correlated with the metric.

 >nil0i = po)(mi — pir)
V201 = o)/ 32 (i — i)

To train the input-ranker we task it with optimising
the Pearson Correlation (see equation above) across
a set of candidates. Note that this loss function
requires no hyperparameters and is simpler than
capturing the heuristic target distribution in Eq.
(1). Furthermore, we use a correlation loss since
absolute predictions are not required to discern
between candidates.

L(0) =

4 Experimental Evaluation

All experiments will be conducted on the IWSLT-
2017 En-De and En-NI translation datasets us-
ing the Flan-T5 family of foundation models and

COMET (Unbabel/wmt22-comet-da) (Rei et al.,
2020) to measure performance. To generate para-
phrases we use Vladimir Vorobev (2023) from Hug-
gingFace, with diverse beam search (Vijayakumar
et al., 2016) with 8 beams and 8 beam groups to
ensure a level of diversity in the paraphrases. All
ranking systems will be based on a DeBERTaV3
(He et al., 2023) base backbone with an attention
layer and a small multi-layer perceptron on top to
predict a scalar score. Furthermore, we modify the
discriminative output ranker in Lee et al. (2021),
to additionally be conditioned on the paraphrased
input. Finally, the NMT system will either produce
outputs using greedy search or beam search with
8 beams. Full details on the training setup and
hyperparameters are provided in Appendix A.

Table 1 shows the performance of trained and
oracle rankers for both input and output-side sys-
tems. All of the rankers are lightweight transformer
encoder DeBERTaV3 base models with approxi-
mately 198 million parameters that are conditioned
on the input (and output) information. Focusing on
the left-hand block, it isolates the contribution of
input rankers when greedy decoding of the NMT
system is used: (1) all systems benefit notably by
introducing a paraphraser and input-ranker to op-
timize the performance of the NMT system. Flan-
T5 Small was improved by 4.3 COMET points
while the largest Flan-T5, the XXL improved by
1.8 points. Despite being small improvements com-



pared to the theoretical gains that can be achieved
under an oracle ranker, these still represent notable
improvements in system performance. (2) The ta-
ble also shows that with greedy decoding between
25-50% of samples can be improved under such
a scheme while an optimal system could improve
60-80% of samples. (3) Furthermore, we observe
that the smaller less robust Flan-T5 models ben-
efit much more input ranking, larger more robust
systems already perform well and are harder to im-
prove upon. The second block of the table shows
the performance of input and output rankers when
separate and combined: (1) both input and out-
put rankers greatly benefit the baseline system, but
output rankers are slightly more effective overall.
(2) the combination of both rankers shows further
gains, i.e. input and output-side rankers comple-
ment each other. While the theoretical gains are sig-
nificantly larger, the combination can still achieve
between 4.5-6.4 COMET point gains. For exam-
ple, the combination of an input and output-side
ranker for the Flan-T5 Large obtained a signifi-
cant improvement of 6.4 COMET points and is on
par with the baseline Flan-T5 XXL model. The
Flan-T5 XL system gained 6.0 COMET points and
outperformed the XXL baseline.

Next, we explore the performance of our pro-
posal on the IWSLT En-NI dataset. Since the Flan-
T5 family was trained on less Dutch (N1) text (com-
pared to German; De), we naturally expect the per-
formance of these systems to be lower. However,
we can utilize that the paraphraser and input-ranker
operate on the high-resource side of English to im-
prove performance. Even if the system has poor
performance on the low-resource target language,
good paraphrases in the high-resource source lan-
guage could trigger the system to perform much
better. We also included the dedicated NLLB-200
Distilled 600M NMT system as a point of reference
since this system should be very robust on this task
(Costa-jussa et al., 2022). From Table 2 we observe
significant practical and theoretical gains for the
Flan-T5 family. Compared to the En-De counter-
part, we observe larger gains in the 3.1-9.7 COMET
point range. While the Flan-T5 Small obtains a
smaller gain, possibly due to its too poor perfor-
mance on this task, the remaining models can bene-
fit greatly from the use of a modified and improved
input to perform the translation. Even a dedicated
and robust NMT system such as the NLLB-200
can be improved by almost a COMET point, but
as expected, there are diminishing returns when

Table 2: COMET performance of various input-
side rankers on the IWSLT-2017 En-NL1 test set.

Greedy Decoding

Model Base Input Fraction

’ P Improved
Flan-T5 Small 26.0 29.1 (+3.1) 60.0%
- oracle ’ 334 (+7.4) 85.9%
Flan-T5 Base 33 38.1 (+5.8) 60.3%
- oracle ’ 44.5 (+13.2) 84.2%
Flan-T5 Large 332 42.9 (+9.7) 54.3%
- oracle ’ 49.5 (+16.3) 86.6%
Flan-T5 XL 38.8 46.2 (+7.4) 68.4%
- oracle ’ 51.9 (+13.1) 82.7%
Flan-T5 XXL 496 53.9 (+4.3) 52.5%
- oracle ’ 62.2 (+12.6) 80.6%
NLLB-200 843 85.1 (+0.8) 19.0%
- oracle ’ 87.2 (+2.9) 37.8%

attempting to improve better-performing systems.
Overall, this shows that one can improve the trans-
lation into low-resource languages by exploiting
the high-resource source language and choosing a
more appropriate input.

5 Conclusion

This paper has showcased a novel approach to im-
proving the performance of translation systems
through paraphrasing inputs. By generating a list
of candidate paraphrases of a certain input, and
ranking them, it is possible to trigger a translation
system to output higher-quality decodings. Experi-
ments on the IWSLT-2017 En-De and En-NI trans-
lation datasets show that the proposed lightweight
input-side rankers can pick better paraphrases and
improve the performance of Flan-T5 models by
several COMET points, signifying a notable im-
provement.

Limitations

This work has focused on translation to showcase
how generating paraphrases to an input and rank-
ing them can improve performance. While not
explored in this work, the performance of the para-
phraser (Vladimir Vorobev, 2023) is very important
in ultimately determining the performance of the
system and future work could focus on improving
the paraphrase generation process. Furthermore,
there has been a significant shift to the use of large
language models (LLMs) to perform a variety of
tasks through the use of intelligent prompting. Our
approach could potentially be extended to gener-



ate alternative prompts that could make better use
of LLMs but in order to achieve this, much more
data, more powerful paraphrasers and rankers are
required to be able to encompass the tasks that an
LLM can perform. Finally, for alternative tasks
such as abstractive summarization, directly para-
phrasing long-form text inputs could be computa-
tionally expensive.
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Figure 2: Ranking setup. On the input side, a ranker picks the paraphrase that should give the best decoding.
Optionally, the NMT model could also produce a set of decodings which an output-side ranker can rank. Note
that the output ranker explicitly incorporates the paraphrased information.

A Setup & Training Details

This section will cover details of experiments. See
Figure 2 for a visual setup of the approach. In
all experiments, the input and output rankers are
composed of two components: (1) MLM back-
bone and (2) a small head consisting of an attention
layer with a single trainable query in order to pool
the encoder output sequence, followed by three
linear layers (Fathullah et al., 2023).

Data Generation: To train the input-side rankers,
we first took the IWSLT-2017 (Cettolo et al., 2017)
dataset and generated 8 paraphrases for each exam-
ple using diverse beam search with the following
parameters:

* num_beams = 8

* num_beam groups = 8

* repetition_penalty = 10.0
* diversity_penalty = 3.0

* no_repeat_ngram_size = 2
* max_length = 128

through the HuggingFace library (Wolf et al.,
2019) with the Humarin system (Vladimir Vorobev,
2023). These parameters were chosen to ensure
diversity in the paraphrases. Next, each para-
phrase (including the original) was translated us-
ing Flan-T5 with greedy decoding and scored
using COMET (Unbabel/wmt22-comet-da) with
the original source input.

Ranker training: As outlined in Section 3, the
input-side rankers are trained by taking both the

source  and a paraphrase &; to predict a score
0; = o(x,x;|0) that is correlated with the metric
of interest m; = 7(w;,r|x) where the u; is the
decoding corresponding to the paraphrase and 7 is
the reference. The loss function used to train these
is the (negative) Pearson Correlation. Similarly,
the output ranker is trained by additionally being
conditioned on the decoding o; = o(x, &;, u;|0)
which makes it a more powerful ranker but requires
the potentially large NMT system to first generate
outputs. In our experiments, we found that using
the criteria in Lee et al. (2021) to be unstable and
defaulted instead to the Pearson Correlation which
keeps our experiments consistent across models.

Hyperparameters: All experiments used the
same hyperparameters. The DeBERTaV3 base
(He et al., 2023) back-bone was not frozen and
all rankers were trained using AdamW (Loshchilov
and Hutter, 2019) with the following parameters:

* learning rate = 0.00002

* betas = (0.9,0.999)

* epsilon =1e — 8

* weight_decay = 0.01

e batch_size =4

* gradient_accumulations = 4

for only a single epoch. No validation was per-
formed and the final checkpoint was used for evalu-
ation. Each experiment was repeated 3 times using
a single NVIDIA A100 80GBs. The training re-
quired approximately 2-3 GPU hours per seed.
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