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Abstract

This paper proposes a novel approach for op-001
timizing the performance of a machine trans-002
lation system. By paraphrasing an input into003
multiple different phrases, that maintain the se-004
mantic meaning, and ranking them using only005
source-side information, we show that perfor-006
mance can be significantly improved. Experi-007
ments on the IWSLT En-De and En-Nl datasets008
show that the family of Flan-T5 models can be009
improved by several COMET points, a notable010
gain in performance. Furthermore, this can be011
combined with traditional output-side rankers012
on n-best list outputs to obtain further gains.013

1 Introduction014

Transformer-based autoregressive systems have015

achieved state-of-the-art performance in many se-016

quence tasks (Vaswani et al., 2017) including (mul-017

tilingual) Machine Translation (MT) (Xue et al.,018

2021; Costa-jussà et al., 2022), Text Summariza-019

tion & Generation (Chung et al., 2022) and Speech020

Recognition (Chiu et al., 2018; Gulati et al., 2020;021

Radford et al., 2022). By training these systems022

using the next-token prediction of a single refer-023

ence sequence, impressive performance can be024

obtained. However, two issues plague such ap-025

proaches. Firstly, in tasks such as MT and Text026

Summarization, there exist several plausible an-027

swers for every input but the model is trained to028

allocate all probability mass to a single reference029

(Zhang et al., 2020; Liu et al., 2022). Secondly,030

such systems suffer from exposure bias; the model031

is only trained to predict the next token conditioned032

on a reference back-history, but not its own gener-033

ations (Williams and Zipser, 1989; Bengio et al.,034

2015; Lamb et al., 2016; Gu et al., 2019; Wiseman035

et al., 2016; Kim and Rush, 2016).036

A direct consequence of the above-mentioned037

issues is the uncalibrated confidence scores that are038

produced by such systems. Prior work has found039

that although good performance can be achieved, 040

the confidence scores across a set of hypotheses 041

(generated through beam search) correlate weakly 042

with the quality of the hypotheses (Fathullah et al., 043

2023; Zhao et al., 2023). One family of approaches 044

that attempts to solve this modify the training ap- 045

proach to incorporate several targets and allocate 046

a probability mass that correlates with the quality 047

of the target (Liu et al., 2022; Zhao et al., 2023). 048

However, while such approaches improve the corre- 049

lation between confidence and quality, they require 050

modifying the parameters of the system. When 051

operating foundation models that are either highly 052

expensive to train, or are hidden behind applica- 053

tion program interfaces (APIs), such approaches 054

become less practical (Raffel et al., 2020; Brown 055

et al., 2020; Touvron et al., 2023a,b; Achiam et al., 056

2023; Anil et al., 2023). 057

We take an alternative approach based on rank- 058

ing models (Shen et al., 2004). The main aim of 059

a ranker system is to select the best hypothesis in 060

a decoding set generated by a model, according to 061

some predetermined performance metric. This is 062

traditionally achieved by training such a system, 063

conditioned on the input and hypothesis, to output 064

scores that are directly correlated with the quality 065

of the hypothesis (Shen et al., 2004; Och et al., 066

2004; Salazar et al., 2020; Lee et al., 2021). While 067

prior work, to the best of our knowledge, aims to 068

rank the outputs of a system, we propose paraphras- 069

ing inputs and choosing the one that would lead 070

to the best hypothesis. By maintaining the seman- 071

tic meaning of an input sequence, a paraphrased 072

version could, for example, trigger an MT system 073

to generate better translations. Experiments on 074

IWSLT translation datasets (Cettolo et al., 2017) 075

show that paraphrasing indeed has the potential to 076

improve translation performance for large founda- 077

tion models (such as Flan-T5 (Raffel et al., 2020)) 078

and can be further improved by combining it with 079

output ranking to obtain better results. 080
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Figure 1: Ranking setup. On the input side, a ranker picks the paraphrase that should give the best decoding.
Optionally, the NMT model could also produce a set of decodings which an output-side ranker can rank. Note
that the output ranker explicitly incorporates the paraphrased information.

2 Background081

In this current paradigm of large foundation mod-082

els that often are hidden behind APIs, approaches083

that aim to modify the parameters of the system are084

either expensive or not possible. Instead, methods085

that aim to modify the input or select the best output086

have become more practical. In the field of Ma-087

chine Translation, there has been a range of work088

on improving the quality of translations through089

the use of auxiliary networks that aim to rank a set090

of hypotheses (Shen et al., 2004; Och et al., 2004;091

Salazar et al., 2020; Lee et al., 2021). The work of092

Salazar et al. (2020) used masked language mod-093

els (MLMs) (Devlin et al., 2019; Liu et al., 2019;094

Conneau et al., 2020) to rank candidates. Their095

approach was centred around masking one token at096

a time and extracting the log-likelihood to obtain097

an overall confidence score. While this approach098

is expensive and is not directly tailored to ranking099

hypotheses, they showed it was possible to obtain100

better performance using off-the-shelf MLMs. Fur-101

thermore, Lee et al. (2021) proposed fine-tuning102

MLMs to directly produce scores correlated with103

the metric of interest. By conditioning an MLM104

(with parameters θ) on the source input x and a hy-105

pothesis ui ∈ U in a candidate list, it is tasked with106

producing scores o(ui|x,θ) such that the resulting107

distribution:108

p(ui|x,θ) =
exp (o(ui|x,θ))∑
u∈U exp (o(u|x,θ))

109

matches the target distribution derived from perfor-110

mance metric π such as COMET:111

p(ui|x) =
exp (π(ui, r|x)/T )∑
u∈U exp (π(u, r|x)/T )

(1)112

where r is the reference for some input x. While 113

effective, this approach relies on crafting a target 114

distribution with some predetermined temperature 115

T which could affect training and performance. Fi- 116

nally, the work of Fathullah et al. (2023) showed it 117

was possible to fine-tune MLMs to predict the per- 118

formance of a translation system using only source 119

information. This was achieved by taking a batch 120

of inputs x ∈ X , their corresponding decodings u 121

and references r and trained the system o(x|θ) to 122

achieve a high correlation with the metric of inter- 123

est π(u, r|x). Note that such a system is used to 124

compare different instances while traditional rank- 125

ing systems compare different hypotheses for the 126

same instance. 127

3 Paraphrasing Inputs 128

At the core of our proposal, we ask the follow- 129

ing question: Can we improve the performance 130

of a translation system by modifying the input? 131

Our answer to this requires two components: (1) a 132

mechanism for modifying inputs, in our case a para- 133

phrasing system which can modify a sentence while 134

maintaining its semantic meaning. (2) a model for 135

evaluating whether a new paraphrase would trig- 136

ger better translations or not. If both components 137

can be obtained, then it would be possible to mod- 138

ify an input, evaluate whether it is a high-quality 139

modification, and pass it on to the MT system for 140

translation and achieve better results, see Figure 1. 141

The first component is trivial, efficient paraphras- 142

ing systems (Vladimir Vorobev, 2023) exist and 143

can be used off-the-shelf from HuggingFace (Wolf 144

et al., 2019) for our task. The second component 145

can be seen as an input ranking system. Taking 146
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Table 1: COMET performance of various trained and oracle rankers on the IWSLT-2017 En-De test set. The
first block shows the use of an input-side ranker with greedy decoding of the NMT system. The second block
shows an additional use of an output-side ranker on the beam output. The Fraction Improved column refers
to the fraction of the dataset that was improved through input paraphrasing and ranking.

Model
Greedy Decoding Beam Search Decoding

Base. Input
Fraction

Base. Input Ouptut
Input &

Improved Output

Flan-T5 Small
46.8

51.1 (+4.3) 52.9%
53.8

55.1 57.3 58.3 (+4.5)
– oracle 58.0 (+11.2) 78.5% 61.0 62.3 68.0 (+14.2)

Flan-T5 Base
57.7

61.4 (+3.7) 47.0%
62.1

64.7 65.6 68.3 (+6.2)
– oracle 68.4 (+10.7) 75.2% 68.9 69.9 74.7 (+12.6)

Flan-T5 Large
65.0

67.9 (+2.7) 37.2%
67.7

70.9 71.7 74.1 (+6.4)
– oracle 74.5 (+9.5) 69.6% 75.2 75.7 79.8 (+12.1)

Flan-T5 XL
69.3

71.7 (+2.4) 26.8%
69.6

72.0 73.5 75.6 (+6.0)
– oracle 77.7 (+8.4) 65.5% 77.1 77.9 81.6 (+12.0)

Flan-T5 XXL
72.4

74.2 (+1.8) 24.8%
74.3

76.0 77.7 78.8 (+4.5)
– oracle 79.8 (+7.4) 62.3% 80.8 80.6 83.7 (+9.4)

only input-side information its task is to discrimi-147

nate between different paraphrases and locate the148

one that would induce the best translation. From149

this perspective, our approach draws inspiration150

from Fathullah et al. (2023); Lee et al. (2021) on151

metric estimation using input-side information and152

discriminative ranking.153

Let x be some input and let x̃i ∈ X̃ be a154

set of paraphrases that include the original in-155

put. For each paraphrase x̃i the MT system gen-156

erates a decoding ũi with a performance metric157

πi = π(ũi, r|x), where r is the reference trans-158

lation for x. The task of the input-ranker is to159

take the input-side information and predict a score160

oi = o(x, x̃i|θ) that is correlated with the metric.161

L(θ) = −
∑

i(oi − µo)(πi − µπ)√∑
i(oi − µo)2

√∑
i(πi − µπ)2

162

To train the input-ranker we task it with optimising163

the Pearson Correlation (see equation above) across164

a set of candidates. Note that this loss function165

requires no hyperparameters and is simpler than166

capturing the heuristic target distribution in Eq.167

(1). Furthermore, we use a correlation loss since168

absolute predictions are not required to discern169

between candidates.170

4 Experimental Evaluation171

All experiments will be conducted on the IWSLT-172

2017 En-De and En-Nl translation datasets us-173

ing the Flan-T5 family of foundation models and174

COMET (Unbabel/wmt22-comet-da) (Rei et al., 175

2020) to measure performance. To generate para- 176

phrases we use Vladimir Vorobev (2023) from Hug- 177

gingFace, with diverse beam search (Vijayakumar 178

et al., 2016) with 8 beams and 8 beam groups to 179

ensure a level of diversity in the paraphrases. All 180

ranking systems will be based on a DeBERTaV3 181

(He et al., 2023) base backbone with an attention 182

layer and a small multi-layer perceptron on top to 183

predict a scalar score. Furthermore, we modify the 184

discriminative output ranker in Lee et al. (2021), 185

to additionally be conditioned on the paraphrased 186

input. Finally, the NMT system will either produce 187

outputs using greedy search or beam search with 188

8 beams. Full details on the training setup and 189

hyperparameters are provided in Appendix A. 190

Table 1 shows the performance of trained and 191

oracle rankers for both input and output-side sys- 192

tems. All of the rankers are lightweight transformer 193

encoder DeBERTaV3 base models with approxi- 194

mately 198 million parameters that are conditioned 195

on the input (and output) information. Focusing on 196

the left-hand block, it isolates the contribution of 197

input rankers when greedy decoding of the NMT 198

system is used: (1) all systems benefit notably by 199

introducing a paraphraser and input-ranker to op- 200

timize the performance of the NMT system. Flan- 201

T5 Small was improved by 4.3 COMET points 202

while the largest Flan-T5, the XXL improved by 203

1.8 points. Despite being small improvements com- 204
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pared to the theoretical gains that can be achieved205

under an oracle ranker, these still represent notable206

improvements in system performance. (2) The ta-207

ble also shows that with greedy decoding between208

25-50% of samples can be improved under such209

a scheme while an optimal system could improve210

60-80% of samples. (3) Furthermore, we observe211

that the smaller less robust Flan-T5 models ben-212

efit much more input ranking, larger more robust213

systems already perform well and are harder to im-214

prove upon. The second block of the table shows215

the performance of input and output rankers when216

separate and combined: (1) both input and out-217

put rankers greatly benefit the baseline system, but218

output rankers are slightly more effective overall.219

(2) the combination of both rankers shows further220

gains, i.e. input and output-side rankers comple-221

ment each other. While the theoretical gains are sig-222

nificantly larger, the combination can still achieve223

between 4.5-6.4 COMET point gains. For exam-224

ple, the combination of an input and output-side225

ranker for the Flan-T5 Large obtained a signifi-226

cant improvement of 6.4 COMET points and is on227

par with the baseline Flan-T5 XXL model. The228

Flan-T5 XL system gained 6.0 COMET points and229

outperformed the XXL baseline.230

Next, we explore the performance of our pro-231

posal on the IWSLT En-Nl dataset. Since the Flan-232

T5 family was trained on less Dutch (Nl) text (com-233

pared to German; De), we naturally expect the per-234

formance of these systems to be lower. However,235

we can utilize that the paraphraser and input-ranker236

operate on the high-resource side of English to im-237

prove performance. Even if the system has poor238

performance on the low-resource target language,239

good paraphrases in the high-resource source lan-240

guage could trigger the system to perform much241

better. We also included the dedicated NLLB-200242

Distilled 600M NMT system as a point of reference243

since this system should be very robust on this task244

(Costa-jussà et al., 2022). From Table 2 we observe245

significant practical and theoretical gains for the246

Flan-T5 family. Compared to the En-De counter-247

part, we observe larger gains in the 3.1-9.7 COMET248

point range. While the Flan-T5 Small obtains a249

smaller gain, possibly due to its too poor perfor-250

mance on this task, the remaining models can bene-251

fit greatly from the use of a modified and improved252

input to perform the translation. Even a dedicated253

and robust NMT system such as the NLLB-200254

can be improved by almost a COMET point, but255

as expected, there are diminishing returns when256

Table 2: COMET performance of various input-
side rankers on the IWSLT-2017 En-Nl test set.

Model
Greedy Decoding

Base. Input
Fraction
Improved

Flan-T5 Small 26.0 29.1 (+3.1) 60.0%
– oracle 33.4 (+7.4) 85.9%

Flan-T5 Base 32.3 38.1 (+5.8) 60.3%
– oracle 44.5 (+13.2) 84.2%

Flan-T5 Large 33.2 42.9 (+9.7) 54.3%
– oracle 49.5 (+16.3) 86.6%

Flan-T5 XL 38.8 46.2 (+7.4) 68.4%
– oracle 51.9 (+13.1) 82.7%

Flan-T5 XXL 49.6 53.9 (+4.3) 52.5%
– oracle 62.2 (+12.6) 80.6%

NLLB-200 84.3 85.1 (+0.8) 19.0%
– oracle 87.2 (+2.9) 37.8%

attempting to improve better-performing systems. 257

Overall, this shows that one can improve the trans- 258

lation into low-resource languages by exploiting 259

the high-resource source language and choosing a 260

more appropriate input. 261

5 Conclusion 262

This paper has showcased a novel approach to im- 263

proving the performance of translation systems 264

through paraphrasing inputs. By generating a list 265

of candidate paraphrases of a certain input, and 266

ranking them, it is possible to trigger a translation 267

system to output higher-quality decodings. Experi- 268

ments on the IWSLT-2017 En-De and En-Nl trans- 269

lation datasets show that the proposed lightweight 270

input-side rankers can pick better paraphrases and 271

improve the performance of Flan-T5 models by 272

several COMET points, signifying a notable im- 273

provement. 274

Limitations 275

This work has focused on translation to showcase 276

how generating paraphrases to an input and rank- 277

ing them can improve performance. While not 278

explored in this work, the performance of the para- 279

phraser (Vladimir Vorobev, 2023) is very important 280

in ultimately determining the performance of the 281

system and future work could focus on improving 282

the paraphrase generation process. Furthermore, 283

there has been a significant shift to the use of large 284

language models (LLMs) to perform a variety of 285

tasks through the use of intelligent prompting. Our 286

approach could potentially be extended to gener- 287
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ate alternative prompts that could make better use288

of LLMs but in order to achieve this, much more289

data, more powerful paraphrasers and rankers are290

required to be able to encompass the tasks that an291

LLM can perform. Finally, for alternative tasks292

such as abstractive summarization, directly para-293

phrasing long-form text inputs could be computa-294

tionally expensive.295
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Figure 2: Ranking setup. On the input side, a ranker picks the paraphrase that should give the best decoding.
Optionally, the NMT model could also produce a set of decodings which an output-side ranker can rank. Note
that the output ranker explicitly incorporates the paraphrased information.

A Setup & Training Details498

This section will cover details of experiments. See499

Figure 2 for a visual setup of the approach. In500

all experiments, the input and output rankers are501

composed of two components: (1) MLM back-502

bone and (2) a small head consisting of an attention503

layer with a single trainable query in order to pool504

the encoder output sequence, followed by three505

linear layers (Fathullah et al., 2023).506

Data Generation: To train the input-side rankers,507

we first took the IWSLT-2017 (Cettolo et al., 2017)508

dataset and generated 8 paraphrases for each exam-509

ple using diverse beam search with the following510

parameters:511

• num_beams = 8512

• num_beam_groups = 8513

• repetition_penalty = 10.0514

• diversity_penalty = 3.0515

• no_repeat_ngram_size = 2516

• max_length = 128517

through the HuggingFace library (Wolf et al.,518

2019) with the Humarin system (Vladimir Vorobev,519

2023). These parameters were chosen to ensure520

diversity in the paraphrases. Next, each para-521

phrase (including the original) was translated us-522

ing Flan-T5 with greedy decoding and scored523

using COMET (Unbabel/wmt22-comet-da) with524

the original source input.525

Ranker training: As outlined in Section 3, the526

input-side rankers are trained by taking both the527

source x and a paraphrase x̃i to predict a score 528

oi = o(x, x̃i|θ) that is correlated with the metric 529

of interest πi = π(ũi, r|x) where the ũi is the 530

decoding corresponding to the paraphrase and r is 531

the reference. The loss function used to train these 532

is the (negative) Pearson Correlation. Similarly, 533

the output ranker is trained by additionally being 534

conditioned on the decoding oi = o(x, x̃i, ũi|θ) 535

which makes it a more powerful ranker but requires 536

the potentially large NMT system to first generate 537

outputs. In our experiments, we found that using 538

the criteria in Lee et al. (2021) to be unstable and 539

defaulted instead to the Pearson Correlation which 540

keeps our experiments consistent across models. 541

Hyperparameters: All experiments used the 542

same hyperparameters. The DeBERTaV3 base 543

(He et al., 2023) back-bone was not frozen and 544

all rankers were trained using AdamW (Loshchilov 545

and Hutter, 2019) with the following parameters: 546

• learning_rate = 0.00002 547

• betas = (0.9, 0.999) 548

• epsilon = 1e− 8 549

• weight_decay = 0.01 550

• batch_size = 4 551

• gradient_accumulations = 4 552

for only a single epoch. No validation was per- 553

formed and the final checkpoint was used for evalu- 554

ation. Each experiment was repeated 3 times using 555

a single NVIDIA A100 80GBs. The training re- 556

quired approximately 2-3 GPU hours per seed. 557
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