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ABSTRACT

This work tackles the issue of directed evolution in computational protein design
that makes accurate predictions of the function of a protein mutant. We design
a lightweight zero-shot graph neural network model for multi-task protein rep-
resentation learning from its 3D structure. Rather than reconstructing and op-
timizing the protein structure, the trained model recovers the amino acid types
and key properties of the central residues from a given noisy three-dimensional
local environment. On the prediction of higher-order mutations where multiple
amino acid sites of the protein are mutated simultaneously, the proposed strat-
egy achieves remarkably higher performance by 20% improvement at the cost of
requiring less than 1% of computational resources that are required by popular
transformer-based state-of-the-art deep learning models for protein design.

1 INTRODUCTION

Mutation is a biological process where the amino acid (AA) type of one or multiple sites of a specific
protein is changed. While the wild-type proteins’ functions do not always meet the demand of
bio-engineering, it is vital to manually optimize the functionality, namely fitness, with favorable
mutations so that they are applicable in designing antibodies (Wu et al., 2019; Pinheiro et al., 2021;
Shan et al., 2022) or enzymes (Sato & Ishida, 2019; Wittmann et al., 2021).

A protein usually constitutes hundreds to thousands of AAs, where each residue belongs to one of
twenty AA types. To optimize a protein’s functional fitness, a greedy search is usually conducted
in the local sequence, where AA sites are mutated to proper AA types to render a protein mutant
with the highest gain-of-function (Rocklin et al., 2017). Such a process is called directed evolution
Arnold (1998). To obtain a mutant with great fitness, multiple AA sites (∼5-10) of the protein need
to be mutated, namely deep mutations (see Figure 1). It, however, requires enormous experimental
costs, as the total number of potential combinations of mutations for deep mutants is astronomical.

Since it is impossible to conduct systematic experimental tests on all possible deep mutations, in
silico examination of protein variants’ fitness becomes highly desirable. A handful of deep learning
methods have been developed to accelerate the discovery of advantageous mutants. For instance, Lu
et al. (2022) applied 3DCNN to identify a new polymerase with advantageous single-site mutation
and enhanced the speed of degrading PET, i.e., a type of solid waste, by 7-8 times at 50◦C. Luo
et al. (2021) proposed ECNET that predicts functional fitness for protein engineering with evolution-
ary context. The model guides the engineering of TEM-1 β-lactamase and identifies variants with
improved ampicillin resistance. Thean et al. (2022) enhanced SVD with deep learning to predict
nuclease variants’ activities in multi-site-saturated mutagenesis libraries from and identified Cas9
nuclease variants that possess higher editing activity of derived base editors in human cells.

Due to the scarcity of labeled protein data, researchers often pre-train an encoder for unsupervised
learning with protein sequences or structures, and use the learned protein representations to train
specific tasks, such as de novo protein design (Hsu et al., 2022), mutation effect prediction (Ingra-
ham et al., 2019; Jing et al., 2020; Meier et al., 2021; Notin et al., 2022), and higher-level structure
prediction (Elnaggar et al., 2021). In the context of fitness prediction of mutation effect, existing
methods usually transform the problem to mini-de novo design, which infers a specific AA type from
its microenvironment, or analogously its neighboring AA types. Current state-of-the-art sequence-
based protein learning methods rely heavily on multiple sequence alignment (MSA; Riesselman
et al. (2018); Frazer et al. (2021); Rao et al. (2021)) and protein language models (Elnaggar et al.,

1



Under review as a conference paper at ICLR 2023

Figure 1: Mutating on more sites frequently results in a higher score, i.e., a smaller rank value.

2021; Rives et al., 2021; Nijkamp et al., 2022; Brandes et al., 2022). While MSA helps capture im-
portant evolutionary properties of the protein family, it nevertheless multiplies the requirements of
computing resources. The latter protein language models derived from natural language processing
(NLP) encode sequence semantics and often need hundreds of GPU cards to train on hundreds of
millions of proteins. Meanwhile, an autoregressive inference process is usually required along the
entire protein sequence to score a mutation on a single site, which further slows down the inference
speed (Sato & Ishida, 2019; Liu et al., 2022; Hsu et al., 2022; Notin et al., 2022). More importantly,
when predicting the fitness of the higher-order mutants, most of these models made a crude assump-
tion that the mutations on different sites happen sequentially or individually, which is incorrect in
most cases (Lehner, 2011; Breen et al., 2012). The ignored epistatic effects between different sites
are potentially a key factor hindering the acquisition of favorable high-order mutants in directed
evolution (Sarkisyan et al., 2016; Rollins et al., 2019).

Mutation of AA sites also occurs in nature, where an AA site might be mutated to any of the other 19
AA types in a random manner. It is suggested by natural selection that only the mutants that exhibit
the best fitness and fit the environment survive. As a protein’s functionality is determined by its
structure, we encode the folded protein by a protein graph with AAs being graph nodes to provide
an elegant 3D spatial description of the protein. The first-level information, such as AA types,
spatial coordinates of Cα, and C-N angles between neighboring AAs, are embedded in node features.
Altering AA types of a protein in nature can then be viewed as adding corruptions to the node
features of the protein graph, and denoising the graph makes a remedy to search for mutants with the
best fitness. We model the protein mutation effect prediction as a denoising problem with equivariant
graph neural networks (Satorras et al., 2021). For a given protein, the recovered predictions can be
leveraged to forecast the fitness of deep mutational effects and discover favorable mutants.

Compared to existing state-of-the-art deep learning methods for mutation effect prediction, such as
ESM-1V (Meier et al., 2021) and ESM-IF1 (Hsu et al., 2022), the designed lightweight equivariant
graph neural network (LGN) stands out in three perspectives.

First, LGN improves generalization ability through the multi-task learning strategy and biological
prior knowledge. The pre-trained model encodes the chemical and physical properties of a given
AA’s microenvironment with domain knowledge for practically meaningful representations.

Secondly, LGN avoids the independent-mutation assumptions by generating the probabilities
of all the amino acid residues at a time, which implements the joint distribution of all variations.
In literature, the higher-order mutation effect is usually approached by summing up log-odd-ratio
scores of the corresponding individual single-site mutants. The linear combination over separately
assigned predictions is unsubstantiated, as the independent mutations neglect the epistatic effect.

Thirdly, LGN is efficient in both the training and inference phases. The spatial graph inputs
portray the topological properties of proteins, which circumvents data augmentation that is typically
required by sequence or grid representations. Equivariant message passing, alternatively, provides a
feature distillation unit with translation and rotation equivariance and encodes AAs’ microenviron-
ment defined by the protein graph’s geometry.
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Figure 2: An illustration of the proposed LGN. The model is pre-trained with a set of protein graphs
that are featured by (perturbed) node attributes and 3D positions with a multi-task learning strategy.
A stack of EGC layers encodes rotation and translation equivariant structural representations for
each node on individual graphs. Next, fully-connected layers are employed to learn different labels,
where the AA type prediction is used for suggesting top-ranked mutations.

2 ZERO-SHOT LEARNING FOR PROTEIN RECOVERY

The excessive cost in laboratory results in scarce mutation scanning data, especially deep mutant
results. It is thus favorable to pre-train a zero-shot protein prediction model that can be generalized
directly to an unseen task without any further supervision to specialize the model.

2.1 GRAPH REPRESENTATION OF PROTEIN STRUCTURE

For a given protein, we create a k-nearest neighbor (kNN) graph G = (V, E) to describe its 3D
structure and molecular properties. Here each node vi ∈ V represents an amino acid residue with
X ∈ R34 node attributes constituting biochemical properties and geometric properties of amino
acids. The former includes 20-dimensional attributes of one-hot encoded amino acid types (Xaa),
two scalars for each residue, i.e., solvent-accessible surface area (SASA) and the standardized crys-
tallographic B-factor, and 5 normalized surface-aware node features. The geometric properties in-
clude the direction position (Xpos) of each residue by 3D coordinates of its α-carbon and the relative
position of the amino acid in the protein chain (Xagl) by the dihedral angles {sin, cos} ◦ {ϕ, ψ}
computed from the backbone atom positions. For a specific vi of the ith amino acid in the protein
sequence, the dihedral angles are measured from Cαi−1, Ni, Cαi, Ni+1.

To build edge connections, we first define a symmetric adjacency matrix A with the kNN-graph to
capture the nodes’ microenvironment, i.e., each node is connected to up to k other nodes in the graph
that has the smallest Euclidean distance over other nodes, and the distance is smaller than a certain
cutoff (30Å). Consequently, if vi and vj are connected to each other, we have Aij = Aji ̸= 0. The
edge attributes E ∈ R93 feature the connected edges in E , including 15 inter-atomic distances, 12
local N-C positions, and the relative position in the protein sequence in 66-dimensions.

2.2 PRE-TRAINING WITH PRIOR DOMAIN KNOWLEDGE FOR BETTER PROTEIN FITNESS

The wild-type proteins suffer from random perturbations or mutations that not every AA site has
the best AA type (Liu et al., 2022). To this end, we pre-train our model with a multitask learning
strategy, which removes the natural corruptions and predicts key protein properties to help encode
the microenvironment of the stabilized proteins of interest.

AA Type Denoising We refine xaa, the AA type a node, to x̃aa with a Bernoulli noise, i.e.,

π(x̃aa|xaa) = pδ(x̃aa − xaa) + (1− p)M(n, π1, π2, ..., πn), (1)

where the confidence level p is a tunable parameter that controls the proportion of residues that are
‘noise-free’. The probability for the residue to become a particular type depends on the distribution
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of the 20 types M(n, π1, π2, ..., πn), which involves prior knowledge in molecular biology. This
paper defines the distribution by the observed probability density of amino acid types in wild-type
proteins 1. See Appendix E to better understand the influence of different confidence levels.

Geometric Properties Denoising For the continuous-valued features, such as 3D coordinates and
dihedral angles, an i.i.d Gaussian noise is introduced, learning to remove which corresponds to
approximating the data-generating force field of molecules (Zaidi et al., 2022). To be specific,

x̃pos = xpos + σϵ, where ϵ ∼ N (0, I3). (2)

The noise effect is determined by σ, which is tunable to fit the scale of the noiseless raw feature.

Bio-chemistry Properties Recovery Aside from denoising the perturbed residues type and ge-
ometric properties, other auxiliary tasks are introduced to help establish an expressive hidden mi-
croenvironment representation. Specifically, SASA is known to strongly influence AA type prefer-
ences, and B-factors are associated with the conformations and mobility of the neighboring AA. We
thus introduce inductive biases to the model by predicting these two properties in the output.

Label Smoothing with Amino Acid Substitution Matrices Protein sequence alignments provide
important insights for understanding gene and protein functions. The similarity measurement of an
alignment of protein sequence reflects the favors of all possible exchanges of one amino acid with
another. We employ BLOSUM (Henikoff & Henikoff, 1992), a substitution matrix, to account for
the relative substitution frequencies and chemical similarity of AAs. The matrix is derived from
the statistics for every conserved region of protein families in BLOCKS database. As AA sites are
more likely to be mutated to the AA type within the block of high similarity scores in the BLOSUM
table, we hereby modify our loss function so that a mutation to an AA type with a higher similarity
score accumulates a smaller penalty than to the one with a lower similarity score.

2.3 PROTEIN STRUCTURE REPRESENTATION WITH EQUIVARIANT GNNS

Proteins are structured in the 3-dimensional space, and it is vital for the model to predict the
same binding complex no matter how the input proteins are positioned and oriented. Instead of
practicing expensive data augmentation strategies, we follow Satorras et al. (2021) and construct
SE(3)-equivariant neural layers for graph embedding. At the lth layer, an Equivariant Graph Con-
volution (EGC) inputs a set of n hidden node properties embedding H l =

{
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n

}
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well as the node coordinate embeddings X l
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(3)

where ϕe, ϕh are respectively the edge and node propagation operations, such as multi-layer percep-
trons (MLPs). The ϕx is an additional operation that projects the vector embedding mij to a scalar
value. The EGC layer preserves equivariance to rotations and translations on the set of 3D node
coordinates Xpos, while simultaneously performing invariance to permutations on the set of nodes
V in the same fashion as GNNs.

1Retrieved from the folded protein dataset by AlphaFold2 (Varadi et al., 2022) at https://
alphafold.ebi.ac.uk/
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2.4 MODEL OVERVIEW

Our model is depicted in Figure 2. We take a set of protein graphs with attributed nodes and edges,
as well as each node’s 3D coordinates, as the input to pre-train a zero-shot model. A stack of
EGC layers is trained to extract rotation and translation equivariant representations for each node
on individual graphs. The hidden representation is then sent to fully-connected layers to establish
multiple outputs, such as AA type classification, SASA and B-factor prediction, and 3D coordinates
denoising. The total loss for the multitask learning task is given by

Ltotal = Laa + λ1Lsasa + λ2Lb-fac + λ3Lpos + λ4Lagl, (4)

where λi, i = 1, . . . , 4 are tunable hyper-parameters to balance different losses on auxiliary regres-
sion tasks. These losses are measured by mean squared error (MSE) loss. For AA type classification,
we measure its loss Laa by cross-entropy with label smoothing technique (Szegedy et al., 2016). The
classification loss on an arbitrary node i reads

Laa = (1−ε)
[
−

20∑
y=1

p(yaa|Xi,Ei) log qθ(ŷaa|Xi,Ei)
]
+ε

[
−

20∑
y=1

u(yaa|Xi,Ei) log qθ(ŷaa|Xi,Ei)
]
,

where p(yaa|Xi,Ei) denotes the ground-truth distribution and qθ(ŷaa|Xi,Ei) is the distribution of
predicted labels following a softmax function. In order to improve the generalization and respect
the prior biological knowledge, we modify the ground truth label distribution p(yaa|Xi,Ei) from
the hard one-hot encoding to (1 − ε)p(yaa|Xi,Ei) + εu(yaa|Xi,Ei) when the predicted ŷaa = yaa
and εu(yaa|Xi,Ei) otherwise with some tolerance factor ε. In particular, we define the distribution
of u(y|xi) by the BLOSUM substitution matrix.

3 RESULTS

3.1 EXPERIMENTAL SETUP

We train LGN on CATH v4.3.0 (Orengo et al., 1997) with artificial noise to predict AA type, 3D
coordinates, dihedral angles, and chemical properties (SASA and B-factor). The hidden embeddings
of amino acids are learned by SE(3)-equivariant graph convolutions. The performance is validated
by a zero-shot prediction task for the fitness of mutation prediction with deep mutational scanning
(DMS; Fowler & Fields (2014)) datasets. The model performance is compared against popular
state-of-the-art language models and structure-enhanced models.

Baseline Models We compare with a diverse of state-of-the-art models on the fitness of mutation
effects prediction. In particular, DEEPSEQUENCE (Riesselman et al., 2018) trains VAE on protein-
specific MSAs to capture higher-order interactions from the distribution of an AA sequence. MSA
TRANSFORMER Rao et al. (2021) is a language model with aligned protein sequences of interest;
ESM-1V (Meier et al., 2021) make zero-shot mutation predictions with masked language modeling;
and ESM-IF1 (Hsu et al., 2022) predicts protein sequence with GVP (Jing et al., 2020), a graph
representation learning methods for vector and scalar features of protein graphs. Furthermore, both
TRANCEPTION (Notin et al., 2022) and PROGEN2 (Nijkamp et al., 2022) leverages autoregressive
language models to retrieve AA sequence without family-specific MSAs.

Lightweight Equivariant Graph Neural Networks (LGN) To train our LGN framework, we
first generate protein graphs for the sequences in CATH. See Appendix A for a detailed introduc-
tion to the generation, and Appendix C for a summary of the generated dataset. For the total number
of 31, 848 protein graphs of 150 nodes on average, we randomly pick 500 graphs for validation and
leave the remaining for model fitting. During the learning phase, we assign random perturbations
to AA types and other features we mentioned earlier in Section 2. The noises are fixed to guaran-
tee stable and comparable measurements at the validation step. The specific influence of different
choices on the hyper-parameters (e.g., the noise level) will be discussed later in this section and Ap-
pendix D-E. The main architecture constitutes a stack of 6 EGC layers following 1 fully-connected
layer to make predictions on the different learning tasks. On each node, the output is a vector rep-
resentation consisting of 20 probabilities of the masked amino acid, 1 predicted SASA, 1 B-factors,
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Table 1: Performance Comparison of Baseline Models on DMS assays prediction. Results with a
higher Spearman’s correlation are preferred.

DEEPSEQUENCE TRANCEPTION PROGEN2 MSA TRANSFORMER ESM-1V ESM-IF1 LGN (ours)

CAPSD 0.4831 0.2307 0.2112 0.4419 0.2212 0.2170 0.3589
DLG4 HUMAN 0.5013 0.6200 0.5712 0.4654 0.4654 0.6164 0.6197
F7YBW8 0.3939 0.4280 0.3231 0.3483 0.2865 0.3714 0.4223
F7YBW8 MESOW 0.4205 0.4036 0.3231 0.3631 0.2522 0.3690 0.4210
GFP 0.6331 0.6647 0.6459 0.7069 0.7208 0.6203 0.6455
GRB2 HUMAN 0.3886 0.4441 0.5211 0.2808 0.3211 0.7033 0.6044
average correlation 0.4698 0.4177 0.4186 0.4511 0.3756 0.4714 0.5071

† The top three are highlighted by First, Second, Third.

and 4 dihedral values (when applicable). The 3D coordinates are derived directly from EGC out-
puts. The loss function by Equation 4 guides the backward propagation with ADAM (Kingma & Ba,
2015) optimizer. The model is trained with 300 epochs with the initial rate set to 0.001 and weight
decay to 0.01. The learning rate is dampened to 0.0001 after 150 epochs.

Evaluation All the models are evaluated with deep mutational scanning (DMS) assays that assess
a diverse set of 15 proteins, where 9 of them only contains single-site mutation scores, and 6 of them
have both single-site and higher-order mutational records (see Appendix B). The protein structures
are folded from the provided sequence information with ALPHAFOLD2 (Jumper et al., 2021), fol-
lowing the exact same pre-processing steps as in CATH for generating protein graphs. The only
difference is that we do not append artificial noises onto the test proteins, as we assume they are
already noisy. We then send the unmutated test proteins to the pre-trained LGN model and use
the log-odd-ratio in Equation 5 of the predicted probabilities of AA types for suggesting the rank
of deep mutations. The prediction performance is evaluated on Spearman’s correlation coefficient
between the computational and experimental scores on all the mutation combinations.

Figure 3: Per task performance on the fitness of deep mutant prediction with pre-trained models.
Each point indicates Spearman’s correlation coefficients on the corresponding protein. The left 6
proteins contain higher-order mutations, and the right 9 proteins record shallow mutants.

3.2 FITNESS OF DEEP MUTANTS PREDICTION

The first experiment evaluates the fitness of proteins’ mutation effects prediction, where the fitness
scores are inferred directly from a pre-trained model without supervision on a task-specific model.
We visualize the overall performance comparison on protein-wise Spearman’s correlation coeffi-
cients in Figure 3. The deep mutation scores are reported in Table 1, where LGN outperforms
baseline methods and achieves at least comparable results in single-site mutant tests. Overall, our
model achieves 0.5071 weighted average correlations on deep mutant effect predictions. While
DEEPSEQUENCE achieves superior performance over the majority rest, it should be noticed that the
model has to be trained on every new protein, and it cannot be generated for other proteins. Also,
the training speed and performance of the learned model rely heavily on the quality of the available
MSA information, which can very a lot on different proteins.
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Figure 4: The three plots (from left to right) display the confusion matrix of predicted AA types,
and linear regression on the predicted SASA and B-factor, respectively.

3.3 PROTEIN RECOVERY

This experiment investigates the auxiliary learning tasks of the pre-trained model, including the
learning performance in predicting AA types, SASA, and B-factor. In specific, we visualize the
confusion matrix of the predicted AA types with respect to the ground-truth AA types to see eval-
uate the model’s capability to recover from noisy sequences to the original sequence, i.e., if the
large values are accumulated to the diagonal of the confusion matrix. For the SASA and B-factor
predictions, we examine the R2 of the predicted and the ground-truth values on CATH. The results
are visualized in Figure 4 with denoised AA type, as well as the predicted SASA and B-factor as
the output tasks. The AA type prediction achieves high accuracy with the majority of predictions
accumulated on the diagonal line. For the two regression tasks, we fit the true value and the pre-
dicted value with linear regression. The estimated coefficients are 1.008 and 0.989 for B-factor and
SASA, respectively. The p-value for both coefficients is < 0.001. In addition, Pearson’s correlation
coefficients for the two variants are respectively 0.884 and 0.791.

Figure 5: Average Performance with different ps (left) and λs (right) on the auxiliary tasks.

3.4 SELECTION CRITERIA ON THE ADDITIONAL HYPER-PARAMETERS

As LGN introduces two additional hyper-parameters in training the model, this section examines
the influence of selecting different ps and λs. Figure 5 visualizes a selection of model performance
on the Spearman’s correlation with variant ps and λs with wild-type noise distribution.

While the choice of p can be determined by prior knowledge regarding the quality of wild-type
proteins, here we treat p as a data-driven hyper-parameter to be optimized during the model training.
We exclude extremely small ps to avoid drastic perturbation rates and search for the optimal p ∈
{0.3, 0.4, . . . , 0.9, 1}. The different choices on ps are validated with different learning tasks on the
left side of Figure 5 for higher-order mutants. In general, a moderate p between 0.3 and 0.6 best suits
the majority selection of learning modules and noise distribution. Based on the overall performance,
we suggest p = 0.6 as the default value of the confidence level (See Appendix E for more results on
different types of perturbation noise and proteins).

We also investigate a wide range of the choices of λs. For simplicity, we let λ1 = λ2 = λ3 ∈
{0.05, 0.1, 0.2, 0.5, 0.8, 5, 10} and fix λ4 = 0.5. All the results are conducted under the recom-
mended p = 0.6 with wild-type noise. We report the average performance on deep mutants in the
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Table 2: Comparison of baseline models. The train and inference speed is tested on GFP.

model DEEPSEQUENCE MSA TRANS. ESM-1V ESM-IF1 TRANCEPTION PROGEN2 LGN (ours)

input sequence sequence sequence sequence+structure sequence sequence structure
MSA ✓ ✓ ✓
train on new protein ✓ ✓
training dataset - Uniref50 Uniref90 CATH+AF2 Uniref100 Uniref90+BFD30 CATH

- (2018-03) (2020-03) v4.3.0
training size (M) - 45 98 12 249 > 1, 000 0.03
max. input token 1, 024 1, 024 1, 024 1, 280 1, 024 2, 6871

# parameters (M) 4.3 100 650 142 700 2, 700 1.5
# layers 1, 600 12 - 20 36 32 6
# head - 12 - 8 20 32 -
# hid. dim. 100− 2, 000 - - 512− 2, 048 - - 512
speed (training day) - 132 6 653 ∼100 - 0.17
resource (train) - 128×V1002 64×V100 32×V100 64×A100 ?×TPU-v3 1×3090

preparing speed (sec) 6, 360 + 25, 020 6, 360 - - 6, 360 - -
inference speed (sec) 608 927 75 102 1, 920 1, 440 25

right plot of Figure 5, which demonstrates a relatively flat and steady trend with a mild peak at
λ = 0.2, 0.5. Additional results are provided in Table 8 of Appendix E with various model setups.

3.5 INFERENCE SPEED

LGN consumes significantly fewer computational resources in training and inference. We compare
the model scale, inference time, and prediction performance in Figure 6 and Table 2.

The model size and the required resources with the baseline methods are provided by the authors. As
the majority of models are pre-trained, we record the inference speed on a single 3090 GPU. While
the time cost is significantly lower than experimental methods, we measure it to indicate the cost of
forward propagation in one iteration, which can be viewed as the indirect empirical evidence of the
training cost. As each protein requires independent inference progress, we hereby take GFP as an
example protein sample. The protein constitutes 236 amino acid residues, and it has over 50, 000
mutant records (see Table 3 in Appendix B for more details). Note that: 1). The 2, 687 input token
length only refers to the maximum protein length we used during training. In fact, the model itself
can process large protein graphs containing over tens of thousands of amino acids. 2). The training
speed and required resources for MSA TRANSFORMER are retrieved from Meier et al. (2021). The
original work by Rao et al. (2021) only reports that they used 32×V100 GPUs for training, without
revealing the training time.

Figure 6: Comparison of Inference Efficiency. The area of the ball indicates the number of network
parameters of a model. Our model (in blue) can achieve SOTA performance (y-axis) with minimum
inference time (x-axis) and 1% number of parameters of the ESM.

4 RELATED WORK

Protein Sequence and Structure Representation Due to the enormous experimental cost of mea-
suring protein structures, the number of known protein sequences is thousands of times larger than
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protein structures (Eswar et al., 2008; Hsu et al., 2022). Meanwhile, the protein sequences repre-
sentation is highly similar to human language, which naturally promotes the fast development of
natural language processing (NLP), especially transformer-based methods for encoding protein se-
quences (Coin et al., 2003; Meier et al., 2021; Ofer et al., 2021; Castro et al., 2022). However, the
geometry of proteins also suggests higher-level structures and topological relationships that are vital
to protein functionality. Structure prediction of proteins always attracts great attention in the field
(Chi & Liberles, 2016; Jumper et al., 2021; Baek et al., 2021; Varadi et al., 2022). The breakthrough
progress in protein folding also enriches structured proteins. For instance, Hsu et al. (2022) and
Ma et al. (2022) mixed experimentally-tested and ALPHAFOLD-predicted for model training, which
greatly eases the data shortage problem and achieves significant performance gain.

Structural encoding for Protein Graphs According to the laws of physics, the atomic dynamics
do not change no matter how a protein is translated or rotated from one place to another (Han
et al., 2022). Therefore, the inductive bias of symmetry should be incorporated into the design
of protein structure-based models. To this end, research work has been proposed to respect the
spatial relationship of amino acids (Torng & Altman, 2017; Sato & Ishida, 2019). Such CNN-based
methods aggregate the local structure of each residue and integrate estimated local qualities into
the whole protein properties. However, these methods neglect geometric equivariance, which can
usually be captured by equivariant graph neural networks (Ganea et al., 2021; Stärk et al., 2022).

Protein Representation As existing protein language models require high computational costs
and are difficult to train, finding an effective feature representation of protein data is important for
downstream tasks (Thompson et al., 2012). Contrastive learning and self-prediction (Elnaggar et al.,
2021; Zhang et al., 2022; Hsu et al., 2022) used self-supervised pre-training methods to extract good
representation for reducing computational resources. Despite only applying classical representation
learning methods on protein, some researchers designed sophisticated encoders for expressive pro-
tein representation. For instance, Li et al. (2022) proposed W⃗ -GNN variants that efficiently interact
with scalar-vector features. Somnath et al. (2021) introduced HOLOPROT to connect different
modalities of proteins, including surface, structure, and sequence representation.

Mutation Effect Prediction Multiple sequence alignment (MSA) is an essential ingredient for
many of the existing state-of-the-art methods to predict the effect of single amino acid substitutions
such as DEEPSEQUENCE (Riesselman et al., 2018), ALPHAFOLD2 (Jumper et al., 2021), MSA
TRANSFORMER (Rao et al., 2021), and LM-GVP (Wang et al., 2022). The MSA for a protein
sequence or domain captures meaningful information on the evolutionary information of the protein
within its family at the cost of bringing severe limitations–not all proteins are alignable, such as
CDRs of antibody variable domains (Shin et al., 2021), and not all the alignments are deep enough to
train models sufficiently large to learn the complex interactions between residues. To deal with this
issue, ESM-1V (Meier et al., 2021) trains a zero-shot model on a large set of unaligned sequences to
secure a scalable and bias-free training procedure, and TRANCEPTION (Notin et al., 2022) leverages
autoregressive predictions and retrieval of homologous sequences at inference.

5 CONCLUSION

Designing directed evolution on proteins, especially with deep mutants for functional fitness, is of
enormous engineering and pharmaceutical importance. However, existing experimental methods
are economically costly, and in silico methods require significant computational resources. This
paper proposed a lightweight zero-shot model for mutant effect prediction on arbitrary numbers of
AAs by transferring the problem to denoising a protein graph. Our model is trained to recover AA
types and other important properties (e.g., B-factor, SASA, and the spatial position of Cα) from
observed noisy proteins. We employ translation and rotation equivariant neural message passing
layers to extract geometric-aware representation for the microenvironment of central AAs and thus
grasp rich information for efficiently learning protein function. The model achieves state-of-the-art
performance on PDB datasets in deep mutant tests with significantly fewer computational resources
than existing SOTA models.
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predict the evolution of antibiotic resistance. Nature Ecology & Evolution, 5(5):677–687, 2021.

11



Under review as a conference paper at ICLR 2023

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. Msa transformer. In International Conference on Machine Learning, pp.
8844–8856. PMLR, 2021.

Adam J Riesselman, John B Ingraham, and Debora S Marks. Deep generative models of genetic
variation capture the effects of mutations. Nature methods, 15(10):816–822, 2018.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15):e2016239118, 2021.

Gabriel J Rocklin, Tamuka M Chidyausiku, Inna Goreshnik, Alex Ford, Scott Houliston, Alexander
Lemak, Lauren Carter, Rashmi Ravichandran, Vikram K Mulligan, Aaron Chevalier, et al. Global
analysis of protein folding using massively parallel design, synthesis, and testing. Science, 357
(6347):168–175, 2017.

Nathan J Rollins, Kelly P Brock, Frank J Poelwijk, Michael A Stiffler, Nicholas P Gauthier, Chris
Sander, and Debora S Marks. Inferring protein 3d structure from deep mutation scans. Nature
genetics, 51(7):1170–1176, 2019.

Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin,
George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soyle-
mez, et al. Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397–401,
2016.

Rin Sato and Takashi Ishida. Protein model accuracy estimation based on local structure quality
assessment using 3d convolutional neural network. PloS one, 14(9):e0221347, 2019.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Sisi Shan, Shitong Luo, Ziqing Yang, Junxian Hong, Yufeng Su, Fan Ding, Lili Fu, Chenyu Li, Peng
Chen, Jianzhu Ma, et al. Deep learning guided optimization of human antibody against sars-cov-2
variants with broad neutralization. Proceedings of the National Academy of Sciences, 119(11):
e2122954119, 2022.

Jung-Eun Shin, Adam J Riesselman, Aaron W Kollasch, Conor McMahon, Elana Simon, Chris
Sander, Aashish Manglik, Andrew C Kruse, and Debora S Marks. Protein design and variant
prediction using autoregressive generative models. Nature communications, 12(1):1–11, 2021.

Vignesh Ram Somnath, Charlotte Bunne, and Andreas Krause. Multi-scale representation learning
on proteins. Advances in Neural Information Processing Systems, 34:25244–25255, 2021.

Hannes Stärk, Octavian Ganea, Lagnajit Pattanaik, Regina Barzilay, and Tommi Jaakkola. Equibind:
Geometric deep learning for drug binding structure prediction. In International Conference on
Machine Learning, pp. 20503–20521. PMLR, 2022.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Dawn GL Thean, Hoi Yee Chu, John HC Fong, Becky KC Chan, Peng Zhou, Cynthia Kwok,
Yee Man Chan, Silvia YL Mak, Gigi CG Choi, Joshua WK Ho, et al. Machine learning-coupled
combinatorial mutagenesis enables resource-efficient engineering of crispr-cas9 genome editor
activities. Nature Communications, 13(1):1–14, 2022.

Andrea D Thompson, Amanda Dugan, Jason E Gestwicki, and Anna K Mapp. Fine-tuning multi-
protein complexes using small molecules. ACS chemical biology, 7(8):1311–1320, 2012.

Wen Torng and Russ B Altman. 3d deep convolutional neural networks for amino acid environment
similarity analysis. BMC bioinformatics, 18(1):1–23, 2017.

12



Under review as a conference paper at ICLR 2023

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. Alphafold protein
structure database: massively expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic acids research, 50(D1):D439–D444, 2022.

Zichen Wang, Steven A Combs, Ryan Brand, Miguel Romero Calvo, Panpan Xu, George Price,
Nataliya Golovach, Emmanuel O Salawu, Colby J Wise, Sri Priya Ponnapalli, et al. Lm-gvp: an
extensible sequence and structure informed deep learning framework for protein property predic-
tion. Scientific reports, 12(1):1–12, 2022.

Bruce J Wittmann, Kadina E Johnston, Zachary Wu, and Frances H Arnold. Advances in machine
learning for directed evolution. Current opinion in structural biology, 69:11–18, 2021.

Zachary Wu, SB Jennifer Kan, Russell D Lewis, Bruce J Wittmann, and Frances H Arnold. Ma-
chine learning-assisted directed protein evolution with combinatorial libraries. Proceedings of the
National Academy of Sciences, 116(18):8852–8858, 2019.

Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro
Sanchez-Gonzalez, Peter Battaglia, Razvan Pascanu, and Jonathan Godwin. Pre-training via de-
noising for molecular property prediction. arXiv:2206.00133, 2022.

Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel
Das, and Jian Tang. Protein representation learning by geometric structure pretraining.
arXiv:2203.06125, 2022.

13


	Introduction
	Zero-shot Learning for Protein Recovery
	Graph Representation of Protein Structure
	Pre-training with Prior Domain Knowledge for Better Protein Fitness
	Protein Structure Representation with Equivariant GNNs
	Model Overview

	Results
	Experimental Setup
	Fitness of Deep Mutants Prediction
	Protein Recovery
	Selection Criteria on the Additional Hyper-parameters
	Inference Speed

	Related Work
	Conclusion
	From Protein to Graph Representation
	Graph Representation
	Node Features
	Edge Attributes

	Deep Mutational Scanning Benchmark
	Dataset Glossary
	Test Task

	Training Details
	Dataset for Pre-training
	Model Setup

	Prior Biological Knowledge
	Effect of the Confidence Level
	Noisy Ratio on the AA Type
	Influence of p on the Pre-trained Model

	Design of the Multi-task Learning Problem
	Choices on the Predictions
	Choices of Loss Weight




