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ABSTRACT

Self-attention has been widely used in various machine learning models, such as
vision transformers. The standard dot-product self-attention is arguably the most
popular structure, and there is a growing interest in understanding the mathemat-
ical properties of such attention mechanisms. This paper presents a fine-grained
local sensitivity analysis of the standard dot-product self-attention. Despite the
well-known fact that dot-product self-attention is not (globally) Lipschitz, we de-
velop new theoretical local bounds quantifying the effect of input feature pertur-
bations on the attention output. Utilizing mathematical techniques from optimiza-
tion and matrix theory, our analysis reveals that the local sensitivity of dot-product
self-attention to ℓ2 perturbations can actually be controlled by several key quanti-
ties associated with the attention weight matrices and the unperturbed input. We
empirically validate our theoretical findings through several examples, offering
new insights for achieving low sensitivity in dot-product self-attention against ℓ2
input perturbations.

1 INTRODUCTION

The self-attention mechanism (Bahdanau et al., 2014; Vaswani et al., 2017) has become a major
building block in many modern deep learning-based systems, achieving state-of-the-art performance
in various applications such as vision and natural language processing. In particular, dot-product
self-attention (Vaswani et al., 2017) is one of the most popular architectures used by many best-
performing networks such as the well-known Transformer architecture and its variants, and enabled
successful applications such as large language models (LLM) (Brown et al., 2020; Bubeck et al.,
2023) and vision transformers (ViT) (Dosovitskiy et al., 2021; Radford et al., 2021).

Unlike traditional neural network building blocks such as convolutional layers, whose structure
and behavior are well understood, the self-attention mechanism has more involved mathematical
properties. For example, for a simple convolutional layer, it is well known that its operator norm
is bounded (Sedghi et al., 2019), and convolution is a Lipschitz operation that always produces
bounded outputs given bounded inputs (Delattre et al., 2023). However, for the popular dot-product
self-attention mechanism, existing work has shown that they are surprisingly, not (globally) Lip-
schitz (Kim et al., 2021). The lack of Lipschitzness indicates that dot-product self-attention can
theoretically be very sensitive to its input, which can impede stable learning (Qi et al., 2023) and
lead to poor robustness (Zhou et al., 2022; Cisse et al., 2017). Although several architectures have
been proposed to amend the popular dot-product attention mechanism to achieve Lipschitzness and
bounded sensitivity (Kim et al., 2021; Dasoulas et al., 2021; Qi et al., 2023), none of them are pop-
ular in large-scale networks deployed in production, and it is still an open challenge to understand
why the non-Lipschitz dot-product attention mechanism can work well in practice.

In this work, instead of amending the network structure to achieve bounded sensitivity, we aim to
analyze the local sensitivity of the unmodified dot-product attention mechanism directly. Despite
being non-Lipschitz, we derived the first non-vacuous bound for local sensitivity of unmodified
self-attention mechanism, using mathematical techniques from optimization and matrix theory. Our
result consists of a theorem deciphering a few key quantities associated with the sensitivity of the
dot-product self-attention operation, related to the attention weight matrix and their inputs. The new
result gives us insights on controlling the local sensitivity of a Transformer. In particular, we found
that the local sensitivity of the self-attention layer is directly related to the norm of its input, thus
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theoretically explaining the necessity of using layer normalization (Ba et al., 2016) in the popular
Transformer architecture (Xiong et al., 2020). In addition, it allows us to utilize the recent progress
of 1-Lipschitz feedforward neural network layers, such as orthogonal layers (Trockman & Kolter,
2021; Prach & Lampert, 2022) and the SDP-based Lipschitz Layer (SLL) (Araujo et al., 2023), to
control the local sensitivity of Transformers. Note that since the self-attention layer is non-Lipschitz,
naively applying 1-Lipschitz layers could not provide any guarantees without our new local results.

We confirm our theoretical findings on a few practical vision transformers by quantifying their local
sensitivity against ℓ2 norm input perturbations. Our experiments show that our derived local sensitiv-
ity bounds are practical for vision Transformers and significantly improve against a naive approach
for sensitivity analysis. In addition, we also use gradient ascent to find the maximum sensitivity em-
pirically, and demonstrate that our theoretical bounds and empirical measurements are well-aligned.
By varying the design parameters of the vision transformers (e.g., number of attention heads and
number of tokens), our theory predicts the observed changes in local sensitivity. As a by-product
of our bounds, we can give non-trial adversarial robustness guarantees for vision transformers with
standard dot-product self-attention mechanisms. The main contributions of this work are:

• We are the first to consider a fine-grained theoretical analysis of local sensitivity bounds of un-
modified dot-product self-attention mechanism, contributing to the mathematical understanding
of this popular network structure. Despite the non-Lipschitzness of dot-product self-attention, our
local bounds are non-trivial and non-vacuous when validated on practical vision Transformers.

• Our results give great insights into achieving low sensitivity on dot-product self-attention-based
Transformers. It enables us to borrow the recently developed algebraic tricks on training globally
1-Lipschitz feedforward networks to provably improve the local sensitivity of Transformers.

• Our theoretical results are validated through the empirical evaluation of a large range of Trans-
formers trained with different design parameters. In addition, our tight bounds allow us to achieve
non-trivial deterministic robustness guarantees for vision Transformers without modifying the
dot-product self-attention mechanism.

We introduce the problem formulation in Sec. 3, present our main results in Sec. 4, and a compre-
hensive set of experiments to validate our analysis in Sec. 5. We defer all proofs to the Appendix.

2 RELATED WORK

Lipschitz and Regularity of Self-Attention. Since the first Lispchitz analysis of dot-product self-
attention by Kim et al. (2021), which showed that the standard dot-product self-attention is not
Lipschitz, a large number of works have tried to propose variants of the original dot-product self-
attention to enforce this property (Kim et al., 2021; Qi et al., 2023; Fei et al., 2022; Dasoulas et al.,
2021; Ye et al., 2023). For example, Qi et al. (2023) proposed scaled cosine similarity attention
instead of dot product attention and demonstrated the Lispchitz properties of this new layer. Another
type of work (Vuckovic et al., 2021) has studied the regularity of attention under a mathematical
framework that uses measure theory and integral operators to model attention. Under this new
framework, they show that the attention mechanism is regular (under some specific assumptions)
with respect to the 1-Wasserstein distance. While this work generalizes the work of Kim et al.
(2021), the regularity over the 1-Wasserstein distance is not commonly used in practice.

Neural networks with prescribed Lipschitz Constant. Recently, researchers have designed neural
networks with prescribed Lipschitz constant in order to better control the stability (Miyato et al.,
2018), robustness (Zhang et al., 2021; Prach & Lampert, 2022; Meunier et al., 2022; Zhang et al.,
2022; Araujo et al., 2023; Wang & Manchester, 2023; Li et al., 2019; Trockman & Kolter, 2021;
Singla & Feizi, 2021; Yu et al., 2022; Xu et al., 2022), and generalization (Bartlett et al., 2017) of
the network. However, most of these technique comes with important design choices with respect
to the architecture that are not common in networks with state-of-the-art performance.

Robustness of Transformer Networks. Since dot-product self-attention is not (globally) Lipschitz,
robustness cannot be derived from Lipschitz continuity (Tsuzuku et al., 2018). Existing work used
randomized smoothing (Cohen et al., 2019) to probabilistically certify their robustness (Carlini et al.,
2023; Wu et al., 2023). Randomized smoothing suffers from high computational cost and the inher-
ent probabilistic nature of the certificate. In this work, our bounds can be used to provide non-trivial
and deterministic certified accuracy for Transformers with unmodified dot-product self-attention.
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3 PRELIMINARIES AND PROBLEM FORMULATION

Notation and Background We denote the spectral norm and the Frobenius norm as ∥·∥ and ∥·∥F ,
respectively. Two useful facts are ∥AB∥F ≤ ∥A∥∥B∥F , and ∥A∥ = ∥AT∥. Given any two matrices
A and B, their Kronecker product of A and B is denoted as A ⊗ B. We denote the vectorization
operation as vec. Let ei denote an n-dimensional vector whose i-th entry is 1 and all other entries
are 0. The n × n identity matrix is denoted by In. The standard softmax mapping on matrices is
denoted as softmax. We know that softmax is 1-Lipschitz, i.e. ∥softmax(A)− softmax(B)∥F ≤
∥A−B∥F for any two matrices A and B that have the same dimension.

Dot-Product Self-Attention Let x1, x2, . . . , xn be a sequence of n vectors, where xi ∈ Rd. For
vision tasks, each xi is a patch. This sequence is represented as a matrix X . The dot-product multi-
head self-attention maps Rn×d to Rn×d. With h heads, the l-th head maps Rn×d to Rn×d/h as:

X =

− xT
1 −
...

− xT
n −

 ∈ Rn×d Yl = softmax

(
XWQ

l (XWK
l )T√

d/h

)
XWV

l

where WQ
l ,WK

l ,WV
l ∈ Rd×d/h denote the weight matrices for the l-th head, and the softmax

operation is applied in a row-wise manner. Finally, the outputs of all heads are concatenated as

f(X) = [Y1, . . . , Yh]W
O =

h∑
l=1

YlW
O
l ,

where WO = [(WO
1 )T, . . . , (WO

h )T]T ∈ Rd/h×d gives the weight for the linear combination of
the outputs from all the heads. For simplicity, we denote the notation Pl(X), and the dot-product
self-attention can be rewritten as:

Pl(X) = softmax

(
XWQ

l (XWK
l )T√

d/h

)
(1) f(X) =

h∑
l=1

Pl(X)XWV
l WO

l (2)

Residual structure. Dot-product self-attention is typically used in a residual form. In this case, the
output is defined as f(X) = X +

∑h
l=1 Pl(X)XWV

l WO
l .

Problem Statement. It is well-known that (2) is not globally Lipschitz (Kim et al., 2021). We are
interested in analyzing the local sensitivity of dot-product self-attention. We consider the following
model which unifies (2) and its residual variant with H ∈ Rn×n:

F (X) = HX +

h∑
l=1

Pl(X)XWV
l WO

l . (3)

If H = 0, then (3) recovers the standard dot-product self-attention (2). If H = I , then (3) reduces to
the residual setting. Given a local input point X and some small positive scalar ϵ, we want to prove
a bound in the following form:

∥F (X ′)− F (X)∥F ≤ δ(X, ϵ) for X ′ satisfying ∥X ′ −X∥F ≤ ϵ (4)
where F is defined by (3). In principle, the tightest choice of δ(X, ϵ) is given by the solution to the
following constrained optimization problem

max
X′:∥X′−X∥F≤ϵ

∥F (X ′)− F (X)∥F (5)

One can use the projected gradient ascent method to search solutions for (5). However, there are no
polynomial-time guarantees in solving the above problem globally. In addition, the bound (5) does
not bring any insights for how to control the local sensitivity via network structure design. The goal
of this paper is to develop a spectrum of choices for δ(X, ϵ) that can capture the trade-off between
tightness, tractability, and interpretability.

Once we figure out an efficient way to compute δ(X, ϵ) for the above problem, we can immediately
apply the analysis in a recursive manner to solve the local sensitivity analysis of multi-layer networks
consisting of various dot-product self-attention layers. Specifically, consider a N -layer network:

F (X) = fN ◦ fN−1 ◦ · · · ◦ f0(X) (6)
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where fk is either a dot-product self-attention layer (3) or a globally 1-Lipschitz operation. Applying
the local sensitivity analysis in a recursive manner, we will be able to compute δ(X, ϵ) for bounding
the end-to-end local sensitivity of (6) as described by (4). Such a bound can be used to prove the
robustness of F on the data point X subject to adversarially chosen ℓ2 perturbations. For example,
the following result connects the local bound δ(X, ϵ) to certified robustness.
Proposition 1. Suppose F is a classifier that maps any input X to the output as defined by (6).
The j-th entry of F (X) is denoted as [F (X)]j , which gives the logits value for the j-th label class.
The predicted label for X is given by argmaxj [F (X)]j . Given an input X with the true label y
satisfying y = argmaxj [F (x)]j , if we have

Mf (X) := [F (X)]y −max
j ̸=y

[F (X)]j >
√
2δ(X, ϵ),

then for every τ satisfying ∥τ∥F ≤ ϵ, we must have argmaxj [F (X + τ)]j = y.

The proof for the above result is almost identical to (Tsuzuku et al., 2018, Proposition 1), hence
omitted. The above proposition provides a way to compute the certified robust accuracy of dot-
product self-attention using our local sensitivity analysis. We emphasize that the analysis of δ(X, ϵ)
is not the same as obtaining a local Lipschitz bound. The difference is clarified in the appendix.

4 LOCAL ANALYSIS OF DOT-PRODUCT SELF-ATTENTION

In this section, we perform the local sensitivity analysis for the case where F is defined by (3).
Specifically, we have F (X) = HX +

∑h
l=1 Pl(X)XWV

l WO
l for either H = 0 or H = I . First,

the following bound based on the splitting trick is standard:
∥F (X ′)− F (X)∥F

=
∥∥H(X ′ −X) +

h∑
l=1

Pl(X
′)X ′WV

l WO
l −

h∑
l=1

Pl(X)XWV
l WO

l

∥∥
F

=
∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l +

h∑
l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥∥
F

≤
∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l

∥∥
F
+
∥∥ h∑

l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥∥
F

Next, we will bound the two terms on the right side. We use the following notation

∆1 =
∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l

∥∥
F

(7)

∆2 =
∥∥ h∑

l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥∥
F

(8)

If we can derive bounds in the form of ∆1 ≤ δ1(X, ϵ) and ∆2 ≤ δ2(X, ϵ), then we immediately
have the bound ∥F (X ′)− F (X)∥F ≤ δ(X, ϵ) := δ1(X, ϵ) + δ2(X, ϵ). Our analysis addresses how
to reduce the conservatism in deriving δ1(X, ϵ) and δ2(X, ϵ).

Reducing conservatism in deriving δ1(X, ϵ) One may naively bound ∆1 using the property of
matrix norms as follows (see the appendix for a detailed derivation):

∆1 ≤

(
∥H∥+

h∑
l=1

∥WV
l WO

l ∥∥Pl(X)∥

)
ϵ. (9)

The above bound is informative in showing that one can potentially control ∆1 by constraining the
spectral norm of {WV

l ,WO
l }hl=1. However, the above bound can be too loose quantitatively. In

contrast, the best possible bound for ∆1 can be obtained as the solution to the following problem:

max
X′:∥X′−X∥F≤ϵ

∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l

∥∥
F

(10)

The above problem actually has an analytical solution. This leads to our first result stated as follows.
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Lemma 1 (Key Sensitivity Metric). The exact solution to the optimization problem (10) is given by

max
X′:∥X′−X∥F≤ϵ

∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l

∥∥
F
= ζ(X)ϵ, (11)

where ζ(X) is defined as

ζ(X) =
∥∥H ⊗ In +

h∑
l=1

(Pl(X)⊗ (WV
l WO

l )T)
∥∥ (12)

Consequently, we have ∆1 ≤ δ1(X, ϵ) = ζ(X)ϵ, for all X ′ satisfying ∥X ′ −X∥F ≤ ϵ.

A detailed proof for Lemma 1 is presented in the appendix. The main analysis idea is based on the
following key identity:

vec

(
h∑

l=1

(Pl(X)(X ′ −X)WV
l WO

l )T
)

=

(
h∑

l=1

(Pl(X)⊗ (WV
l WO

l )T)

)
vec((X ′ −X)T)

which enables us to solve (10) exactly via viewing it as a largest singular value problem. The
quantity ζ(X) is termed as the key sensitivity metric which quantifies the local sensitivity of the self-
attention around the data point X due to the error ∆1. The computation of this metric is reasonably
scalable so that one can efficiently compute this metric for ViT used for CIFAR10. Later, we will
show that this term is the dominating term in the bound ∆1 + ∆2, and hence one should calculate
this term exactly when fine-grained sensitivity analysis is needed.

Reducing Conservatism in Deriving δ2(X, ϵ) The best possible bound for ∆2 is the solution to
the following constrained maximization problem:

max
X′:∥X′−X∥F≤ϵ

∥∥ h∑
l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥∥
F

(13)

One can apply the projected gradient ascent method to the above problem. However, there are no
guarantees that the resultant solution is global due to the form of the cost function. The solution
from the gradient ascent method only provides lower bound for (13). To obtain a more tractable
upper bound, it is straightforward to apply the triangle inequality to show that (13) can be bounded
by the following term:

h∑
l=1

(
max

X′:∥X′−X∥F≤ϵ

∥∥(Pl(X
′)− Pl(X))

∥∥
F
· max
X′:∥X′−X∥F≤ϵ

∥X ′WV
l WO

l ∥
)
, (14)

which involve two maximization problems. Now we discuss these two problems separately.

To address the term maxX′:∥X′−X∥F≤ϵ∥X ′WV
l WO

l ∥, we can apply the triangle inequality and
obtain the following tractable upper bound:

max
X′:∥X′−X∥F≤ϵ

∥X ′WV
l WO

l ∥ ≤ ∥XWV
l WO

l ∥+ ∥WV
l WO

l ∥ϵ (15)

The above upper bound can be efficiently calculated via power iteration, and is less conservative than
the naive bound ∥WV

l WO
l ∥(∥X∥+ϵ). Later, we will show that the above upper bound is reasonable

for the purpose of upper bounding ∆1 + ∆2, since replacing it with the lower bounds obtained by
the projected gradient ascent method does not affect the final overall bound value significantly.

Next, we discuss how to address

max
X′:∥X′−X∥F≤ϵ

∥∥(Pl(X
′)− Pl(X))

∥∥
F

(16)

Again, one can apply the projected gradient ascent method to search for lower bounds for the above
quantity. We are more interested in obtaining less conservative upper bounds that are computation-
ally tracable. Since softmax is 1-Lipschitz, we can show the following holds for any X:

∥Pl(X
′)− Pl(X)∥F ≤ 1√

d/h
∥X ′WQ

l (WK
l )T(X ′)T −XWQ

l (WK
l )TXT∥F (17)

5



Under review as a conference paper at ICLR 2024

Denoting Γ = X ′ −X . If ∥X ′ −X∥F ≤ ϵ, then we have ∥Γ∥F ≤ ϵ. We immediately have

∥Pl(X
′)− Pl(X)∥F ≤ 1√

d/h
∥(X + Γ)WQ

l (WK
l )T(X + Γ)T −XWQ

l (WK
l )TXT∥F

=
1√
d/h

∥ΓWQ
l (WK

l )TXT +XWQ
l (WK

l )TΓT + ΓWQ
l (WK

l )TΓT∥F

which leads to the following bound for (16):
1√
d/h

max
Γ:∥Γ∥F≤ϵ

∥ΓWQ
l (WK

l )TXT +XWQ
l (WK

l )TΓT + ΓWQ
l (WK

l )TΓT∥F (18)

The above problem can be searched using the projected ascent method. However, there are no
polynomial-time guarantees in maximizing a fourth-order polynomial subject to a quadratic norm
constraint. Fortunately, when ϵ is reasonably small, the following bound is not loose due to the
negligible effects of the higher-order term. We can obtain the following bound:

max
Γ:∥Γ∥F≤ϵ

1√
d/h

∥ΓWQ
l (WK

l )TXT +XWQ
l (WK

l )TΓT∥F + max
Γ:∥Γ∥F≤ϵ

1√
d/h

∥ΓWQ
l (WK

l )TΓT∥F

We can easily bound the second term as

max
Γ:∥Γ∥F≤ϵ

1√
d/h

∥ΓWQ
l (WK

l )TΓT∥F ≤ ϵ2√
d/h

∥WQ
l (WK

l )T∥. (19)

In addition, the exact value of the first term can be calculated using the following lemma.
Lemma 2. The following relation holds

max
Γ:∥Γ∥F≤ϵ

1√
d/h

∥ΓWQ
l (WK

l )TXT +XWQ
l (WK

l )TΓT∥F =
1√
d/h

∥Ml(X)∥ϵ,

where Ml(X) is given by the following specific matrix

Ml(X) = In ⊗

x
T
1W

K
l (WQ

l )T

...
xT
nW

K
l (WQ

l )T

+

n∑
i=1

(ei ⊗ In)⊗ (xT
i W

Q
l (WK

l )T). (20)

The dimension of Ml(X) can be quite high. A bound that can be quickly computed is given by

∥Ml(X)∥ ≤ ξl(X) :=
(
∥WQ

l (WK
l )TXT∥+ ∥XWQ

l (WK
l )T∥

)
. (21)

Putting all the bounds that we have obtained, we can get the following local sensitivity result.
Theorem 1. Consider the dot-product self-attention model (3). Suppose an input point X is given.
For any X ′ satisfying ∥X ′ −X∥F ≤ ϵ, we have

∥F (X ′)− F (X)∥F ≤ ϵ

(
ζ(X) +

1√
d/h

h∑
l=1

(∥Ml(X)∥+ ∥WQ
l (WK

l )T∥ϵ)(∥XWV
l WO

l ∥+ ∥WV
l WO

l ∥ϵ)

)

≤ ϵ

(
ζ(X) +

1√
d/h

h∑
l=1

(ξl(X) + ∥WQ
l (WK

l )T∥ϵ)(∥XWV
l WO

l ∥+ ∥WV
l WO

l ∥ϵ)

)
,

where ζ(X) is given by (12), Ml(X) is given by (20), and ξl(X) is defined by (21).

The above bounds can be used to obtain the first non-trivial certified robustness result of dot-product
self-attention on CIFAR10. We will show this in the numerical result section.

Insights for Network Design. Our theory should not suggest that weight matrices and data with
small magnitude are necessarily better for network design. The right interpretation is that our
bound can be used to quantify the robustness/performance trade-off for dot-product self-attention
and achieve non-vacuous certified robust accuracy. For example, if we make ∥WQ

l ∥, ∥WK
l ∥, ∥WV

l ∥,
∥WO

l ∥, and ∥X∥ small, then our local sensitivity bound is guaranteed to be small. However, too
much regularity may limit expressive power. From this insight, it is possible to borrow the recent
advancements on how to constraining weight norms from the Lipschitz network literature to design
dot-product self-attention layers with weight norm being controlled. In addition, the insight on the
need of controlling ∥X∥ further justifies the use of layer normalization in training such attention
layers.
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5 EXPERIMENTS

In this section, we will study the conservatism introduced in our fine-grained analysis and how to use
these local bounds in a scalable manner. Furthermore, we will study how our analysis can be used
to inform the design of robust self-attention blocks when applied to ViT on the CIFAR-10 dataset
and explore the trade-offs between performance and robustness of our regularized ViT. To the best
of our knowledge, we present the first non-trivial ℓ2-certified robust accuracy result for ViT using
standard dot-product self-attention with deterministic certificates.

5.1 STUDYING CONSERVATISM IN THE LOCAL BOUND

In our fine-grained local sensitivity analysis of multi-head self-attention, each step used to upper-
bound the output introduces conservatism. Of course, these steps are important for making the
local upper-bound computationally practical and scalable. We aim to show that the conservatism
introduced by these choices does not significantly degrade the effectiveness of our estimate and that
our key sensitivity metric of Lemma 1 is quite informative for quantifying the robustness for small
values of the ℓ2 input perturbation level ϵ. Recall that for the multi-head self-attention block F
(H = I for the standard residual attention block), our analysis considers two major terms, ∆1 and
∆2, in upper-bounding the local perturbed output at an input X with respect to the Frobenius norm.

∥F (X ′)− F (X)∥F ≤∥∥(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l

∥∥
F︸ ︷︷ ︸

∆1≤δ1(X,ϵ)

+
∥∥ h∑

l=1

(Pl(X
′)− Pl(X))X ′WV

l WO
l

∥∥
F︸ ︷︷ ︸

∆2≤δ2(X,ϵ)

For the first term ∆1, we have already established a tight upper-bound δ1(X, ϵ) = ζ(X)ϵ using the
key sensitivity metric, which can be readily computed by power-iterations. Therefore the majority
of the conservatism will be introduced when upper-bounding ∆2 ≤ δ2(X, ϵ). As discussed in
section 4, the best possible bound for ∆2 directly maximizes over X ′ as in Eq (13), but has no
guaranteed global solution. For that reason, we further estimate and seek upper-bounds to the sum
of separate inner-maximization problems as in Eq (14). Since each term is isolated in the sum, its
enough to consider the single-head attention case to determine the effect of ∆2.

Single-head Case: Bounding ∆2 To upper bound ∆2 in the single-head case, we need to compute
bounds for the following two multiplicative terms.

∆2 ≤
∥∥P (X ′)− P (X)

∥∥
F︸ ︷︷ ︸

∆2,1≤δ2,1(X,ϵ)

·
∥∥X ′WV WO

∥∥︸ ︷︷ ︸
∆2,2≤δ2,2(X,ϵ)

For bounding ∆2,1, our fine-grained analysis of Theorem 1 offers us the following two upper bounds
from our fine-grained analysis,

δ
(1)
2,1 =

ϵ√
d/h

(
∥M(X)∥+ ϵ∥WQ(WK)T∥

)
δ
(2)
2,1 =

ϵ√
d/h

(∥∥WQ(WK
l )TXT

∥∥+ ∥∥XWQ(WK)T
∥∥+ ϵ

∥∥WQ(WK)T
∥∥)

where M(X) is given in (20). Clearly δ
(1)
2,2 is tighter than δ

(2)
2,1 , but more expensive to compute since

M(X) is a (n2 × nd) matrix. For ∆2,2, we consider the bound δ
(1)
2,2 from Theorem 1 and compare

it to a more conservative naive bound δ
(2)
2,2 that was considered in our analysis.

δ
(1)
2,2(X, ϵ) =

(∥∥XWV WO
∥∥+ ϵ

∥∥WV WO
∥∥) , δ

(2)
2,2(X, ϵ) =

∥∥WV WO
∥∥(∥X∥+ ϵ) (22)

To get an idea of the conservatism introduced by each proposed bound, we compare the bounds at
a point X over a range of ϵ values in [0, 0.1] (X is normalized as ∥X∥F = 4, the number of patches.
Later we will apply unit projection to each patch before each attention unit). In order to better
understand the tightness of our bounds, we also compare these bounds against their respective lower-
bound given by directly performing PGD on maxX′,∥X′−X∥F≤ϵ ∆2,1 and maxX′,∥X′−X∥F≤ϵ ∆2,2.
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Figure 1: We compare the the proposed single-head bounds for ∆1, ∆2 and the end-to-end multi-
head attention bound ∥F (X ′)− F (X)∥F across the input perturbation bound ϵ. The PGD lower
bound is given by directly maximizing maxX′,∥X′−X∥F≤ϵ ∆2,1 and maxX′,∥X′−X∥F≤ϵ ∆2,2.

These results can be seen in Figure 1. It is most important to note that for ∆2,1, although there
seems to be a significant gap in the PGD lower bound and our upper bounds, the relative scale
of these terms is small compared to the input perturbation for small values of ϵ (the bounds are
quadratic in ϵ). Also for this reason, there may not be much improvement from using the tighter
bound δ

(1)
2,1 in most cases.

For ∆2,2, our bound δ2,2(X, ϵ) is fairly tight in this range of ϵ, noting that this value is further
multiplied with δ2,1. This renders the term ∆2 negligible for small values of ϵ and a controlled
spectral norm of the input ∥X∥. From this study, it is more clear that ∆1 and the key sensitivity
metric Lemma 1 meaningfully measure sensitivity in a local regime. In this sense, the conservatism
introduced to estimate ∆2 is justified.
Multi-head Case: End-to-End Tightness To further validate that ∆1 captures the majority of the
sensitivity for controlled inputs, we compare our upper bound to the PGD lower bound of the entire
multi-head attention layer with h = 8 heads. Through our previous study, summing over the heads,
we can justify the following practical upper bound which coincides with Theorem 1 (with H = 0).

∥F (X ′)− F (X)∥F ≤ δ(X, ϵ) = ζ(X)ϵ+

h∑
l=1

δ
(2)
2,1,l(X, ϵ) · δ(1)2,2,l(X, ϵ) (23)

This multi-head bound is also evaluated in Figure 1, alongside the single-head components. To
emphasize how crucial our key sensitivity metric is for tightness, we also compare against the same
bound (23), but using the naive sensitivity bound from Eq (9). As a lower bound, we compare against
PGD which directly maximizes maxX′,∥X′−X∥≤ϵ∥F (X ′)− F (X)∥F . It becomes clear that when
the spectral norm of the input X is controlled and ϵ is small, our upper bound is tight. That is because
the contribution of ∆2 is small and our bound on ∆1 is tight. However, when the input norm of X is
large, the conservative terms of δ2,1(X, ϵ), which depend on X begin to drive the estimate upwards
and loosen our bound. We will use these insights to design a more robust ViT to achieve non-trivial
certified accuracy on the classification task CIFAR10.

5.2 APPLICATIONS TO CERTIFIED ACCURACY ON CIFAR10

In this section, we will now apply our local upper bound of the dot-product attention unit to achieve
an end-to-end local bound of ViT. With this local bound and the margin argument given in Propo-
sition 1, we can achieve certified robust accuracy to ℓ2-bounded attacks. Informed by our upper
bound, we can make fine-grained design choices of ViT that trade-off performance and robustness.
Controlling Local Sensitivity of Vision Transformer. Although our theory supports the stan-
dards dot-product self-attention unit commonly used in ViT, the bound needs to be propagated
through other modules such as feed-forward layers and layer normalization. We use a standard
ViT architecture which uses residual attention and residual feed-forward blocks. Based on our local
upper bound, we can make important changes to enable greater robustness in our upper bound.

Layer Projection. Modules such as LayerNorm are not globally Lipschitz, but can be crucial to
the performance of ViT. We instead replace LayerNorm units with LayerProject defined by

LayerProject(x,R) =

{
x/∥x∥2 ·R if ∥x∥2 > R

x otherwise
, (24)
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Figure 2: Certified robust accuracy on CIFAR10 using our local sensitivity bounds under many com-
binations of ViT architecture parameters (number of layers, heads, and norm of weight matrices).

where R =
√
d is set to mimic the behavior of LayerNorm. Because projection to a closed convex

set is 1-Lipschitz, we can seamlessly propagate our upper bound and maintain the desired input
scale. Additionally, LayerProject with R = 1, is applied before each attention head so that the
spectral norm of the entire input ∥X∥ is approximately 1 and so our upper-bound remains controlled
at each attention unit.

Lipschitz Constrained Layers. The upper bound of Theorem 1, especially the key sen-
sitivity metric, will depend directly on the spectral norm of the attention weight matrices
(WQ

l ,WK
l ,WV

l ,WO
l ). In order to keep the expansion of our upper-bound through each layer low,

we constrain the norms of these weights through SDP-based Lipschitz Layer (SLL) Araujo et al.
(2023). We also constrain all feed-forward modules and patch embedding units to be 1-Lipshitz
to easily propagate our upper bound with unit expansion through ViT. This is not an uncommon
choice of parameterization, as orthogonal-ViT Fei et al. (2022) has been proposed, using orthogonal
1-Lipschitz layers in the attention unit to improve generalization on smaller data sets.
ℓ2 Certified Robust Accuracy on CIFAR10. We will now apply our end-to-end local upper
bound to obtain certified robust accuracy on the vision task CIFAR10. We study the effect of dif-
ferent ViT architecture parameters such as the number of attention heads, number of layers, image
patch size, and Lipschitz constant constraint of the attention weights.

This result on certified robust accuracy presented in Figure 2 is, to our knowledge, the first non-
trivial ℓ2-certified robustness result using standard dot-product attention, with non-zero robustness
up to ϵ ≈ 36/255. The results also show that many of these architectural factors will introduce a
trade-off between clean accuracy and certified robustness. This is to be expected since, for exam-
ple, the number of layers will cause our upper bound to compound, but it is also crucial for clean
performance.

In addition to 1-Lipschitz layers, we found it crucial to additionally constrain the Lipschitz constant
of the weights WV and WO to be a fraction of 1, which directly affects the key sensitivity metric,
the largest contributing factor of expansion in our local bound on ViT. It’s also important to note that
without directly exploiting the residual structure in the key sensitivity metric of Lemma 1 (instead
of the naive bound) or using Lipschitz controlled weights, no meaningful certified robust accuracy
could be achieved.

6 CONCLUSION

This work has provided a comprehensive examination of the standard dot-product self-attention
mechanism, a critical component in many machine learning models, especially in the context of
vision transformers. Despite the well-established understanding that dot-product self-attention is
not globally Lipschitz, this study has delved into a fine-grained local sensitivity analysis, shedding
light on its behavior when subjected to input feature perturbations. The theoretical results presented
in this paper have been empirically validated through a comprehensive set of experiments. These
findings provide a deeper understanding of how to mitigate sensitivity issues in dot product self-
attention when faced with ℓ2 input perturbations.
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A LOCAL SENSITIVITY ANALYSIS VS. LOCAL LIPSCHITZ ANALYSIS

A local Lipschitz analysis aims at showing that for any two points (X ′, X ′′) in the ϵ-ball around X ,
the following bound holds

∥F (X ′)− F (X ′′)∥F ≤ L∥X ′ −X ′′∥F .

This is stronger than our sensitivity analysis, and may be too strong for estabilishing non-trivial
certified robustness results of dot-product self-attention. If one can show the above local Lipschitz
bound holds, then clearly one can choose δ(X, ϵ) = Lϵ. However, given our local sensitivity
bound (4), one cannot guarantee local Lipschitzness. Specifically, the local Lipschitz bound allows
choosing arbitrary two points in the ϵ-neighborhood of the original input X . In contrast, our local
sensitivity analysis is in a weak sense that the bound can only tell us the derivations of F (X ′) from
F (X).

B DETAILED DERIVATIONS OF OUR BOUNDS

B.1 PROOF OF PROPOSITION 1

Let X be an input and suppose that the margin of the classifier F at X satisfies Mf (X) >√
2δ(X, ϵ). Then for any ||τ ||2 ≤ ϵ we have:

Mf (X + τ) =[F (X + τ)]y −max
j ̸=y

[F (X + τ)]j

=[F (X)]y −max
j ̸=y

[F (X)]j − ([F (X)]y − [F (X + τ)]y) + (max
j ̸=y

[F (X)]j −max
j ̸=y

[F (X + τ)]j)

=[F (X)]y −max
j ̸=y

[F (X)]k −
[
1
−1

]⊤ [
[F (X)]y − [F (X + τ)]y

maxj ̸=y[F (X)]j −maxj ̸=y[F (X + τ)]j

]
≥[F (X)]y −max

j ̸=y
[F (X)]j −

∣∣∣ [ 1
−1

]⊤ [
[F (X)]y − [F (X + τ)]y

maxj ̸=y[F (X)]j −maxj ̸=y[F (X + τ)]j

] ∣∣∣
≥[F (X)]y −max

j ̸=y
[F (X)]j −

∥∥∥ [ 1
−1

] ∥∥∥
2
∥F (X)− F (X + τ)∥2

≥Mf (X)−
√
2δ(X, ϵ) > 0

Therefore, argmaxj [F (X + τ)]j = y for all τ such that ∥τ∥2 ≤ ϵ. This completes the proof.

B.2 A DETAILED DERIVATION OF (9)

By the triangle inequality, we have

∆1 ≤ ∥H∥+
h∑

l=1

∥Pl(X)(X ′ −X)WV
l WO

l ∥F

≤ ∥H∥+
h∑

l=1

∥Pl(X)∥∥(X ′ −X)WV
l WO

l ∥F

≤ ∥H∥+
h∑

l=1

∥Pl(X)∥∥X ′ −X∥F ∥WV
l WO

l ∥,

which gives the stated bound.
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B.3 PROOF OF LEMMA 1

Obviously, we have

∥∥H(X ′ −X) +

h∑
l=1

Pl(X)(X ′ −X)WV
l WO

l

∥∥
F

=
∥∥(X ′ −X)THT +

h∑
l=1

(WV
l WO

l )T(X ′ −X)T(Pl(X))T
∥∥
F

Since (A⊗B) vec(V ) = vec(BV AT), we must have

vec

(
(X ′ −X)THT +

h∑
l=1

(WV
l WO

l )T(X ′ −X)T(Pl(X))T

)

=

(
(H ⊗ In) +

h∑
l=1

Pl(X)⊗ (WV
l WO

l )T

)
vec((X ′ −X)T)

Therefore, we are minimizing the ℓ2 norm of the right side of the above equation subject to an ℓ2
norm constraint on vec((X ′ −X)T). Therefore, the maximum value is achieved by the product of
the largest singular value of

(
(H ⊗ In) +

∑h
l=1 Pl(X)⊗ (WV

l WO
l )T

)
and ϵ.

B.4 PROOF OF LEMMA 2

To prove this lemma, we denote Γi = x′
i − xi ∈ Rd. Set βij = ΓT

i W
Q(WK)Txj +

xT
i W

Q(WK)TΓj . We can augment {βij} as the following big vector:

Λ =



β11

β12

...
β1n

β21

β22

...
βn1

...
βnn


= M(X)


Γ1

Γ2

...
Γn



where M(X) is given by the following specific matrix

M(x)

=



xT
1 (W

K(WQ)T +WQ(WK)T) 0 0 · · · 0
xT
2W

K(WQ)T xT
1W

Q(WK)T 0 · · · 0
xT
3W

K(WQ)T 0 xT
1W

Q(WK)T · · · 0
...

...
...

...
...

xT
nW

K(WQ)T 0 0 · · · xT
1W

Q(WK)T

...
...

...
...

...


=In ⊗

x
T
1W

K(WQ)T

...
xT
nW

K(WQ)T

+

n∑
i=1

(ei ⊗ In)⊗ (xT
i W

Q(WK)T).

Based on the above largest singular value interpretation, we can obtain the desired conclusion.
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Figure 3: We perform an ablation on the weight and input and its effect on the derived local upper-
bound of Theorem 1. Perturbations are applied to a trained set of self-attention weights and input
(WQ,WK ,WV ,WO, X), perturbing one element of the tuple at a time. A total of 10 samples are
taken for each parameter and each weight/input perturbation size. We set ε = 0.1 for all samples.

B.5 PROOF OF THEOREM 1

We can combine Lemma 1, the bound (14), the bound (14), the bound (19), and Lemma 2 together,
and the resultant bound is the desired one stated in this theorem.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY OF ATTENTION WEIGHTS

In this section, we study more closely the effects of each parameter in the multi-head attention map
on our bound in Theorem 1. To do this, we consider the weights (WQ,WK ,WV ,WO) from the
first layer of a ViT trained on CIFAR10 and a normalized input X (as the input undergoes projection
prior to each attention layer in our architecture). We then perturb each element while keeping the
others fixed, observing how our upper-bound (1) is affected with increasing parameter perturbation
size. For the experiment, we fix ε = 0.1. A total of 10 samples are taken for each weight and each
perturbation size. The study in found in Figure 3. Based on this study, we can observe that the
weights WV , WO and X account for much of the sensitivity of our bound, therefore, controlling
the norm of these weights and the input is crucial to control our bound.

C.2 TIGHTNESS OF BOUND AND INPUT NORM

In order to further study the affect of the input norm size and how it affects the tightness of our
bound, we perform an extended study similar to the one in Figure 1 for several input norm scales.
In this study, we are looking at the first residual self-attention layer of a pretrained ViT with 8 heads
and evaluating all proposed bounds discussed in section 5.1. We find that the bounds suggested
in our paper remain tight as long as the input norm is not too large. For large inputs values, our
bound eventually loses some effectiveness. This further justifies why we should perform pre-layer
projection if one desires to maintain non-trivial robustness using our proposed bound.

C.3 APPLICATIONS TO SENTIMENT ANALYSIS: WORD EMBEDDING ROBUSTNESS

In order to broaden the application domains of our theory, we apply our local sensitivity bounds
to a sentiment analysis task, where Transformer architectures are commonly utilized Kenton &
Toutanova (2019). In this section, we provide a robustness study on the Stanford Sentiment Tree-
bank (SST) dataset Socher et al. (2013) using transformers based on the BERT architecture Kenton
& Toutanova (2019). We are using the version of SST that classifies sentences into two classes
which indicate a positive or negative sentiment. As in previous works Wang et al. (2020); Zhu et al.
(2019); Li & Qiu (2020); Xu et al. (2023), we reason about ℓ2 bounded adversarially perturbations
on the word embedding space, as it is not easy to formulate perturbations on the tokens themselves
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Figure 4: We repeat the conservatism study of our bound in Fig 1 with different input norms, to
study the how this affects the tightness of our bound for a single multi-head attention layer.
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Figure 5: Certified robust accuracy on the SST using our local sensitivity bounds under many com-
binations of small BERT architecture parameters (number of layers, heads, and norm of weight
matrices).

using ℓ2 perturbations. We must point out that this is a common limitation of applying sensitivity
analysis to NLP benchmarks, as already noted in other works Hou et al. (2022). The certified ro-
bustness radii we obtained measured in the ℓ2 norm are similar to those in prior work without using
dot-product attention Xu et al. (2023). The results show that our sensitivity analysis bounds are
indeed non-vacuous.

Experiment Setup for SST Sentiment Data-set Similarly to Section 5.2, we will examine the
certified accuracy of several architectures and choices of weight norm restrictions. As mentioned
before, we consider perturbations applied directly to word embeddings. In this case, ϵ describes
the radius of the raw perturbation, rather a ratio of the pixel value in our vision task. The self-
attention architecture designs are identical to the ones used for ViT, except we consider a embed-
ding dimension of d = 64 and 32 tokens per input (i.e. X ∈ R32×64). We consider combina-
tions of self-attention units with layers in {3, 6} and number of heads in {4, 8}. Additionally, we
train each architecture constraining the output attention weights WV ,WO to have spectral norm in
{0.25, 0.5, 0.75} using the same SLL layer. The results are presented below in Figure 5. In this
case, we see that adding regularity does not necessarily decrease clean accuracy because the task is
rather simple. By controlling the bound sufficiently, we can even sustain good robust accuracy while
applying more layers (see the right-most panel in Figure 5).
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