
Towards Achieving Concept Completeness
for Unsupervised Textual Concept Bottleneck Models

Anonymous ACL submission

Abstract
Textual Concept Bottleneck Models (TBMs)001
are interpretable-by-design models for text002
classification that predict a set of salient003
concepts before making the final prediction.004
This paper proposes Complete Textual Concept005
Bottleneck Model (CT-CBM), a novel TCBM006
generator building concept labels in a fully007
unsupervised manner using a small language008
model, eliminating both the need for predefined009
human labeled concepts and LLM annotations.010
CT-CBM iteratively targets and adds important011
concepts in the bottleneck layer to create012
a complete concept basis and addresses013
downstream classification leakage through014
a parallel residual connection. CT-CBM015
achieves good results against competitors,016
offering a promising solution to enhance017
interpretability of NLP classifiers without018
sacrificing performance.019

1 Introduction020

The striking level of performance in natural021

language processing (NLP) achieved by black-022

box neural language models (Vaswani et al., 2017;023

Brown et al., 2020; Chowdhery et al., 2023) comes024

along with a lack of interpretability (Madsen025

et al., 2022). The field of eXplainable Artificial026

Intelligence (XAI) (Longo et al., 2024) intends027

to make the behavior of such models more028

interpretable. A common distinction of XAI029

is to define interpretability methods either (1)030

by applying post hoc explanation methods to031

interpret black box models, or (2) by constructing032

interpretable models by-design (Jacovi and033

Goldberg, 2020; Madsen et al., 2024).034

One promising approach to designing models035

that are more interpretable is Concept Bottleneck036

Models (CBM) (Koh et al., 2020). CBM are037

models that first map the input representations to038

a set of human-interpretable high-level attributes,039

called concepts. The latter are then used to040

make the final prediction with a linear layer,041

C3M CB-LLM CT-CBM
(ours)

Need for predefined
concepts Yes Yes No

Classification leakage
tackling No No Yes

Concept base
complenetess No No Yes

Accurate concept
detection No No Yes

Black-box
performance reached Yes Yes Yes

Use of ChatGPT Yes Yes No
Scalability No Yes Yes

Table 1: Qualitative comparison of CT-CBM to
competitors. Desired modalities are highlighted in bold.

improving the interpretability of black box models. 042

While CBM have been widely used in computer 043

vision (Yuksekgonul et al., 2023; Oikarinen et al., 044

2023; Shang et al., 2024; Zarlenga et al., 2022), 045

they have been much less explored for NLP (Poeta 046

et al., 2023a). Existing Textual Concept Bottleneck 047

Models (TCBM) have limitations: (i) they 048

mainly rely on the use of large language models 049

(LLM) (Tan et al., 2024a,b; Sun et al., 2024; Ludan 050

et al., 2023) whose computational cost is very high, 051

(ii) they often require access to a set of predefined 052

human-labeled concepts (Tan et al., 2024b,a; Ludan 053

et al., 2023), (iii) their concept layers can be 054

non complete, missing concepts relevant for the 055

downstream classification and potentially leading 056

to performance loss (Tan et al., 2024b; Sun et al., 057

2024; Tan et al., 2024a), (iv) they do not address 058

classification leakage (Tan et al., 2024a,b; Sun 059

et al., 2024), leading to the use of unintended 060

information from the concept predictor, (v) they 061

do not systematically guarantee the reliability 062

of concept activations, actually challenging the 063

interpretability faithfulness of CBM. 064

In this paper, we propose Complete Textual 065

Concept Bottleneck Model (CT-CBM), a novel 066

approach to transform any fine-tuned NLP 067
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classifier into an interpretable-by-design TCBM.068

As summarised in Table 1, the main contributions069

of CT-CBM are as follows:070

1. Concept labels are computed in a fully071

unsupervised manner without the need of072

predefined labelled concepts, based only a073

small language model (SLM).074

2. Concept completeness is achieved through075

iterative addition of important concepts in the076

concept layer.077

3. Downstream classification leakage is078

addressed through a parallel residual079

connection.080

This paper is organized as follows: Section 2081

recalls some basic principles of XAI and related082

work. Section 3 describes in details the proposed083

CT-CBM. Section 4 discusses the conducted084

experiments, that show that CT-CBM systematically085

succeeds in reaching the performance of a fine-086

tuned black box neural NLP model, while087

accurately detecting the activations of the concepts088

contained in the complete concept bottleneck layer.089

2 Background and Related Work090

This section first recalls some principles of XAI091

methods used later in the papers and presents092

existing methods generating Concept Bottleneck093

Model for NLP.094

2.1 XAI Background095

Post Hoc Interpretability. Post hoc methods096

explain the behavior of a model after its training.097

These include post hoc attribution methods that098

attribute importance scores to inputs to explain the099

model outcome (Zhao et al., 2024). In particular,100

gradient-based approaches such as Integrated101

Gradients (Sundararajan et al., 2017) compute102

these scores by back-propagating the gradients103

through the model.104

Post hoc concept-based approaches generate105

explanations at a higher level of abstraction, by106

focusing on human interpretable attributes, called107

concepts. TCAV (Kim et al., 2018) assesses108

the model’s sensitivity to a concept by back-109

propagating the gradients with respect to a linear110

representation of a candidate concept in the111

activation space, called concept activation vector112

(CAV). In the original paper, TCAV relies on human-113

labeled concepts, whose annotation can be time-114

consuming and expensive.115

Concept Bottleneck Models. Another way to 116

improve interpretability consists in constructing so- 117

called Concept Bottleneck Models (CBM) (Koh 118

et al., 2020). These models sequentially (1) detect 119

concepts and (2) linearly make the final prediction 120

from concept activations, thereby significantly 121

improving the understanding of the decision- 122

making process. 123

CBM have some limitations, such as requiring 124

a predefined set of human-labeled concepts, 125

generating incomplete concept bottleneck layers 126

(CBL), or doing downstream task leakage. Concept 127

incompleteness can have consequences either on 128

the model accuracy (under-complete concept base) 129

or the intelligibility (over-complete concept base) 130

of the provided explanations (Shang et al., 2024). 131

Downstream task leakage (Havasi et al., 2022) 132

occurs when the final prediction uses unintended 133

additional information from the concept predictor 134

scores. The concept predictor then no longer needs 135

to detect faithfully the concepts to be accurate 136

on the classification task, thus compromising the 137

interpretability faithfulness of the CBM. 138

Among the vast literature on CBM (Poeta 139

et al., 2023b), numerous variants have been 140

proposed to address one by one the aforementioned 141

limitations. Notably, Label-Free CBM (Oikarinen 142

et al., 2023) prompts GPT-3 (Brown et al., 143

2020) to list the most important concepts for 144

recognizing a specific class, freeing the approach 145

from dependency on predefined labeled concepts. 146

However, Label-Free CBM structurally depends 147

on the parametric knowledge of GPT-3 and does 148

not generate data driven concepts. In order to reach 149

the accuracy of a black box NLP classifier while 150

avoiding leakage, a non-interpretable connection 151

parallel to the concept layer can be added to fit 152

the residuals between the raw CBM outcome and 153

the ground truth (Yuksekgonul et al., 2023; Havasi 154

et al., 2022). However, adding such a residual 155

connection decreases the CBM interpretability. 156

Res-CBM (Shang et al., 2024) develops a method 157

to derive new concepts from the residual layer to 158

build a more complete CBL. Yet, it requires access 159

to a set of candidate concepts to add to the CBL 160

before probing the residual connection. Although 161

these methods overcome some of the limitations 162

inherent in CBM, their application has so far been 163

restricted to computer vision. 164
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2.2 Textual Concept Bottleneck Models165

This section presents recent works on generating166

Concept Bottleneck Models for NLP, referred to as167

Textual Concept Bottleneck Models (TCBM).168

C3M (Tan et al., 2024b) enriches a set of169

predefined human-labeled concepts with additional170

concepts obtained from ChatGPT. While it171

approximately reaches the performance of an172

unrestricted black-box NLP classifier, it is trained173

without addressing the completeness of the CBL174

and the downstream classification leakage. Besides,175

its relying on ChatGPT and human-labeled176

concepts prevents reproducibility and scalability.177

CB-LLM (Sun et al., 2024, 2025) also uses178

ChatGPT to generate a set of concepts that are179

scored with a sentence embedding model (Reimers180

and Gurevych, 2019) to perform concept labeling.181

This way, concept are represented with numerical182

values, unlike C3M. The concepts are then added183

to the CBL to train the TCBM. While CB-LLM184

approximately reaches the performance of a black-185

box NLP classifier, downstream classification186

leakage is not addressed. Moreover, it overlooks187

the completeness of its CBL, possibly resulting in188

an excessive number of concepts in the bottleneck189

layer and unintelligible explanations.190

TBM (Ludan et al., 2023) iteratively discovers191

concepts by leveraging GPT-4 (Achiam et al.,192

2023) and focusing on examples misclassified by193

a separately trained linear layer. TBM is not strictly194

a CBM, since concept detection is performed with195

GPT-4 during inference, making also the approach196

non scalable and computationally expensive.197

3 Proposed approach: CT-CBM198

This section describes the architecture of the199

proposed Complete Textual Concept Bottleneck200

Model (CT-CBM). As summarized in Table 1,201

CT-CBM addresses classification leakage and only202

uses SLM to build TCBM with a complete concept203

bottleneck basis without the need for a predefined204

human-labeled set of concepts.205

3.1 CT-CBM Overview206

We consider a corpus of text-label pairs T =207

{(x, y)} where x ∈ X denotes the text and208

y ∈ Y the label. f : X → Rd is the backbone209

of a language model classifier fine-tuned on T ,210

with d the dimension of the f embedding space.211

The TCBM is constructed by iteratively adding212

concepts into the CBL until a stopping criterion,213

which validates concept completeness, is met. 214

Concepts are added progressively based on their 215

importance scores, starting with the highest. As 216

shown in Figure 1, CT-CBM is a 4-step framework 217

detailed in the following subsections: 218

1. Concept Bank Construction. A set of concept 219

candidates is generated from X . CT-CBM prompts 220

an auto-regressive SLM to enrich T with micro 221

concepts defined as topics. Micro concepts are 222

clustered to construct a set of meaningful high level 223

macro concept candidates. 224

2. Concept Scoring. The importance of the 225

candidate concepts is assessed, in order to select 226

the one to be added in the concept bottleneck layer. 227

3. TCBM Training. Given a set of concepts, we 228

train a simple TCBM and a residual TCBM with 229

an additional parallel residual connection. 230

4. Stopping Criterion. Training stops when the 231

importance of the residual connection is low and 232

stable, indicating a complete concept bottleneck 233

basis. The residual layer is finally removed to 234

obtain a simple TCBM. 235

3.2 Concept Bank Construction 236

The first step aims at constructing a set of concept 237

candidates C without human annotation and in an 238

automated manner for potential inclusion in the 239

final CBL of the TCBM. 240

Micro Concept Bank Creation. We first prompt 241

an auto-regressive language model to annotate each 242

input text with several topics that we call micro 243

concepts, representing features at a higher level of 244

abstraction than simple tokens. We then define the 245

micro concept bank C̃ as the set of micro concepts 246

(topics) associated with the text corpus X by the 247

auto-regressive language model. 248

To be scalable and computationally affordable, 249

CT-CBM uses an SLM, defined as having less than 250

9B parameters (Lu et al., 2024), to perform the 251

micro concept annotation. This choice is justified 252

by the ability of recent SLM to follow precisely 253

instructions at lower cost than LLM (Riviere et al., 254

2024). We give more information about the prompt 255

used to generate micro concepts in Appendix A.3.1. 256

Macro Concept Bank Creation. Secondly, 257

we construct a set of macro concepts C by 258

decomposing the set of micro concepts C̃ into 259

p clusters, with p ≪ |C̃|. This choice is 260

justified by the variability of the micro concepts 261

generated by the SLM whose labels may differ 262

but whose semantics may be very similar (e.g. 263
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Figure 1: CT-CBM overview illustrated in the example of film synopsis classification. CT-CBM is a 4-step approach to
build a TCBM from a f black box NLP classifier. (1) A concept bank is created from the text corpus of interest. (2)
Concepts are scored with respect to their importance to explain f predictions. (3) The TCBM is trained through 3
layers: ΦC, Φcls and Φr. (4) The TCBM training stops when the importance of Φr stops decreasing.

demoniac monster vs. diabolic creature clustered264

as supernatural entities). We sequentially use265

a sentence embedding model, UMAP (McInnes266

et al., 2018) and HDBSCAN (McInnes et al.,267

2017) to perform macro concept clustering. By268

deriving candidate concepts from the analysis269

of the entire text corpus, CT-CBM concept bank270

creation stage is data-driven, unlike its competitors271

which directly ask ChatGPT to provide the most272

promising concepts in general.273

The text corpus is finally formally defined as274

TM = {(x, y, c)}, where c = [c1, ..., cp] ∈275

{0, 1}p is a vector of absence or presence of the p276

macro concepts found in X . As detailed below,277

each concept ck is associated with a numerical278

representation −→γk and a textual label lk.279

Concept Activations Vectors Computing. The280

"Linear Representation Hypothesis" states that281

high-level concepts are represented linearly in282

the embedding space of language models (Elhage283

et al., 2022; Park et al., 2024). Motivated by284

this hypothesis, we assign to each macro concept285

a linear representation from f embedding space,286

called Concept Activation Vector (CAV). These287

CAVs are later used to build the CBL.288

For each concept ck, we define its CAV −→γk as289

the mean difference (MD) of embeddings (Rimsky290

et al., 2024): 291

−→γk =
1∣∣X+
k

∣∣ ∑
x∈X+

k

f(x)− 1∣∣X−
k

∣∣ ∑
x∈X−

k

f(x) (1) 292

where X+
k and X−

k respectively represent the 293

corpora of texts where ck is present or absent. 294

Among the different ways to compute a CAV (Wu 295

et al., 2025), MD leads to the best compromise 296

is terms of concept detection accuracy and 297

computational cost (Marks and Tegmark, 2024). 298

Macro Concept Labeling. Finally, the macro 299

concepts are assigned to a textual label lk using the 300

SLM used for micro concept annotation. Due to the 301

potential various micro concepts related to a macro 302

concept, we sample the 15 micro concepts closest 303

to the macro concept centroid and prompt the SLM 304

to define the superclass of these micro concepts. 305

More details about the prompt used to do macro 306

concept labeling are given in Appendix A.3.2. 307

3.3 Concept Scoring 308

The objective of the concept scoring step is to find 309

C∗ ⊂ C to be included in the final CBL. CT-CBM 310

assigns a fixed importance score to each concept 311

throughout the iterative TCBM generation. CT-CBM 312

implements 2 ways of computing score importance. 313

Firstly, based on the previously computed CAVs, 314

we apply TCAV as in Nejadgholi et al. (2022) 315
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on the last layer of f to compute the fraction316

of inputs positively influenced by each concept317

summed over all target classes. This way, we318

know which concepts are most important for f319

to make its predictions. Secondly, motivated by320

the fact that the most represented concepts in321

the training dataset are often among the most322

detectable ones in the latent representations of323

language models (Templeton et al., 2024), CT-CBM324

also implements the concept frequency as a325

simple way of targeting concepts.326

The concepts are then sorted in descending order327

of importance and iteratively added to the CBL.328

3.4 TCBM Training329

Given a subset of concepts C ⊂ C, we introduce the330

protocol followed by CT-CBM to train a TCBM. To331

avoid classification leakage, we propose to guide332

the evolution of the TCBM training by adding a333

residual connection parallel to the CBL as done334

with CBM in computer vision (Shang et al., 2024).335

Generating a simple TCBM consists in training336

the two following layers: ΦC : Rd → R|C|337

and Φcls : R|C| → Y , where ΦC is the layer338

detecting concepts from f embedding and Φcls339

is the sparse linear concept-based classification340

layer. The simple TCBM is then defined by341

Φcls ◦ ΦC ◦ f . A residual TCBM contains342

an additional non interpretable residual layer Φr :343

Rd → Y using unknown residual concepts to344

enhance the downstream classification accuracy345

of the TCBM and avoid leakage. This way, the346

residual TCBM is defined as ((Φcls ◦ ΦC)+Φr) ◦f .347

CT-CBM constructs ΦC based on supervised348

learning, minimising the following loss function:349

LTCBM = λL(ΦC(f(x)), c) (2)350

+L(Φcls(ΦC(f(x)) + Φr(f(x)), y)

where L is the cross-entropy loss, λ is a351

hyperparameter and c is the vector of absence352

or presence of the concepts included in C. Φr353

is trained with a Ridge penalty constraint as in354

Yuksekgonul et al. (2023) and Φcls is trained with355

an elastic net penalty constraint to foster sparsity.356

The supervised training can be done jointly357

(concept detection and downstream classification358

performed at the same time) or sequentially359

(concept detection learned firstly and classification360

training performed afterwards).361

CT-CBM also implements a TCBM building362

method based on the CAVs projection in the363

concept layer. We present this projection 364

methodology and give more details about training 365

strategies, Ridge and elastic net hyperparameters 366

in Appendix A.4. 367

3.5 Stopping Criterion 368

CT-CBM stops adding concepts in the CBL when 369

the concept basis is deemed complete. The residual 370

connection is then removed in order to obtain a 371

TCBM without non-interpretable layer. 372

Since the residual layer uses unknown residual 373

concepts, we measure its importance in the 374

classification decision process as a proxy of 375

concept completeness. A low residual connection 376

importance indicates that most of the necessary 377

concepts have been added to the CBL, pinpointing 378

a complete concept base. Thus, we define the 379

stopping criterion based on the importance of Φr 380

in the TCBM decision making process. For a given 381

input text x ∈ X and a given target class k ∈ Y , we 382

formally define the importance of Φr as follows: 383

Ikr (x) =
|⟨wk, f(x)⟩|

|⟨wk, f(x)⟩|+ ⟨|ak|, |ΦC(f(x))|⟩
(3) 384

where wk and ak are respectively the weights of 385

Φr and Φcls associated to class k: Ikr (x) measures 386

the importance of the residual connection relative 387

to the sum of the importance of each concept in 388

the decision process related to class k. We finally 389

compute the global importance of Φr denoted as 390

Ir by averaging Ikr (x) over all target classes k and 391

all inputs x. 392

CT-CBM training stops when the moving average 393

of Ir of order 4 over iterations stops decreasing. 394

We then select the iteration that minimizes the 395

importance of Φr on the training set. The residual 396

layer Φr is finally removed to end with a fully 397

interpretable TCBM. We show an example of the 398

evolution of the residual connection importance 399

over the CT-CBM training in Appendix A.8 400

4 Experimental Settings 401

This section presents the experimental study 402

conducted across four datasets and two NLP 403

classifiers of different sizes, first comparing 404

CT-CBM to several competitors. Next, we assess 405

the impact of the method used to target important 406

concepts. Then we illustrate several TCBM 407

applications, such as the better understanding 408

of counterfactual explanations and adversarial 409

attacks (Lyu et al., 2024). Finally, we show how 410

global explanations can be derived from a TCBM. 411
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Model backbone
(size)

BERT-base
(110M)

DeBERTa-large
(395M)

Dataset Method Black-box C3M CB-LLM
CT-CBM
(ours) Black-box C3M

CT-CBM
(ours)

Concept
Annotation - CT-CBM - C3M - CT-CBM - C3M

%ACC ↑ 91.0 91.5 91.1 90.0 90.6 91.1 92.0 91.8 91.2 91.4 92.5
%c ↑ - 76.2 54.8 56.0 62.8 70.2 - 81.5 55.0 58.9 84.5
#c ↓ - 41 100 41 11 12 - 41 100 12 16AG News

%D ↑ - 76.5 78.5 76.5 80.8 81.2 - 76.5 78.5 87.2 85.1
%ACC ↑ 99.4 99.5 99.5 99.3 99.3 99.4 99.4 99.5 99.4 99.2 99.5

%c ↑ - 56.1 59.0 56.0 60.8 52.9 - 68.1 62.2 64.0 70.5
#c ↓ - 63 100 63 10 16 - 63 100 9 12DBpedia

%D ↑ - 82.2 80.3 82.2 85.1 84.5 - 82.2 80.3 85.0 83.5
%ACC ↑ 62.7 61.4 60.5 57.9 57.5 59.2 62.6 64.7 62.6 58.6 60.1

%c ↑ - 50.6 50.2 25.2 51.1 54.0 - 54.7 51.6 58.5 61.2
#c ↓ - 57 100 57 13 10 - 57 100 12 9

Medical
Abstract

%D ↑ - 77.2 76.4 77.2 79.2 77.1 - 77.2 76.4 77.1 76.9
%ACC ↑ 91.7 92.0 92.6 91.4 90.6 91.4 93.8 93.3 92.7 92.2 91.9

%c ↑ - 70.4 45.3 29.8 52.5 72.0 - 77.3 51.5 55.2 62.1
#c ↓ - 68 100 68 11 12 - 68 100 10 14

Movie
Genre

%D ↑ - 78.1 78.8 78.1 81.6 80.2 - 78.1 78.8 81.3 80.5

Table 2: CT-CBM and competitors evaluation on four test sets and two NLP classifiers. Except the black box baseline,
the best results are highlighted in bold and the second best ones are underlined.

4.1 Experimental Protocol412

Datasets and models. CT-CBM is tested on413

four multi-class text classification datasets: AG414

News (Gulli, 2005), DBpedia (Lehmann et al.,415

2015), Movie Genre1 and the more challenging416

classification dataset Medical Abstracts (Schopf417

et al., 2022). We apply CT-CBM on two fine-tuned418

NLP classifiers of different sizes: BERT (Devlin419

et al., 2019) and DeBERTa-large (He et al.,420

2020). More information about the content of the421

classification datasets and the language models are422

provided in Appendix A.5.423

CT-CBM and Competitors. We run the proposed424

CT-CBM with a Gemma-2-9B SLM to generate425

concept candidates. The CBL is constructed by426

joint training and important concepts are targeted427

and added in the bottleneck layer with TCAV and428

frequency. We compare CT-CBM to both C3M (Tan429

et al., 2024b) and CB-LLM (Sun et al., 2025).430

Given that TBM (Ludan et al., 2023) does not431

enhance an NLP classifier but rather performs432

concept detection with GPT4 during inference,433

we do not include it in the comparative study.434

We only show the results of CB-LLM for BERT,435

as we were unable to make TCBM converge for436

DeBERTa, despite using a grid search on the437

hyperparameters. We also run CT-CBM based on438

the concept annotation from C3M and, conversely,439

we utilize C3M based on CT-CBM concept annotation.440

To ensure comparability and address the ChatGPT441

annotation non scalability of C3M (complexity442

1https://www.kaggle.com/competitions/
movie-genre-classification/overview

proportional to size of the dataset × number of 443

targeted concepts), we run C3M with Gemma-2-9B 444

as concept annotator. CB-LLM concept evaluation 445

is done by discretizing its concept prediction since 446

concept detection learning is done with numeric 447

values. The hyperparameters of the experiments 448

are detailed in Appendices A.4.4 and A.6. 449

Evaluation Criteria. We propose a 4-metric 450

evaluation, with the first metric being the final 451

classification task accuracy (%ACC). We evaluate 452

concept detection accuracy (%c) based on the 453

F1 score related to concept detection due to the 454

strong imbalance in concept labels. Given the 455

prohibitive computational cost of C3M despite the 456

use of Gemma-2-9B instead of ChatGPT for concept 457

annotation, the C3M evaluation of concept detection 458

accuracy is only carried out on 1000 texts. We 459

also report the number of concepts (#c) in the 460

CBL and the concept diversity (D) in the TCBM. 461

The latter is motivated by the extensive XAI 462

literature emphasising the significance of diversity 463

in the components of an explanation (Laugel 464

et al., 2023; Mothilal et al., 2020). Moreover, 465

greater diversity in the case of TCBM tends to 466

reduce concept redundancy, therefore promoting 467

the objective of a more complete concept 468

base. We formally measure diversity as D = 469

1 − 2
k(k−1)

∑k
i=1

∑k
j=i+1

⟨ei·ej⟩
∥ei∥∥ej∥ where ei is 470

the embedding representation from a sentence 471

embedding model of the textual label lk of 472

concept ck. 473
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Metric Concept
scoring

AG
News DBPedia Medical

Abstract
Movie
Genre

%ACC ↑ TCAV 90.6 99.3 57.5 90.6
frequency 88.5 99.4 57.6 91.7

%c ↑ TCAV 62.8 60.8 52.5 52.5
frequency 63.3 61.0 49.7 51.2

#c ↓ TCAV 11 10 13 11
frequency 19 13 14 19

Table 3: Downstream task accuracy, concept accuracy
and number of concepts of CT-CBM applied to BERT per
concept scoring method.

4.2 Results474

Global Results. Table 2 shows the experimental475

results obtained from CT-CBM and its competitors476

on BERT and DeBERTa and the same training477

sets. C3M with CT-CBM concept annotation consists478

in training the TCBM with the C3M training479

methodology based on the dataset enriched with480

concepts dervied from the CT-CBM methodology.481

Conversely, CT-CBM with C3M concept annotation482

applies the CT-CBM training approach subsequent483

to the generation of concepts following C3M.484

Overall, CT-CBM achieves a performance very485

similar to that of the original black box models,486

even surpassing it for AG news and DBpedia487

when the concept annotation was previously done488

with C3M. For the majority of datasets and models,489

CT-CBM achieves the best results in terms of both490

quantity and diversity of concepts in the CBL. The491

accuracy of the classification task is comparable492

between CT-CBM C3M and CB-LLM, except for the493

Medical Abstract dataset, where our approach494

performs marginally lower.495

Influence of Concept Annotation on Concept496

Detection Accuracy. Concept detection497

accuracies of CT-CBM and C3M are highly dependent498

on the method used to do concept annotation499

upstream. On average, the C3M annotation leads500

to higher concept accuracy as compared to the501

CT-CBM annotation. Annotation with C3M is502

extremely costly, with a complexity equal to the503

product of the number of concepts in the database504

and the size of the dataset, whereas annotation with505

CT-CBM has a complexity proportional to the size506

of the dataset of interest. For a given annotation507

method, our CT-CBM achieves on average a higher508

concept accuracy than C3M. CB-LLM has overall a509

lower concept accuracy than its competitors.510

Consequently, CT-CBM appears to offer a511

balancd compromise between downstream task512

accuracy, concept detection performance and513

concept diversity, while structurally avoiding514

Figure 2: Example of an adversarial attack (xadv) and a
counterfactual explanation (xcf ) obtained from CT-CBM
and the AGnews dataset. TCBM enable to understand
the label change by explaining it in terms of concept
change.

classification leakage in a fully unsupervised 515

manner. However, a heavier but higher-quality 516

annotation method such as C3M does improve 517

results, at the expense of scalability. 518

Impact of the Concept Scoring Method. 519

Table 3 shows the results of the evaluation of the 520

impact of the concept scoring method of CT-CBM 521

on its performance. It turns out that TCAV and 522

the frequency approach give similar results in 523

terms of downstream task and concept detection 524

accuracy. However, TCAV converges much faster 525

than frequency with less concepts in its CBL, 526

which underlines the benefits of using TCAV to 527

target important concepts to be added to the CBL. 528

However, the frequency-based targeting concepts 529

remains a noteworthy compromise in terms of its 530

implementation simplicity and computational cost. 531

4.3 Practical Applications of TCBM 532

Better Understanding Adversarial Attacks 533

and Counterfactual Explanations. A common 534

application of CBMs is to allow domain 535

experts to modify predicted concepts at test 536

time to improve the accuracy of final task 537

predictions (Steinmann et al., 2024). We propose 538

here another application of TCBM by showing 539

how TCBM can provide a better understanding of 540

adversarial attacks effectiveness and counterfactual 541

explanation expressivity. To this end, we apply 542

TextAttack (Morris et al., 2020) and use Claude 543

3.5 Sonnet to generate adversarial attacks and 544

counterfactual explanations to a TCBM trained 545

7



Figure 3: Global explanation of a TCBM trained on the AGnews dataset with CT-CBM. The 7 most important
concepts of the bottleneck layer and the 8 most important tokens to explain each concept are shown.

via the proposed CT-CBM on the AGnews dataset,546

thereby achieveing a switch in the outcome of its547

prediction.548

Figure 2 gives a salient example of how TCBM549

can provide an understanding of adversarial attacks550

and counterfactual explanations at the concept level.551

The adversarial attack succeeds in flipping the label552

of the TCBM from Business to Sport by performing553

the following change at token level: stock → man.554

The change in concepts Financial terms related to555

money → Acronyms/initials clearly highlights the556

model’s poor understanding of the token change557

induced by the adversarial attack, offering avenues558

for troubleshooting the model. In the same way, the559

label flipping from Business to Sci/Tech induced560

by the counterfactual token changes Pfizer →561

NVIDIA and Celebrex → AI can be understood562

at a higher level of abstraction than the token level563

with the Financial terms related to money →564

Security and identification methods. This way,565

we believe that focusing on the conceptual level566

can significantly improve the understanding of a567

counterfactual explanation.568

Global TCBM Interpretability. We569

illustrate how to interpret TCBM at a570

global scale by representing the relationship571

between tokens, concepts and target classes.572

Regarding the relationship between important573

tokens and concepts, we propose to apply574

an attribution method, here Integrated575

gradients (Sundararajan et al., 2017) to 576

explain TCBM concept activations for each 577

concept at a global scale. The resulting local 578

feature importance scores are then averaged by 579

concept. Finally, the weights of the Φcls layers 580

are directly used to represent the intensity of the 581

relationship between concepts and target labels. 582

Figure 3 gives an example of a global explanation 583

of the proposed CT-CBM trained on DBPedia. The 584

"Financial terms related to money" concept is 585

important to predict that a press article is related to 586

"Science and Technology". Moreover, "internet" is 587

identified as important to activate the "Financial 588

terms related to money" concept. 589

5 Conclusion 590

We introduced CT-CBM, a novel unsupervised 591

approach to transform a fine-tuned NLP classifier 592

into a TCBM. CT-CBM automatically generates, 593

scores and targets concepts to build a complete 594

CBL. CT-CBM demonstrates a good level of 595

performance as compared to its competitors for the 596

two involved classification tasks, concept detection 597

and class prediction, especially regarding the 598

former. Moreover, CT-CBM leads to a more diverse 599

concept basis, reducing the risk of redundant 600

explanations at concept level. We have highlighted 601

several advantages of TCBM, such as increased 602

adversarial attacks and counterfactual intelligibility 603

and the ability to produce global explanations. 604
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6 Limitations605

Datasets and models. This work tested CT-CBM606

on 4 datasets and 2 language models. It would607

be interesting to include other models in the608

study, such as recent decoder-only architectures609

e.g. Gemma-2B.610

Concept Interactions. We have not considered611

possible relationships between concepts. This612

could highlight a better understanding of the impact613

of concepts on the classes to be predicted. We see614

this as a promising way of improving our approach.615

Concept Importance. There are other616

approaches for assessing the importance of617

a concept in explaining the behavior of a618

model (Fel et al., 2023; Crabbé and van der Schaar,619

2022), especially when concepts do not necessarily620

appear to be represented linearly in the latent621

spaces of models. Using these approaches would622

enable CT-CBM to better target important concepts623

to be added to the CBL.624

Text generation. Recent work has proposed625

having generative models generate explanations626

before answering the question in the same way627

as TCBM (Bhan et al., 2024; Sun et al., 2025).628

For the time being, our work has focused on text629

classification.630

Ethics Considerations631

Since NLP training data can be biased, there632

is a risk of generating harmful concepts to be633

added in the CBL. One using CT-CBM to enhance634

a NLP classifier must be aware of these biases635

in order to stand back and analyze the produced636

concepts and the manipulated texts. Moreover,637

the use of Gemma-9B for concept annotation638

is computationally costly and consumes energy,639

potentially emitting greenhouse gases. CT-CBM640

must be used with caution.641
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A Appendix944

A.1 Scientific Libraries945

We used several open-source libraries in this946

work: pytorch (Paszke et al., 2019), HuggingFace947

transformers (Wolf et al., 2020) sklearn (Pedregosa948

et al., 2011) and Captum (Miglani et al., 2023).949

A.2 Autoregressive language models950

implementation details951

Language Models. The library used to import952

the pretrained autoregressive language models is953

Hugging-Face. In particular, the backbone version954

of Gemma-2-9B is gemma-2-9B-it.955

Gemma-2 instruction special tokens. The956

special tokens to use Gemma in instruction mode957

were the following:958

• Gemma-2:959

– user_token=960

’<start_of_turn>user’961

– assistant_token=962

’<start_of_turn>model’963

– stop_token=’<eos>’964

Text generation. Text generation was performed965

using the native functions of the Hugging Face966

library: generate. The generate function has967

been used with the following parameters:968

• max_new_tokens = 50969

• do_sample = True970

• num_beams = 2971

• no_repeat_ngram_size = 2972

• early_stopping = True973

• temperature = 1974

A.3 Prompting format 975

Here we provide some details of different prompts 976

used to give instructions to Gemma-2-9B for 977

micro concept annotation and macro concept 978

labeling. We mainly leverage the In-context 979

Learning (ICL) (Dong et al., 2023) capabilities of 980

Gemma-2-9B. 981

982

A.3.1 Preprompt for micro concept 983

generation 984

user 985

You are presented with several parts of speech. 986

Identify only the main topics in this text. Respond 987

with topic in list format like the examples in a 988

very concise way using as few words as possible. 989

Example: ’As cities expand and populations grow, 990

there is a growing tension between development 991

and the need to preserve historical landmarks. 992

Citizens and authorities often clash over the 993

balance between progress and cultural heritage.’ 994

assistant 995

Topics: [’urban development’, ’cultural heritage’, 996

’conflict’]<eos> 997

user 998

’Recent breakthroughs in neuroscience are 999

shedding light on the complexities of human 1000

cognition. Researchers are particularly excited 1001

about the potential to better understand decision- 1002

making processes and emotional regulation in the 1003

brain.’ 1004

assistant 1005

Topics: [’neuroscience’, ’human cognition’, 1006

’decision-making’, ’emotional regulation’]<eos> 1007

A.3.2 Preprompt for macro concept labeling 1008

user 1009

You are presented with several parts of speech. 1010

Summarise what these parts of speech have in 1011

common in a very concise way using as few 1012

words as possible. Example: ["piano", "guitar", 1013

"saxophone", "violin", "cheyenne", "drum"] 1014

assistant 1015

Summarization: ’musical instrument’<eos> 1016

user 1017

["football", "basketball", "baseball", "tennis", 1018

"badmington", "soccer"] 1019

assistant 1020

Summarization: ’sport’<eos> 1021

user 1022

["lion", "tiger", "cat", "pumas", "panther", 1023

"leopard"] 1024
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assistant1025

Summarization: ’feline-type animal’<eos>1026

A.4 TCBM implementation details1027

A.4.1 Micro concept clustering settings1028

In order to perform micro concept clustering to1029

build macro concepts, we use the umap library1030

to perform dimension reduction with UMAP1031

with n_components = 5. Text embeddings are1032

initially obtained with the all-mpnet-base-v21033

backbone from the sentence_transformers1034

library. Finally, clustering is performed with1035

HDBSCAN with the basic settings from the hdbscan1036

library.1037

A.4.2 TCBM training strategies1038

CT-CBM implements two strategies for TCBM1039

training: joint and sequential. The sequential1040

strategy first predicts concepts from input texts1041

and then uses these predicted concepts to make1042

the final target prediction. In this approach,1043

the output of the concept prediction stage is1044

directly used as input for the target prediction1045

stage. This way, the concept loss L(ΦC(f(x)), c)1046

is firstly minimized before minimizing the target1047

one L(Φcls(ΦC(f(x)) + Φr(f(x)), y). On the1048

other hand, the joint strategy predicts concepts1049

and the final target simultaneously. It optimizes1050

both concept prediction and target prediction1051

losses during training. This enables the model1052

to consider the relationship between concept and1053

target predictions. This way, the loss of Equation 21054

is directly optimized. In our experiments, TCBMs1055

are trained jointly and the f parameters are frozen1056

during the TCBM training.1057

A.4.3 Implementation of Φr and Φcls1058

Φr and Φcls are respectively trained with Ridge and1059

elastic net penalties during the TCBM training. The1060

Ridge penalization R can be written as follows:1061

R(W ) = λR∥W∥22 (4)1062

with W ∈ Rd×k the weight matrix of the Φr layer,1063

λR an hyperparameter and ∥ · ∥22 the L2 norm. On1064

the other hand, the elastic net penalization EN can1065

be written as follows:1066

EN(A) = λEN

(
α∥A∥1 + (1− α)∥A∥22

)
(5)1067

with A ∈ R|C|×k the weight matrix of the Φcls1068

layer, λEN and α two hyperparameters and ∥ · ∥11069

the L1 norm.1070

A.4.4 Other TCBM training hyperparameters 1071

In our experiments, language model and 1072

TCBM training is done with the following 1073

hyperparameters: 1074

• batch_size = 8 1075

• num_epochs = 15 1076

• max_len = 128 for AGNews and DBPedia, 1077

256 for Movie Genre and 512 for Medical 1078

Abstracts. 1079

• learning rate = 0.001 1080

• optimizer = Adam 1081

• λR = 0.01 1082

• λEN = 0.5 1083

• α = 0.01 1084

• λ = 0.5 1085

A.4.5 TCBM construction with CAV 1086

projection 1087

The projection approach to build ΦC consists in 1088

projecting the CAVs into the concept space. We 1089

formally define Φck(f(x)) = ⟨f(x),−→γk⟩
||f(x)||.||−→γk||

as the 1090

linear projection of the embedding of x from f on 1091

the concept space associated to concept ck. This 1092

way, the concept embedding projection consists 1093

in computing the cosine similarity between the 1094

CAV and f output. ΦC is then constructed by 1095

concatenating linear projections corresponding to 1096

each concept ci and the final layer. Finally, Φcls 1097

and Φr are trained to perform the classification by 1098

minimizing the following loss function: 1099

LTCBM = L(Φcls(ΦC(f(x))+Φr(f(x)), y) (6) 1100

where L is the cross-entropy loss, Φr is trained 1101

with a Ridge penalty constraint and Φcls is trained 1102

with an elastic net penalty constraint. 1103

A.5 Language model classifiers and 1104

classification datasets details 1105

Language model classifiers. The library used to 1106

import the pretrained language models is Hugging- 1107

Face. In particular, the backbone version of BERT 1108

is bert-base-uncased and the one of DeBERTa 1109

is deberta-large. 1110

13



Classification datasets. The size of the training1111

sets for AG News, DBpedia, Movie Genre and1112

Medical Abstracts are respectively 4000, 6000,1113

4000 and 5000. The size of the test sets for1114

AG News, DBpedia, Movie Genre and Medical1115

Abstracts are respectively 23778, 30000, 7600 and1116

2888. C3M concept evaluation is done on 10001117

randomly selected rows on each dataset.1118

A.6 Competitors implementation details1119

In our experiments, C3M (Tan et al., 2024b) training1120

is done with the following hyperparameters:1121

• batch_size = 81122

• num_epochs = 151123

• max_len = 128 for AGNews and DBPedia,1124

256 for Movie Genre and 512 for Medical1125

Abstracts.1126

• learning rate = 0.0011127

• optimizer = Adam1128

• λR = 0.011129

• λEN = 0.51130

• α = 0.011131

• λ = 0.51132

The training of CB-LLM is a two-stage process:1133

(1) CBL training and (2) classification layer1134

training. The CBL training is done with the1135

following hyperparameters:1136

• batch_size = 161137

• num_epochs = 41138

• max_len = 128 for AGNews and DBPedia,1139

256 for Movie Genre and 512 for Medical1140

Abstracts.1141

• learning rate = 0.0011142

• optimizer = Adam1143

• loss_function = cos cubed as in Oikarinen1144

et al. (2023) and Sun et al. (2025)1145

The training of the classification layer of CB-LLM1146

is done with the following hyperparameters:1147

• batch_size = 641148

• num_epochs = 501149

• max_len = 128 for AGNews and DBPedia, 1150

256 for Movie Genre and 512 for Medical 1151

Abstracts. 1152

• learning rate = 0.001 1153

• optimizer = Adam 1154

A.7 Post hoc attribution explanation methods 1155

Captum library. Post hoc attribution has been 1156

computed using the Captum (Miglani et al., 1157

2023) library. In particular, Integrated 1158

gradients has been computed with respect to 1159

language models’ embedding layer with Captum’s 1160

default settings. The embedding layers of 1161

BERT and DeBERTa are specified as follows: 1162

model.model.embed_tokens. 1163

A.8 CT-CBM output examples 1164

A.8.1 Residual connection importance 1165

evolution 1166

Figure 4: Residual connection importance evolution
during CT-CBM BERT training for the movie genre
dataset.

A.8.2 Examples of macro concept 1167

compositions 1168

Figure 5: Cloud of micro concepts composing the
macro concept "Postponements or interputions" from
the AGNews dataset.
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Figure 6: Cloud of micro concepts composing the
macro concept "Instances of accountability or public
discourse" from the AGNews dataset.

Figure 7: Cloud of micro concepts composing the
macro concept "Acronyms and initials" from the
AGNews dataset.

Figure 8: Cloud of micro concepts composing
the macro concept "Cybersecurity and information
protection" from the AGNews dataset.

Figure 9: Cloud of micro concepts composing the
macro concept "Financial terms related to money" from
the AGNews dataset.

Figure 10: Cloud of micro concepts composing
the macro concept "United-Nations-related" from the
AGNews dataset.

15


