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ABSTRACT

Scaling wildlife re-identification remains challenging due to reliance on expert
photo-ID and large labeled datasets. In Malapascua, Philippines, divers capture
abundant unlabeled footage of endangered thresher sharks, motivating an unsuper-
vised solution. We curate a structured dataset of thresher-shark dive videos orga-
nized by co-occurrence and track-based local identities, and introduce pose-aware
proxies, which arecoarse orientation labels that provide weak viewpoint supervi-
sion within a clustering-based contrastive framework. We evaluate without global
identity labels using three field-aligned metrics: within-track consistency (WTC),
co-occurrence recall (CoR@k), and mutual-exclusion error (MEError@k). On
our dataset, the TP6 variant (excluding ambiguous “Others”) improves temporal
stability (-23.5% WTC vs Base) and reduces impostor matches (MEError down
19.4% @1, 46.0% @5, 33.7% @10), while slightly lowering CoR at small k (gap
narrows by k=10). These results show that pose-conditioned guidance extends
proxy-based unsupervised learning to unconstrained ecological video, prioritizing
precision over immediate recall, and they isolate cross-pose matching as a key
open challenge for future work.

1 INTRODUCTION

Visual re-identification (re-ID) links repeated observations of the same individual and underpins
abundance estimates in marine-wildlife monitoring, yet the task is hampered by scarce labels and
rapidly changing viewpoints in opportunistic video. Recent unsupervised pipelines therefore rely
on clustering-contrastive loops whose supervision is provided by proxies which are group-level an-
chors summarizing subsets of embeddings. Whereas camera-aware proxies condition these anchors
on fixed camera IDs, we instead exploit pose-aware proxies that partition embeddings by coarse
orientation (e.g., left, right, front-left), treating viewpoint as a structured nuisance and mirroring
the camera-conditioning strategy used in O2CAP and related methods (Wang et al., 2021} 2022 |L1
et al.,|2022). This shift is motivated by two mismatches between ecological footage and standard
assumptions: (i) handheld, drifting cameras preclude reliable camera IDs, and (ii) global identity
labels are typically absent, making classical CMC/mAP metrics inapplicable.

Consequently, the field lacks a simple mechanism to substitute viewpoint conditioning for camera
IDs and an evaluation protocol that reflects within-dive structure without global IDs. We address
these gaps by operationalizing coarse pose labels as drop-in supervision for Transformer-based
multi-granular frameworks, and by proposing three weakly supervised metrics: Within-Track Con-
sistency (temporal stability), Mutual-Exclusion Error @k (same-dive impostor suppression), and Co-
Occurrence Recall @k (cross-subclip linkage) that collectively capture precision-recall trade-offs in
this setting. Using a curated dataset of identity-pure thresher-shark subclips from Kimud Shoal, we
show that excluding ambiguous ”Others” frames yields the best balance of stability and precision,
thereby clarifying when and how pose granularity matters.

Our contributions are as follows:

* (i) pose-aware proxies compatible with TMGF pipelines,
* (ii) an ecological evaluation suite aligned to dive-local structure,

* (iii) a realistic underwater case study, and
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* (iv) a systematic analysis of pose granularity that informs future unsupervised wildlife re-
ID designs.

2 RELATED WORK

Early animal re-identification (Re-ID) systems largely relied on manually engineered, pattern-
matching pipelines that exploited individually distinctive markings visible in photographs. Foun-
dational studies on cheetahs, whale sharks, and gray seals, for example, matched new observations
to known individuals by comparing spot, pigmentation, and pelage pattern cues (Kelly, 2001} /Arzou-
manian et al., 2005; [Karlsson et al., 2005). The core premise was that such textures are sufficiently
stable over time to function as natural “biometric” signatures. Building on that template, similar
methods were extended to other animals with including stripe-patterned and spotted species such
as tigers and spotted raggedtooth sharks (Hiby et al., 2009; Van Tienhoven et al., 2007). These
pipelines depend on the long-term stability and visibility of the markings and are sensitive to factors
such as pose changes, partial occlusion, illumination, and life-stage or seasonal appearance shifts.
They also often require nontrivial human effort for annotation and verification. Consequently, the
absence of prior studies or distinctive markings in other species renders handcrafted photo-ID labor-
intensive and limited in scope. This motivated the shift toward supervised learning approaches that
extend animal re-ID beyond species-specific pipelines to more generalizable solutions. Early work
on terrestrial animals, such as elephants, leveraged curated flank images and anatomical landmarks
but was limited by pose variability and background clutter (Korschens et al., 2018)), later improved
through part-based alignment strategies (Yu et al.,[2024)). In marine settings, researchers successfully
trained models on contour and shape-based methods, including manta rays (Moskvyak et al.,[2019),
dolphins (Thompson et al.| [2019), and great white sharks (Hughes & Burghardt, 2017). More re-
cently, species-agnostic frameworks have emerged, fueled by large community-contributed datasets
and transferable feature learning methods. These models, such as MegaDescriptor, ALFRE-ID, and
MiewID, demonstrated strong cross-species generalization by learning robust local and global repre-
sentations without heavy reliance on species-specific heuristics (Cermik et al., [2023; Nepovinnykh
et al.| [2024; Otarashvili et al.| 2024). However, across all settings, supervised learning remains con-
strained by its dependency on costly identity-labeled datasets and susceptibility to domain shifts,
motivating the shift toward self-supervised approaches that scale without manual annotation.

Unsupervised re-ID is crucial for animal studies, as manual labeling is prohibitively costly, expert
annotators are scarce in regions where endangered species live, and conservation programs often
face severe funding constraints. In Malapascua, for example, recreational divers and dive shops
generate abundant video footage of thresher sharks, yet aggregating and labeling this material is
difficult, especially given the absence of established photo-ID markers for the species. Leveraging
such unlabeled imagery, unsupervised methods offer a scalable solution for ecological monitoring
and conservation. While unsupervised animal re-ID has seen limited progress, unsupervised human
re-ID has advanced rapidly, developing clustering and contrastive-based frameworks that progres-
sively refine identity representations without ground-truth labels. Clustering-based unsupervised
re-identification has progressively shifted from naive pseudo-labeling to more structured forms of
supervision. Early methods treated clusters as entire identities, but this collapsed under large intra-
class variance caused by viewpoint changes. Camera-Aware Proxies (CAP) addressed this by condi-
tioning clusters on camera IDs, stabilizing assignments through intra-camera contrastive losses and
balanced sampling (Wang et al., 2021). O2CAP extended this principle by dynamically refreshing
proxies with an offline-online association scheme, discarding redundant intra-camera losses while
generating stronger positives and harder negatives (Wang et al.;, 2022)). Together, these studies estab-
lished the importance of structured, view-conditioned proxies for suppressing noise in contrastive
objectives. In parallel, several approaches emphasized the refinement of pseudo labels at finer gran-
ularity. ICE pursued compactness by contrasting anchors with their hardest positives while injecting
soft pairwise-similarity labels to remain robust to augmentation noise (Chen et al.,[2021). PPLR fur-
ther showed that cross-checks between global and part features, via Part-Guided Label Refinement
and Agreement-Aware Label Smoothing, were critical when pose variation was high (Cho et al.
2022). At a larger scale, Cluster Contrast moved beyond instance-level dictionaries, aligning con-
trastive loss with cluster centroids and enforcing temporal coherence through momentum updates
(Dai et al.2023). These directions converge on the insight that robust unsupervised re-ID requires
both stable pseudo labels and mechanisms to mitigate variance across space and time.
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More recently, backbone design has proven equally important. TMGF integrated O2CAP-style
proxy losses with a multi-branch Vision Transformer, learning global tokens alongside uniformly
striped part tokens 2022). This multi-granular representation significantly narrowed the
gap to supervised methods, highlighting the synergy between richer feature hierarchies and struc-
tured contrastive learning. However, across these threads, key assumptions remain: proxies rely on
fixed camera viewpoints, pseudo-label refinements presuppose roughly aligned poses, and memory-
based methods assume stable scene statistics. In ecological video, where cameras drift, animal poses
vary wildly, and visibility conditions fluctuate, these premises fail. To bridge this gap, we propose
pose-aware proxies that replace camera IDs with coarse orientation labels, enabling structured su-
pervision under unconstrained viewpoints. Built atop O2CAP and enhanced with multi-granular
transformer features, our method preserves the benefits of proxy-driven contrastive learning while
explicitly addressing pose variance, the dominant challenge in underwater wildlife re-identification.

3 METHOD

3.1 DATASET: THRESHER SHARK RE-IDENTIFICATION AS A CASE STUDY

Video footage was collected by divers during early morning recreational dives at Kimud Shoal,
Malapascua, on January 1, 3, 4, and 5, 2025, a site renowned for frequent thresher shark sightings.
Recordings were captured using action cameras such as the GoPro Hero and DJI models. These
videos document natural shark behavior in unstructured, open-water environments and serve as the
primary data source for the study. Since the footage was captured by 5 divers on the same dates
and times, it reflects varied viewpoints and environmental conditions, yet the same set of thresher
sharks is likely to appear across multiple videos. This setup increases the likelihood of overlapping
individuals across clips, providing a semi-controlled environment that supports re-identification ex-
periments even in the absence of global identity labels. A full bar chart of daily diver contributions
is shown in Appendix [A.T] Unlike person re-ID benchmarks, these videos lack global identity an-
notations and are recorded under unconstrained conditions with no fixed cameras.

0000_p1_v0071_c00_0005_00 0000_p1.v0040_c00_0017_00 0002_p1.v0071_c02_0025_00

Figure 1: All three images share the same pose label (p1, left-facing), with the first and third showing
different sharks from the same dive (v0071, subclips c00 vs. c02), while the second comes from
another dive (v0040) and thus has a non-comparable local ID.

Each dive recording is treated as a Video ID (e.g., v0000). To remove ambiguity from overlap-
ping sharks, we manually segment each video into Subclips (c00, cO1, ...), such that each subclip
contains only a single shark. This guarantees identity purity within subclips and provides reliable
tracklets for training and evaluation. Within a video, sharks are annotated with Local IDs (0000,
0001, ...). A Local ID is a video-specific identifier that tracks the same shark consistently across
subclips within a single video but cannot be used to match individuals across different videos. For
example, in Figure[l] the first and third images originate from the same dive video (v0071) but rep-
resent different sharks segmented into distinct subclips (0005 in c00 vs. 0025 in c02). Because they
co-occur within the same video, their local IDs are directly comparable. In contrast, the second im-
age comes from a different dive (v0040), so its local ID (0017) is not comparable to those in v0071.
Despite these differences, all three images share the same pose label (p1), indicating a left-facing
orientation.

Each detection is further annotated with a pose label (p1, p2, p3, p4, p3, p6, p7), corresponding to
coarse orientations such as left, right, front-left, front-right, back-left, right, front-right, back-right,
and others. These labels serve as proxies for viewpoint, analogous to camera IDs in human re-ID
benchmarks, and are crucial for training pose-aware proxies. Finally, frame indices and bounding
box IDs provide fine-grained localization within subclips, though in practice each subclip typically
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contains a single bounding box per frame. This dataset presents unique challenges: underwater
variation due to turbidity, lighting, and distance; non-rigid deformations as sharks swim; and the
absence of cross-video global IDs. As such, it serves as a case study for testing re-ID algorithms in
ecological video, where assumptions of fixed viewpoints and large labeled datasets do not hold.

3.2 POSE-AWARE PROXIES

Our method builds on the Transformer Multi-Grained Framework (TMGF) for unsupervised re-
identification. TMGF stabilizes contrastive learning by introducing camera-aware proxies, which
exploit the fact that each surveillance camera captures a consistent viewpoint. In our ecological
setting, however, no fixed cameras exist. To address this, we introduce pose-aware proxies, replacing
camera labels with coarse pose annotations.
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Figure 2: LEFT: In Market-1501, 6 static surveillance cameras naturally provide camera labels as
proxies for viewpoint. RIGHT: In our thresher shark dataset, footage is collected opportunistically
by divers with handheld action cameras, so we instead annotate each shark by coarse pose labels,
which serve as weak proxies for viewpoint.

Concretely, for each image x;, we extract features f; = fp(x;) using a ViT-S/16 backbone with
multi-grained feature pooling as in TMGF. During each training iteration, clustering assigns pseudo-
identities across the dataset. Within each cluster, we further partition samples into subsets according
to pose labels. Each subset defines a pose-conditioned proxy pP°*¢, which acts as an anchor in
contrastive learning. This modification reduces intra-cluster noise by explicitly modeling viewpoint
variation.

3.3 Loss FUNCTION

We adopt the contrastive learning objective from TMGF, applied to pose-aware proxies. For an
embedding f; and its corresponding positive proxy p!°*¢, the loss is:

7
exp(sim(f;,pP°**i) /)
3 j exp(sim(fi,pt ) /7)

where sim(+, -) denotes cosine similarity, 7 is a temperature hyperparameter, and the denominator
sums over all proxies across clusters and poses. This formulation follows TMGF, but proxies are
grouped by pose rather than camera, providing weak supervision for viewpoint without requiring
static camera IDs.

L; = —log

The training pipeline proceeds iteratively through three stages: (i) a clustering step, which assigns
pseudo-identities across the dataset; (ii) a proxy construction step, which partitions each cluster
according to pose labels to form pose-aware proxies; and (iii) a contrastive update step, which
optimizes embeddings using the proposed loss function with offline-online association updates. This
iterative design preserves the strengths of proxy-based learning while extending its applicability to
unconstrained ecological footage.
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3.4 EVALUATION METRICS

Our method replaces fixed camera IDs with pose-aware proxies that partition pseudo-identities by
coarse orientation, aiming to (i) stabilize embeddings within encounters, (ii) harden negative dis-
crimination among co-occurring sharks that share viewpoint/context, and (iii) link the same shark
across viewpoint changes within a dive, without cross-video global IDs. The evaluation matches
these hypotheses: Within-Track Consistency (WTC) measures temporal stability in identity-pure
tracklets, which is a necessary condition for any proxy to be useful. Mutual-Exclusion Error (MEEr-
ror@k) targets the hardest negatives available, which are other sharks from the same dive; thus,
tests whether pose-conditioned supervision reduces confusions precisely where camera-aware prox-
ies help in person Re-ID. Finally, Co-Occurrence Recall (CoR@k) quantifies within-dive linking
across subclips; its cross-pose variant isolates viewpoint robustness, the central promise of pose-
aware proxies. We therefore read improvements in WTC, MEError, and CoR as evidence that pose-
conditioned guidance is functioning as intended under the dataset’s partial-label regime.

3.4.1 WITHIN-TRACK CONSISTENCY (WTC)

Each subclip contains only one shark. Let a subclip tracklet be T' = { f1, fa, ..., fm}, where f; are
embeddings of frames from the same shark. We measure stability as the mean squared deviation
from the tracklet centroid:

WTIC(T)= L7 |fi—frl3, fT=L1Yi=1"f

The dataset-level score is the mean over all subclips. Lower values indicate temporally smoother
embeddings.

3.4.2 MUTUAL-EXCLUSION ERROR (MEERROR @K)

For a query embedding f; from shark s; in video v, we define the set of negatives NV; as embed-
dings of other sharks in the same video (different Local IDs). Let Ry (f;) be the top-k retrieved
embeddings. The error rate is the fraction of negatives retrieved:

MEError@k = ﬁ > fieq & IRe(fi) N NG|

This penalizes cases where different sharks filmed in the same dive are incorrectly retrieved as the
same. Lower values are better.

3.4.3 Co0-OCCURRENCE RECALL (COR@K)

For a query embedding f; of shark s in video v, we define the set of positives P; as embeddings of
the same shark (same Local ID) that appear in other subclips of the same video. Retrieval quality is
measured as the fraction of these positives that appear in the top-k:

CoR@k = & 3. o 37 IRk(fi) N P

Higher values indicate that the model successfully links the same shark across different subclips,
even with viewpoint and appearance changes.

Pose-aware proxies operationalize viewpoint structure during training by partitioning pseudo-
identities into orientation-conditioned anchors. Our evaluation mirrors this structure at test time:
WTC verifies per-track stability required by any proxy mechanism, MEError @k measures whether
pose-conditioned supervision reduces in-context impostors, and CoR@k, especially in the cross-
pose split, tests the promised viewpoint robustness without presuming cross-video labels.

4 EXPERIMENTS

4.1 DATASET

The dataset comprises 164 clips, each corresponding to a contiguous track of frames, with a median
length of 18 frames. To mitigate bias arising from clip length, we stratify the dataset into many-
frame groups ( > median, 86 clips) and fewer-frame groups (< median, 78 clips). This ensures that
both long and short tracks are proportionally represented during training and evaluation, rather than
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Table 1: Dataset split by clip length. Stratification ensures balanced representation of both long and
short tracks. Queries are formed by randomly sampling one frame per gallery clip.

Category #Clips Training (70%) Gallery (30%) Query (1 per gallery)
Many-frame (> 18) 86 60 26 26
Fewer-frame (< 18) 78 55 23 23
Total 164 115 49 49

allowing long tracks to dominate. Within each stratum, 70% of clips are randomly assigned to the
training set, while the remaining 30% are allocated to the gallery set. From each clip in the gallery,
we randomly sample one frame as the query. This design forces the model to generalize across
frames within the same track, rather than overfitting to clip-specific redundancies, and it mirrors the
retrieval setting where a single observation must be matched against a reference set.

4.2 SETUP

We evaluate on the Thresher dataset, curated from diver-captured videos at Malapascua. The dataset
comprises 164 clips grouped into local track identities, stratified by clip size (median = 18 frames).
We use 70% of tracks for training and allocate the remaining 30% to gallery sets, with a single
randomly sampled frame per clip serving as the query set. All images are resized to 128x384 to
preserve the elongated, fusiform body shape of thresher sharks, which predominantly swim in a hor-
izontal orientation, and normalized using dataset-specific mean (0.2495, 0.5476, 0.5399) and stan-
dard deviation (0.1439, 0.1680, 0.1546). Our backbone is the Transformer-based Multi-Granularity
Framework (TMGF) [Li et al.| (2022) built on ViT-S/16 (L=12, D=384), initialized from LUPerson
pretraining. We retain the 5-branch part granularity and patch stride (16x16, yielding 8x24 patches),
but replace camera-aware embeddings with pose-aware proxies, defined over seven coarse orienta-
tions. Unless otherwise stated, pose supervision strength is set to Ac = 3. Training follows SGD with
momentum (0.9), weight decay (5 x 10~%), and base learning rate (3.5 x 10~4, scheduled with a 10-
epoch warmup and decays over 50 total epochs. We use batch size 32, 8 workers, and enable FP16
mixed precision. All experiments run on a single NVIDIA A100 GPU. For unsupervised identity
discovery, we adopt DBSCAN with eps = 0.5 and min_samples = 4, coupled with a memory bank
(momentum = 0.2) and proxy temperature = 0.07. Sampling is proxy-balanced with 4 instances per
identity proxy to stabilize training. Evaluation follows a query-gallery protocol, where each query
frame is retrieved against the gallery. We report both conventional metrics (mAP, CMC) and weakly
supervised measures tailored to this dataset: within-track consistency (WTC), co-occurrence recall
(CoR@k), and mutual-exclusion error (MEError@k). A complete tabular summary of the experi-
ment setup is provided in Appendix

4.3 RESULTS

Table 2: Evaluation results on the Thresher Shark dataset.
Metric Random ImageNet Base  Pose (TP6)

Within-track variance 0.9264 0.1571 0.2625 0.2009

Mutual-exclusion error @1 0.0117 0.0117 0.0036 0.0029
Mutual-exclusion error @5 0.0097 0.0341 0.0213 0.0115
Mutual-exclusion error @10  0.0098 0.0473 0.0466 0.0309

Co-occurrence recall @1 0.0002 0.0021 0.0088 0.0070
Co-occurrence recall @5 0.0009 0.0098 0.0434 0.0328
Co-occurrence recall @10 0.0021 0.0174 0.0774 0.0713

Across 164 identity-pure tracklets, Pose (TP6) improves temporal stability and negative discrimina-
tion relative to Base, while ImageNet-pretrained features appear smoother but degrade retrieval, and
Random behaves as expected (high variance, almost no positive retrieval). Concretely, TP6 lowers
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WTC by 23.5% (0.2625 — 0.2009), and reduces MEError vs. Base by 19.4% @1, 46.0% @5, and
33.7% @10. However, TP6 also yields slightly lower CoR than Base (-20.5% @1, -24.4% @5,
-7.9% @10). These results indicate a precision-recall trade-off: pose-aware proxies suppress same-
dive impostors more aggressively, but may over-separate cross-pose instances of the same shark,
reducing positive coverage at small k.

4.3.1 TP6 SUBSTANTIALLY REDUCES WITHIN-TRACK VARIANCE

TP6 achieves 0.2009, improving on Base (0.2625) by 23.5%; ImageNet is lower still (0.1571; -
40.1% vs. Base), while Random is substantially worse (0.9264; 3.53 x Base). The ImageNet result
should be interpreted cautiously: very low WTC can reflect generic smoothing (pose/appearance
averaging) rather than identity specificity, which is consistent with its weak retrieval below. Method-
ologically, report macro-averaged WTC over subclips (each tracklet contributes one score) and, if
space permits, stratify WTC by subclip length to control for temporal averaging effects. We rec-
ommend adding robust uncertainty estimates (e.g., bootstrap confidence intervals over tracklets or a
Wilcoxon signed-rank test vs. Base) to confirm the TP6 gain is statistically reliable.

4.3.2 TP6 STRONGLY SUPPRESSES IMPOSTOR MATCHES (MEERROR)

Relative to Base, TP6 reduces errors among same-dive negatives by 19.4% @1 (0.0036 — 0.0029),
46.0% @5 (0.0213 — 0.0115), and 33.7% @10 (0.0466 — 0.0309). ImageNet performs worse
than Base at k > 5 (+60% @5, +1.5% @10), aligning with the ”smoothing’’ hypothesis. Random
appears deceptively strong at k > 5 (0.0097 @5, 0.0098 @10), but this is an artifact of uninformative
retrieval (see CoR): it simply does not bring positives into the top-k, thereby also avoiding same-dive
negatives. To prevent misinterpretation, MEError should always be read together with CoR.

4.3.3 POSE-AWARE FEATURES REDUCE CROSS-POSE RECALL (COR)

Base outperforms TP6 at all k: @1 0.0088 vs. 0.0070 (-20.5%), @5 0.0434 vs. 0.0328 (-24.4%),
@10 0.0774 vs. 0.0713 (-7.9%). ImageNet trails substantially (-76-78% vs. Base across k), and
Random is near zero. The TP6 drop likely reflects pose specialization: by partitioning clusters into
pose-conditioned proxies, embeddings become more pose-discriminative (fewer cross-pose false
matches; lower MEError) but slightly less pose-invariant (fewer true cross-pose positives found;
lower CoR). The gap narrows by k = 10, suggesting that pose-aware features still recover many
true positives with modest list depth.

4.3.4 TP6 FAVORS PRECISION, BASE FAVORS RECALL

For applications prioritizing precision against impostors within a dive (e.g., expert validation work-
flows), TP6 is preferable: MEError is sharply reduced with only a small loss in CoR at £ = 10.
If maximizing positive coverage at small & is critical, Base may be competitive. Future studies
could quantify this precision-recall trade-off by defining a composite retrieval score computed as
one minus the mutual-exclusion error at k£ multiplied by the co-occurrence recall at k, or by plotting
mutual-exclusion error versus co-occurrence recall frontiers across retrieval depths of one, five, and
ten.

4.4 ABLATION
4.4.1 EFFECT OF POSE GRANULARITY

Evaluating different pose grouping strategies is essential for understanding how orientation granular-
ity influences the effectiveness of pose-aware proxies. Fine-grained labels may capture subtle view-
point distinctions but can introduce noise when categories are ambiguous, whereas coarser groupings
trade detail for sample balance and robustness. By systematically comparing these variants, we can
assess whether performance gains arise from detailed orientation cues or from cleaner, more seman-
tically stable partitions. This analysis ensures that the proposed method is not overly dependent on
arbitrary labeling choices and provides insights into the stability of pose supervision under varying
levels of granularity. For detailed definitions of each grouping scheme, see Appendix [A.2]
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Table 3: Pose Granularity results on the Thresher Shark dataset

Metric Base Pose TP2 Pose TP3 Pose TP4 Pose TP6 Pose TP7
Within-track variance  0.2625 0.2284 0.2725 0.2088 0.2009 0.2629
ME error @1 0.0036 0.0048 0.0026 0.0048 0.0029 0.0036
ME error @5 0.0213 0.0173 0.0197 0.0198 0.0115 0.0151
ME error @10 0.0466 0.0479 0.0517 0.0476 0.0309 0.0356
CoR @1 0.0088 0.0065 0.0074 0.0054 0.0070 0.0079
CoR @5 0.0434 0.0295 0.0359 0.0303 0.0328 0.0361
CoR @10 0.0774 0.0571 0.0668 0.0666 0.0713 0.0645

In terms of temporal stability, measured by within-track consistency (WTC), TP6 provides the
strongest stabilization among the 164 evaluated tracklets, achieving 0.2009 compared to 0.2625
for Base (-23.47%). TPD also reduces variance (0.2088; -20.46%), while TP2 yields modest im-
provement (0.2284; -12.99%). By contrast, TP3 slightly worsens WTC relative to Base (0.2725;
+3.81%). These results suggest that excluding ambiguous “Others” (P7) systematically improves
temporal coherence of embeddings, supporting the hypothesis that P7 introduces label noise that
destabilizes tracklet-level features.

For negative discrimination, measured by mutual-exclusion error (MEError @k), TP6 again delivers
the strongest improvements over Base, reducing errors by 19.44% at @1 (0.0036—0.0029), 46.01%
at @5 (0.0213—0.0115), and 33.69% at @10 (0.0466—0.0309). Pose (unspecified granularity)
achieves smaller but consistent gains at k > 5 (-29.11% at @5, -23.61% at @10), though with-
out improvement at @1. TP3 performs best at @1 (-27.78% vs. Base) but deteriorates by @10
(+10.94%), indicating that coarse lateral merges sharpen immediate nearest-neighbor purity while
introducing heterogeneity at deeper ranks. TP2 harms precision at @1 (+33.33%) and produces
mixed effects thereafter (-18.78% at @5, +2.79% at @10), highlighting that overly coarse pose
supervision sacrifices discriminative structure necessary for impostor rejection.

Positive coverage, measured by co-occurrence recall (CoR@k), reveals the opposite pattern. Base
remains strongest overall, particularly at small k. TP6 lags behind Base at @1 (-20.45%) and @5 (-
24.42%), but the difference narrows at @10 (0.0774—0.0713; -7.88%). Moreover, TP6 outperforms
other pose-aware variants at @10 (0.0713 vs. 0.0645 for Pose, 0.0668 for TP3, and 0.0666 for TPD).
This reflects the inherent trade-off: by partitioning proxies by orientation, TP6 reduces cross-pose
confusion (lower MEError) but at the expense of cross-pose linkage (lower CoR), with the penalty
diminishing as the retrieval list deepens.

Taken together, these results indicate that TP6 offers the best precision against same-dive impostors
while simultaneously stabilizing temporal embeddings. The associated loss in positive coverage is
modest and primarily concentrated at small k. Thus, when applications require immediate positive
matches, Base remains competitive, but when precision and reviewer workload are critical, TP6
represents the preferable configuration.

The analysis of pose granularity further clarifies how orientation grouping shapes performance. TP6,
which excludes the ambiguous P7 “Others” class, consistently outperforms other variants by improv-
ing both WTC and MEError with only a small reduction in CoR at £ = 10. This demonstrates that
discarding noisy pose annotations enhances the supervision signal without excessively fragmenting
positives. By contrast, TP3, which merges oblique and profile views into coarse left/right buckets
while retaining P7, sharpens the top of the ranking (lowest MEError@1) but degrades at deeper
ranks (MEError@ 10 worse than Base, WTC slightly worse). This outcome suggests that mixing
oblique and profile orientations inflates intra-proxy variance, undermining retrieval consistency be-
yond the nearest neighbor. TP2, which collapses all poses into binary left versus right classes, proves
too coarse: although it improves WTC, it worsens MEError@1 and yields the steepest decline in
CoR. Finally, TPD provides an intermediate trade-off, producing strong WTC and modest MEError
gains at @5, but no measurable advantage at @10 and consistently lower CoR than Base. Overall,
these results highlight that pose-aware supervision is most effective when ambiguous categories are
excluded and orientation granularity is neither too fine nor too coarse.
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5 CONCLUSION

We empirically evaluate pose-aware proxy supervision for unsupervised thresher-shark re-
identification on 164 identity-pure tracklets (1,042 queries). Excluding ambiguous pose annotations
(TP6) consistently improves temporal stability and impostor suppression versus a strong clustering
baseline. These gains trade off against reduced immediate cross-pose recall, indicating a precision-
recall split where pose-homogeneous proxies tighten nearest-neighbour purity but can fragment
identity coverage across poses.

Practically, TP6 is the preferred configuration when top-rank precision and temporal consistency
matter (e.g., expert validation or conservative population estimates); the Base model may be prefer-
able when maximizing immediate recall at very small k. We caution against using WTC alone for
model selection: low WTC can reflect smoothing (ImageNet encoder) rather than identity discrim-
ination, so WTC should be evaluated alongside retrieval metrics (CoR, MEError, mAP/CMC) with
uncertainty estimates (bootstrap Cls, paired tests) given our moderate sample size and clip-local
evaluation.

Future work should (i) add cross-pose contrastive terms to recover cross-pose positives, (ii) explore
hierarchical/soft proxies that balance pose specificity and identity coherence, and (iii) integrate ac-
tive expert-in-the-loop correction and temporal regularization. These extensions aim to retain TP6’s
precision gains while improving cross-pose positive coverage and generality.
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A APPENDIX

A.1 DAILY DIVERS CONTRIBUTION

Video Counts per Diver

Diver
60 - mmm kleng
N orsi
. ryan
. mina

50 cap

&
S
!

Number of Videos
w
]
L

N
S
!

Jan 01 2025 Jan 03 2025

Jan 04 2025 Jan 05 2025

Date

Figure 3: A bar chart of daily diver contributions; diver identifiers are anonymized using aliases.

A.2 POSE GROUPING VARIANTS

To assess the impact of orientation granularity on pose-aware proxies, we define several group-
ing strategies derived from the seven original orientation labels: Left (P1), Right (P2), Front-Left
(P3), Front-Right (P4), Back-Left (P5), Back-Right (P6), and Others (P7). Below we describe each
scheme and its rationale.

Full Granularity (TP7)

e Classes: P1, P2, P3, P4, P5, P6, P7

* This retains the complete taxonomy of poses. Serves as the gold standard and reference
baseline, preserving all available pose information.

Excluding Ambiguous Poses (TP6)

e Classes: P1, P2, P3, P4, P5, P6

* This removes the ”Others” category (P7), which often contains ambiguous or low-quality
examples. It tests whether excluding such noise strengthens the pose signal.

Flank-Separation without Ambiguity (TP4)
* Classes: P1 (Left profile), P2 (Right profile), LeftFlank = P3, P5, RightFlank = P4, P6
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 This is the same as A.5 but excludes ambiguous frames (P7). It produces a clean yet
semantically structured partitioning, emphasizing the distinctiveness of pure flank views
relative to oblique shots.

Lateral-Side Grouping (TP3)

* Classes: Left = P1, P3, PS5, Right = P2, P4, P6, Others = P7

* This collapses orientations into semantically interpretable left vs. right flanks while pre-
serving ambiguous cases as “Others.” It provides a balance between semantic clarity and
sufficient sample size.

Lateral-Side Grouping without Ambiguity (TP2)

* Classes: Left = P1, P3, P5, Right = P2, P4, P6

 This discards ambiguous frames (P7) and reduces orientation to a binary left/right dis-
tinction. It tests whether a coarse but strong side-based prior is sufficient for effective
supervision.

A.3 EXPERIMENT SETUP SUMMARY

Table 4: Backbone architecture, training protocol, and clustering configuration.

Backbone

Framework TMGEF (ViT-S/16)
Transformer depth L=12
Embedding dimension D =384

Patch stride 16 x 16 (8 x24 patches)
Granularity branches 5

Proxy type Pose-aware (7 orientations)
Pose supervision strength Ae =3
Pretraining LUPerson
Training

Optimizer SGD

Learning rate 3.5x 1074
Weight decay 5x 1074
Momentum 0.9

Warmup epochs 10

Total epochs 50

Batch size 32

Workers 8

Mixed precision FP16

Hardware NVIDIA A100
Clustering / Memory Bank

Clustering algorithm DBSCAN
DBSCAN € 0.5

DBSCAN min_samples 4

Memory bank momentum 0.2

Proxy temperature 0.07

Sampling strategy

Proxy-balanced (4 instances/proxy)
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