Under review as submission to TMLR

Hyperparameter Selection in Continual Learning

Anonymous authors
Paper under double-blind review

Abstract

In continual learning (CL)—where a learner trains on a stream of data—standard hyperpa-
rameter optimisation (HPO) cannot be applied, as a learner does not have access to all of
the data at the same time. This has prompted the development of CL-specific HPO frame-
works. The most popular way to tune hyperparameters in CL is to repeatedly train over the
whole data stream with different hyperparameter settings. However, this end-of-training
HPO is unrealistic as in practice a learner can only see the stream once. Hence, there is an
open question: what HPO framework should a practitioner use for a CL problem in reality?
This paper answers this question by evaluating several realistic HPO frameworks. We find
that all the HPO frameworks considered, including end-of-training HPO, perform similarly
on common CL benchmarks. We therefore advocate using the realistic and most computa-
tionally efficient method: fitting the hyperparameters on the first task and then fixing them
throughout training.

1 Introduction

Sequentially updating deep learning systems on a non-stationary data stream is a challenging problem
which continual learning (CL) methods aim to address. The standard CL setup is when a learner sees a
sequence of tasks one-by-one and at the end of learning is evaluated on how well it performs across all tasks.
There have been many methods (Delange et al., 2021} [Parisi et al., 2019; [Wang et al.; 2023|) designed for this
problem and CL scenarios proposed (Hsu et al., 2018; |[Antoniou et al., |2020; van de Ven & Tolias, 2019).
A key decision when using a CL method is selecting hyperparameter settings—learning rates, regularisation
coefficients, etc. (Feurer & Hutter} [2019; Delange et al., |2021; Wistuba et al., 2023)). The most common way
to fit hyperparameters for CL is end-of-training hyperparameter optimisation (HPO) (Delange et al. 2021}
Buzzega et al.l [2020)—shown in Figure This is when the hyperparameters are fit by training over the
whole data stream with each hyperparameter configuration and then selecting the configuration that has the
best end-of-training performance on a held-out validation set. However, end-of-training HPO is unrealistic
as in the real world a learner can only train over the data stream once and must select hyperparameters
only using the data it can currently access. Therefore, it is currently unclear what is the best realistic way
to perform HPO for CL.

In this work we address the problem of deciding what HPO framework to use in CL. We benchmark a variety
of approaches for performing HPO in CL across different CL methodologies (ER (Chaudhry et al., 2020),
ER-ACE (Caccia et al.l [2021), iCaRL (Rebufh et al., 2017), ESMER (Sarfraz et al.| |2023) and DER++
(Buzzega et all [2020)). We investigate both fixed HPO frameworks where the hyperparameters are kept
constant throughout training and dynamic HPO frameworks where hyperparameters are adapted throughout
learning. For fixed HPO we examine (i) end-of-training HPO as well as (ii) a first-task HPO framework where
we fit the hyperparameters only using data from the first task (see Figure , a realistic and computationally
efficient method. For dynamic HPO, we consider (i) using data from the current task, (ii) using data stored in
memory, and (iii) using validation sets from previous tasks to perform HPO for each new task. By comparing
these different HPO frameworks we shed light on what validation signal is sufficient to fit hyperparameters
in CL and whether hyperparameters need to be adapted during training.

Our experiments show that all the HPO frameworks tested perform similarly in terms of predictive per-
formance; no one method is consistently better than the others. This could be because in standard CL

Under review as submission to TMLR

End-of-Training HPO

, Training , Validation \
! ! | Rerun with best
HPs — | — — e ——» P | —» found HPs and
! % ‘ % ! @ i evaluate on test
| | | set
Task 1 Task 2 Task T Val Set

|

Select new HP values to validate

First-Task HPO

Training
! Use best !
1
HPs — | M, . was R | Evaluate on test
1
i | set
! i
1 1
Select __Ta_s_k_%_ Task 2 Task T
new HP l Validation
values to
validate
Val Set

Figure 1: Depiction of end-of-training and first-task HPO frameworks, which fix the hyperparameters (HPs)
throughout training. FEnd-of-training HPO is the most common HPO framework for CL and works by
training over the whole data stream for each HP configuration and then uses a validation set consisting of
data from each task to select the best HPs. End-of-training HPO is unrealistic as it assumes you have access
to all of the data stream from the start of training. While, first-task HPO selects HPs by repeatedly training
and validating performance on the first task, which is more realistic and efficient.

benchmarks each task is very homogeneous, being of the same size and difficulty. Hence, there might be no
reason to change hyperparameters per task or to use more than the first task to select hyperparameters. We
therefore also evaluate the performance of each HPO framework on more heterogeneous data streams where
the tasks are of varying difficulty and have different numbers of data points associated with them. However,
even in this case all HPO frameworks perform similarly. Given these results we advocate the realistic and
most computationally efficient method, first-task HPO, to practitioners for performing HPO in CL.

The main contributions of this work are:
e We benchmark a suite of realistic CL HPO frameworks against the commonly used but unrealistic
end-of-training HPO.

e We show that all HPO frameworks we compare perform similarly in our experiments, including both
methods which dynamically change hyperparameters throughout training and those which do not.

e We provide evidence on common CL benchmarks that first-task HPO is a good method for perform-
ing HPO, as it performs similarly to other approaches while being more computationally efficient.

2 Preliminaries and related work

CL is a large research area where many different settings have been looked at. In this work we look at the
most common CL setting which is known as standard CL, or sometimes offline CL (Prabhu et al., 2020). In
Standard CL, the learner sees a non-stationary sequence of data chunks called tasks one-by-one, such that
it only has access to one chunk at a time and cannot access previously seen or future chunks. Each task

Under review as submission to TMLR

consists of examples which are data instance and label pairs (e.g. pairs of images and their class) sampled
from a subset of the classes. For example, the first task might be examples of cows and sheep and the second
task could be formed of examples of dogs and cats. The goal of the learner is to classify new examples
accurately after training on the whole data stream. There are two common ways to evaluate a CL learner,
task and class incremental learning. Task-incremental learning is when, at test-time, the learner knows
which task a data instance comes from and so only needs to distinguish between classes within that task.
While, class-incremental learning is when the learner is not given what task a data instance belongs to at
test time and must distinguish between all classes from all the tasks. An important part of the standard CL
setting is the assumption of memory constraints, which is why a learner cannot solve CL by storing previous
data chunks in memory. The memory constraints take the form of only allowing a learner to store a small
amount of previous data in memory and in constraining its use of memory for storing additional networks
or parts of networks (Delange et al., 2021; Wang et al., 2023).

There have been many methods proposed for CL (Delange et al., 2021} Parisi et al.| |2019; Wang et al., 2023]).
One of the most popular and performant approaches to standard CL are replay methods (Wang et al., 2023]).
This is especially true for class-incremental learning, where they are commonly the best performing methods
(van de Ven & Tolias| 2019; Wu et al.| [2022; [Mirzadeh et al., |2020; [Lee & Storkeyl, |2024). Replay methods
use a memory buffer to store a set of examples from previous tasks to regularise the updates on new tasks
such that the learner does not forget previous task knowledge. For example, the stereotypical replay method
is experience replay (ER) (Chaudhry et al., 2020; [2019bt |Aljundi et al., [2019a)) which for each learning step
appends a sample of data from the replay buffer to the batch of current task data to be trained on. More
complex replay methods often use a form of knowledge distillation on a sample of data from the replay buffer.
For example, DER++ (Buzzega et al., 2020), ESMER (Sarfraz et al |2023]) and iCaRL (Rebuffi et al.,[2017)
are replay methods which use a method-specific knowledge distillation term. For each of these methods the
most common hyperparameters that are tuned are the learning rate and regularisation coefficients, which
need to be tuned to get good performance (see Appendix . While other potential hyperparameters are
often not tuned in CL, e.g. momentum (Buzzega et al.| [2020)).

While the most common HPO framework used in standard CL is end-of-training HPO, there have been
several other HPO frameworks suggested (Kilickaya & Vanschorenl 2023} |Parisi et al., |2019). For example,
Delange et al.| (2021)) propose a dynamic HPO framework. The method adapts the hyperparameters for
each task by first training with the hyperparameter configuration which is assumed to have the least impact
on previous task performance. Then the method incrementally changes hyperparameter values to improve
performance on the current task to a prespecified value, while decreasing performance on previous tasks.
However, this method assumes that the direction to change hyperparameters to increase performance on the
current task is known and that the interaction between different hyperparameters is understood. In this
work we look at a similar HPO framework, current-task HPO, which does not need the above assumptions.
Also, for the online CL scenario—which is different to standard CL—another HPO framework has been
proposed whereby end-of-training HPO is used on the first (or first k) tasks and then the hyperparameters
are fixed after that (Chaudhry et al.l|2019al). To the best of our knowledge, this HPO framework has been
rarely used in standard CL up to this point. Here, we look at it in the form of the first-task HPO framework
and examine how it performs in the commonly used standard CL setting. There has also been work on
making dynamic HPO frameworks more efficient by sampling fewer HPO configurations, for example using
bandit methods (Liu et all [2023) and analysis of variance techniques (Semola et all [2024). However, for
simplicity, we only look at the more expensive dynamic HPO frameworks which are an upper bound to the
performance of these more efficient methods. In this work we have aimed to have tested the main proposed
HPO frameworks to see which performs the best and note that to the best of our knowledge no previous
works have comprehensively compared the different HPO frameworks for CL to each other.

3 Standard CL

While the setting we look at, standard CL, is mentioned above, we describe it more formally here. In
standard CL a learner sees a sequence of tasks, D1,..., Dy, where each task consists of a chunk of data.
The chunks of data consist of a set of examples, where an example is a pair formed of a data instance x € X
and label y € C'. Each task only contains examples from a given subset of the classes, in other words for all

Under review as submission to TMLR

Current-Task HPO Seen-Tasks (Mem) HPO Seen-Tasks (Val) HPO

1 1
1 1
1 1
1 1
For Task i i For Task i i For Task i
1 1
1 1
Training : , Training : , Training
Retrain on Train + 1 i Retrain on Train + | : Do not
— Valwith best i HPs —, — Valwith best i HPs — E T retrain
found HPs ' ! found HPs ! !
1 ! 1 1
Train Set ! Select Train Set ! Train Set
| validation i new HP | validation i | vaidation
! values to '
! validate + ! +
i i
1 1
! Sample ! Previous Val
Val Set ' Val Set from ' Val Set sets
memory

Figure 2: Depiction of current-task, seen-tasks (Mem) and seen-tasks (Val) HPO frameworks, which dynam-
ically adapt hyperparameters (HPs) for each task. Each methods splits the data of the current task into
train and validation sets. Then, current-task HPO uses this validation set to fit the HPs for the current
task. While, seen-tasks (Mem) and seen-tasks (Val) use a combination of this validation set and either a
sample of data from previous tasks stored in memory or validation sets of previous tasks, respectively. Then
current-task and seen-tasks (Mem) HPO retrain on the combined validation and train sets to complete the
learning process on that task. Seen-tasks (Val) does not retrain, instead it takes the model fitted using the
best found hyperparameters as the final model for the current task. This is to ensure that the current task’s
validation set has not been trained on when fitting hyperparameters for future tasks.

(x,y) € D; we have that y € C; and C; C C is the subset of classes the examples of that task can belong
to. In this work we look at the most common setting, where no two tasks have examples from the same
class. This means that for any two task ¢ and j we have that C; N C; = @. Additionally, learners can have a
memory buffer of previous examples which consists at task 4 of the set M;. Training consists of the learner
sequentially seeing each task in order and it cannot access the data from previous or future tasks. For each
task, its data chunk is split into training and validations sets, Train; C D; and Val; C D;, to enable the use
of HPO frameworks. Then after fitting the hyperparameters the learner usually retrains on the combination
of the training and validation sets, D; = Train; U Val;. After training the learner is tested by evaluating its
performance on a held-out set of data which consists of an equal number of examples from all the classes. We
look at two evaluation scenarios, task-incremental learning and class-incremental learning. Task-incremental
learning is where the learner receives with each test data instance the task it belongs to and therefore the
subset of classes that the data instance can belong to. While for class-incremental learning, no indication is
given of what task a test data instance belongs to.

4 HPO frameworks for CL

In this work, we examine several HPO frameworks for CL to see which should be the preferred choice to use in
CL. We look both at fixed HPO frameworks which keep the values of hyperparameters constant throughout
training and dynamic HPO which adapts the hyperparameters per task. The fixed HPO frameworks we look
at are end-of-training HPO and first-task HPO and the dynamic HPO frameworks we look at are current-
task HPO, seen-tasks HPO (Mem) and seen-tasks HPO (Val). Each of these frameworks are described in
turn below and we present an overview of their advantages and disadvantages in Table

End-of-training HPO is the most common HPO framework for CL (shown in Figure [If). It selects
hyperparameters by first training each hyperparameter configuration on the whole data stream. Second, it
evaluates the final model fitted using each hyperparameter configuration on a validation set formed of each
task’s held-out validation set, and selects the configuration with the highest validation performance. Last, it
retrains using the selected configuration on the whole data stream where the validation data for each task is

Under review as submission to TMLR

Table 1: Advantages and disadvantages of different HPO frameworks. Where, for time complexity, K refers
to the number of hyperparameter configurations looked at and T is the number of tasks in the data stream.
The asterisk (*) for seen-tasks HPO (Val) denotes that, while it does not require knowledge of future tasks
like end-of-training HPO, it does require additional storage compared to other methods. The additional
memory is needed to store the validation sets of previous tasks.

HPO Framework Realistic? Efficient? (Time Complexity)
End-of-training HPO X X (O(T x K))
First-task HPO v v (O(T+K))
Current-task HPO v X (O(T x K))
Seen-tasks HPO (Val) v X (O(T x K))
Seen-tasks HPO (Mem) v X (O(T x K))

added to the training data. The model fitted at the end of this training run is the final model to be evaluated.
This HPO framework is expensive as it needs to perform a training run over all the data stream for each
hyperparameter configuration looked at. Additionally, it is unrealistic as it requires running through the
data stream multiple times, which is not possible in many real-world settings. It might be thought that to
make end-of-training more realistic the learner could store a network for each hyperparameter configuration:
updating each network on every task and performing selection at the end of training. This idea would
remove the requirement of running through the data stream multiple times. However, it would also require
a large amount of extra memory, linear in the number of hyperparameter configurations. Additionally, the
learner would have to store and not train on the validation data for each previous task. Therefore, because
of underlying constraints on memory usage in standard CL, it is not realistic to use such an idea, and if
there was enough memory available it would probably be better spent in other areas such as storing more
data from previous tasks.

First-task HPO is a fixed HPO framework which is illustrated in Figure It selects hyperparameters
by training each hyperparameter configuration on the first task. Next, it measures the performance of each
configuration on the held-out validation set of the first task. The configuration with the highest validation
accuracy is then used to retrain on the first task using both the training and validation data and thereafter
for all of the future tasks. First-task HPO is computationally efficient as it trains using each hyperparameter
configuration solely on the first task and then only trains using one configuration for the rest of the tasks.
This is much less costly than end-of-training HPO, which for all tasks must train using each hyperparameter
configuration. Additionally, first-task HPO can be used in real-world settings as it only assumes access to
data available at the start of training, the first task, and not future tasks like end-of-training HPO.

Current-task HPO is a dynamic HPO framework which selects hyperparameters for each task using the
validation set of the current task (shown in Figure. This is a greedy strategy, selecting the hyperparameters
that maximise the validation performance of the current task. It is roughly as computationally expensive as
end-of-training HPO, as it has to validate each hyperparameter configuration for each task. However, it is
more realistic than end-of-training HPO as it only needs access to the current task’s data.

Seen-tasks HPO (Mem) and seen-tasks HPO (Val) are dynamic HPO frameworks (shown in Fig-
ure . They select hyperparameters for each task by a validation set formed of current task validation
data along with some historic data from the stream. We consider two ways to integrate historic task data.
Seen-tasks HPO (Mem) uses a sample of data from the current memory buffer. Seen-tasks HPO (Val) uses
the validation sets of previous tasks. So, unlike current-task HPO, the hyperparameters are fit using both
current and previous task data. This should aid the HPO procedure in selecting hyperparameters that ensure
previous tasks are not forgotten. Like current task HPO, both seen-tasks HPO (Mem) and seen-tasks HPO
(Val) are as computationally expensive as end-of-training HPO. Seen-tasks HPO (Val) assumes it is possible
to access the validation sets of previous tasks which makes it less realistic than current or first task HPO.
This is unlike seen-tasks HPO (Mem) which does not assume this as it uses data stored in the memory
buffer to measure performance on the previous tasks. But, this comes at the cost of biasing its validation
performance as the data in the memory buffer has been trained on in previous tasks.

Under review as submission to TMLR

For seen-tasks HPO (Mem), three additional details are important to mention. First, to ensure we are not
training on validation data, the sample from memory used in the validation set is not trained on for the
current task. Second, as the memory buffer contains different amounts of data for each task, we sample
the same proportion of examples from each task to add to the validation set. Last, unlike for the other
HPO frameworks, the validation set combined with the sample from memory might be class imbalanced.
Therefore, unlike other methods which use validation accuracy as the performance metric, for seen-tasks
HPO (Mem) we use the median of per class accuracies to reduce the impact of class imbalance.

5 Experiments

Benchmarks In our experiments we look at two settings, the commonly used split task setting (Buzzega
et al., [2020; Delange et al [2021) and the heterogeneous task setting. We look at these settings using the
datasets CIFAR-10, CIFAR-100 and Tiny ImageNet (Krizhevsky, |2009; Wu et al., |2015)). In the split task
setting, each task has the same number of classes associated with it and no two tasks share a class. For
CIFAR-10, the dataset is split into five tasks, each containing the data from two of the classes. For CIFAR-
100 and Tiny ImageNet, the datasets are split into ten tasks, where each task contains the data of 10 or
20 classes, respectively. In the heterogeneous task setting, instead of each task having the same number of
classes associated with it they have a varying amount, from two to ten, but still no two tasks share a class
(see Appendix |A| for more details). This is to make the tasks have differing amounts of data and difficulty.
We only look at CIFAR-100 and Tiny ImageNet for the heterogeneous task setting as CIFAR-10 contains a
small number of classes, making it impossible to vary the number of classes by a large degree. Additionally,
for the heterogeneous task setting we divide the datasets into twenty tasks to test how HPO frameworks
perform on longer task sequences. For both settings, if required by the HPO framework, we split the data
of the task into train and validations sets, where the validation set contains 10% of the task’s data evenly
sampled from each class associated with the task.

We evaluate the methods at the end of training using a standard performance metric for CL, average accuracy
(Chaudhry et al.,2019a)). The average accuracy of a method is the mean accuracy over each task on a held-out
test set which contains an equal amount of data from each task. For class-incremental learning, the learner
must classify between all classes at test time as it is not told what task a test data instance comes from. For
task-incremental learning, the learner knows what task each test data instance comes from, meaning only
classes from that task will be predicted.

CL methods To evaluate how well each HPO framework performs we look at applying them to fit the
hyperparameters of several common and well performing CL methods. More specifically, we utilise the CL
methods: ER (Chaudhry et al., 2020), ER-ACE (Caccia et al., 2021), iCaRL (Rebufhi et al.,|2017)), ESMER
(Sarfraz et al., 2023) and DER++ (Buzzega et al., 2020)). For these methods we fit the learning rate and
any regularisation coefficients they have using each HPO framework. While all HPO frameworks looked at
can be used with any underlying sampler/selector of hyperparameter configurations, for simplicity and to
be consistent with common practice in CL (Buzzega et al., [2020; Boschini et al., 2022; [Sarfraz et al.| [2023)
we use grid search. We look at the combination of ten different learning rate values and for each regularisa-
tion coefficient three different values. This means for DER++ we search over 90 different hyperparameter
configurations (learning rate and two regularisation coefficients) and for ESMER we search over 30 different
configurations (learning rate and the loss margin coefficient). While, for ER, iCaRL and ER-ACE we look
at 10 different configurations as they have no regularisation coefficients to fit. The hyperparameter grid used
is very similar to the ones looked at in several popular works on CL (Buzzega et all |2020; |Boschini et al.|
2022) and is given in full in Appendix Moreover, for each method we use: a ResNet18 (He et all |2016)) as
the underlying backbone network; random crop and horizontal flip data augmentations when training; and
a memory buffer of size 5120, as in common with previous work (Buzzega et al., [2020).

5.1 Results

For the split task setting, the results of our experiments show that none of the HPO frameworks looked at
perform much better than the rest. The results are presented in Table[2]and we have bolded the results which
are better by +0.5% than any of the other HPO frameworks results for a given CL method. The reason we

Under review as submission to TMLR

Table 2: Results of using different HPO frameworks for ER, iCaRL, ER-ACE, ESMER and DER++ on
standard CL benchmarks, i.e. the split task setting. We report mean average accuracy over three runs with
their standard errors and bold results which are greater by +0.5% average accuracy than any other for that
CL method. The table shows that all HPO frameworks perform similarly and that the simplest and least
computationally expensive method, first-task HPO, performs as well as the rest.

CIFAR-10 CIFAR-100 TinyImageNet
CL Method HPO Framework Class-IL. Task-IL. Class-IL. Task-IL. Class-IL. Task-IL.
End—of—training HPO 83.55:|:0_44 97.18:|:0_14 51.03:|:0_43 85.68:|:0_29 28.01:‘:0.09 68.17i0.06
First-task HPO 84.38:|:0_45 96.82i0_17 49.61:|:0_34 84.97:|:0_19 28.51:‘:0'18 68.72:|:0_13
ER Current-task HPO 82.1042.21 96.3910.50 50.644040 85.4740.18 25.7940.91 66.964¢ 15

Seen-tasks HPO (Val) 83.67i0,73 96.84i0.21 51-46i0.36 85.65i0,06 28-45i0,28 68.16i0.26
Seen-tasks HPO (Mem) 79~49i0.63 95-93i0.09 47-39i0.24 84.83i0,22 29.58i0_25 68.0210,14

End—of—training HPO 77.79:|:0,23 98.52:‘:0,03 54~3O:|:0.36 85.74:|:0_45 37.09:‘:0,27 70-37:t0.36
First-task HPO 77.83:|:0,22 95.31:|:0,12 52.56:|:0_10 84.60:|:0_09 36.42:‘:0,22 70.11:‘:0,13
iCaRL Current-task HPO 76.15:|:0‘75 9329:&0.61 54.26:&0,02 85.74:&0,06 37-1710.28 70.67:‘:0.03
Seen-tasks HPO (Val) 77.58i0,49 94~32i1.01 51.89i0.39 84-02i0.68 34.81i0‘42 68.42i0_41
Seen-tasks HPO (Mem) 76.67i0_44 95-41i0.28 49.16i0_23 82.43i0_23 36.79i0,13 70-46i0.08

End—of—training HPO 82‘34:|:0,30 96.74:|:0_01 55.58:|:0_39 85.73:|:0_09 38.94:|:0,47 70.18:|:0_23
First-task HPO 83.2040.79 96.6710.18 56.3640.29 86.1140.154 36.9410.67 68.164+0.30
ER-ACE Current-task HPO 83.99i0,22 96.58i0,15 56.46i0,36 86.35i0,02 37-63i0,38 68.25i0.41
Seen-tasks HPO (Val) 81.94i1_55 95-90i0.51 54-37i0.25 85.02i0,14 36.06i0,37 67.6910,26
Seen-tasks HPO (Mem) 81.6140.15 96.4040.13 53.7640.01 84.56+0.31 32.37+034 64.3740.47

End—of—training HPO 80.73:|:0,15 96.50:|:0,01 56.16:|:0_54 88.69:|:0_35 47.33:|:0,30 76.18:‘:0,22
First-task HPO 77.89:|:0‘46 96.15:&0,12 56.61:&0,20 89.05:&0,10 46.69:‘:0.56 75.72:‘:0.24
ESMER Current-task HPO 81.69i0.25 96.03i0,05 55-11i0.13 88.96i0,03 45-20i0.53 74-93j:0.29
Seen-tasks HPO (Val) 81.29i0_03 96.46i0_06 53.81i0_44 87.26i0_13 44-82i0.16 74-27i0.11
Seen-tasks HPO (Mem) 70-95:|:0.94 95.79:|:0_14 57.50:‘:0.14 89-27:|:0.16 44.26:‘:0'20 74.54:‘:0.31

End—of—training HPO 84.40:|:()‘94 95.75:|:0‘33 56.04:|:3,67 83.13:&2.69 39.89:|:()‘27 70.41:&0,17
First-task HPO 85~22i0.08 96.14i0,10 55.20i0,7g 81.68i0,66 35-98i0,63 65.86i0.37
DER++ Current-task HPO 84.9040.11 95.9240.11 55.004191 83.144g.76 36.641g33 66.4340.49
Seen-tasks HPO (Val) 85.441038 96.2240.15 56.59+0.64 83.6110.42 31.884536 64.2043.00
Seen-tasks HPO (Mem) 82.18:|:0,26 94~75:|:0.28 56~94:|:0.66 83.08:|:0_21 33.54:‘:0,13 63.68:‘:0.17

chose to bold results in this way is to be able to draw attention to and reference observed effect sizes. We
want to do this as if the observed effect sizes are small it suggests that no method performs much better
than any other and hence that other factors become more important when selecting a HPO framework, e.g.
compute cost. In Table [2] there are not many bolded numbers and for those that exist, the HPO framework
which achieves it varies. This shows that no HPO framework performs consistently better than the rest. For
instance, on CIFAR-100, no HPO framework improves accuracy over the other methods by more than +0.5%
for all CL methods but ESMER in class-incremental learning. This suggest that for the split task setting
there is no general advantage in using one HPO framework over another in terms of predictive performance.

In the heterogeneous task setting we also see that none of the HPO frameworks perform consistently better
than the rest. The results for this setting are presented in Table [3| and we have again bolded the results
which are better by 40.5% than any of the other HPO frameworks for a given CL method. Like the results
for the split task setting, there are many columns for each CL method which have no bolded result and for
the three which do the HPO framework which achieves it is different. Therefore, we conclude that in the
heterogeneous task setting it is also the case that there is no one best HPO framework. We also note that
the reason we look at the heterogeneous task setting is because we expected a greater benefit from adapting
hyperparameters per task, given that unlike the split task setting each task is quite different. However, our

Under review as submission to TMLR

Table 3: Results of using different HPO frameworks for ER, iCaRL, ER-ACE, ESMER and DER++ on
heterogeneous task benchmarks. We report mean average accuracy over three runs with their standard
errors and bold the results which are greater by +0.5% accuracy than any other for that CL method. The
table shows that the simplest and least computationally expensive method, first-task HPO, performs similarly
to the other HPO frameworks and that no HPO framework is consistently better than the rest.

Hetero-CIFAR-100 Hetero-TinyImg

CL Method HPO Framework Class-IL. Class-IL.
End-of-training HPO 50.4140.21 39414057
First-task HPO 50.33:|:0,50 40.77:|:0,34
ER Current-task HPO 49.7710.21 40.6540.97
Seen-tasks HPO (Val) 51.704¢.23 40.5540.22
Seen-tasks HPO (Mem) 45.5219.41 44.62.10 13
End-of-training HPO 51.5419.38 37.1710.48
First-task HPO 49.8140.10 37.474+0.06
iCaRL Current-task HPO 51.3410.32 37.07+0.07
Seen-tasks HPO (Val) 48.1540.09 35.7040.23
Seen-tasks HPO (Mem) 47.87i0415 35~27i1.12
End-of-training HPO 51.96+0.60 45.47 1. 40
First-task HPO 51.37+10.16 43.6241.09
ER-ACE Current-task HPO 51.7840.30 43.87+0.20
Seen-tasks HPO (Val) 51.9410.12 43.1540.63
Seen-tasks HPO (Mem) 48~15:|:0428 42~19:|:0.84
End-of-training HPO 50.5410.16 44.87+0.96
First-task HPO 50.43:|:0,34 45.84:|:0‘50
ESMER Current-task HPO 50.6840.31 44.504¢.31
Seen-tasks HPO (Val) 47~96i0461 42~18i0.22
Seen-tasks HPO (Mem) 50.56:|:0,40 46.00:|:0_43
End-of-training HPO 54.1210.70 46.4140.77
First-task HPO 54.87i0.39 43~45i3.55
DER++ Current-task HPO 55.1040.592 45.9540.93
Seen-tasks HPO (Val) 54.67+0.57 46.5140.49
Seen-tasks HPO (Mem) 49.06135.90 25.78-47 40

results show that this is not the case and that it is possible to use the same hyperparameters across all the
tasks and still perform well.

Performance of first-task HPO Our results show that all of the HPO frameworks tested perform simi-
larly. Therefore, we conclude that first-task HPO is a good method to use as it is the most computationally
efficient. We describe here in more detail its relative performance compared to the other HPO frameworks
tested. In the split tasks setting, we see from Table [2] that for ER some of its results are bolded. Thus,
first-task HPO sometimes achieves the best performance. Additionally, for the spilt task setting, there is an
average performance difference from end-of-training HPO to first-task HPO of —0.42% in class-incremental
learning and —0.84% in task-incremental learning. While, for the heterogeneous tasks setting there is an av-
erage performance difference from end-of-training HPO to first-task HPO of —0.39%. End-of-training HPO
is currently the most used HPO framework in CL but is unrealistic and computationally expensive. Hence,
our results indicate that by using first-task framework it is possible to perform realistic HPO for much less
computation with only a small expected cost to performance.

One of the potential reasons that the performance is similar between HPO frameworks is that there is
little variation between the performance of different hyperparameter configurations. To see whether this

Under review as submission to TMLR

CIFAR-10 CIFAR-100 Tiny ImageNet
12.54
5. 10.04 - -
2 2 2
o 7.5 o))
3 3 =}
g g g
i 5.0 \C fr
2.54
0.0-
70 75 80 475 500 525 550 575 30 35
Average Accuracy Average Accuracy Average Accuracy
Hetero CIFAR-100 Hetero Tiny ImageNet
81 12.5
.61 5. 10.01
2 2
o) o 7.54
> 4 >
g g
e e 5.0
2 2.5
0- 0.0-
35 40 45 50 30 35 40 45 50
Average Accuracy Average Accuracy

Figure 3: Histograms of the validation accuracy at the end of training for each hyperparameter setting
searched over for DER++. We look at standard CL benchmarks and heterogeneous task benchmarks, which
are identified by having a ‘Hetero’ in their name. The histograms show that different hyperparameter settings
give a varying range of performances and only a few achieve near to the top performance.

is the case, we have plotted in Figure [3] histograms of the performance of using different fixed HPO con-
figurations for DER++. The histograms show that hyperparameter configurations achieve a wide range
of average accuracies. Therefore, the performance of different HPO configurations is not the reason why
the HPO frameworks have similar results. Additionally, in Appendix [B] we examine whether using default
hyperparameters performs as well as selecting hyperparameters using HPO. We found that using default
hyperparameters in most cases performed worse than using a HPO framework. Hence, our results suggest
that HPO is necessary but that out of the HPO frameworks tested there is no one best performing method.

6 Conclusions

In this paper we have benchmarked several hyperparameter optimisation (HPO) frameworks for CL which
are more realistic than the currently commonly used end-of-training HPO framework. We benchmarked both
fixed HPO frameworks, which fix the hyperparameters throughout training, and dynamic HPO frameworks
that continually adapt the hyperparameters. Our results show that all the HPO frameworks achieve similar
performances and none consistently outperforms the others. Because of this, we recommend that the pre-
ferred HPO framework for future work on standard continual learning benchmarks should be the much more
computationally efficient first-task HPO. However, this is just our recommendation and it could be that for
a given benchmark and/or CL method that another realistic HPO method should be preferred. For future
work, we note that we have only looked at empirical evidence and so it would also be useful to see what
theoretical results are achievable as well.

References

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and Tinne
Tuytelaars. Online Continual Learning with Maximal Interfered Retrieval. In Proceedings of the 33rd
Conference on the Advances in Neural Information Processing Systems, pp. 11849-11860, 2019a.

Under review as submission to TMLR

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient Based Sample Selection for
Online Continual Learning. In Proceedings of the 33rd Conference on the Advances in Neural Information
Processing Systems, pp. 11816-11825, 2019b.

Antreas Antoniou, Massimiliano Patacchiola, Mateusz Ochal, and Amos Storkey. Defining Benchmarks for
Continual Few-shot Learning. arXiv preprint arXiv:2004.11967, 2020.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for Hyper-Parameter Opti-
mization. In Proceeding of the 25th Conference on the Advances in Neural Information Processing Systems,
2011.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
Incremental Continual Learning into the Extended DER~verse. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(5):5497-5512, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark Experience
for General Continual Learning: a Strong, Simple Baseline. In Proceedings of the 33rd Conference on the
Advances in Neural Information Processing Systems, pp. 15920-15930, 2020.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky. New
Insights on Reducing Abrupt Representation Change in Online Continual Learning. In Proceedings of the
10th International Conference on Learning Representations, 2021.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient Lifelong
Learning with A-GEM. In Proceedings of the 7th International Conference on Learning Representations,
2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. On Tiny Episodic Memories in Continual Learning. arXiv
preprint arXiv:1902.10486, 2019b.

Arslan Chaudhry, Naeemullah Khan, Puneet Dokania, and Philip Torr. Continual Learning in Low-rank
Orthogonal Subspaces. In Proceeding of the 34th Conference on the Advances in Neural Information
Processing Systems, pp. 9900-9911, 2020.

Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh,
and Tinne Tuytelaars. A Continual Learning Survey: Defying Forgetting in Classification Tasks. IEEFE
Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366-3385, 2021.

Matthias Feurer and Frank Hutter. Hyperparameter Optimization. Automated machine learning: Methods,
systems, challenges, pp. 3-33, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.

Sigrid Passano Hellan, Huibin Shen, Frangois-Xavier Aubet, David Salinas, and Aaron Klein. Obeying the
Order: Introducing Ordered Transfer Hyperparameter Optimisation. arXiv preprint arXiv:2306.16916,
2023.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating Continual Learning
Scenarios: A Categorization and Case for Strong Baselines. In Proceedings of the 3rd Continual Learning
Workshop, at the 32nd Conference on the Advances in Neural Information Processing Systems, 2018.

Mert Kilickaya and Joaquin Vanschoren. What can AutoML do for Continual Learning? arXiv preprint
arXiv:2311.11963, 2023.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Preprint, 2000.
Thomas L Lee and Amos Storkey. Chunking: Forgetting Matters in Continual Learning even without
Changing Tasks. arXiv preprint arXiv:2310.02206, 2023.

10

Under review as submission to TMLR

Thomas L Lee and Amos Storkey. Approximate Bayesian Class-Conditional Models under Continuous
Representation Shift. In Proceedings of the 27th International Conference on Artificial Intelligence and
Statistics, 2024.

Yaoyao Liu, Yingying Li, Bernt Schiele, and Qianru Sun. Online hyperparameter optimization for class-
incremental learning. In Proceedings of the 87th AAAI Conference on Artificial Intelligence, pp. 8906-8913,
2023.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understanding the
Role of Training Regimes in Continual Learning. In Proceedings of the 33rd conference on the Advances
in Neural Information Processing Systems, pp. 7308-7320, 2020.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual Lifelong
Learning with Neural Networks: A review. Neural Networks, 113:54 — 71, 2019.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. GDumb: A Simple Approach that Questions our
Progress in Continual Learning. In Procceding of the 16th European Conference on Computer Vision, pp.
524-540, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. ICARL: Incremental
Classifier and Representation Learning. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 2001-2010, 2017.

Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Error Sensitivity Modulation based Experience Replay:
Mitigating Abrupt Representation Drift in Continual Learning. In Proceedings of the Eleventh Interna-
tional Conference on Learning Representations, 2023.

Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, and Davide Bacciu. Adaptive Hyperparameter Optimiza-
tion for Continual Learning Scenarios. arXiv preprint arXiv:2403.07015, 2024.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian Optimization of Machine Learning
Algorithms. In Proceeding of the 26th Conference on the Advances in Neural Information Processing
Systems, 2012.

Gido M van de Ven and Andreas S Tolias. Three Scenarios for Continual Learning. arXiv preprint
arXiv:1904.07734, 2019.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A Comprehensive Survey of Continual Learning:
Theory, Method and Application. arXiv preprint arXiv:2302.00487, 2023.

Martin Wistuba, Martin Ferianc, Lukas Balles, Cédric Archambeau, and Giovanni Zappella. Renate: A
Library for Real-World Continual Learning. arXiv preprint arXiv:2304.12067, 2023.

Jiayu Wu, Qixiang Zhang, and Guoxi Xu. Tiny Imagenet Challenge (cs231n), http://tiny-
imagenet.herokuapp.com/. Technical report, Stanford, 2015.

Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang Li, Guilin Qi, and Gholamreza Haffari. Pretrained
Language Models in Continual Learning: A Comparative Study. In Proceedings of the 10th International
Conference on Learning Representations, 2022.

11

Under review as submission to TMLR

A Additional experimental details

While we have aimed to include all the main experimental details in the main paper there are a few others
to mention here. First, we mostly follow the experimental setup of Buzzega et al.| (2020]) and [Boschini et al.
(2022) and use the Mammoth library produced by those works as the base of our code. Second, we use
as our optimiser SGD with no momentum or weigh decay, as is done in other works (Aljundi et al.| |2019b;
Buzzega et al.,|2020; |(Chaudhry et al.l [2019a; Lee & Storkey|[2023). Third, in the heterogeneous tasks setting
we look at tasks sequences where each task in order has the following number of classes associated with it
[9,2,7,3,4,9,8,3,3,7,4,4,5,9,4,5,2 8,2, 2] and all the data of a class is contained in the task associated
with it. For Tiny ImageNet we only use the first 100 classes in the heterogeneous tasks setting to reduce
runtime and to make it more comparable to CIFAR-100 in that setting. In the heterogeneous tasks setting
each task has a variable amount of data. For example, using CIFAR-100, the first task contains nine classes
and so it will contain in total 4500 examples (500 examples per task) while the second task contains two
classes so will only contain 1000 examples. Also, as in each task the learner needs to discriminate between a
varying number of classes the difficultly should vary between tasks. Additionally, in the heterogeneous tasks
setting we only look at class-incremental learning.

We record here the hyperparameter grid that we sample over when performing HPO. We look at learning
rates in the set {0.2,0.15,0.1,0.075,0.05,0.03,0.01,0.0075, 0.005,0.0025}. For DER++, we perform HPO
over both regularisation coefficients where we sample « in the set {0.2,0.5,1.0} and 3 in the set {0.2,0.5,1.0}.
For ESMER, we perform HPO over the loss margin coefficient where we sample over the set {1.5,1.2,1.0}.
We sample all possible combinations of learning rates and regularisation coefficients in each of our HPO
frameworks. This grid contains the ones used in the popular works Buzzega et al.| (2020)), Boschini et al.| (2022))
and |Sarfraz et al.| (2023]), where we add additional learning rate settings and, for some datasets, regularisation
coeflicients settings. We note here that while we use grid search in this paper to align with common practice
in CL (Buzzega et al.| 2020; Delange et al.; 2021, any hyperparameter sampling/selecting method can be
used with each of the HPO frameworks looked at. For example, tree-structured Parzen estimators are a
common Bayesian HPO method to sample hyperparameter configurations for neural networks (Bergstra
et al., [2011). Additionally, Gaussian process based HPO methods are also commonly used (Snoek et al.
2012) and have been looked at in settings related to online learning (Hellan et al., |2023)).

B Experiments using default hyperparameter values

To test whether HPO is needed in CL and if instead using default hyperparameters is sufficient, we perform
experiments using default hyperparameters. The experimental setup is the same as the main paper and
we use for the default learning rate the default given by PyTorch, 0.001, and use 1.0 as the default for
regularisation coefficients. The results are presented in Tables] and [5} The tables show that using default
hyperparameters leads to worse performance than using HPO. Additionally, for some dataset and CL method
combinations the default hyperparameters perform very badly showing the need to adapt hyperparameters
to the dataset and CL method used.

12

Under review as submission to TMLR

Table 4: Comparison of using default hyperparameters versus using a HPO framework on standard CL
benchmarks, where we only present the most common HPO framework (End-of-training HPO) and the most
efficient (First-task HPO) for readability. We report mean average accuracies over three runs with their
standard errors. The table shows that using default HPs leads to worse performance than using HPO for

standard CL benchmarks.

CIFAR-10 CIFAR-100 TinyImageNet
CL Method HPO Framework Class-IL. Task-IL. Class-IL. Task-IL. Class-IL. Task-IL.
End—of—training HPO 83.55i0_44 97.18i0_14 51~03i0.43 85.681029 28.01i0_09 68.17i0_06
ER First-task HPO 84.38:|:0_45 96.82:|:0_17 49.61:|:0_34 84.97:|:0.19 28.51:|:0_18 68.72:|:0_13
Default HPs 74.60:|:0_79 94.53:|:0_13 35-39:|:0.36 72.83:‘:0,24 16.27:|:0_20 50.99:|:0,41
End-of—training HPO 77-79i0.23 98.52i0,03 54~30i0.36 85.74i0.45 37-09i0.27 70~37i0.36
iCaRL First-task HPO 77.83i0,22 95-31i0.12 52.56i0_10 84.601()‘09 36.42i0_22 70~11i0.13
Default HPs 68.34i0_49 92.98i0_21 11~54i0.25 41.6610454 5-30i0.03 23~97i0.10
End-of—training HPO 82.34:|:0_30 96.74:|:0_01 55.58:“),39 85.73:‘:0,09 38.94:|:0_47 70.18:|:0,23
ER-ACE First-task HPO 83.20:&0,79 96.67:&0,18 56.36:|:()‘29 86.11:‘:0.154 36.94:|:0,67 68.16:|:()‘3()
Default HPs 75.46i0,21 94-71i0.06 42.65i0,57 76.2810‘19 25-84i0.26 56.25i0,13
End—of—training HPO 80.73:|:0_15 96.50:|:0_01 56.16:|:0_54 88.69i0.35 47.33:|:0_30 76.18:|:0_22
ESMER First-task HPO 77.89:|:0_46 96.15:|:0_12 56.61:|:0,20 89.05:‘:0,10 46.69:|:0_56 75.72:|:0,24
Default HPs 68.86i1.06 93.54:|:0‘20 42-9410‘61 79.64:‘:0‘36 33.11:&0‘39 63.15:|:0‘17
End-of—training HPO 84.40i0,94 95-75i0.33 56~04i3.67 83.131269 39.89i0,27 70~41i0.17
DER++ First-task HPO 85.2240.08 96.1410.10 55.2040.78 81.6810.66 395.984+0.63 65.8610.37
Default HPs 77.59:|:0_45 93.83:|:0_40 46.11:|:1_16 78.14:‘:1.28 25.66:|:0_16 59.14:|:0_51

Table 5: Comparison of using default hyperparameters versus using a HPO framework on heterogeneous
task benchmarks, where we only present the most common HPO framework (End-of-training HPO) and the
most efficient (First-task HPO) for readability. We report mean average accuracies over three runs with
their standard errors. The table shows that using default HPs leads to worse performance than using HPO

for heterogeneous task benchmarks.

Hetero-CIFAR-100 Hetero-Tinylmg

CL Method HPO Framework Class-1IL. Class-1IL.
End-of-training HPO 50.4149.91 39.4140.57
ER First-task HPO 50.3310.50 40.7740.34
Default HPs 33-76i0,78 26.88i0,45
End-of-training HPO 51.541¢ 35 37.1740.48
iCaRL First-task HPO 49.8140.10 37.4710.26
Default HPs 12.2340.19 10.649.26
End-of—training HPO 51-96i0.60 45-47i0.42
ER-ACE First-task HPO 51-37i0.16 43-62i1.09
Default HPs 38.11:|:0_80 32.37;‘;0_53
End-of-training HPO 50.544¢.16 44.8740.26
ESMER First-task HPO 50-43i0.34 45-84i0.50
Default HPs 37-92i0.30 34-22i0.41
End-of-training HPO 54.124¢.7¢ 46.4149.77
DER++ First-task HPO 54.8710.39 43.454 355
Default HPs 44.4310.51 30.2141 .53

13

	Introduction
	Preliminaries and related work
	Standard CL
	HPO frameworks for CL
	Experiments
	Results

	Conclusions
	Additional experimental details
	Experiments using default hyperparameter values

