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ABSTRACT

Recent advances in language model (LM) agents have demonstrated significant
potential for automating complex real-world tasks. To make progress on these
difficult tasks, LM agent architectures have become increasingly complex, often
incorporating multi-step retrieval tools, multiple agents, and scaffolding adapted
to the underlying LM. In this work, we investigate whether all of this complexity
is necessary, or if parts of these scaffolds can be removed on challenging tasks
like SWE-bench. We show that in the case of SWE-bench, simply putting the
entire environment into the context of a long context language model (LCLM) and
properly prompting the model makes it competitive with carefully tuned, complex
agent scaffolds. We show that a Gemini-1.5-Pro model without any scaffolding or
tools achieves 38% on SWE-Bench-Verified, comparable with approaches using
carefully tuned agent scaffolds (32%). While the unscaffolded approach with
Gemini-1.5-Pro falls short of the strongest agentic architectures, we demonstrate
that the more capable Gemini-2.5-Pro using the same unscaffolded approach
directly attains a 50.8% solve rate. Additionally, a two-stage approach combining
Gemini-1.5-Pro with Claude-3.7 achieves a competitive 48.6% solve rate. These
results suggest that LCLMs can enable a more monolithic design, reducing reliance
on exploration scaffolds in fully observable regimes.

1 INTRODUCTION

Recent years have witnessed remarkable progress in language model (LM) agents, demonstrating
their capability to perform complex real-world tasks autonomously (Yao et al., 2023} |Shen et al.|
2023). These systems leverage LMs to propose actions that can be executed through API calls
in various environments, enabling applications ranging from repository-level software engineering
(Wang et al., 2025} Yang et al., | 2024b) to robot control (Ichter et al., 2023} |Driess et al.,|2023)) and
scientific experimentation (Boiko et al. 2023} Bran et al.|[2023).

Typically, LM agents interact with the environment to gather information, reason, and then execute
actions based on this information to achieve pre-specified objectives. Effective exploration of the
environment forms the foundation of these systems, yet remains a major challenge. Recent works
address this by developing agentic scaffoldings with well-designed tools (Schick et al.| 2023; Yang
et al.| 2024b), external memory (Park et al.l 2023b), and specialized pipelines (Shinn et al., [2023; Xia
et al.| 2024) for effective information gathering. While these methods have demonstrated promising
results, they heavily rely on human-engineered scaffoldings tailored to specific LMs or tasks. This
reliance stems primarily from the standard assumption that agents operate under partial observability,
necessitating active collection of observations to incrementally build their understanding of the
environment. While this assumption is true in some cases, such as a VLM agent operating a robot in
an unknown environment or a web navigation agent visiting a new website, the environment is fully
observable in many agentic tasks, such as SWE-bench, where the full repository is accessible to the
agent at the start of the task.

Our work asks whether many of these LM agent tasks, such as SWE-bench, can be addressed with
much simpler architectures. In other words: how much would we lose if we replaced complex
information gathering processes with a single, long-context LM ? Understanding this question has
important implications for our understanding of agent design. Although a pure LCLM-based approach
is more expensive than an agentic system, if a single long-context model is competitive with complex
scaffolding methods, further improvements in the capability and cost of LCLMs may lead to a simpler
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Figure 1: Overview. (Left) Traditional agent design treats the environment as partially observable
and curates elaborate scaffolding (such as tools and execution pipelines) upon LMs to collect the
necessary information for solving the task. (Right) In contrast, we leverage the increasingly powerful
capabilities of long-context LMs to develop state-in-context agents that eliminate the need for complex
scaffolding. These agents achieve full observability by maintaining the entire environment state
within the context of LMs, turning open-ended agentic tasks into direct, close-ended tasks where
LMs excel.

and more monolithic future, as a single LCLM system would be simpler to train end-to-end. Such a
move towards a more monolithic system has significant precedent, mirroring past developments in
computer vision (Krizhevsky et al.,[2012), statistical machine translation (Bahdanau et al.,[2015)), and
NLP (Brown et al., 2020), where complex and specialized pipelines were replaced by monolithic
neural networks.

We take the first steps to answering this broad question by studying SWE-bench — a prototypical task
where complex agent scaffolds (Yang et al.,|2024b; Wang et al., [2025) are used in the existing state
of the art, but there is no inherent need for active information gathering. Specifically, we test whether
a scaffolding-free, long-context approach with minimal tools can replace exploration scaffolds in
fully observable settings, effectively reducing agent design to a prompting task. Using SWE-Bench-
Verified (Chowdhury et al., 2024)) as a testbed, we identify a few simple but effective prompting
tricks for LCLMs and show that this approach outperforms scaffolding-based baselines when both
approaches use the same LLM. Nevertheless, a performance gap remains relative to state-of-the-art
agentic systems, primarily due to the relatively weaker coding capabilities of LCLMs compared to
state-of-the-art LMs. To address this gap, we demonstrate that a straightforward hybrid approach,
combining both the long-context processing capabilities of LCLMs and superior problem-solving
capabilities of short-context LMs, substantially closes this performance gap. Our aim is to establish a
simple, general but often-overlooked baseline that leverages improving LCLM capability and to map
the trade-offs that inform future agent design. While recasting the task as prompting can increase
compute, the higher per-query cost of LCLM inference can be amortized via caching and is likely to
decline as LCLM efficiency improves.

Opverall, our contributions include:

* We study fully observable agent tasks as a proof of concept, showing that a single long-context
pass can largely replace exploration scaffolds and outperform more complex baselines by 3—6%
without additional scaffolding or tools.

* We identify a collection of simple prompting techniques that take a Gemini-1.5-Pro based system
for SWE-bench-Verified from 9% to 32% without patch validation.

* Our framework demonstrates competitive performance with the leading agents. Specifically,
Gemini-1.5-Pro achieves a 48.6% solve rate when utilizing our two-stage modification approach
with Claude-3.7, while Gemini-2.5-Pro directly attains a 50.8% solve rate in a single step.
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2 RELATED WORK

LM agents for software engineering With the rapid advancement of autonomous LM-based agents
(Yao et al.| 2023} |Shinn et al., 2023} Schick et al.,2023)), there has been growing research interest
in developing LM agents for solving repository-level software engineering tasks on benchmarks
like SWE-Bench (Jimenez et al., 2024). Recent approaches to address this challenging task can be
categorized into agentic frameworks and non-agentic pipelines. The former treats LMs as autonomous
agents that iteratively interact with the code environment (Gauthier, |2024; ope, [2024). SWE-Agent
(Yang et al.,|2024a)) pioneered a custom agent-computer interface (ACI) enabling LM agents to interact
with repository environments through defined actions. Moatless (moal,[2024)) and AutoCodeRover
(Zhang et al.| 2024) enhance localization capabilities through advanced search and retrieval tools,
while SpecRover (Ruan et al., 2024) focus on improving agent scaffolding. OpenHands CodeAct
(Wang et al., 2025) represents an established open-source project that excels in both tooling and
scaffolding, demonstrating competitive results. The alternative approach focuses on developing more
specialized execution pipelines tailored to the software engineering tasks. Agentless (Xia et al.,[2024)
decomposes the task into localization, repair, and patch validation phases with specific scaffolding
for each stage. Related works like CodeMonkey (Ehrlich et al.,[2025) and CodeStory (Pani, [2024)
maintain this structured approach while exploring inference-time scaling to enhance performance.
Unlike prior works that curate specialized tools or execution pipelines for LMs to gather information
for problem-solving from the environement, our work leverages LCLMs to directly process the entire
environment state, demonstrating performance comparable to these heavily engineered scaffolding
methods.

Long-context LMs Advances in model architecture (Gu & Dao}[2024;|Sun et al.,|2024) and infrastruc-
ture (Dao et al[2022; [Rajbhandari et al.| |2020) have enabled LCLMs with extended context windows
and enhanced capabilities. Empirical evidence from Lee et al. (2024); |L1 et al.| (2024)) indicates
that, given adequate computational resources, LCLMs systematically surpass retrieval-augmented
generation (RAG) systems in performance, even without task-specific training. Models such as
Longformer (Beltagy et al., [2020) and LongT5 (Guo et al., 2022)) have demonstrated remarkable
efficacy in document summarization tasks. Building on this foundation, our work investigates the
capability of LCLMs to supplant traditional memory and information-gathering processes in LM
agent scenarios.

3 METHOD

Traditional approaches to designing LM agents typically operate under the assumption that
the environment is too large to observe directly and rely upon interactive exploration to gather
information. This assumption is natural for humans and in internet-based environments where the
environment is far too large for any single computer. However, many important applications of agents
(e.g. multi-hop QA, software engineering) do not inherently require active information gathering,
and in principle, a sufficiently long context model could simply return the answer directly after being
prompted with the entire environment in its context.

We contrast the two views in Figure|l| where we compare scaffolding based approaches that use tools
and execution loops for information gathering (left) with a direct approach that simply encodes the
context as on long prompt (right). Even in tasks as complex as repository-level bugfixing, all files
and their relationships are a relatively compact and complete state that is sufficient for tasks like bug
fixing within the repository—-e.g., 98% (Maj et al., 2024)) of the github repositories can fit into the
2-million-token context window of Gemini (Team et al.,|2023)). This motivates the question: Can we
simply incorporate the entire state directly into the agent’s context to enable full observability and
eliminate the need for iterative, interactive exploration?

We design such state-in-context agents by leveraging the increasingly powerful long-context LMs
(LCLMs) that can effectively process millions of context tokens, as illustrated in Figure [T] (right).
This eliminates the need for complex scaffolding design for interactive explorations, effectively trans-
forming open-ended agentic tasks into closed-ended ones, settings where LMs excel by leveraging
their (long-)context processing abilities. We first illustrate this conceptual idea in Section [3.1] and
develop our implementation in Section[3.2]



Under review as a conference paper at ICLR 2026

P\? Selector

3 Instruction

Given the files and

@ the issue, select
file to repair.

Top-K Files

Fi .
—_———
0 Environment

[ij] Compressor
3 instruction

Rank th les and foldes b/
rotevant o th ssue)

3 Context

. Length
o %@ﬁ | : l

: v @

Here is the patch for ...

[f Solution ]

Here is the patch for ...

Figure 2: Instantiation of state-in-context agents for software engineering. (Left) When the
environment state (i.e., code repository) exceeds the context length limit of LCLMs, we apply a
simple compression step that ranks files by their relevance and selectively includes files up to the
maximum context limit. (Right) We instatiate state-in-context agents in two ways: DIRECTSOLVE
directly generates the solution using LCLMs that consume the entire (compressed) state, which are
then fed into short-context Language Models (SCLMs) to generate the solutions, leveraging the
superior problem-solving capabilities of SCLMs.

3.1 DESIGNING STATE-IN-CONTEXT AGENTS WITH LONG-CONTEXT LMS

The standard agent formulation typically operates in partially observable settings. In particular,
an agent is instantiated to solve a task p (e.g., fixing a bug) within an environment with a state s
(e.g., all files and their relations). To accomplish the task, the agent explores the environment by
performing a sequence of actions aq, as, . . . to collect a corresponding sequence of observations
01,09, .. .. Intuitively, the collected set of observations U!_;0; forms a partial reconstruction of
the full state s,,, ideally covering the necessary information to complete the task (e.g., buggy code
locations). In existing agent frameworks, this interactive exploration is typically implemented through
specialized tools, such as a file viewer and code search utility in SWE-Agent (Yang et al.| [2024b)) or
through customized execution pipelines, such as code localization and bug repair in Agentless (Xia
et al| [2024) (see Figure[I] left). These approaches require a careful design of agentic scaffoldings
tailored to specific tasks that facilitate effective explorations of agents during task executions.

In contrast, we leverage the increasingly powerful long-context processing capabilities of LCLMs to
design a state-in-context agent, which is an agent that receives either the full state s or a minimally
compressed version § = Cp(s), which retains the task-relevant information (i.e., s, C §) while
discarding irrelevant details. Because the input state retains the necessary components for solving the
task s,,, the agent can explore in context, using its contextual understanding abilities to extract relevant
information and directly produce a solution. This design enables a minimal pipeline, reducing the
need for hand-crafted, task-specific scaffolding and mitigating the compounding errors that often
arise in multi-stage pipelines.

Intuitively, by putting the entire environment state into the model context, our method essentially
trades off precision for a better recall of relevant information s,,. This approach relies on LCLMs that
are sufficiently capable of processing large contexts and effectively retrieving the relevant parts. The
bottleneck here is set by the capabilities of LCLMs, which, as we expect, will continue to improve
over time. As LCLMs continue to scale, our method may be increasingly favorable—shifting the
exploration burden from open-ended interaction to in-context inference and close-ended task-solving
where LMs excel.

3.2 DEVELOPING STATE-IN-CONTEXT AGENTS FOR SOFTWARE ENGINEERING

In this work, we provide an instantiation of state-in-context agents with LCLMs for software engi-
neering tasks on SWE-Bench (Jimenez et al.| 2024). SWE-bench serves as an ideal testbed for our
ideas, as it is practically useful and serves as a common agent scaffolding benchmark, but at the same
time, there is no inherent need for exploration in SWE-bench.

We aim to develop a simple workflow that minimizes the manual pipeline curation or specialized tool
design while maximizing the utility of LCLMs. In particular, the core of our workflow is the use of
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Figure 3: Codebase token distributions and context window compatibility. (Left) Percentage of
problem instances within the 2M token limit of Gemini-1.5-Pro across three state representation meth-
ods: all files, core files only (test and non-python files removed), and core code only (documentation
further removed) in SWE-Bench-Verified. (Right) Distribution of token counts for code-only content
of instances in SWE-Bench-Verified. The dashed line marks the 2M token threshold, demonstrating
that most codebases can fit within current LCLMs context constraints through selective content
filtering.

LCLMs that receive the entire code repository and directly outputs the solution (DIRECTSOLVE),
analogous to standard zero-shot prompting tasks where LMs have demonstrated strong performance.
In cases where the code repositories are too large to fit into the context window, we adopt a simple
state compression step with LCLMs based on the repository directory structure to discard obviously
irrelevant files. Futhermore, considering that current LCLM capabilities may fall short of the frontier
SCLMs, we develop a two-stage approach (SELECTSOLVE) that combine the strength of both to
optimize performance. We illustrate our design in Figure [2]and present details below.

State compression The context length of current LCLMs may not sufficiently accommodate all code
repositories, e.g., the 2-million-token context of Gemini Pro is insufficient for 5 out of 12 repositories
(394 out of 500 instances) in SWE-Bench Verified (Chowdhury et al., 2024)). This necessitates an
additional preprocessing step to properly compress these repositories to fit into the context of current
LMs. However, we anticipate that this will become less of an issue as the context length of LCLMs
continues to grow.

We implement this compression step using a straightforward ranking-and-filtering approach (see
Figure [2] left). In particular, we prompt an LCLM to rank folders and files based solely on the
repository structure and the issue statement, producing an ordered list by relevance to the issue (see
Section [C|for the prompt and an example). When some files are omitted from LM’s output list, we
randomly order them to maintain a complete ranked list. Based on this ranking, we sequentially
include as many files into the context as possible until a predefined length threshold (i.e., the
maximum context length of the LCLM) is reached. To maximize inclusion, we retain only the core
code by removing comments, docstrings, test files, and non-target language files, as these provide
limited functional information about the codebase. This approach significantly increases the number
of problem instances from SWE-Bench-Verified that can fit into the 2-million-token context window,
expanding coverage from 21.2% to 85.0% (see Figure . While this approach yields relatively
coarse rankings due to limited information from the repository structure, it is sufficient for excluding
obviously irrelevant ones and including the target files in the context, guaranteeing a high recall
(98.8% on SWE-Bench-Verified in our experiments).

DIRECTSOLVE method For code repositories (compressed or otherwise) within the context length
limit, our DIRECTSOLVE method directly prompts an LCLM to generate the solution based on the
problem statement and the entire (compressed) repository state, as illustrated in Figure 2] (bottom
right). We found a combination of two simple but effective prompting tricks to significantly improve
performance. Our first prompting technique is code restatement, where we prompt the model to
re-state relevant code for the task before starting the bug fixing process. This acts as an in-context
retrieval mechanism and mitigates the “lost in the middle” issue (Liu et al.,|2023)) in which LCLMs
struggle to extract information from a distant context. The other one we found effective was chain-of-
thought prompting (Wei et al.,|2023) that generates the code diff after decomposing the solve step
into smaller reasoning steps (see Section [C). Overall, this approach enables an LCLM to perform
localization, code restatement, and repair in a single inference call, requiring only direct prompting
without additional handcrafted scaffoldings.
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SELECTSOLVE method The capabilities of current LCLMs still fall short of short-context counter-
parts, resulting in pure LCLM-based DIRECTSOLVE agents underperforming compared to carefully
designed agentic systems. To address this challenge, we propose a simple two-stage method that
leverages both the long-context processing capabilities of LCLMs and the superior problem-solving
abilities of SCLMs. The idea is to use an LCLM in the first part where we identify and compress the
state and pass this to an SCLM as the problem-solving agent based on the selected files, as illustrated
in Figure 2] (top right). In the first step, an LCLM performs single-call localization on the compressed
repository, identifying relevant files based on the problem statement (see Section [C|for the prompt
and an example). Although we explored localization at various granularities (functions, methods),
file-level localization proved both simpler and more effective. In the second step, a more specialized
SCLM (e.g., Claude-3.7 (Anthropic, |2024))) with a limited context performs code repair using only
the top K localized files. This approach allows us to combine the strengths of different models while
maintaining simplicity.

Patch format and validation Both our DIRECTSOLVE and SELECTSOLVE methods generate patches
using the Search/Replace edit format introduced in Agentless (Xia et al., |2024), which explicitly
specifies both the original code snippets to be replaced and their replacements. This approach
enhances precision and reduces hallucination by focusing on targeted edits rather than regenerating
entire functions. For patch evaluation and selection, we adopt the same validation methodology from
Agentless, which involves generating reproduction tests to verify issue resolution, applying regression
tests to minimize functionality disruption, and implementing majority voting on normalized patches
to select the most frequently occurring patch as the final submission. While our framework is not
primarily focused on inference time scaling, it naturally accommodates computational scaling in a
straightforward manner: simply generating more samples in the DIRECTSOLVE method or sampling
multiple patches with various localization samples in the SELECTSOLVE method.

4 EXPERIMENTS

We describe our experimental setups in Section[4.1] In Section[d.2} we demonstrate the effectiveness of
our method with comparable end-to-end results to heavily engineered agentic scaffolding. Section 4.3
presents an extensive ablation study highlighting critical design choices for developing state-in-
context agents with LCLMs. Finally, Section evaluates the robustness of our approaches across
various LCLMs.

4.1 EXPERIMENTAL SETUPS

Benchmark We evaluate our method using the SWE-bench Verified benchmark (Chowdhury et al.|
2024), a high-quality dataset consisting of 500 software engineering problems carefully selected and
validated through expert human annotation.

Implementation details We used Gemini-1.5-Pro with 2 million token context and Gemini-2.5-Pro
with 1 million token context as our LCLM. For SELECTSOLVE, we also evaluated Claude-3.7-Sonnet
as the SCLM that demonstrates the specialized performance on coding tasks. We selected the top K
= 6 files for SELECTSOLVE, meaning the repair model received content from six localized files to
generate patches. Following Agentless (Xia et al., 2024), we used a temperature of 0.8 for sampling
different patches and performing patch selection. Across all methods, we generated 8 patches per
instance from which a single one is selected by majority voting for evaluation , determined by the
batch decoding limit of the Gemini APL

Baselines Previous approaches to repository-level software engineering primarily fall into two
categories: agentic frameworks and non-agentic scaffolding. Several works employ similar pipelines
but focus on scaling up inference-time compute (Ehrlich et al., 2025)), which is out of the scope of our
comparison—our objective is to demonstrate the effectiveness of our scaffolding-free agent approach,
positioning it as a performance-competitive alternative to heavily enginnered agentic scaffoldings.
We selected Agentless and CodeAct as our baselines, representing the state-of-the-art within each
method category. We primarily utilized Gemini-1.5-Pro (Team et al.,|2023), Gemini-2.5-Pro with
google search tool disabled (Google Deepmind, [2025) and Claude-3.7-Sonnet (Anthropic} [2024) to
ensure comparability with our methods and included GPT-40 (OpenAl, 2024) with both methods for
reference. We describe the details of these baselines below.
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Table 1: Performance across different methods and models on SWE-Bench-Verified. Our
DIRECTSOLVE method, despite its simplicity, outperforms methods with heavily engineered scaffold-
ings when all methods are instantiated with Gemini-1.5-Pro and Gemini-2.5-Pro. Our SELECTSOLVE
method further improves performance over DIRECTSOLVE by leveraging the superior coding capabil-
ities of Claude-3.7-Sonnet, positioning itself between the Agentless and CodeAct approaches when
using the same model.

Approach Model Pass@1 Pass@8
GPT-40 (Reference)

Agentless GPT-40 (From cache) 36.2% 43.4%
CodeAct GPT-4o0 30.0% -
Gemini-1.5-Pro

Agentless Gemini-1.5-Pro (Direct transferred) 11.0% 13.0%
Agentless Gemini-1.5-Pro (Adapted) 32.0% 37.2%
CodeAct Gemini-1.5-Pro 18.8% -
DIRECTSOLVE  Gemini-1.5-Pro 38.0% 46.2%
SELECTSOLVE  Gemini-1.5-Pro + Gemini-1.5-Pro 39.2% 47.8%
Claude-3.7-Sonnet

Agentless Claude-3.7-Sonnet 45.2% 50.8%
CodeAct Claude-3.7-Sonnet (Reported) 58.0%

SELECTSOLVE  Gemini-1.5-Pro + Claude-3.7-Sonnet  48.6% 59.2%
Gemini-2.5-Pro

Agentless Gemini-2.5-Pro (Adapted) 47.8% 54.0%
CodeAct Gemini-2.5-Pro (Reported) 46.4% -
DIRECTSOLVE  Gemini-2.5-Pro 50.8% 60.2%

» Agentless (Xia et al.| [2024) was designed specifically for GPT-40 and Claude-3.5-Sonnet, and
failed to transfer directly to Gemini models due to compounding parsing errors. We therefore
curated the pipeline to ensure correct parsing at each step, and report both pre- and post-curation
numbers, labeled as “Direct Transferred and “Adapted” respectively in Table [l Moreover, the
authors provided intermediate caches of GPT-4o trajectories, allowing us to evaluate them as
a completely faithful reproduction. In all Agentless configurations, we sampled 4 instances of
localized relevant code following the original work, and generated 2 samples based on each to
constitute the 8 patches for selection and evaluation. We followed the same procedure as the
original work to select the final patch with majority vote, similar to our method.

* CodeAct (Wang et al.| |2025) OpenHands CodeAct is an open-source framework that implements
an interactive LM-based agent with a well-designed pipeline and toolset. We used the repository at
commit d9926d24 with the default maximum iteration limit of 60, where each iteration consists
of an observation and action generation process. Regarding the tool set, we restricted possible
tools to basic functionalities, disabling web browsing which is designed for open-ended real-world
tasks and could potentially compromise benchmark integrity. For Claude-3.7-Sonnet, we used
OpenHands reported results.

Evaluation metrics We reported the pass@1 rate, which measures the solve rate of the final selected
patch for each method. For our method and the Agentless approach—where we had already sampled 8
potential patches for selection—we additionally reported the pass @8 rate, which measures the rate of
at least one patch solving the issue among the 8 samples.

4.2 END-TO-END RESULTS ON SWE-BENCH-VERIFIED

DIRECTSOLVE with LCLMs outperforms agent scaffoldings in matched comparisons Table T]
shows the end-to-end performance of our methods compared to baselines. When all methods are
instantiated with Gemini-1.5-Pro, our DIRECTSOLVE method, despite its simplicity, outperforms the
best baseline (Agentless) by 6% on pass@ 1 with statistical significance. Similarly, implementing
Gemini-2.5-Pro yields a statistically significant 6.2% improvement pass@8 metrics. We assess
statistical significance using one-sided McNemar tests, with detailed p-values provided in Section[A.2]
Our DIRECTSOLVE method essentially zero-shot prompts an LCLM to reason and solve problems
based on the entire (or compressed) environment state, indicating that current LCLMs can effectively
function as scaffolding-free agents. Surprisingly, our DIRECTSOLVE method performs comparably



Under review as a conference paper at ICLR 2026

Method K=3 K=6 K=10
Ablation P@1 P@8 Agentless
DirectSolve method 32%  50% prompting-based 138 116 —
- CoT prompt 9% 16% embedding-based 165 119 102
- relevant code restatement 28%  49% combined 135 88 66
- add file index 27%  44% LCLM
- rm comments & docstrings  27%  41% one-call 112 75 56

one-call (N = 8) 100 62 47

Table 2: Ablation study on key components of
our DIRECTSOLVE method. Results are onaran-  Typle 3: File localization error comparison be-
dom subset of 100 instances from SWE-Bench-  tween Agentless and our LCLM-based file se-

Verified. lection in SELECTSOLVE on the whole SWE-
Bench-Verified dataset.

with our SELECTSOLVE method when instantiated with the same Gemini-1.5-Pro model (with only
a 1.2% lower pass@1 rate), indicating the promise of minimizing agentic workflow when LCLM
capabilities continue to improve.

SELECTSOLVE effectively leverages the capabilities of SCLMs When our SELECTSOLVE is in-
stantiated with Claude-3.7-Sonnet as the SCLM for generating the patches, the performance improves
significantly from 39.2% to 48.6%, highlighting its potential to leverage the advanced problem-
solving capabilities of SCLMs. Compared to baselines, SELECTSOLVE outperforms Agentless but
falls short of OpenHands CodeAct. This suggests that while our simple method delivers strong
performance with minimal engineering effort, specialized tool design tailored to specific models and
tasks may still yield additional gains.

Scaffolding-based baselines do not robustly transfer across models. Scaffolding-based approaches
often rely on specialized tools and execution workflows that are tailored to the behavior of specific
models. These specializations—such as prompt designs or tool integrations—are typically optimized
for a given model and may not transfer effectively to others. Indeed, we find that for both baselines,
direct transfer to Gemini-1.5-Pro without leads to a significant performance drop, with Agentless
dropping to 11% and CodeAct to 18.8%. This underscores the limited robustness of standard
scaffolding-based approaches across different models, highlighting the necessity of human effort for
model-specific adaptations. Consequently, our simplified framework that requires minimal curation
may be preferable.

4.3 ABLATION STUDY

In this subsection, we systematically analyze various components of our methods to understand their
relative contributions to overall performance and identify key factors that enable LCLMs to function
effectively as scaffolding-free agents. In all ablation study experiments, we measured performance
without applying additional patch validation to specifically assess the intrinsic patch-generation
capabilities of LCLMs across various configurations.

Which design choices matter? To address this question, we ablate different design choices in our
DIRECTSOLVE method to assess the effectiveness of each component. We present the results in
Table 2] and detail the discussion below.

* Prompting Techniques: We first examine the prompting techniques employed in our approach:
chain-of-thought (CoT) prompting, relevant code restatement, and adding file index. Our analysis
reveals that CoT prompting is crucial for agent performance; removing it leads to a significant
performance drop of 23% in pass@ 1 and 34% in pass @8, underscoring the critical role of reasoning
in bug-fixing tasks. Moreover, we find that relevant code restatement notably influences pass@ 1
performance but does not significantly impact pass@8, a metric indicative of solution coverage.
This observation suggests that while relevant code restatement may not enahnce the maximum
problem-solving capability, it improves the stability and consistency of our method. Finally, we
find that the seemingly minor enhancement of adding file index information proves important,
aligning with the observations in|Lee et al.[(2024)).

* Repository compression: We then analyze the effectiveness of removing comments and doc-
strings from the repository to reduce the context length. This reduces the average token count
across all instances from approximately 2M to 1.4M and yields an end-to-end performance im-
provement of 5% in pass@1 and 6% in pass@8. The significant gain through this simple operation



Under review as a conference paper at ICLR 2026

also implies the potential inefficacies of current LCLMs in processing very long-contexts, which
we will further analyze in Figure

How do LCLMs improve localization in the SELECTSOLVE method? The Agentless framework
employs a localization scaffolding that combines direct LM prompting with embedding-based retrieval
to localize the specific target files or code lines, whereas our SELECTSOLVE method directly prompts
the LCLM to perform localization based on the compressed repository. We evaluate and compare
the localization performance of these two approaches by measuring file-level localization errors
using top-K file localization with Gemini-1.5-Pro. As shown in Table 3] employing a single LCLM
directly can reduce file-level localization error by over 15% compared to the combined scaffolding-
based method across various values of K. Moreover, when aggregating localization results from 8
samples using majority voting, the localization error further decreases by approximately 25% to 35%.
These results illustrate that utilizing LCLMs not only simplifies the localization procedure but also
significantly enhances localization accuracy.

Additional ablations in Section[A]show that target-file placement and prompt length materially affect
LCLM effectiveness, reinforcing the value of relevance-based ordering in the state-compression step
and indicating ample headroom for further LCLM development to better exploit long contexts.

4.4 ROBUSTNESS TO LCLM CHANGES

Given that the system is designed in the experiments of Gemini-1.5-Pro, we test whether our prompts
and results are overfit to Gemini-1.5-Pro by varying the LCLM used in our state-in-context models.
Other models with context windows of at least 1 million tokens include: Gemini-1.5-Pro (2M),
Gemini-2.5-Pro (IM), Minimax-Text-001 (IM), and Gemini-Flash-2.0 (1M). We randomly sampled
100 instances from SWE-Bench-Verified for this evaluation and did not apply patch validation.

The results are shown in Table[d] Gemini-2.5-Pro consistently achieves the highest performance across
all evaluation metrics, attaining a 51% solve rate on a random subset of 100 instances with 8 samples
without any patch selection. Notably, DIRECTSOLVE even outperforms SELECTSOLVE methods in
the Gemini-2.5-Pro experiments, suggesting that as LCLMs improve, the performance gap between
minimal prompting frameworks and scaffolding approaches may further narrow or even reverse.
All methods achieve a nontrivial 20%+ solve

rate, suggesting that our experiment setting Taple 4: State-in-context approaches with alterna-
and prompts are not overfitted to a single  tjye LCLMs. Performance degrades for DirectSolve,
LCLM. Minimax-Text-001 (MimMax et al., byt remains relatively high across the available mod-
2025), the only open-weight model evaluated, e]s. Evaluations are conducted on a random subset

falls short of the closed-source models’ perfor- of 100 instances from SWE-Bench-Verified.
mance but still successfully resolves 20% of

instances using our SELECTSOLVE method. Approach Model p@1 p@8§
Gemini-1.5-Pro 32%  50%

5 DISCUSSION Gemini-2.5-Pro 51%  64%
DIRECTSOLVE  Gemini-Flash-2.0 ~ 24%  37%

Cost analysis The average cost of Agentless, Minimax-Text-001 ~ 15%  20%
CodeAct, and our method in Section [4] is Gemini-1.5-Pro 349%  48%
$0.25, $0.87, and $2.60, respectively, indicat- SELECTSoLvE ~ Oemini-2.5-Pro 49%  63%
ing that LCLM is currently less cost-effective. Gemini-Flash-2.0 ~ 29%  46%

That said, LM inference costs have fallen Minimax-Text-001  20%  32%
sharply—GPT-4—equivalent APIs are down

~1000x over three years (Guido Appenzeller,

2024)—and context windows have expanded

~500x (from 4K to 2M tokens), making monolithic, LCLM-based agents increasingly practical. In
real-world use, repeated queries to the same codebase enable KV caching that substantially reduces
average inference cost: after the initial pass, the marginal cost is dominated by context-caching
tokens (about one-quarter of total), lowering per-instance cost from $2.60 to ~$0.725. Together, (i)
continued inference-cost declines and (ii) KV caching in repeated codebase queries suggest the cost
of our simplified method is increasingly acceptable; additional discussion of implications beyond
SWE-Bench and general codebase feasibility appears in Section
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A ADDITIONAL EXPERIMENTS

In this appendix we extend the ablation analysis from Section[4.3]to examine how target-file placement
andcontext length affect model repair performance.

A.1 ADDITIONAL RESULTS

How does the target file location impact the agent per- Taple 5: Impact of target file location
formance? The performance of our approach may be on LCLM DIRECTSOLVE performance
bottlenecked by the long-context processing capabilities  with 1M token prompts.

of LCLMs—they may not sufficiently absorb the informa-

tion in the provided context and suffer potential issues like Metrics Front End Random
“lost iq thq m.iddile” (Liu et al., [2023). To understanq this pass@ | 0%  26% 28%
potential limitation, we conduct a controlled analysis by pass@8  50%  43% 41%

varying the placement of the target files within the context—
positioning them at the front, at the end, or randomly within the context—and measure the resulting
DIRECTSOLVE performance of Gemini-1.5-Pro. As shown in Table[5] the position of target files
significantly impacts the one-step performance, with positioning target files at the front of the prompt
yielding the best results. This finding validates our design of ordering files to be included in the
context based on their relevance score during the state compression step.

How does context length impact agent perfor-
mance? We further investigate the effect of context e
length on the performance of state-in-context agents 0.50 Pa“@,*’,‘
using LCLMs through a controlled analysis. Specif-
ically, we maintain the target files at the front of

the context and progressively add remaining files ac- :
cording to their relevance scores—computed during 0.35 \
the state compression step—until reaching the spec-

ified context length limit. As illustrated in Figure ] 10° 10°
. . . . Context Length

even though the necessary information is consistently

present in the prompt, increasing the context length
negatively affects solving accuracy. We observe a
clear performance degradation as the context length
expands from 100K to 1M tokens: pass@8 accuracy
decreases from 53% to 47%, and pass@1 accuracy
declines from 39% to 31%. This indicates a substantial performance gap for current LCLMs when
handling longer contexts in the DIRECTSOLVE approach, a gap potentially alleviated by employ-
ing the SELECTSOLVE method. These results also highlight the critical need to enhance LCLMs’
capabilities in effectively processing and leveraging longer contexts.

Accuracy vs. Context Length

Accuracy

Figure 4: Model performance vs. Context
Length for DIRECTSOLVE with target files
placed at the front of the prompt.

A.2 PAIRWISE STATISTICAL SIGNIFICANCE TESTS

We conducted pairwise significance testing on 500 SWE-Bench-Verified instances using one-sided
McNemar tests (paired binary outcomes per instance) to evaluate whether our method outperforms
the strongest baseline

Gemini-1.5-Pro. Against the strongest baseline (Agentless), DIRECTSOLVE achieves statistical
significance at pass@1 with p = 0.0018.

Gemini-2.5-Pro. For pass@1, the comparison yields p = 0.07, which is marginal given a 3%
absolute improvement. In contrast, pass@8 shows clear significance with p = 0.0008 against the
strongest baseline. We view pass @8 as the more reliable estimator in this setting because it exhibits
lower variance than pass@1 on fixed-size test sets.

'We use a one-sided alternative reflecting the directional hypothesis that our method is better.
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B ADDITIONAL DISCUSSION

Implications for agents beyond SWE-bench More broadly, our approach is likely to have im-
plications for scaffolding methods for information gathering, both from the environment as well
as learning from their past interaction trajectories (Park et al., 2023a)). With CodeAct trajectories
averaging 77.7K tokens across SWE-Bench-Verified instances and generative agent simulations
reaching approximately 50K tokens (Park et al.,|2024)), these extensive trajectories fit comfortably
within modern LCLMs’ context windows. This suggests that LCLMs may also be able to simplify
complex memory and retrieval architectures for LM agent interactions.

General codebase feasibility We want to emphasize that the repositories in SWE-Bench-Verified
represent major collaborative projects and are atypical in their large size. As stated in |Maj et al.
(2024)), less than 2% of GitHub repositories have more than 100K SLOC. This means over 98% of
GitHub repositories can probably be directly fitted into the 2M token context window, suggesting that
LCLM-based zero-shot approaches may already be practical for simpler use cases.

C PROMPT DETAILS

C.1 DETAILS FOR FILE RANKING

In this section, we provide details about the prompts used in our proposed DIRECTSOLVE and
SELECTSOLVE methods presented in Section 3.2}

File Ranking by relevance During state compression, we instruct the model to rank files by their
relevance to the problem statement given the repository structure. The prompt is as follows:

Please look through the following GitHub problem description and Repository structurc
Note that you should focus on providing specific files or the lowest subfolder in the

### GitHub Problem Description ###
{problem _statement}

### Repository Structure ###
{structure}

##H#

Please provide the ranked list with the most relevant item first and the least relev:
Ensure that each listed item is directly related to solving the problem described.
The returned list should be separated by new lines and wrapped with °°°.

For example:

filel . py

folder2/file3 .py

folder4 /subfolderS/

folder6/file7 .py

I3

Through this prompt, the language model produces an ordered list of files and folders, ranked by
relevance to the issue statement. Files not explicitly mentioned are randomly appended after all
mentioned files. This approach yields an approximated total ranking of all files, enabling us to
compress the state to accommodate any context limit.

C.2 DETAILS AND AN EXAMPLE FOR REPAIR PROMPT

For our DIRECTSOLVE method and the repair stage of SELECTSOLVE, we employ a chain-of-thought
(CoT) prompt that guides the model to restate relevant code and generate appropriate repair patches.
This prompt provides step-wise instructions with CoT techniques applied to both code localization
and repair. While the prompt is extensive and could potentially be simplified in future work, our
current implementation uses the following:
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You are a senior software engineer tasked with analyzing and resolving a repository

# REPOSITORY STRUCTURE:

{file_structure}

HHHHAHHHHAHHHHARHH R R R HH
# ISSUE DESCRIPTION:

{issue}

ANALYSIS INSTRUCTIONS:

Your task is to perform the following steps in order:

1. #xChain—of—-Thought for Localization
— Analyze the provided repository structure and issue description to identify the re
— Explain your reasoning and process for localizing the relevant code.

2. =xRestated Relevant Codes:

— Provide the exact code snippet that you have identified as relevant to the issue.
— Include a few lines of context before and after the critical section.

— **x[MPORTANT:%+ Enclose this section in a code block using the tag =xxrelevant code:x:
— If necessary, copy a longer context from the file to ensure that the location wher
— If you would like to add the line °’

print(x)’, you must fully write that out, with all those spaces before the code! Ple
— The format should be as follows:

‘relevant code
### path/to/ file .py
[Exact code snippet with proper indentation, including sufficient context]

I3

w

#%Chain—of -Thought for Repairing the Codes::x
Explain your reasoning and analysis for repairing the identified issue.
Describe the necessary modifications , why they are needed, and include any edge ca:

4. xxFinal Patch=x

Provide the final patch using the following exact #*SEARCH/REPLACE#x format:

The file path.

The start of the search block: <<<<<<< SEARCH

A contiguous chunk of lines to search for in the existing source code.

The dividing line: =======

The lines to replace into the source code.

The end of the replace block: >>>>>>> REPLACE

- **H\/[PORTANT #% Enclose each final patch in a separate markdown code block using the
— Example format:

O\Ul-lku)l\)'—

‘python
### path/to/file .py
<<<<<<< SEARCH
[Original code snippet with proper indentation ]

[Replacement code snippet with proper indentation ]
>>>>>>> REPLACE

I3
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Requirements:

— Focus only on the reported issue.

— Provide minimal, precise changes.

— Consider error handling and edge cases.

— Maintain existing code patterns. If you would like to add the line
print(x)’, you must fully write that out, with all those spaces before the code! Ple:
— Do not reveal internal chain-of-thought details outside of the sections specified

s

Your final output must include these sections in the following order:
1. Chain—of-Thought for Localization

2. Restated Relevant Code (enclosed in a
3. Chain—-of-Thought for Repairing the Code

4. Final Patch (each file ’s modifications enclosed in its own

3

‘‘relevant code *“‘ block as specified)

3 3

‘‘python * *‘ code blocl
This prompt elicits a chain-of-thought process for localizing relevant code from files, identifying

relevant code segments, analyzing potential repairs, and finally generating a Python diff format patch.

For illustration, we provide an example of a problem statement and corresponding model output from

the django__django-13516 instance.

Example

¢ Problem statement

flush () on self.stdout/stderr management commands doesn’t work.
Description

flush () is notably called during migrate command; it doesn’t work, and a long migr:
Operations to perform:

Apply all migrations: myapp

Running migrations:

Then nothing more, but the migration is being done.

Then at the end of the real migration, the rest is flushed:
Applying myapp.0002 _auto_20200817_1030 ... OK

Expected behavior:

Operations to perform:

Apply all migrations: myapp

Running migrations:

Applying myapp.0002 _auto_20200817_1030 ...

then work

then OK

* Model output

1. #+*Chain—of —-Thought for Localization =

The issue description states that ‘flush()‘ calls on ‘self.stdout‘ and ‘self.stderr
Specifically , output is buffered until the end of the command execution, rather tha
Looking at ‘migrate.py‘, we see that the ‘migration_progress_callback ° function wif

2. xxRestated Relevant Codesxx*

‘“‘relevant code
### django/core/management/base.py
class OutputWrapper (TextIOBase ):
@property
def style_func(self):
return self. _style_func
@style_func. setter
def style_func (self, style_func):
if style_func and self.isatty ():
self. _style_func = style_func

17
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else:
self. _style_func = lambda x: x
def __init__(self, out, ending="\n’):
self. _out = out
self.style_func = None
self.ending = ending

def __getattr__(self, name):
return getattr (self._out, name)
def isatty (self):

return hasattr(self._out, ’isatty ’) and self._out.isatty ()
def write(self, msg="", style_func=None, ending=None):
ending = self.ending if ending is None else ending

if ending and not msg.endswith(ending):
msg += ending

style_func = style_func or self.style_func

self. _out.write(style_func (msg))

‘“‘relevant code
### django/core/management/commands/ migrate . py
def migration_progress_callback(self, action, migration=None, fake=False):
if self.verbosity >= 1:
compute_time = self.verbosity > 1
if action == “apply_start”:
if compute_time:
self.start = time.monotonic ()
self .stdout. write(” Applying %s...” % migration, ending="")
self .stdout. flush ()

3. #xChain—of -Thought for Repairing the Codexx*

The ‘OutputWrapper * class in ‘base.py‘ is missing a ‘flush * method. As a result,

4. #xFinal Patchsx

‘“‘python

### django/core/management/base.py

<<<<<<< SEARCH

def write(self, msg="", style_func=None, ending=None):
ending = self.ending if ending is None else ending
if ending and not msg.endswith(ending):
msg += ending

style _func = style_func or self.style_func
self. _out.write(style_func (msg))

ERE)

def write(self, msg="", style_func=None, ending=None):
ending = self.ending if ending is None else ending
if ending and not msg.endswith(ending):
msg += ending
style_func = style_func or self.style_func
self. _out.write(style_func (msg))
self. _out. flush ()

def flush(self):
self. _out. flush ()

>>>>>>> REPLACE

[
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C.3 DETAILS AND AN EXAMPLE FOR SELECT PROMPT

Select Prompt. In the select stage of SELECTSOLVE, we use a prompt to identify the top K most
relevant files from the compressed repository. Our prompt is structured as follows:

You are a senior software engineer performing a thorough impact analysis. Your task

# REPOSITORY STRUCTURE:

{file_structure}

HHHHAHFHHAHFHHARHHHHHHHHHHH
# ISSUE DESCRIPTION:

{issue}

HAHAHAHHHHAHAHAHAHRHHAHAHAH
# ANALYSIS INSTRUCTIONS:

Perform the following steps carefully:

1. #xRoot Cause Analysis*x*

— Examine the issue description for error patterns and symptoms.
— Trace the flow of data and dependencies across components.

— Identify potential propagation paths of the issue.

— Consider edge cases and failure scenarios.

— Think about related functionalities that could be impacted.

2. =xList of Potentially Affected Filesxx

— Identify all files that may require inspection or modification.
— Include full file paths, listing one file per line.

— Order files by relevance, with the most critical files first.
— Include both directly and indirectly affected files.

— #xErr on the side of over—inclusion rather than exclusion.xx

#*%*[MPORTANT: %+ When in doubt, =xxinclude=xx files that might be relevant rather than e

HAHAHAHHHHAHAHAHFHRHRA RS HAH
# EXAMPLE RESPONSE:

### REASONING:
[Provide a detailed explanation of your analysis process and why certain files may b

### AFFECTED FILES:
src/auth/login .py
src/middleware/auth . py
src/models/user.py
src/api/endpoints/auth.py
config/auth_settings .py

Through this prompt, the language model produces an ordered list of relevant files based on the
full file contents. We select the first K files and pass them to the repair stage. As an exam-
ple, in the mwaskom__seaborn-3187 instance, the golden target files were seaborn/utils.py and
seaborn/_core/scales.py, which the LCLM correctly identified through chain-of-thought reasoning.

Example

¢ Problem Statement

19
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Wrong legend values of large ranges

As of 0.12.1, legends describing large numbers that were created using ‘ScalarForm
‘““‘python

import seaborn as sns

import seaborn.objects as so

penguins = sns.load_dataset(”Penguins™)
penguins [”body_mass_mg”] = penguins[”body_mass_g”]«1000
(
so. Plot(
penguins , x="bill_length_.mm?”, y="bill_.depth_mm”,
color="species”, pointsize="body_mass_mg”,
)
.add(so.Dot())
)

[

The code creates the following plot:
![image ]( https ://user—images. githubusercontent.com/13831112/205512305-778966db—-f8d8
which is wrong because ‘body_-mass.mg‘ is in the order of 1E6. The issue also reprod

I believe the issue stems from not using the offset value of the ‘ScalarFormatter °
https :// github .com/mwaskom/seaborn/blob/ba786bc14eb255f6b4fb7619¢c8210c5a8016a26f/ se
Examining the code of ‘ScalarFormatter °* suggests the issue also depends on the foll
‘mpl.rcParams [’ axes.formatter.useoffset "] °
‘mpl.rcParams [’ axes.formatter.offset_threshold ’]°

However, I did not test it.

The offset value can be safely retrieved from all formatters and based on that it

* Model output
### REASONING:

The issue description points to a problem with legend generation when using Scalark
The issue manifests in both ‘scatterplot * and the ‘objects * interface using °so.Plc

The analysis should focus on:

3

1. #xScale setup and transformation:xx How the ‘Continuous ‘ scale is set up, includ
2. s#xLocator and formatter retrieval:*% How the ‘ScalarFormatter * is being retrieve
3. xxLegend data generation:x% How legend entries are created from the scale, parti
4. xxMatplotlib integration:*% How seaborn interacts with matplotlib’s ‘ScalarForm
5. =xAffected plot types:x* The issue is reproduced with ‘scatterplot * and ‘so.Dot
T

hese include lineplots , histograms, and potentially other distribution or relation

### AFFECTED FILES:

seaborn/ _core/scales.py (Most likely direct cause)

seaborn/ _core/plot.py (Legend generation logic in Plotter)

seaborn/objects.py (Objects interface using affected scale)

seaborn/relational .py (Relational plots, specifically scatterplot)
seaborn/_marks/dot.py (Mark drawing, might need adjustment if scale changes)
seaborn/distributions .py (Distribution plots that use Continuous scale)

seaborn/ _testing .py (Tests for scales and affected plots will need updating)
seaborn/regression.py (Regression plots could be affected if using Continuous scale
seaborn/axisgrid.py (FacetGrid and related plots might use affected scales)
seaborn/_compat.py (Matplotlib compatibility layer, especially for scaling)
seaborn/ _core/properties.py (Property definitions , might need to handle offset)
seaborn/utils .py (Utility functions related to scales, legends, and matplotlib inte
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seaborn/ _core/typing.py (Type hints relating to scales and data)
seaborn/ __init__.py (Imports and version information)
doc/conf.py (Documentation configuration, especially example generation)

While some files are less likely to be directly involved, they are included for co1
Thorough testing across different plot types and parameter combinations will be cri
D USE OF LARGE LANGUAGE MODEL
While the paper’s ideas, analysis, and structure were manually drafted by the authors, we employed a

LLM as a writing assistant to refine the paper. Specifically, the LLM was used to polish grammar,
improve clarity, and adjust wording based on our own words.
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