
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PUTTING IT ALL INTO CONTEXT:
SIMPLIFYING AGENTS WITH LCLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in language model (LM) agents have demonstrated significant
potential for automating complex real-world tasks. To make progress on these
difficult tasks, LM agent architectures have become increasingly complex, often
incorporating multi-step retrieval tools, multiple agents, and scaffolding adapted
to the underlying LM. In this work, we investigate whether all of this complexity
is necessary, or if parts of these scaffolds can be removed on challenging tasks
like SWE-bench. We show that in the case of SWE-bench, simply putting the
entire environment into the context of a long context language model (LCLM) and
properly prompting the model makes it competitive with carefully tuned, complex
agent scaffolds. We show that a Gemini-1.5-Pro model without any scaffolding or
tools achieves 38% on SWE-Bench-Verified, comparable with approaches using
carefully tuned agent scaffolds (32%). While the unscaffolded approach with
Gemini-1.5-Pro falls short of the strongest agentic architectures, we demonstrate
that the more capable Gemini-2.5-Pro using the same unscaffolded approach
directly attains a 50.8% solve rate. Additionally, a two-stage approach combining
Gemini-1.5-Pro with Claude-3.7 achieves a competitive 48.6% solve rate. These
results suggest that LCLMs can enable a more monolithic design, reducing reliance
on exploration scaffolds in fully observable regimes.

1 INTRODUCTION

Recent years have witnessed remarkable progress in language model (LM) agents, demonstrating
their capability to perform complex real-world tasks autonomously (Yao et al., 2023; Shen et al.,
2023). These systems leverage LMs to propose actions that can be executed through API calls
in various environments, enabling applications ranging from repository-level software engineering
(Wang et al., 2025; Yang et al., 2024b) to robot control (Ichter et al., 2023; Driess et al., 2023) and
scientific experimentation (Boiko et al., 2023; Bran et al., 2023).

Typically, LM agents interact with the environment to gather information, reason, and then execute
actions based on this information to achieve pre-specified objectives. Effective exploration of the
environment forms the foundation of these systems, yet remains a major challenge. Recent works
address this by developing agentic scaffoldings with well-designed tools (Schick et al., 2023; Yang
et al., 2024b), external memory (Park et al., 2023b), and specialized pipelines (Shinn et al., 2023; Xia
et al., 2024) for effective information gathering. While these methods have demonstrated promising
results, they heavily rely on human-engineered scaffoldings tailored to specific LMs or tasks. This
reliance stems primarily from the standard assumption that agents operate under partial observability,
necessitating active collection of observations to incrementally build their understanding of the
environment. While this assumption is true in some cases, such as a VLM agent operating a robot in
an unknown environment or a web navigation agent visiting a new website, the environment is fully
observable in many agentic tasks, such as SWE-bench, where the full repository is accessible to the
agent at the start of the task.

Our work asks whether many of these LM agent tasks, such as SWE-bench, can be addressed with
much simpler architectures. In other words: how much would we lose if we replaced complex
information gathering processes with a single, long-context LM? Understanding this question has
important implications for our understanding of agent design. Although a pure LCLM-based approach
is more expensive than an agentic system, if a single long-context model is competitive with complex
scaffolding methods, further improvements in the capability and cost of LCLMs may lead to a simpler

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview. (Left) Traditional agent design treats the environment as partially observable
and curates elaborate scaffolding (such as tools and execution pipelines) upon LMs to collect the
necessary information for solving the task. (Right) In contrast, we leverage the increasingly powerful
capabilities of long-context LMs to develop state-in-context agents that eliminate the need for complex
scaffolding. These agents achieve full observability by maintaining the entire environment state
within the context of LMs, turning open-ended agentic tasks into direct, close-ended tasks where
LMs excel.

and more monolithic future, as a single LCLM system would be simpler to train end-to-end. Such a
move towards a more monolithic system has significant precedent, mirroring past developments in
computer vision (Krizhevsky et al., 2012), statistical machine translation (Bahdanau et al., 2015), and
NLP (Brown et al., 2020), where complex and specialized pipelines were replaced by monolithic
neural networks.

We take the first steps to answering this broad question by studying SWE-bench – a prototypical task
where complex agent scaffolds (Yang et al., 2024b; Wang et al., 2025) are used in the existing state
of the art, but there is no inherent need for active information gathering. Specifically, we test whether
a scaffolding-free, long-context approach with minimal tools can replace exploration scaffolds in
fully observable settings, effectively reducing agent design to a prompting task. Using SWE-Bench-
Verified (Chowdhury et al., 2024) as a testbed, we identify a few simple but effective prompting
tricks for LCLMs and show that this approach outperforms scaffolding-based baselines when both
approaches use the same LLM. Nevertheless, a performance gap remains relative to state-of-the-art
agentic systems, primarily due to the relatively weaker coding capabilities of LCLMs compared to
state-of-the-art LMs. To address this gap, we demonstrate that a straightforward hybrid approach,
combining both the long-context processing capabilities of LCLMs and superior problem-solving
capabilities of short-context LMs, substantially closes this performance gap. Our aim is to establish a
simple, general but often-overlooked baseline that leverages improving LCLM capability and to map
the trade-offs that inform future agent design. While recasting the task as prompting can increase
compute, the higher per-query cost of LCLM inference can be amortized via caching and is likely to
decline as LCLM efficiency improves.

Overall, our contributions include:

• We study fully observable agent tasks as a proof of concept, showing that a single long-context
pass can largely replace exploration scaffolds and outperform more complex baselines by 3–6%
without additional scaffolding or tools.

• We identify a collection of simple prompting techniques that take a Gemini-1.5-Pro based system
for SWE-bench-Verified from 9% to 32% without patch validation.

• Our framework demonstrates competitive performance with the leading agents. Specifically,
Gemini-1.5-Pro achieves a 48.6% solve rate when utilizing our two-stage modification approach
with Claude-3.7, while Gemini-2.5-Pro directly attains a 50.8% solve rate in a single step.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

LM agents for software engineering With the rapid advancement of autonomous LM-based agents
(Yao et al., 2023; Shinn et al., 2023; Schick et al., 2023), there has been growing research interest
in developing LM agents for solving repository-level software engineering tasks on benchmarks
like SWE-Bench (Jimenez et al., 2024). Recent approaches to address this challenging task can be
categorized into agentic frameworks and non-agentic pipelines. The former treats LMs as autonomous
agents that iteratively interact with the code environment (Gauthier, 2024; ope, 2024). SWE-Agent
(Yang et al., 2024a) pioneered a custom agent-computer interface (ACI) enabling LM agents to interact
with repository environments through defined actions. Moatless (moa, 2024) and AutoCodeRover
(Zhang et al., 2024) enhance localization capabilities through advanced search and retrieval tools,
while SpecRover (Ruan et al., 2024) focus on improving agent scaffolding. OpenHands CodeAct
(Wang et al., 2025) represents an established open-source project that excels in both tooling and
scaffolding, demonstrating competitive results. The alternative approach focuses on developing more
specialized execution pipelines tailored to the software engineering tasks. Agentless (Xia et al., 2024)
decomposes the task into localization, repair, and patch validation phases with specific scaffolding
for each stage. Related works like CodeMonkey (Ehrlich et al., 2025) and CodeStory (Pani, 2024)
maintain this structured approach while exploring inference-time scaling to enhance performance.
Unlike prior works that curate specialized tools or execution pipelines for LMs to gather information
for problem-solving from the environement, our work leverages LCLMs to directly process the entire
environment state, demonstrating performance comparable to these heavily engineered scaffolding
methods.

Long-context LMs Advances in model architecture (Gu & Dao, 2024; Sun et al., 2024) and infrastruc-
ture (Dao et al., 2022; Rajbhandari et al., 2020) have enabled LCLMs with extended context windows
and enhanced capabilities. Empirical evidence from Lee et al. (2024); Li et al. (2024) indicates
that, given adequate computational resources, LCLMs systematically surpass retrieval-augmented
generation (RAG) systems in performance, even without task-specific training. Models such as
Longformer (Beltagy et al., 2020) and LongT5 (Guo et al., 2022) have demonstrated remarkable
efficacy in document summarization tasks. Building on this foundation, our work investigates the
capability of LCLMs to supplant traditional memory and information-gathering processes in LM
agent scenarios.

3 METHOD

Traditional approaches to designing LM agents typically operate under the assumption that
the environment is too large to observe directly and rely upon interactive exploration to gather
information. This assumption is natural for humans and in internet-based environments where the
environment is far too large for any single computer. However, many important applications of agents
(e.g. multi-hop QA, software engineering) do not inherently require active information gathering,
and in principle, a sufficiently long context model could simply return the answer directly after being
prompted with the entire environment in its context.

We contrast the two views in Figure 1, where we compare scaffolding based approaches that use tools
and execution loops for information gathering (left) with a direct approach that simply encodes the
context as on long prompt (right). Even in tasks as complex as repository-level bugfixing, all files
and their relationships are a relatively compact and complete state that is sufficient for tasks like bug
fixing within the repository—-e.g., 98% (Maj et al., 2024) of the github repositories can fit into the
2-million-token context window of Gemini (Team et al., 2023). This motivates the question: Can we
simply incorporate the entire state directly into the agent’s context to enable full observability and
eliminate the need for iterative, interactive exploration?

We design such state-in-context agents by leveraging the increasingly powerful long-context LMs
(LCLMs) that can effectively process millions of context tokens, as illustrated in Figure 1 (right).
This eliminates the need for complex scaffolding design for interactive explorations, effectively trans-
forming open-ended agentic tasks into closed-ended ones, settings where LMs excel by leveraging
their (long-)context processing abilities. We first illustrate this conceptual idea in Section 3.1, and
develop our implementation in Section 3.2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Instantiation of state-in-context agents for software engineering. (Left) When the
environment state (i.e., code repository) exceeds the context length limit of LCLMs, we apply a
simple compression step that ranks files by their relevance and selectively includes files up to the
maximum context limit. (Right) We instatiate state-in-context agents in two ways: DIRECTSOLVE
directly generates the solution using LCLMs that consume the entire (compressed) state, which are
then fed into short-context Language Models (SCLMs) to generate the solutions, leveraging the
superior problem-solving capabilities of SCLMs.

3.1 DESIGNING STATE-IN-CONTEXT AGENTS WITH LONG-CONTEXT LMS

The standard agent formulation typically operates in partially observable settings. In particular,
an agent is instantiated to solve a task p (e.g., fixing a bug) within an environment with a state s
(e.g., all files and their relations). To accomplish the task, the agent explores the environment by
performing a sequence of actions a1, a2, . . . to collect a corresponding sequence of observations
o1, o2, Intuitively, the collected set of observations ∪t

i=1oi forms a partial reconstruction of
the full state su, ideally covering the necessary information to complete the task (e.g., buggy code
locations). In existing agent frameworks, this interactive exploration is typically implemented through
specialized tools, such as a file viewer and code search utility in SWE-Agent (Yang et al., 2024b) or
through customized execution pipelines, such as code localization and bug repair in Agentless (Xia
et al., 2024) (see Figure 1, left). These approaches require a careful design of agentic scaffoldings
tailored to specific tasks that facilitate effective explorations of agents during task executions.

In contrast, we leverage the increasingly powerful long-context processing capabilities of LCLMs to
design a state-in-context agent, which is an agent that receives either the full state s or a minimally
compressed version s̃ = Cp(s), which retains the task-relevant information (i.e., su ⊂ s̃) while
discarding irrelevant details. Because the input state retains the necessary components for solving the
task su, the agent can explore in context, using its contextual understanding abilities to extract relevant
information and directly produce a solution. This design enables a minimal pipeline, reducing the
need for hand-crafted, task-specific scaffolding and mitigating the compounding errors that often
arise in multi-stage pipelines.

Intuitively, by putting the entire environment state into the model context, our method essentially
trades off precision for a better recall of relevant information su. This approach relies on LCLMs that
are sufficiently capable of processing large contexts and effectively retrieving the relevant parts. The
bottleneck here is set by the capabilities of LCLMs, which, as we expect, will continue to improve
over time. As LCLMs continue to scale, our method may be increasingly favorable–shifting the
exploration burden from open-ended interaction to in-context inference and close-ended task-solving
where LMs excel.

3.2 DEVELOPING STATE-IN-CONTEXT AGENTS FOR SOFTWARE ENGINEERING

In this work, we provide an instantiation of state-in-context agents with LCLMs for software engi-
neering tasks on SWE-Bench (Jimenez et al., 2024). SWE-bench serves as an ideal testbed for our
ideas, as it is practically useful and serves as a common agent scaffolding benchmark, but at the same
time, there is no inherent need for exploration in SWE-bench.

We aim to develop a simple workflow that minimizes the manual pipeline curation or specialized tool
design while maximizing the utility of LCLMs. In particular, the core of our workflow is the use of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

All Files Core Files Only Core Code Only
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 B

el
ow

 2
M

 T
ok

en
s

21.2%

77.0%
85.0%

Codebases Within 2M Token Limit

0.0M 1.0M 2.0M 3.0M 4.0M 5.0M
Number of Tokens

0

50

100

150

N
um

be
r o

f I
ns

ta
nc

es

85.0% of codebases
 2M tokens

Distribution of Code Token Counts (Core Code Only)

Figure 3: Codebase token distributions and context window compatibility. (Left) Percentage of
problem instances within the 2M token limit of Gemini-1.5-Pro across three state representation meth-
ods: all files, core files only (test and non-python files removed), and core code only (documentation
further removed) in SWE-Bench-Verified. (Right) Distribution of token counts for code-only content
of instances in SWE-Bench-Verified. The dashed line marks the 2M token threshold, demonstrating
that most codebases can fit within current LCLMs context constraints through selective content
filtering.

LCLMs that receive the entire code repository and directly outputs the solution (DIRECTSOLVE),
analogous to standard zero-shot prompting tasks where LMs have demonstrated strong performance.
In cases where the code repositories are too large to fit into the context window, we adopt a simple
state compression step with LCLMs based on the repository directory structure to discard obviously
irrelevant files. Futhermore, considering that current LCLM capabilities may fall short of the frontier
SCLMs, we develop a two-stage approach (SELECTSOLVE) that combine the strength of both to
optimize performance. We illustrate our design in Figure 2 and present details below.

State compression The context length of current LCLMs may not sufficiently accommodate all code
repositories, e.g., the 2-million-token context of Gemini Pro is insufficient for 5 out of 12 repositories
(394 out of 500 instances) in SWE-Bench Verified (Chowdhury et al., 2024). This necessitates an
additional preprocessing step to properly compress these repositories to fit into the context of current
LMs. However, we anticipate that this will become less of an issue as the context length of LCLMs
continues to grow.

We implement this compression step using a straightforward ranking-and-filtering approach (see
Figure 2, left). In particular, we prompt an LCLM to rank folders and files based solely on the
repository structure and the issue statement, producing an ordered list by relevance to the issue (see
Section C for the prompt and an example). When some files are omitted from LM’s output list, we
randomly order them to maintain a complete ranked list. Based on this ranking, we sequentially
include as many files into the context as possible until a predefined length threshold (i.e., the
maximum context length of the LCLM) is reached. To maximize inclusion, we retain only the core
code by removing comments, docstrings, test files, and non-target language files, as these provide
limited functional information about the codebase. This approach significantly increases the number
of problem instances from SWE-Bench-Verified that can fit into the 2-million-token context window,
expanding coverage from 21.2% to 85.0% (see Figure 3). While this approach yields relatively
coarse rankings due to limited information from the repository structure, it is sufficient for excluding
obviously irrelevant ones and including the target files in the context, guaranteeing a high recall
(98.8% on SWE-Bench-Verified in our experiments).

DIRECTSOLVE method For code repositories (compressed or otherwise) within the context length
limit, our DIRECTSOLVE method directly prompts an LCLM to generate the solution based on the
problem statement and the entire (compressed) repository state, as illustrated in Figure 2 (bottom
right). We found a combination of two simple but effective prompting tricks to significantly improve
performance. Our first prompting technique is code restatement, where we prompt the model to
re-state relevant code for the task before starting the bug fixing process. This acts as an in-context
retrieval mechanism and mitigates the “lost in the middle” issue (Liu et al., 2023) in which LCLMs
struggle to extract information from a distant context. The other one we found effective was chain-of-
thought prompting (Wei et al., 2023) that generates the code diff after decomposing the solve step
into smaller reasoning steps (see Section C). Overall, this approach enables an LCLM to perform
localization, code restatement, and repair in a single inference call, requiring only direct prompting
without additional handcrafted scaffoldings.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

SELECTSOLVE method The capabilities of current LCLMs still fall short of short-context counter-
parts, resulting in pure LCLM-based DIRECTSOLVE agents underperforming compared to carefully
designed agentic systems. To address this challenge, we propose a simple two-stage method that
leverages both the long-context processing capabilities of LCLMs and the superior problem-solving
abilities of SCLMs. The idea is to use an LCLM in the first part where we identify and compress the
state and pass this to an SCLM as the problem-solving agent based on the selected files, as illustrated
in Figure 2 (top right). In the first step, an LCLM performs single-call localization on the compressed
repository, identifying relevant files based on the problem statement (see Section C for the prompt
and an example). Although we explored localization at various granularities (functions, methods),
file-level localization proved both simpler and more effective. In the second step, a more specialized
SCLM (e.g., Claude-3.7 (Anthropic, 2024)) with a limited context performs code repair using only
the top K localized files. This approach allows us to combine the strengths of different models while
maintaining simplicity.

Patch format and validation Both our DIRECTSOLVE and SELECTSOLVE methods generate patches
using the Search/Replace edit format introduced in Agentless (Xia et al., 2024), which explicitly
specifies both the original code snippets to be replaced and their replacements. This approach
enhances precision and reduces hallucination by focusing on targeted edits rather than regenerating
entire functions. For patch evaluation and selection, we adopt the same validation methodology from
Agentless, which involves generating reproduction tests to verify issue resolution, applying regression
tests to minimize functionality disruption, and implementing majority voting on normalized patches
to select the most frequently occurring patch as the final submission. While our framework is not
primarily focused on inference time scaling, it naturally accommodates computational scaling in a
straightforward manner: simply generating more samples in the DIRECTSOLVE method or sampling
multiple patches with various localization samples in the SELECTSOLVE method.

4 EXPERIMENTS

We describe our experimental setups in Section 4.1. In Section 4.2, we demonstrate the effectiveness of
our method with comparable end-to-end results to heavily engineered agentic scaffolding. Section 4.3
presents an extensive ablation study highlighting critical design choices for developing state-in-
context agents with LCLMs. Finally, Section 4.4 evaluates the robustness of our approaches across
various LCLMs.

4.1 EXPERIMENTAL SETUPS

Benchmark We evaluate our method using the SWE-bench Verified benchmark (Chowdhury et al.,
2024), a high-quality dataset consisting of 500 software engineering problems carefully selected and
validated through expert human annotation.

Implementation details We used Gemini-1.5-Pro with 2 million token context and Gemini-2.5-Pro
with 1 million token context as our LCLM. For SELECTSOLVE, we also evaluated Claude-3.7-Sonnet
as the SCLM that demonstrates the specialized performance on coding tasks. We selected the top K
= 6 files for SELECTSOLVE, meaning the repair model received content from six localized files to
generate patches. Following Agentless (Xia et al., 2024), we used a temperature of 0.8 for sampling
different patches and performing patch selection. Across all methods, we generated 8 patches per
instance from which a single one is selected by majority voting for evaluation , determined by the
batch decoding limit of the Gemini API.

Baselines Previous approaches to repository-level software engineering primarily fall into two
categories: agentic frameworks and non-agentic scaffolding. Several works employ similar pipelines
but focus on scaling up inference-time compute (Ehrlich et al., 2025), which is out of the scope of our
comparison–our objective is to demonstrate the effectiveness of our scaffolding-free agent approach,
positioning it as a performance-competitive alternative to heavily enginnered agentic scaffoldings.
We selected Agentless and CodeAct as our baselines, representing the state-of-the-art within each
method category. We primarily utilized Gemini-1.5-Pro (Team et al., 2023), Gemini-2.5-Pro with
google search tool disabled (Google Deepmind, 2025) and Claude-3.7-Sonnet (Anthropic, 2024) to
ensure comparability with our methods and included GPT-4o (OpenAI, 2024) with both methods for
reference. We describe the details of these baselines below.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance across different methods and models on SWE-Bench-Verified. Our
DIRECTSOLVE method, despite its simplicity, outperforms methods with heavily engineered scaffold-
ings when all methods are instantiated with Gemini-1.5-Pro and Gemini-2.5-Pro. Our SELECTSOLVE
method further improves performance over DIRECTSOLVE by leveraging the superior coding capabil-
ities of Claude-3.7-Sonnet, positioning itself between the Agentless and CodeAct approaches when
using the same model.

Approach Model Pass@1 Pass@8
GPT-4o (Reference)
Agentless GPT-4o (From cache) 36.2% 43.4%
CodeAct GPT-4o 30.0% -

Gemini-1.5-Pro
Agentless Gemini-1.5-Pro (Direct transferred) 11.0% 13.0%
Agentless Gemini-1.5-Pro (Adapted) 32.0% 37.2%
CodeAct Gemini-1.5-Pro 18.8% -
DIRECTSOLVE Gemini-1.5-Pro 38.0% 46.2%
SELECTSOLVE Gemini-1.5-Pro + Gemini-1.5-Pro 39.2% 47.8%

Claude-3.7-Sonnet
Agentless Claude-3.7-Sonnet 45.2% 50.8%
CodeAct Claude-3.7-Sonnet (Reported) 58.0% -
SELECTSOLVE Gemini-1.5-Pro + Claude-3.7-Sonnet 48.6% 59.2%

Gemini-2.5-Pro
Agentless Gemini-2.5-Pro (Adapted) 47.8% 54.0%
CodeAct Gemini-2.5-Pro (Reported) 46.4% -
DIRECTSOLVE Gemini-2.5-Pro 50.8% 60.2%

• Agentless (Xia et al., 2024) was designed specifically for GPT-4o and Claude-3.5-Sonnet, and
failed to transfer directly to Gemini models due to compounding parsing errors. We therefore
curated the pipeline to ensure correct parsing at each step, and report both pre- and post-curation
numbers, labeled as “Direct Transferred“ and “Adapted” respectively in Table 1. Moreover, the
authors provided intermediate caches of GPT-4o trajectories, allowing us to evaluate them as
a completely faithful reproduction. In all Agentless configurations, we sampled 4 instances of
localized relevant code following the original work, and generated 2 samples based on each to
constitute the 8 patches for selection and evaluation. We followed the same procedure as the
original work to select the final patch with majority vote, similar to our method.

• CodeAct (Wang et al., 2025) OpenHands CodeAct is an open-source framework that implements
an interactive LM-based agent with a well-designed pipeline and toolset. We used the repository at
commit d9926d24 with the default maximum iteration limit of 60, where each iteration consists
of an observation and action generation process. Regarding the tool set, we restricted possible
tools to basic functionalities, disabling web browsing which is designed for open-ended real-world
tasks and could potentially compromise benchmark integrity. For Claude-3.7-Sonnet, we used
OpenHands reported results.

Evaluation metrics We reported the pass@1 rate, which measures the solve rate of the final selected
patch for each method. For our method and the Agentless approach–where we had already sampled 8
potential patches for selection–we additionally reported the pass@8 rate, which measures the rate of
at least one patch solving the issue among the 8 samples.

4.2 END-TO-END RESULTS ON SWE-BENCH-VERIFIED

DIRECTSOLVE with LCLMs outperforms agent scaffoldings in matched comparisons Table 1
shows the end-to-end performance of our methods compared to baselines. When all methods are
instantiated with Gemini-1.5-Pro, our DIRECTSOLVE method, despite its simplicity, outperforms the
best baseline (Agentless) by 6% on pass@1 with statistical significance. Similarly, implementing
Gemini-2.5-Pro yields a statistically significant 6.2% improvement pass@8 metrics. We assess
statistical significance using one-sided McNemar tests, with detailed p-values provided in Section A.2.
Our DIRECTSOLVE method essentially zero-shot prompts an LCLM to reason and solve problems
based on the entire (or compressed) environment state, indicating that current LCLMs can effectively
function as scaffolding-free agents. Surprisingly, our DIRECTSOLVE method performs comparably

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Ablation P@1 P@8
DirectSolve method 32% 50%

- CoT prompt 9% 16%
- relevant code restatement 28% 49%
- add file index 27% 44%
- rm comments & docstrings 27% 41%

Table 2: Ablation study on key components of
our DIRECTSOLVE method. Results are on a ran-
dom subset of 100 instances from SWE-Bench-
Verified.

Method K=3 K=6 K=10
Agentless

prompting-based 138 116 –
embedding-based 165 119 102
combined 135 88 66

LCLM
one-call 112 75 56
one-call (N = 8) 100 62 47

Table 3: File localization error comparison be-
tween Agentless and our LCLM-based file se-
lection in SELECTSOLVE on the whole SWE-
Bench-Verified dataset.

with our SELECTSOLVE method when instantiated with the same Gemini-1.5-Pro model (with only
a 1.2% lower pass@1 rate), indicating the promise of minimizing agentic workflow when LCLM
capabilities continue to improve.

SELECTSOLVE effectively leverages the capabilities of SCLMs When our SELECTSOLVE is in-
stantiated with Claude-3.7-Sonnet as the SCLM for generating the patches, the performance improves
significantly from 39.2% to 48.6%, highlighting its potential to leverage the advanced problem-
solving capabilities of SCLMs. Compared to baselines, SELECTSOLVE outperforms Agentless but
falls short of OpenHands CodeAct. This suggests that while our simple method delivers strong
performance with minimal engineering effort, specialized tool design tailored to specific models and
tasks may still yield additional gains.

Scaffolding-based baselines do not robustly transfer across models. Scaffolding-based approaches
often rely on specialized tools and execution workflows that are tailored to the behavior of specific
models. These specializations—such as prompt designs or tool integrations—are typically optimized
for a given model and may not transfer effectively to others. Indeed, we find that for both baselines,
direct transfer to Gemini-1.5-Pro without leads to a significant performance drop, with Agentless
dropping to 11% and CodeAct to 18.8%. This underscores the limited robustness of standard
scaffolding-based approaches across different models, highlighting the necessity of human effort for
model-specific adaptations. Consequently, our simplified framework that requires minimal curation
may be preferable.

4.3 ABLATION STUDY

In this subsection, we systematically analyze various components of our methods to understand their
relative contributions to overall performance and identify key factors that enable LCLMs to function
effectively as scaffolding-free agents. In all ablation study experiments, we measured performance
without applying additional patch validation to specifically assess the intrinsic patch-generation
capabilities of LCLMs across various configurations.

Which design choices matter? To address this question, we ablate different design choices in our
DIRECTSOLVE method to assess the effectiveness of each component. We present the results in
Table 2 and detail the discussion below.

• Prompting Techniques: We first examine the prompting techniques employed in our approach:
chain-of-thought (CoT) prompting, relevant code restatement, and adding file index. Our analysis
reveals that CoT prompting is crucial for agent performance; removing it leads to a significant
performance drop of 23% in pass@1 and 34% in pass@8, underscoring the critical role of reasoning
in bug-fixing tasks. Moreover, we find that relevant code restatement notably influences pass@1
performance but does not significantly impact pass@8, a metric indicative of solution coverage.
This observation suggests that while relevant code restatement may not enahnce the maximum
problem-solving capability, it improves the stability and consistency of our method. Finally, we
find that the seemingly minor enhancement of adding file index information proves important,
aligning with the observations in Lee et al. (2024).

• Repository compression: We then analyze the effectiveness of removing comments and doc-
strings from the repository to reduce the context length. This reduces the average token count
across all instances from approximately 2M to 1.4M and yields an end-to-end performance im-
provement of 5% in pass@1 and 6% in pass@8. The significant gain through this simple operation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

also implies the potential inefficacies of current LCLMs in processing very long-contexts, which
we will further analyze in Figure 4.

How do LCLMs improve localization in the SELECTSOLVE method? The Agentless framework
employs a localization scaffolding that combines direct LM prompting with embedding-based retrieval
to localize the specific target files or code lines, whereas our SELECTSOLVE method directly prompts
the LCLM to perform localization based on the compressed repository. We evaluate and compare
the localization performance of these two approaches by measuring file-level localization errors
using top-K file localization with Gemini-1.5-Pro. As shown in Table 3, employing a single LCLM
directly can reduce file-level localization error by over 15% compared to the combined scaffolding-
based method across various values of K. Moreover, when aggregating localization results from 8
samples using majority voting, the localization error further decreases by approximately 25% to 35%.
These results illustrate that utilizing LCLMs not only simplifies the localization procedure but also
significantly enhances localization accuracy.

Additional ablations in Section A show that target-file placement and prompt length materially affect
LCLM effectiveness, reinforcing the value of relevance-based ordering in the state-compression step
and indicating ample headroom for further LCLM development to better exploit long contexts.

4.4 ROBUSTNESS TO LCLM CHANGES

Given that the system is designed in the experiments of Gemini-1.5-Pro, we test whether our prompts
and results are overfit to Gemini-1.5-Pro by varying the LCLM used in our state-in-context models.
Other models with context windows of at least 1 million tokens include: Gemini-1.5-Pro (2M),
Gemini-2.5-Pro (1M), Minimax-Text-001 (1M), and Gemini-Flash-2.0 (1M). We randomly sampled
100 instances from SWE-Bench-Verified for this evaluation and did not apply patch validation.

The results are shown in Table 4. Gemini-2.5-Pro consistently achieves the highest performance across
all evaluation metrics, attaining a 51% solve rate on a random subset of 100 instances with 8 samples
without any patch selection. Notably, DIRECTSOLVE even outperforms SELECTSOLVE methods in
the Gemini-2.5-Pro experiments, suggesting that as LCLMs improve, the performance gap between
minimal prompting frameworks and scaffolding approaches may further narrow or even reverse.

Table 4: State-in-context approaches with alterna-
tive LCLMs. Performance degrades for DirectSolve,
but remains relatively high across the available mod-
els. Evaluations are conducted on a random subset
of 100 instances from SWE-Bench-Verified.

Approach Model p@1 p@8

DIRECTSOLVE

Gemini-1.5-Pro 32% 50%
Gemini-2.5-Pro 51% 64%
Gemini-Flash-2.0 24% 37%
Minimax-Text-001 15% 20%

SELECTSOLVE

Gemini-1.5-Pro 34% 48%
Gemini-2.5-Pro 49% 63%
Gemini-Flash-2.0 29% 46%
Minimax-Text-001 20% 32%

All methods achieve a nontrivial 20%+ solve
rate, suggesting that our experiment setting
and prompts are not overfitted to a single
LCLM. Minimax-Text-001 (MiniMax et al.,
2025), the only open-weight model evaluated,
falls short of the closed-source models’ perfor-
mance but still successfully resolves 20% of
instances using our SELECTSOLVE method.

5 DISCUSSION

Cost analysis The average cost of Agentless,
CodeAct, and our method in Section 4 is
$0.25, $0.87, and $2.60, respectively, indicat-
ing that LCLM is currently less cost-effective.
That said, LM inference costs have fallen
sharply—GPT-4–equivalent APIs are down
∼1000× over three years (Guido Appenzeller,
2024)—and context windows have expanded
∼500× (from 4K to 2M tokens), making monolithic, LCLM-based agents increasingly practical. In
real-world use, repeated queries to the same codebase enable KV caching that substantially reduces
average inference cost: after the initial pass, the marginal cost is dominated by context-caching
tokens (about one-quarter of total), lowering per-instance cost from $2.60 to ∼$0.725. Together, (i)
continued inference-cost declines and (ii) KV caching in repeated codebase queries suggest the cost
of our simplified method is increasingly acceptable; additional discussion of implications beyond
SWE-Bench and general codebase feasibility appears in Section B.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Moatless tools. https://github.com/aorwall/moatless-tools, 2024.

Opendevin: Code less, make more. https://github.com/OpenDevin/OpenDevin/,
2024.

Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/
claude-3-7-sonnet, 2024.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations (ICLR),
2015.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Daniil A. Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical re-
search with large language models. Nature, 624(7992):570–578, Dec 2023. doi: 10.1038/
s41586-023-06792-0.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D. White, and Philippe
Schwaller. ChemCrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Kevin Liu, and
Aleksander Madry. Introducing swe-bench verified. OpenAI Blog, 2024. https://openai.
com/index/introducing-swe-bench-verified/.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald Clark, Christopher Ré, and Azalia Mirhoseini.
Codemonkeys: Scaling test-time compute for software engineering, 2025. URL https://
arxiv.org/abs/2501.14723.

Paul Gauthier. Aider is ai pair programming in your terminal. https://aider.chat/, 2024.

Google Deepmind. Gemini 2.5: Our most intelligent ai model.
https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025, 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Guido Appenzeller. Welcome to llmflation – llm inference cost is going down fast. https:
//a16z.com/llmflation-llm-inference-cost, 2024.

10

https://github.com/aorwall/moatless-tools
https://github.com/OpenDevin/OpenDevin/
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2501.14723
https://arxiv.org/abs/2501.14723
https://aider.chat/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025
https://arxiv.org/abs/2312.00752
https://a16z.com/llmflation-llm-inference-cost
https://a16z.com/llmflation-llm-inference-cost

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, and
Yinfei Yang. Longt5: Efficient text-to-text transformer for long sequences, 2022. URL https:
//arxiv.org/abs/2112.07916.

Brian Ichter, Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, Dmitry Kalashnikov, Sergey Levine,
Yao Lu, Carolina Parada, Kanishka Rao, Pierre Sermanet, Alexander T. Toshev, Vincent Vanhoucke,
Fei Xia, Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown, Michael Ahn, Omar Cortes, Nicolas
Sievers, Clayton Tan, Sichun Xu, Diego Reyes, Jarek Rettinghouse, Jornell Quiambao, Peter
Pastor, Linda Luu, Kuang-Huei Lee, Yuheng Kuang, Sally Jesmonth, Nikhil J. Joshi, Kyle Jeffrey,
Rosario J. Ruano, Jasmine Hsu, Keerthana Gopalakrishnan, Byron David, Andy Zeng, and
Chuyuan Kelly Fu. Do as i can, not as i say: Grounding language in robotic affordances. In
Proceedings of the 6th Conference on Robot Learning (CoRL 2022), pp. 287–318. PMLR, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
volume 25, pp. 1097–1105, 2012.

Jinhyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru Dua, Devendra Singh Sachan, Michael Boratko,
Yi Luan, Sébastien M. R. Arnold, Vincent Perot, Siddharth Dalmia, Hexiang Hu, Xudong Lin,
Panupong Pasupat, Aida Amini, Jeremy R. Cole, Sebastian Riedel, Iftekhar Naim, Ming-Wei
Chang, and Kelvin Guu. Can long-context language models subsume retrieval, rag, sql, and more?,
2024. URL https://arxiv.org/abs/2406.13121.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky. Retrieval augmented
generation or long-context llms? a comprehensive study and hybrid approach, 2024. URL
https://arxiv.org/abs/2407.16833.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL
https://arxiv.org/abs/2307.03172.

Petr Maj, Stefanie Muroya, Konrad Siek, Luca Di Grazia, and Jan Vitek. The Fault in Our Stars:
Designing Reproducible Large-scale Code Analysis Experiments. In Jonathan Aldrich and Guido
Salvaneschi (eds.), 38th European Conference on Object-Oriented Programming (ECOOP 2024),
volume 313 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 27:1–27:23, Dagstuhl,
Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-341-6.
doi: 10.4230/LIPIcs.ECOOP.2024.27. URL https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ECOOP.2024.27.

MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang,
Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze
Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie,
Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei
Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang,
Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang,
Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao
Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song,
Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong,
Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang,
Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang
Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang,
and Zijia Wu. Minimax-01: Scaling foundation models with lightning attention, 2025. URL
https://arxiv.org/abs/2501.08313.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024.

11

https://arxiv.org/abs/2112.07916
https://arxiv.org/abs/2112.07916
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2406.13121
https://arxiv.org/abs/2407.16833
https://arxiv.org/abs/2307.03172
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.27
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.27
https://arxiv.org/abs/2501.08313
https://openai.com/index/hello-gpt-4o/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sandeep Kumar Pani. Sota on swebench-verified: (re)learning the bitter lesson, 2024. URL https:
//aide.dev/blog/sota-bitter-lesson.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the
36th Annual ACM Symposium on User Interface Software and Technology, UIST ’23, New
York, NY, USA, 2023a. Association for Computing Machinery. ISBN 9798400701320. doi:
10.1145/3586183.3606763. URL https://doi.org/10.1145/3586183.3606763.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith R. Morris, Percy Liang, and Michael S.
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the
36th ACM Symposium on User Interface Software and Technology (UIST ’23). ACM, 2023b. doi:
10.1145/3586183.3606763.

Joon Sung Park, Carolyn Q. Zou, Aaron Shaw, Benjamin Mako Hill, Carrie Cai, Meredith Ringel
Morris, Robb Willer, Percy Liang, and Michael S. Bernstein. Generative agent simulations of
1,000 people, 2024. URL https://arxiv.org/abs/2411.10109.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models, 2020. URL https://arxiv.org/abs/1910.
02054.

Haifeng Ruan, Yuntong Zhang, and Abhik Roychoudhury. Specrover: Code intent extraction via
llms. arXiv preprint arXiv:2408.02232, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint arXiv:2303.17580,
2023.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 2023.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
(learn at test time): Rnns with expressive hidden states, 2024. URL https://arxiv.org/
abs/2407.04620.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2025. URL https://arxiv.org/abs/2407.16741.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024a.

12

https://aide.dev/blog/sota-bitter-lesson
https://aide.dev/blog/sota-bitter-lesson
https://doi.org/10.1145/3586183.3606763
https://arxiv.org/abs/2411.10109
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2201.11903

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024b. URL https://arxiv.org/abs/2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024.

13

https://arxiv.org/abs/2405.15793

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS

In this appendix we extend the ablation analysis from Section 4.3 to examine how target-file placement
andcontext length affect model repair performance.

A.1 ADDITIONAL RESULTS

Table 5: Impact of target file location
on LCLM DIRECTSOLVE performance
with 1M token prompts.

Metrics Front End Random

pass@1 32% 26% 28%
pass@8 50% 43% 41%

How does the target file location impact the agent per-
formance? The performance of our approach may be
bottlenecked by the long-context processing capabilities
of LCLMs–they may not sufficiently absorb the informa-
tion in the provided context and suffer potential issues like
“lost in the middle” (Liu et al., 2023). To understand this
potential limitation, we conduct a controlled analysis by
varying the placement of the target files within the context–
positioning them at the front, at the end, or randomly within the context–and measure the resulting
DIRECTSOLVE performance of Gemini-1.5-Pro. As shown in Table 5, the position of target files
significantly impacts the one-step performance, with positioning target files at the front of the prompt
yielding the best results. This finding validates our design of ordering files to be included in the
context based on their relevance score during the state compression step.

105 106

Context Length
0.30

0.35

0.40

0.45

0.50
Ac

cu
ra

cy

Accuracy vs. Context Length
Pass@1
Pass@8

Figure 4: Model performance vs. Context
Length for DIRECTSOLVE with target files
placed at the front of the prompt.

How does context length impact agent perfor-
mance? We further investigate the effect of context
length on the performance of state-in-context agents
using LCLMs through a controlled analysis. Specif-
ically, we maintain the target files at the front of
the context and progressively add remaining files ac-
cording to their relevance scores—computed during
the state compression step—until reaching the spec-
ified context length limit. As illustrated in Figure 4,
even though the necessary information is consistently
present in the prompt, increasing the context length
negatively affects solving accuracy. We observe a
clear performance degradation as the context length
expands from 100K to 1M tokens: pass@8 accuracy
decreases from 53% to 47%, and pass@1 accuracy
declines from 39% to 31%. This indicates a substantial performance gap for current LCLMs when
handling longer contexts in the DIRECTSOLVE approach, a gap potentially alleviated by employ-
ing the SELECTSOLVE method. These results also highlight the critical need to enhance LCLMs’
capabilities in effectively processing and leveraging longer contexts.

A.2 PAIRWISE STATISTICAL SIGNIFICANCE TESTS

We conducted pairwise significance testing on 500 SWE-Bench-Verified instances using one-sided
McNemar tests (paired binary outcomes per instance) to evaluate whether our method outperforms
the strongest baseline.1

Gemini-1.5-Pro. Against the strongest baseline (Agentless), DIRECTSOLVE achieves statistical
significance at pass@1 with p = 0.0018 .

Gemini-2.5-Pro. For pass@1, the comparison yields p = 0.07, which is marginal given a 3%
absolute improvement. In contrast, pass@8 shows clear significance with p = 0.0008 against the
strongest baseline. We view pass@8 as the more reliable estimator in this setting because it exhibits
lower variance than pass@1 on fixed-size test sets.

1We use a one-sided alternative reflecting the directional hypothesis that our method is better.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B ADDITIONAL DISCUSSION

Implications for agents beyond SWE-bench More broadly, our approach is likely to have im-
plications for scaffolding methods for information gathering, both from the environment as well
as learning from their past interaction trajectories (Park et al., 2023a). With CodeAct trajectories
averaging 77.7K tokens across SWE-Bench-Verified instances and generative agent simulations
reaching approximately 50K tokens (Park et al., 2024), these extensive trajectories fit comfortably
within modern LCLMs’ context windows. This suggests that LCLMs may also be able to simplify
complex memory and retrieval architectures for LM agent interactions.

General codebase feasibility We want to emphasize that the repositories in SWE-Bench-Verified
represent major collaborative projects and are atypical in their large size. As stated in Maj et al.
(2024), less than 2% of GitHub repositories have more than 100K SLOC. This means over 98% of
GitHub repositories can probably be directly fitted into the 2M token context window, suggesting that
LCLM-based zero-shot approaches may already be practical for simpler use cases.

C PROMPT DETAILS

C.1 DETAILS FOR FILE RANKING

In this section, we provide details about the prompts used in our proposed DIRECTSOLVE and
SELECTSOLVE methods presented in Section 3.2.

File Ranking by relevance During state compression, we instruct the model to rank files by their
relevance to the problem statement given the repository structure. The prompt is as follows:

P l e a s e look t h r o u g h t h e f o l l o w i n g GitHub problem d e s c r i p t i o n and R e p o s i t o r y s t r u c t u r e and p r o v i d e a r an ke d l i s t o f f i l e s o r s u b f o l d e r s from t h e most r e l e v a n t t o t h e l e a s t r e l e v a n t f o r f i x i n g t h e problem .

Note t h a t you s h o u l d f o c u s on p r o v i d i n g s p e c i f i c f i l e s o r t h e l o w e s t s u b f o l d e r i n t h e t r e e . Avoid l i s t i n g a f o l d e r t h a t c o n t a i n s many f i l e s ; i n s t e a d , b r e a k i t down t o t h e most g r a n u l a r and r e l e v a n t components .

GitHub Problem D e s c r i p t i o n
{ p r o b l e m s t a t e m e n t }

R e p o s i t o r y S t r u c t u r e
{ s t r u c t u r e }

###

P l e a s e p r o v i d e t h e r a nk ed l i s t w i th t h e most r e l e v a n t i t em f i r s t and t h e l e a s t r e l e v a n t i t em l a s t .
Ensure t h a t each l i s t e d i t em i s d i r e c t l y r e l a t e d t o s o l v i n g t h e problem d e s c r i b e d .
The r e t u r n e d l i s t s h o u l d be s e p a r a t e d by new l i n e s and wrapped wi th ‘ ‘ ‘ .
For example :
‘ ‘ ‘
f i l e 1 . py
f o l d e r 2 / f i l e 3 . py
f o l d e r 4 / s u b f o l d e r 5 /
f o l d e r 6 / f i l e 7 . py
‘ ‘ ‘

Through this prompt, the language model produces an ordered list of files and folders, ranked by
relevance to the issue statement. Files not explicitly mentioned are randomly appended after all
mentioned files. This approach yields an approximated total ranking of all files, enabling us to
compress the state to accommodate any context limit.

C.2 DETAILS AND AN EXAMPLE FOR REPAIR PROMPT

For our DIRECTSOLVE method and the repair stage of SELECTSOLVE, we employ a chain-of-thought
(CoT) prompt that guides the model to restate relevant code and generate appropriate repair patches.
This prompt provides step-wise instructions with CoT techniques applied to both code localization
and repair. While the prompt is extensive and could potentially be simplified in future work, our
current implementation uses the following:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

You a r e a s e n i o r s o f t w a r e e n g i n e e r t a s k e d wi th a n a l y z i n g and r e s o l v i n g a r e p o s i t o r y i s s u e . You have been p r o v i d e d wi th t h e c o m p l e t e r e p o s i t o r y s t r u c t u r e and t h e s p e c i f i c i s s u e d e s c r i p t i o n .

REPOSITORY STRUCTURE:
−−−−−−−−−−−−−−−−−−−−
{ f i l e s t r u c t u r e }
−−−−−−−−−−−−−−−−−−−−

###########################
ISSUE DESCRIPTION :
−−−−−−−−−−−−−−−−−
{ i s s u e }

ANALYSIS INSTRUCTIONS :
−−−−−−−−−−−−−−−−−−−−

Your t a s k i s t o pe r fo rm t h e f o l l o w i n g s t e p s i n o r d e r :

1 . ** Chain −of −Thought f o r L o c a l i z a t i o n **
− Analyze t h e p r o v i d e d r e p o s i t o r y s t r u c t u r e and i s s u e d e s c r i p t i o n t o i d e n t i f y t h e r e l e v a n t code s e c t i o n s .
− E x p l a i n your r e a s o n i n g and p r o c e s s f o r l o c a l i z i n g t h e r e l e v a n t code .

2 . ** R e s t a t e d R e l e v a n t Code**
− P r o v i d e t h e e x a c t code s n i p p e t t h a t you have i d e n t i f i e d as r e l e v a n t t o t h e i s s u e .
− I n c l u d e a few l i n e s o f c o n t e x t b e f o r e and a f t e r t h e c r i t i c a l s e c t i o n .
− **IMPORTANT: * * E n c l o s e t h i s s e c t i o n i n a code b l o c k u s i n g t h e t a g ** r e l e v a n t code ** (do n o t use any markdown l a n g u a g e t a g s l i k e ” py thon ”) .
− I f n e c e s s a r y , copy a l o n g e r c o n t e x t from t h e f i l e t o e n s u r e t h a t t h e l o c a t i o n where t h e r e v i s i o n i s needed i s f u l l y i n c l u d e d , even i f on ly a p a r t o f t h e code w i l l be m o d i f i e d .
− I f you would l i k e t o add t h e l i n e ’
p r i n t (x) ’ , you must f u l l y w r i t e t h a t out , w i th a l l t h o s e s p a c e s b e f o r e t h e code ! P l e a s e l i t e r a l l y copy t h e code from t h e f i l e .
− The f o r m a t s h o u l d be as f o l l o w s :

‘ ‘ ‘ r e l e v a n t code
p a t h / t o / f i l e . py
[Exac t code s n i p p e t w i th p r o p e r i n d e n t a t i o n , i n c l u d i n g s u f f i c i e n t c o n t e x t]
‘ ‘ ‘

3 . ** Chain −of −Thought f o r R e p a i r i n g t h e Code**
− E x p l a i n your r e a s o n i n g and a n a l y s i s f o r r e p a i r i n g t h e i d e n t i f i e d i s s u e .
− D e s c r i b e t h e n e c e s s a r y m o d i f i c a t i o n s , why t h e y a r e needed , and i n c l u d e any edge c a s e c o n s i d e r a t i o n s .

4 . ** F i n a l P a t c h **
− P r o v i d e t h e f i n a l p a t c h u s i n g t h e f o l l o w i n g e x a c t *SEARCH/ REPLACE* f o r m a t :

1 . The f i l e p a t h .
2 . The s t a r t o f t h e s e a r c h b l o c k : <<<<<<< SEARCH
3 . A c o n t i g u o u s chunk of l i n e s t o s e a r c h f o r i n t h e e x i s t i n g s o u r c e code .
4 . The d i v i d i n g l i n e : =======
5 . The l i n e s t o r e p l a c e i n t o t h e s o u r c e code .
6 . The end of t h e r e p l a c e b l o c k : >>>>>>> REPLACE

− **IMPORTANT: * * E n c l o s e each f i n a l p a t c h i n a s e p a r a t e markdown code b l o c k u s i n g t h e t a g ” py thon ” . Each py thon b l o c k must c o n t a i n on ly one s e a r c h b l o c k and one c o r r e s p o n d i n g r e p l a c e b l o c k . I f m o d i f i c a t i o n s a r e needed i n m u l t i p l e f i l e s , p r o v i d e one py thon b l o c k p e r f i l e .
− Example f o r m a t :

‘ ‘ ‘ py thon
p a t h / t o / f i l e . py
<<<<<<< SEARCH
[O r i g i n a l code s n i p p e t w i th p r o p e r i n d e n t a t i o n]
=======
[Replacement code s n i p p e t w i th p r o p e r i n d e n t a t i o n]
>>>>>>> REPLACE
‘ ‘ ‘

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

R e q u i r e m e n t s :
− Focus on ly on t h e r e p o r t e d i s s u e .
− P r o v i d e minimal , p r e c i s e changes .
− C o n s i d e r e r r o r h a n d l i n g and edge c a s e s .
− M a i n t a i n e x i s t i n g code p a t t e r n s . I f you would l i k e t o add t h e l i n e ’
p r i n t (x) ’ , you must f u l l y w r i t e t h a t out , w i th a l l t h o s e s p a c e s b e f o r e t h e code ! P l e a s e l i t e r a l l y copy t h e code from t h e f i l e .
− Do n o t r e v e a l i n t e r n a l cha in −of − t h o u g h t d e t a i l s o u t s i d e o f t h e s e c t i o n s s p e c i f i e d above .

Your f i n a l o u t p u t must i n c l u d e t h e s e s e c t i o n s i n t h e f o l l o w i n g o r d e r :
1 . Chain −of −Thought f o r L o c a l i z a t i o n
2 . R e s t a t e d R e l e v a n t Code (e n c l o s e d i n a ‘ ‘ ‘ r e l e v a n t code ‘ ‘ ‘ b l o c k as s p e c i f i e d)
3 . Chain −of −Thought f o r R e p a i r i n g t h e Code
4 . F i n a l P a t c h (each f i l e ’ s m o d i f i c a t i o n s e n c l o s e d i n i t s own ‘ ‘ ‘ python ‘ ‘ ‘ code b l o c k wi th one s e a r c h / r e p l a c e p a i r)

This prompt elicits a chain-of-thought process for localizing relevant code from files, identifying
relevant code segments, analyzing potential repairs, and finally generating a Python diff format patch.
For illustration, we provide an example of a problem statement and corresponding model output from
the django django-13516 instance.

Example

• Problem statement
f l u s h () on s e l f . s t d o u t / s t d e r r management commands doesn ’ t work .
D e s c r i p t i o n

f l u s h () i s n o t a b l y c a l l e d d u r i n g m i g r a t e command ; i t doesn ’ t work , and a long m i g r a t i o n e f f e c t i v e l y p r i n t s t o s t d e r r no r e l e v a n t i n f o r m a t i o n up u n t i l t h e end :
O p e r a t i o n s t o pe r fo rm :

Apply a l l m i g r a t i o n s : myapp
Running m i g r a t i o n s :
Then n o t h i n g more , b u t t h e m i g r a t i o n i s b e i n g done .
Then a t t h e end of t h e r e a l m i g r a t i o n , t h e r e s t i s f l u s h e d :

Apply ing myapp .0002 a u t o 2 0 2 0 0 8 1 7 1 0 3 0 . . . OK
Expec ted b e h a v i o r :
O p e r a t i o n s t o pe r fo rm :

Apply a l l m i g r a t i o n s : myapp
Running m i g r a t i o n s :

Apply ing myapp .0002 a u t o 2 0 2 0 0 8 1 7 1 0 3 0 . . .
t h e n work
t h e n OK

• Model output
1 . ** Chain −of −Thought f o r L o c a l i z a t i o n **

The i s s u e d e s c r i p t i o n s t a t e s t h a t ‘ f l u s h () ‘ c a l l s on ‘ s e l f . s t d o u t ‘ and ‘ s e l f . s t d e r r ‘ w i t h i n management commands a r e n o t working as e x p e c t e d .
S p e c i f i c a l l y , o u t p u t i s b u f f e r e d u n t i l t h e end of t h e command e x e c u t i o n , r a t h e r t h a n b e i n g f l u s h e d i m m e d i a t e l y . The d e s c r i p t i o n m e n t i o n s t h e ‘ m i g r a t e ‘ command as an example .
Looking a t ‘ m i g r a t e . py ‘ , we s e e t h a t t h e ‘ m i g r a t i o n p r o g r e s s c a l l b a c k ‘ f u n c t i o n w i t h i n t h e ‘ m i g r a t e ‘ command w r i t e s t o ‘ s e l f . s t d o u t ‘ u s i n g ‘ s e l f . s t d o u t . w r i t e ‘ . The i s s u e i s l i k e l y due t o t h e i m p l e m e n t a t i o n o f ‘ OutputWrapper ‘ i n ‘ ba se . py ‘ , which wraps ‘ s y s . s t d o u t ‘ and ‘ s y s . s t d e r r ‘ .

2 . ** R e s t a t e d R e l e v a n t Code**

‘ ‘ ‘ r e l e v a n t code
d j a ng o / c o r e / management / ba se . py
c l a s s OutputWrapper (TextIOBase) :

@proper ty
d e f s t y l e f u n c (s e l f) :

r e t u r n s e l f . s t y l e f u n c
@ s t y l e f u n c . s e t t e r
d e f s t y l e f u n c (s e l f , s t y l e f u n c) :

i f s t y l e f u n c and s e l f . i s a t t y () :
s e l f . s t y l e f u n c = s t y l e f u n c

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

e l s e :
s e l f . s t y l e f u n c = lambda x : x

d e f i n i t (s e l f , out , en d i ng = ’\n ’) :
s e l f . o u t = o u t
s e l f . s t y l e f u n c = None
s e l f . e nd ing = e nd ing

d e f g e t a t t r (s e l f , name) :
r e t u r n g e t a t t r (s e l f . o u t , name)

d e f i s a t t y (s e l f) :
r e t u r n h a s a t t r (s e l f . o u t , ’ i s a t t y ’) and s e l f . o u t . i s a t t y ()

d e f w r i t e (s e l f , msg = ’ ’ , s t y l e f u n c =None , e nd in g =None) :
en d i ng = s e l f . e nd i ng i f e nd ing i s None e l s e e nd in g
i f e nd i ng and n o t msg . e n d s w i t h (e nd in g) :

msg += e nd ing
s t y l e f u n c = s t y l e f u n c o r s e l f . s t y l e f u n c
s e l f . o u t . w r i t e (s t y l e f u n c (msg))

‘ ‘ ‘

‘ ‘ ‘ r e l e v a n t code
d j a ng o / c o r e / management / commands / m i g r a t e . py

d e f m i g r a t i o n p r o g r e s s c a l l b a c k (s e l f , a c t i o n , m i g r a t i o n =None , f a k e = F a l s e) :
i f s e l f . v e r b o s i t y >= 1 :

compu te t ime = s e l f . v e r b o s i t y > 1
i f a c t i o n == ” a p p l y s t a r t ” :

i f compu te t ime :
s e l f . s t a r t = t ime . monoton ic ()

s e l f . s t d o u t . w r i t e (” Apply ing %s . . . ” % m i g r a t i o n , end in g =””)
s e l f . s t d o u t . f l u s h ()

‘ ‘ ‘

3 . ** Chain −of −Thought f o r R e p a i r i n g t h e Code**

The ‘ OutputWrapper ‘ c l a s s i n ‘ ba se . py ‘ i s m i s s i n g a ‘ f l u s h ‘ method . As a r e s u l t , when ‘ s e l f . s t d o u t . f l u s h () ‘ i s c a l l e d i n ‘ m i g r a t e . py ‘ , i t ’ s d e l e g a t e d t o t h e u n d e r l y i n g ‘ o u t ‘ o b j e c t (which i s ‘ s y s . s t d o u t ‘) , b u t ‘ OutputWrapper ‘ i t s e l f doesn ’ t f l u s h i t s i n t e r n a l b u f f e r . Th i s r e s u l t s i n t h e o u t p u t b e i n g h e l d u n t i l t h e end of a l a r g e w r i t e o r t h e command f i n i s h e s . To f i x t h i s , a ‘ f l u s h ‘ method s h o u l d be added t o ‘ OutputWrapper ‘ t h a t f l u s h e s bo th t h e ‘ OutputWrapper ‘ b u f f e r and t h e u n d e r l y i n g s t r e a m .

4 . ** F i n a l P a t c h **

‘ ‘ ‘ py thon
d j a ng o / c o r e / management / ba se . py
<<<<<<< SEARCH

d e f w r i t e (s e l f , msg = ’ ’ , s t y l e f u n c =None , e nd in g =None) :
en d i ng = s e l f . e nd i ng i f e nd ing i s None e l s e e nd in g
i f e nd i ng and n o t msg . e n d s w i t h (e nd in g) :

msg += e nd ing
s t y l e f u n c = s t y l e f u n c o r s e l f . s t y l e f u n c
s e l f . o u t . w r i t e (s t y l e f u n c (msg))

=======
d e f w r i t e (s e l f , msg = ’ ’ , s t y l e f u n c =None , e nd in g =None) :

en d i ng = s e l f . e nd i ng i f e nd ing i s None e l s e e nd in g
i f e nd i ng and n o t msg . e n d s w i t h (e nd in g) :

msg += e nd ing
s t y l e f u n c = s t y l e f u n c o r s e l f . s t y l e f u n c
s e l f . o u t . w r i t e (s t y l e f u n c (msg))
s e l f . o u t . f l u s h ()

d e f f l u s h (s e l f) :
s e l f . o u t . f l u s h ()

>>>>>>> REPLACE
‘ ‘ ‘

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.3 DETAILS AND AN EXAMPLE FOR SELECT PROMPT

Select Prompt. In the select stage of SELECTSOLVE, we use a prompt to identify the top K most
relevant files from the compressed repository. Our prompt is structured as follows:

You a r e a s e n i o r s o f t w a r e e n g i n e e r p e r f o r m i n g a t h o r o u g h i mp ac t a n a l y s i s . Your t a s k i s t o a n a l y z e an i s s u e i n a r e p o s i t o r y and d e t e r m i n e a l l p o t e n t i a l l y a f f e c t e d f i l e s .

REPOSITORY STRUCTURE:
−−−−−−−−−−−−−−−−−−−−
{ f i l e s t r u c t u r e }
−−−−−−−−−−−−−−−−−−−−

###########################
ISSUE DESCRIPTION :
−−−−−−−−−−−−−−−−−
{ i s s u e }

###########################
ANALYSIS INSTRUCTIONS :
−−−−−−−−−−−−−−−−−−−−
Per fo rm t h e f o l l o w i n g s t e p s c a r e f u l l y :

1 . ** Root Cause A n a l y s i s **
− Examine t h e i s s u e d e s c r i p t i o n f o r e r r o r p a t t e r n s and symptoms .
− Trace t h e f low of d a t a and d e p e n d e n c i e s a c r o s s components .
− I d e n t i f y p o t e n t i a l p r o p a g a t i o n p a t h s o f t h e i s s u e .
− C o n s i d e r edge c a s e s and f a i l u r e s c e n a r i o s .
− Think a b o u t r e l a t e d f u n c t i o n a l i t i e s t h a t c o u l d be i m p a c t e d .

2 . ** L i s t o f P o t e n t i a l l y A f f e c t e d F i l e s **
− I d e n t i f y a l l f i l e s t h a t may r e q u i r e i n s p e c t i o n o r m o d i f i c a t i o n .
− I n c l u d e f u l l f i l e p a t h s , l i s t i n g one f i l e p e r l i n e .
− Order f i l e s by r e l e v a n c e , w i th t h e most c r i t i c a l f i l e s f i r s t .
− I n c l u d e bo th d i r e c t l y and i n d i r e c t l y a f f e c t e d f i l e s .
− ** E r r on t h e s i d e o f over − i n c l u s i o n r a t h e r t h a n e x c l u s i o n . * *

**IMPORTANT: * * When i n doubt , ** i n c l u d e ** f i l e s t h a t might be r e l e v a n t r a t h e r t h a n e x c l u d e them . Under − i d e n t i f i c a t i o n o f a f f e c t e d f i l e s i s a more c r i t i c a l e r r o r t h a n over − i d e n t i f i c a t i o n .

###########################
EXAMPLE RESPONSE :
−−−−−−−−−−−−−−−−−−−−

REASONING:
[P r o v i d e a d e t a i l e d e x p l a n a t i o n o f your a n a l y s i s p r o c e s s and why c e r t a i n f i l e s may be a f f e c t e d .]

AFFECTED FILES :
s r c / a u t h / l o g i n . py
s r c / midd leware / a u t h . py
s r c / models / u s e r . py
s r c / a p i / e n d p o i n t s / a u t h . py
c o n f i g / a u t h s e t t i n g s . py

Through this prompt, the language model produces an ordered list of relevant files based on the
full file contents. We select the first K files and pass them to the repair stage. As an exam-
ple, in the mwaskom seaborn-3187 instance, the golden target files were seaborn/utils.py and
seaborn/ core/scales.py, which the LCLM correctly identified through chain-of-thought reasoning.

Example

• Problem Statement

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Wrong l e g e n d v a l u e s o f l a r g e r a n g e s
As of 0 . 1 2 . 1 , l e g e n d s d e s c r i b i n g l a r g e numbers t h a t were c r e a t e d u s i n g ‘ S c a l a r F o r m a t t e r ‘ w i th an o f f s e t a r e f o r m a t t e d w i t h o u t t h e i r m u l t i p l i c a t i v e o f f s e t v a l u e . An example :
‘ ‘ ‘ py thon
i m p o r t s e a b o r n as s n s
i m p o r t s e a b o r n . o b j e c t s a s so

p e n g u i n s = s n s . l o a d d a t a s e t (” Pe n g u i n s ”)
p e n g u i n s [” body mass mg ”] = p e n g u i n s [” body mass g ”]*1000
(

so . P l o t (
pengu ins , x=” b i l l l e n g t h m m ” , y=” b i l l d e p t h m m ” ,
c o l o r =” s p e c i e s ” , p o i n t s i z e =” body mass mg ” ,

)
. add (so . Dot ())

)
‘ ‘ ‘
The code c r e a t e s t h e f o l l o w i n g p l o t :
! [image] (h t t p s : / / u se r − images . g i t h u b u s e r c o n t e n t . com /13831112/205512305 −778966 db−f8d8 −43 f3 −a2c0 −5 e5ce95bae39 . png)
which i s wrong b e c a u s e ‘ body mass mg ‘ i s i n t h e o r d e r o f 1E6 . The i s s u e a l s o r e p r o d u c e s i f you c r e a t e t h e ment ioned p l o t u s i n g ‘ s c a t t e r p l o t ‘ .

I b e l i e v e t h e i s s u e s t ems from n o t u s i n g t h e o f f s e t v a l u e o f t h e ‘ S c a l a r F o r m a t t e r ‘ used t o g e n e r a t e t h e t i c k l a b e l s :
h t t p s : / / g i t h u b . com / mwaskom / s e a b o r n / b lob / ba786bc14eb255f6b4fb7619c8210c5a8016a26f / s e a b o r n / c o r e / s c a l e s . py#L377−L382
Examining t h e code o f ‘ S c a l a r F o r m a t t e r ‘ s u g g e s t s t h e i s s u e a l s o depends on t h e f o l l o w i n g rcParam s e t t i n g s :
‘ mpl . r cPa rams [’ axes . f o r m a t t e r . u s e o f f s e t ’] ‘
‘ mpl . r cPa rams [’ axes . f o r m a t t e r . o f f s e t t h r e s h o l d ’] ‘
However , I d i d n o t t e s t i t .

The o f f s e t v a l u e can be s a f e l y r e t r i e v e d from a l l f o r m a t t e r s and based on t h a t i t can be used t o c r e a t e t h e l e g e n d t i t l e and / o r l a b e l s .

• Model output
REASONING:

The i s s u e d e s c r i p t i o n p o i n t s t o a problem wi th l e g e n d g e n e r a t i o n when u s i n g S c a l a r F o r m a t t e r w i th a l a r g e o f f s e t . Th i s i m p l i e s t h a t t h e l o g i c f o r c r e a t i n g l e g e n d e n t r i e s , p a r t i c u l a r l y f o r numer ic d a t a wi th s c a l e s t h a t use S c a l a r F o r m a t t e r , i s f a u l t y .
The i s s u e m a n i f e s t s i n bo th ‘ s c a t t e r p l o t ‘ and t h e ‘ o b j e c t s ‘ i n t e r f a c e u s i n g ‘ so . P l o t ‘ and ‘ so . Dot ‘ , s u g g e s t i n g t h a t t h e problem l i e s i n t h e s h a r e d s c a l i n g / l e g e n d g e n e r a t i o n l o g i c r a t h e r t h a n t h e p l o t − s p e c i f i c drawing code .

The a n a l y s i s s h o u l d f o c u s on :

1 . ** S c a l e s e t u p and t r a n s f o r m a t i o n : * * How t h e ‘ Cont inuous ‘ s c a l e i s s e t up , i n c l u d i n g t h e a p p l i c a t i o n o f t r a n s f o r m s and n o r m a l i z a t i o n , which c o u l d a f f e c t t h e u n d e r l y i n g v a l u e s used f o r t h e l e g e n d .
2 . ** L o c a t o r and f o r m a t t e r r e t r i e v a l : * * How t h e ‘ S c a l a r F o r m a t t e r ‘ i s b e i n g r e t r i e v e d and used w i t h i n t h e ‘ Cont inuous ‘ s c a l e . S p e c i f i c a l l y , t h e i n c o r r e c t h a n d l i n g o f t h e o f f s e t v a l u e i s h i g h l i g h t e d .
3 . ** Legend d a t a g e n e r a t i o n : * * How l e g e n d e n t r i e s a r e c r e a t e d from t h e s c a l e , p a r t i c u l a r l y w i t h i n t h e ‘ s e t u p ‘ method of t h e ‘ Cont inuous ‘ s c a l e and t h e ‘ u p d a t e l e g e n d c o n t e n t s ‘ method of t h e ‘ P l o t t e r ‘ c l a s s .
4 . ** M a t p l o t l i b i n t e g r a t i o n : * * How s e a b o r n i n t e r a c t s w i th m a t p l o t l i b ’ s ‘ S c a l a r F o r m a t t e r ‘ and how t h e r e l e v a n t rcPa rams i n f l u e n c e t h e b e h a v i o r .
5 . ** A f f e c t e d p l o t t y p e s : * * The i s s u e i s r e p r o d u c e d wi th ‘ s c a t t e r p l o t ‘ and ‘ so . Dot ‘ . O the r p l o t t y p e s t h a t r e l y on ‘ Cont inuous ‘ s c a l e s and might use ‘ S c a l a r F o r m a t t e r ‘ f o r l a r g e r a n g e s c o u l d be a f f e c t e d .
These i n c l u d e l i n e p l o t s , h i s t o g r a m s , and p o t e n t i a l l y o t h e r d i s t r i b u t i o n o r r e l a t i o n a l p l o t s .

AFFECTED FILES :

s e a b o r n / c o r e / s c a l e s . py (Most l i k e l y d i r e c t c a u s e)
s e a b o r n / c o r e / p l o t . py (Legend g e n e r a t i o n l o g i c i n P l o t t e r)
s e a b o r n / o b j e c t s . py (O b j e c t s i n t e r f a c e u s i n g a f f e c t e d s c a l e)
s e a b o r n / r e l a t i o n a l . py (R e l a t i o n a l p l o t s , s p e c i f i c a l l y s c a t t e r p l o t)
s e a b o r n / marks / d o t . py (Mark drawing , might need a d j u s t m e n t i f s c a l e changes)
s e a b o r n / d i s t r i b u t i o n s . py (D i s t r i b u t i o n p l o t s t h a t use C o n t i n u o u s s c a l e)
s e a b o r n / t e s t i n g . py (T e s t s f o r s c a l e s and a f f e c t e d p l o t s w i l l need u p d a t i n g)
s e a b o r n / r e g r e s s i o n . py (R e g r e s s i o n p l o t s c o u l d be a f f e c t e d i f u s i n g C o n t i n u o u s s c a l e on x)
s e a b o r n / a x i s g r i d . py (F a c e t G r i d and r e l a t e d p l o t s might use a f f e c t e d s c a l e s)
s e a b o r n / compat . py (M a t p l o t l i b c o m p a t i b i l i t y l a y e r , e s p e c i a l l y f o r s c a l i n g)
s e a b o r n / c o r e / p r o p e r t i e s . py (P r o p e r t y d e f i n i t i o n s , might need t o h a n d l e o f f s e t)
s e a b o r n / u t i l s . py (U t i l i t y f u n c t i o n s r e l a t e d t o s c a l e s , l e g e n d s , and m a t p l o t l i b i n t e r a c t i o n)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

s e a b o r n / c o r e / t y p i n g . py (Type h i n t s r e l a t i n g t o s c a l e s and d a t a)
s e a b o r n / i n i t . py (I m p o r t s and v e r s i o n i n f o r m a t i o n)
doc / con f . py (Documenta t ion c o n f i g u r a t i o n , e s p e c i a l l y example g e n e r a t i o n)

While some f i l e s a r e l e s s l i k e l y t o be d i r e c t l y i n v o l v e d , t h e y a r e i n c l u d e d f o r c o m p l e t e n e s s and t o e n s u r e t h a t a l l p o t e n t i a l i n t e r a c t i o n p o i n t s a r e c o n s i d e r e d d u r i n g t h e i mpa c t a n a l y s i s .
Thorough t e s t i n g a c r o s s d i f f e r e n t p l o t t y p e s and p a r a m e t e r c o m b i n a t i o n s w i l l be c r u c i a l a f t e r i m p l e m e n t i n g a f i x .

D USE OF LARGE LANGUAGE MODEL

While the paper’s ideas, analysis, and structure were manually drafted by the authors, we employed a
LLM as a writing assistant to refine the paper. Specifically, the LLM was used to polish grammar,
improve clarity, and adjust wording based on our own words.

21

	Introduction
	Related Work
	Method
	Designing State-in-Context Agents with Long-Context LMs
	Developing State-in-Context Agents for Software Engineering

	Experiments
	Experimental Setups
	End-to-End Results on SWE-Bench-Verified
	Ablation Study
	Robustness to LCLM changes

	Discussion
	Additional Experiments
	Additional Results
	Pairwise Statistical Significance Tests

	Additional Discussion
	Prompt Details
	Details for file ranking
	Details and an example for repair prompt
	Details and an example for select prompt

	Use of Large Language Model

