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Abstract

This paper presents a simple and effective visual prompting method for adapting pre-trained
models to downstream recognition tasks. Our approach is underpinned by two key designs.
First, rather than directly adding together the prompt and the image, we treat the prompt
as an extra and independent learnable entity. We show that the strategy of reconciling the
prompt and the image matters, and find that warping the prompt around a properly shrinked
image empirically works the best. Second, we re-introduce two “old tricks” commonly used in
building transferable adversarial examples, i.e., input diversity and gradient normalization,
into the realm of visual prompting. These techniques improve optimization and enable the
prompt to generalize better. We provide extensive experimental results to demonstrate the
effectiveness of our method. Using a CLIP model, our prompting method registers a new
record of 82.5% average accuracy across 12 popular classification datasets, substantially
surpassing the prior art by +5.2%. It is worth noting that such performance not only
surpasses linear probing by +2.2%, but, in certain datasets, is on par with the results
from fully fine-tuning. Additionally, our prompting method shows competitive performance
across different data scales and against distribution shifts.

1 Introduction

Deep learning models have witnessed pre-training on increasingly large-scale datasets as a general and ef-
fective pathway to succeed in both computer vision (He et al., 2022; Radford et al., 2021; Bao et al., 2021)
and natural language processing (Devlin et al., 2018; Brown et al., 2020; Liu et al., 2019). These pre-trained
models are termed foundation models (Bommasani et al., 2021). While fully fine-tuning stands as one of the
most prevalent paradigms to effectively adapt these foundation models to a range of downstream tasks, it
can be computationally intensive due to the large number of training parameters. This has led to a need for
more efficient alternatives for adapting these cumbersome foundation models to new tasks.
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Figure 1: The trade-off between the number of parameters and the average accuracy (across 12 datasets). Our method
outperforms linear probing and other visual prompting baselines by a significant margin with a similar number of parameters.

Prompting method, which only modifies the input space, offers an effective and efficient solution in NLP (Gao
et al., 2021; Lester et al., 2021; Li & Liang, 2021), e.g., text prompting can closely match the performance of
fully fine-tuning (Liu et al., 2021b). This promising result has motivated researchers to probe whether similar
success can be achieved in the field of computer vision. Some early efforts in this direction include VPT (Jia
et al., 2022) and VP (Bahng et al., 2022), which add small amounts of learnable parameters as tokens or
perturbations directly at the pixel level to adapt foundation models. However, when taking a closer look at
the trade-off between performance and parameter efficiency as shown in Figure 1, we note these advanced
visual prompting methods appear to be less competitive. To illustrate, despite having a comparable number
of parameters, there exists a significant performance gap between VPT and the simple linear probing baseline
(77.3% vs. 80.3%). In this paper, we aim to unleash the full potential of visual prompting at the pixel level,
and, more importantly, to explore whether it can be stronger than other alternatives such as linear probing.

Intriguingly, we find that with proper modifications, visual prompting can evolve into a truly effective
paradigm for adapting foundation models to different visual tasks. The first key observation is that directly
adding together the prompt and the image, as in VP (Bahng et al., 2022), may inadvertently distort the
intrinsic information of the image, thereby limiting the prompt’s learning potential. We provide a simple
strategy to resolve this issue: we first shrink the original image into a smaller size and then pad the prompt
around it, i.e., the prompt and the image now are kept as separate entities, free from overlap. This strategy
allows for independent optimization of the prompt and enables flexibility in adjusting the padding size to
control computation overheads. In addition, we draw on techniques from adversarial examples, which have
similarities to visual prompting in their aim to either maximize or minimize the loss function (Bahng et al.,
2022; Elsayed et al., 2018), to further improve the performance of visual prompting. Specifically, we find
that gradient normalization (Goodfellow et al., 2015; Dong et al., 2018) and input diversity (Xie et al., 2019)
are effective at improving the generalization ability of the prompt.

We follow the standard evaluation protocol to conduct experiments across 12 visual benchmarks. We note
that, with a CLIP model (Radford et al., 2021), our method attains an averaged accuracy of 82.5%, sig-
nificantly outperforming the previous state-of-the-art visual prompting method VPT (Jia et al., 2022) by
+5.2%. More excitingly, this 82.5% result is +2.2% stronger than the linear probing result (80.3%) and
even comparable to fully fine-tuning on certain datasets. We further confirm the superiority of our method
in learning with data at different scales and in handling out-of-distribution samples. We hope our study can
catalyze further research in the field of visual prompt learning.
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2 Related Works

Prompt learning in NLP. The key idea of prompting is to reformulate the input text in downstream
tasks so that the frozen language models can better “understand” and perform the task (Liu et al., 2021a).
Prior works (Brown et al., 2020; Petroni et al., 2019; Cui et al., 2021) show that manually designed text
prompt can help language models achieve remarkable representation capacity in the few-shot or even zero-
shot settings at downstream tasks, but this requires specific domain knowledge. To address this issue, recent
works have started to focus on prompt tuning (Li & Liang, 2021; Liu et al., 2021b; Lester et al., 2021), which
involves directly optimizing the continuous prompting vector through gradient information. In this work,
we investigate prompt learning in computer vision, which is a more challenging task because it involves a
different type of signal (visual rather than language) that contains much less high-level semantic information.

Visual prompt learning. After witnessing the success of prompting in language models, researchers begin
to explore the usage of prompts in the field of computer vision. As a pioneering work, visual prompting is
applied as a strategy of model programming Tsai et al. (2020). For example, CoOp (Zhou et al., 2022) applies
prompt tuning to vision-language models, learning the soft prompts through minimizing the classification
loss on downstream tasks. VP (Bahng et al., 2022) and VPT (Jia et al., 2022) focus on prompting with
images: VP optimizes the prompt directly in the pixel space, and VPT proposes to insert a set of learnable
tokens into ViT architectures (Dosovitskiy et al., 2020) for prompt tuning. In addition, ILM Chen et al.
(2023) and AutoVP Tsao et al. (2024) explore visual prompting from broader perspectives. ILM proposes a
label mapping strategy to alleviate the issue of mapping precision. On the other hand, AutoVP considers
various aspects such as input scale, visual prompts, pre-trained model selection, and output LM strategies
to design high-performance prompt methods automatically. While these approaches show the potential of
visual-only prompt learning, as shown in Figure 1, their performance is not as competitive compared to other
methods such as linear probing. In this work, we aim to enhance visual prompt learning and demonstrate
its strong potential for improving the performance of foundation models on a range of visual tasks.

Adversarial examples. It is well-known that machine learning models are vulnerable to adversarial at-
tacks (Dalvi et al., 2004; Biggio et al., 2013; Huang et al., 2011). The fast gradient sign method (FGSM)
(Goodfellow et al., 2015) and projected gradient descent (PGD) (Madry et al., 2018) are two commonly used
techniques for creating adversarial examples that can fool deep learning models. Nonetheless, these adver-
sarial examples cannot transfer well to fool other models. Later works show that the difficulty of optimizing
adversarial examples is the cause of this weak transferability, and techniques such as diverse input patterns
(Xie et al., 2019) and momentum-based gradient accumulation (Dong et al., 2017) have been proposed to
improve transferability. Given the similarity between generating adversarial examples and the process of
prompt learning (Bahng et al., 2022; Elsayed et al., 2018), we hereby are interested in revisiting techniques
from building transferable adversarial examples to enhance visual prompting.

3 Methodology

In this section, we present Enhanced Visual Prompting (EVP), a simple and effective pixel-level visual
prompting method for adapting foundation models to downstream tasks. We first provide a thorough review
of previous visual prompting methods as preliminaries, including VP and VPT, and then describe the
prompting design and training strategy of our EVP in detail.

3.1 Preliminaries

VPT (Jia et al., 2022) adds a set of learnable parameters into ViT architecture for visual prompting. For
a fair comparison, we hereby consider its VPT-SHALLOW version, which only inserts the prompt into the
first layer’s input. Specifically, as shown in Figure 2 (a), VPT inserts a collection of prompts P between the
learnable class token [CLS] and a sequence of patch embeddings E, creating a new input x = [CLS, P, E].

VP (Bahng et al., 2022) adapts foundation models to downstream tasks by directly adding together the
learnable prompt and the input images at the pixel level. The prompt vϕ is designed to be input-agnostic
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Figure 2: Overview of the designs of different visual prompting methods. (a) VPT: Injecting a set of learnable
parameters into the token space; (b) VP: Modifying learnable perturbations on the border of input images; (c) Our EVP:
Shrinking images and applying data augmentations, then padding the prompt around the image. Note the prompts in EVP
are updated using normalization strategies inspired by adversarial attack techniques (Goodfellow et al., 2015).

and task-specific, and is placed on the border of the input images, as shown in Figure 2 (b). During training,
VP maximizes the likelihood of the correct label y by optimizing the prompt vϕ: maxvϕ

P (y|x + vϕ). During
inference, the optimized prompt is then added to test images: Xtest = {x1

test + vϕ, . . . , xn
test + vϕ}.

3.2 Designing EVP

Our prompting design is largely based on VP, but with some simple modifications. The issue we identify with
VP is that directly adding together the prompt and the images may corrupt the original image information.
For example, in Figure 2 (b), the cat ears are heavily overlapped and obscured by the added prompts. This
could hinder the learning of prompts (see our ablations in Section 5.1). To address this issue, as shown
in Figure 2 (c), our EVP shrinks the input images and pads the prompt around them. Specifically, for an
input image X ∈RK×K×3, it is shrunk to x̂ ∈Rk×k×3 and then padded with (K2 − k2) × 3 prompts to obtain
the output image X̂ ∈RK×K×3. Similar to VP, during training we optimize the prompt by maximizing the
likelihood of the correct label, and during inference we pad the optimized prompt around the shrunk test
samples for predictions.

It is important to note that while both EVP and VPT keep the prompt and the image non-overlapping,
there is a key difference between these two methods. Specifically, the prompts in EVP are later added with
positional embedding, while this is not the case for VPT. As shown in the ablation study in Section 5.2,
positional information is crucial for achieving strong performance with visual prompting.

3.3 Training Strategy of EVP

There is a strong relationship between prompting and adversarial attacks. In adversarial attacks, the goal is
to learn a pixel perturbation gi that will mislead the network given an image xi. This can be formulated as
mingi P (yi|xi + gi). On the other hand, visual prompting can be seen as the inverse process of adversarial
attacks, in which the aim is to learn a template v that will maximize the likelihood of the correct label y.
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Given this relationship, we are motivated to explore whether techniques from adversarial attacks, particularly
those focused on building transferable adversarial examples, can be useful for visual prompting.

Input diversity. Previous work (Xie et al., 2019) demonstrates that input diversity can help optimization
and improve the transferability of adversarial examples. As shown in later works, the concept of “diverse
input” can be generalized to apply different data augmentation strategies in generating adversarial examples
(Dong et al., 2019; Wang et al., 2021; Wu et al., 2021). We hereby re-introduce this concept into visual
prompting. Specifically, our EVP considers a range of augmentation including RandomHorizontalFlip, Ran-
domCop, RandAug (Cubuk et al., 2020), and Cutmix (Yun et al., 2019). As shown in Section 5.3, we find
that simple augmentation strategies like RandomHorizontalFlip and RandomCrop are already sufficient to
significantly improve visual prompting.

Gradient normalization. In adversarial attacks, it is common to apply normalization techniques, such
as the L1, L2, or L∞ norm, to the gradients update (Goodfellow et al., 2015). For example, using the L2
norm, the gradient can be normalized as follows:

xadv = x + γ
∇xJ(x, y)

||∇xJ(x, y)||2
, (1)

where γ is the learning rate, J is the loss function, and ∇xJ is the gradient of the loss function w.r.t. the
input x.

We hereby introduce this gradient normalization to visual prompting. We define the matrix representation
of EVP as Ve = W ⊙M , where W ∈ RK×K×3 are the prompt parameters, M ∈ RK×K×3 is the mask matrix,
and ⊙ denotes the element-wise matrix product. The mask matrix M encodes the spatial locations of the
prompts, with the central part of size k × k being all zeros and the rest being all ones. In practice, we find
that dividing the gradient of EVP by the L2 norm of the gradient of W leads to the best performance:

V t+1
e = V t

e − γ
∇V t

e
J

||∇W J ||2
. (2)

We provide more details and ablation results on different normalization strategies in Section 5.3.

4 Experiments

Datasets. We evaluate visual prompting methods on 12 downstream classification datasets, including
CIFAR100, CIFAR10 (Krizhevsky et al., 2009), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard
et al., 2014), EuroSAT (Helber et al., 2019), SUN397 (Xiao et al., 2010), SVHN (Netzer et al., 2011), DTD
(Cimpoi et al., 2014), OxfordPets (Parkhi et al., 2012), Resisc45 (Cheng et al., 2017), CLEVR (Johnson
et al., 2017), and DMLab (Beattie et al., 2016). In addition, we test the robustness of visual prompting on
3 out-of-distribution datasets (Koh et al., 2021) (Camelyon17, FMoW, and iWildCAM), and 2 corruption
datasets (Hendrycks & Dietterich, 2018) (CIFAR100-C and CIFAR10-C).

Baselines. We compare the performance of EVP with other commonly used prompting methods and fine-
tuning protocols, including TP (text prompting), VP, VPT, LP (linear probing), and FT (fully fine-tuning).
Specifically, we should note 1) TP is equivalent to zero-shot in CLIP; 2) LP uses a linear layer as the
classification head; and 3) FT updates all parameters of the backbone and the classification head.

4.1 CLIP

Following the protocol of VP (Bahng et al., 2022), we conduct evaluations using the CLIP-Base/32 model on
12 classification datasets. The full results are shown in Table 13 and a detailed comparison to the two strong
baselines, LP and VPT, is presented in Figure 3. Our proposed EVP approach consistently outperforms all
previous prompting methods, with similar or fewer parameters. On average, EVP shows an improvement of
6.0% over VP, and 5.4% over VPT.
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Table 1: Performance comparison across 12 datasets with CLIP. EVP substantially beats other visual prompting methods by a
large margin. More notably, EVP outperforms the linear probing on 7 out of 12 datasets with a similar number of parameters.
The results where EVP outperforms linear probing are highlight in bold.

Adaptation Tunable params (M) CIFAR100 CIFAR10 Flowers Food EuroSAT SUN DMLab SVHN Pets DTD RESISC CLEVR Avg.

TP 0 63.1 89.0 61.8 83.2 34.1 58.0 30.2 11.0 85.9 42.8 42.4 20.2 51.8
VP 0.070 75.3 94.2 62.0 83.2 95.6 68.4 41.9 88.4 86.5 57.1 84.1 81.4 76.5

VPT 0.064 76.6 95.0 76.2 84.7 94.6 69.3 48.4 86.1 92.1 61.6 84.3 58.6 77.3
EVP(Ours) 0.062 81.2 96.6 82.3 84.1 97.6 71.0 62.3 90.5 90.0 68.4 89.7 75.9 82.5

LP 0.037 80.0 95.0 94.1 88.3 94.8 76.2 49.3 65.4 89.2 73.5 92.3 66.1 80.3
FT 151.28 82.1 95.8 97.4 87.8 99.0 79.0 63.5 95.7 88.5 72.3 98.1 94.4 88.1

OxfordPets
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Figure 3: Performance gain of EVP compared to linear probing and VPT on each downstream dataset. The bars indicate the
gain or loss in accuracy compared to linear probing and VPT, respectively. (a) Compared with linear probing, EVP outperforms
linear probing on 7 out of 12 datasets by 2.1% on average. (b) Compared with VPT, EVP beats VPT on 10 out of 12 datasets
by 5.6% on average.

Table 2: Performance of non-CLIP models. EVP* indicates that we train EVP using classes after preprocessing stage.
EVP slightly exceeds VP and EVP* outperforms EVP and VP by a large margin. The bold indicates the cases that the
performance of EVP* is competitive with linear probing.

Model Adaptation CIFAR100 CIFAR10 Flowers Food EuroSAT SUN SVHN Pets DTD RESISC CLEVR Avg.

Instagram VP 16.7 62.1 4.8 6.5 86.1 2.2 53.8 18.6 29.1 40.6 30.9 31.9
Instagram EVP 13.6 67.2 9.2 7.1 85.6 7.9 50.8 16.3 29.0 38.0 48.1 33.9
Instagram EVP* 60.3 93.5 11.4 8.4 88.7 19.6 55.3 74.4 44.4 47.5 50.5 50.4
Instagram LP 64.0 90.1 92.7 65.8 95.5 58.1 48.0 94.5 70.9 95.7 30.2 73.2
Instagram FT 77.8 77.8 94.5 75.6 97.4 56.7 96.8 93.9 73.5 93.4 87.9 84.1

RN50 VP 10.1 54.5 4.7 5.1 80.7 1.1 57.1 10.8 8.2 28.3 29.5 26.4
RN50 EVP 9.2 55.9 6.6 3.9 85.5 5.1 48.6 10.5 18.7 35.4 35.5 28.6
RN50 EVP* 24.9 77.0 11.9 7.0 81.0 14.7 47.8 72.0 41.2 39.2 37.2 41.3
RN50 LP 67.7 87.7 92.7 62.5 95.8 57.5 60.3 91.1 66.7 92.2 32.6 73.3
RN50 FT 79.9 94.1 96.9 73.2 96.5 55.9 96.9 92.3 66.7 93.4 89.3 84.3

To further evaluate the effectiveness, we next compare EVP with linear probing, which is a widely used fine-
tuning protocol. The results, shown in Table 13 and Figure 3, demonstrate that EVP outperforms linear
probing on 7 out of 12 datasets. On average, EVP achieved an accuracy of 82.5%, which is 2.2% higher than
linear probing. In addition, our method is more flexible as the number of parameters can be easily controlled
(via adjusting the padding size), whereas the number of parameters in linear probing must depend on the
number of class categories in the downstream tasks.

Lastly, Our method, EVP, exhibits promising performance compared to fully fine-tuning while being sig-
nificantly more parameter-efficient, with only 0.04% of the number of parameters. While there is still a
performance gap between these two methods, with an average accuracy of 82.5% for EVP and 88.1% for
fully fine-tuning, EVP outperforms or achieves similar results on certain datasets, including CIFAR100,
CIFAR10, EuroSAT, DMLab, and Pets.
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Table 3: Robustness comparison on out-of-distribution and corruption datasets. Left: out-of-distribution datasets. Right:
corruption datasets. We can observe that EVP achieves much stronger robustness on both out-of-distribution setting and
corruption setting.

Model Adaptation iwildcam camelyon17 fmow Avg.

CLIP VP 57.3 91.4 37.8 62.2
CLIP VPT 58.8 91.9 29.7 60.1
CLIP EVP(Ours) 64.9 95.1 40.2 66.7
CLIP LP 66.7 86.0 36.3 63.0
CLIP FT 64.0 84.3 49.7 66.0

Model Adaptation CIFAR100-C CIFAR10-C Avg.

CLIP VP 52.5 78.3 65.4
CLIP VPT 54.0 70.2 62.3
CLIP EVP(Ours) 58.6 84.3 71.5
CLIP LP 56.9 78.8 67.9
CLIP FT 61.1 82.7 71.9

4.2 Non-CLIP Models

In this section, we evaluate the effectiveness of EVP on non-CLIP models. One challenge for adapting
non-CLIP models to downstream tasks is that their original classification head is either less semantically
meaningful or mapped to a set of predefined classes. A direct and naive solution used in VP is to arbitrarily
map downstream classes to pre-trained classes and discard all unassigned classes. However, we posit that
there could exist some similarity between pre-trained and downstream classes, even if an exact correspondence
is not known. This motivates us to propose a pre-processing stage before implementing visual prompting to
utilize this potential similarity.

Specifically, for each downstream class, we feed downstream images in that class into the pre-trained model
and investigate the predictions in the pre-trained classes. We then simply choose the pre-trained class with
the highest prediction frequency as the corresponding class for the downstream class. After pre-processing,
we fix the correspondence and train our visual prompting method.

Overall, the results in Table 2 demonstrate the effectiveness of our proposed EVP method for adapting non-
CLIP models to downstream tasks. While the performance of EVP is already improved over the baseline VP
method (by 2%) when using arbitrary mapping, the use of our pre-processing stage substantially enhances
the performance of EVP further, i.e., from 33.9% to 50.4% with the Instagram pretraining model (Mahajan
et al., 2018) and from 28.6% to 41.3% with an ImageNet-train ResNet-50. However, we note the performance
of EVP* is not as strong on fine-grained datasets, such as Flowers102 and Food101, suggesting that it may
be more challenging to find correspondence between pre-trained and downstream classes for these types of
tasks.

4.3 Robustness

In this section, we investigate the robustness of EVP compared with other prompting methods and fine-
tuning protocols. We evaluate the robustness of EVP on out-of-distribution (OOD) and corruption datasets.

OOD robustness. We test the robustness of EVP to distribution shift using the WILDS benchmark (Koh
et al., 2021). The model is trained on datasets from a specific domain and then evaluated on datasets from
a different domain, such as images from different regions, cameras, and hospitals. The results in Table 14
show that EVP outperforms other prompting methods by at least 4.5%. Additionally, we find that EVP
outperforms both linear probing (+3.7%) and fully fine-tuning (+0.7%) in this setting, highlighting the
potential of EVP in handling out-of-distribution samples.

Robutness on corruption datasets. In this study, we also evaluate the robustness of EVP to common
image corruptions (Hendrycks & Dietterich, 2018). We test EVP on the CIFAR100-C and CIFAR10-C
corruption datasets, which apply 19 common image corruptions to the CIFAR100 and CIFAR10 datasets,
respectively. We train EVP on the CIFAR100 and CIFAR10 datasets and then evaluate its performance on
the corresponding corruption datasets.

The average accuracy is reported in Table 14 (the accuracy under each type of corruption is reported in the
supplementary material), where we can observe that EVP outperforms other prompting methods and linear
probing by a large margin. It is also worth noting that EVP performs comparably to fully fine-tuning in

7



Published in Transactions on Machine Learning Research (05/2024)

S
c
o
re

s
(%

)

S
c
o
re

s
(%

)

S
c
o
re

s
(%

)

S
c
o
re

s
(%

)

S
c
o
re

s
(%

)

EuroSAT OxfordPets

SVHNCIFAR100 CIFAR10

S
c
o
re

s
(%

)

Food101

S
c
o
re

s
(%

)

DTD

S
c
o
re

s
(%

)

clevr

S
c
o

re
s
(%

)

1%        4%        7%       10%
Percent of training examples per class

Average on 11 datasets
5

5
  
…

 6
3

  
6

5
  
6

7
  
6

9
  
7

1
  
 7

3
  
 7

5
  

6
9

  
…

  
 8

3
  
 8

7
  
9

1
  
9

3
  
 9

5
  
9

7
  
  

3
0

  
…

 7
1

  
7

4
  
 7

7
  
8

0
  
8

3
  
8

6
  
 8

9
  

5
5

  
 5

8
  
6

1
  
6

4
  
6

7
  
 7

0
  
 7

3
  
7

6
  

4
0

  
…

 6
0

  
 6

4
  
6

8
  
7

2
  
 7

6
  
8

0
  
8

4
  

8
7

  
 8

8
  
8

9
  
 9

0
  
9

1
  
 9

2
  
9

3
  
9

4
  

7
4

  
 7

6
  
7

8
  
 8

0
  
8

2
  
 8

4
  
8

6
  
8

8
  

3
2

  
 3

5
  
3

8
  
 4

1
  
4

4
  
 4

7
  
5

0
  
5

3
  

4
2

  
…

 4
8

  
5

1
  
 5

4
  
5

7
  
 6

0
  
6

3
  
6

6
  

1%        4%        7%       10%
Percent of training examples per class

1%        4%        7%       10%
Percent of training examples per class

1%        4%        7%       10%
Percent of training examples per class

1%        4%        7%       10%
Percent of training examples per class

1%        4%        7%       10%
Percent of training examples per class

1%        4%        7%       10%
Percent of training examples per class

1%        4%        7%       10%
Percent of training examples per class

1%        4%        7%       10%
Percent of training examples per class

S
c
o
re

s
(%

)

SUN

4
6

  
…

  
5

8
  
6

0
  
6

2
  
6

4
  
 6

6
  
6

8
  
7

0
  

1%        4%        7%       10%
Percent of training examples per class

S
c
o
re

s
(%

)

Resisc

4
9

…
6

3
  
6

6
  
6

9
  
7

2
  
 7

5
  
 7

8
  
8

1
  
8

4

1%        4%        7%       10%
Percent of training examples per class

EVP(Ours)

VP

VPT

Linear Probing

3
3

  
…

  
 3

8
  
4

0
  
4

2
  
 4

4
  
4

6
  
4

8
  
5

0
  

S
c
o
re

s
(%

)

DMLab

1%        4%        7%       10%
Percent of training examples per class

Figure 4: Results with different data scales on 11 visual recognition datasets. Each figure shows the results trained on 1%,
4%, 7%, and 10% data, respectively. All visual prompting methods show clear dominance compared with linear probing. EVP
(red line) outperforms other methods by a large margin on average.

handling common image corruptions, i.e., 71.5% vs. 71.9%. This may be due to the fact that the corruptions
on the image can damage the performance of other baselines, while our strategy of treating the prompt as
a standalone and independent component can alleviate this issue, i.e., the prompts in EVP are not directly
combined with (but are padded around) the corrupted images during inference.

4.4 Different Data Scales

In this section, we evaluate the performance of EVP with different data scales. We train EVP using only 1%,
4%, 7%, and 10% of the data for each class in the training datasets. This is of particular interest because
few-shot learning is an important aspect of prompting in natural language processing. We hereby aim to
validate if EVP can achieve strong performance with limited data.

The average accuracy, as well as the detailed accuracy on each dataset, is reported in Figure 4. We can observe
that 1) visual prompting methods (VP, VPT, EVP) consistently outperform linear probing, demonstrating
the effectiveness of visual prompting in learning with limited labeled data; and 2) among all visual prompting
methods, EVP consistently achieves the best overall performance, demonstrating its strong generalization
ability at different data scale.

5 Discussion

5.1 Original Image Information

We first investigate the importance of preserving the original information of the input image. To explore
this, we manipulate the size of the input image while keeping the number of learnable parameters constant.
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Table 4: Ablation on original image information across 12 datasets on CLIP. There is a clear trend that as the image size
decreases, i.e., as the occlusion decreases, the performance gradually increases.

Image size CIFAR100 CIFAR10 Flowers Food EuroSAT SUN DMLab SVHN Pets DTD RESISC CLEVR Avg.

224 77.1 94.7 80.6 81.8 96.7 71.4 60.1 88.9 89.1 64.2 88.1 73.4 80.5
204 77.5 95.3 80.8 82.0 97.0 71.0 60.7 89.7 89.3 64.0 88.5 73.6 80.8
184 79.0 95.9 81.7 82.3 97.4 70.3 61.9 90.6 89.9 65.2 89.5 74.3 81.5

164 (Default) 81.2 96.6 82.3 82.3 97.6 71.0 62.3 90.5 88.7 68.4 89.7 75.9 82.2

Table 5: Ablation on the positional embedding at the pixel level. EVP-small shrinks the original image and pads it
with learnable pixels to the original size, while EVP-big pads pixel patches around the original image. We note EVP-small w/
PE can beat EVP-big w/o PE despite having fewer parameters and a smaller input resolution, suggesting positional embeddings
are crucial in visual prompting at the pixel level.

Image size CIFAR100 CIFAR10 Flowers Food EuroSAT SUN SVHN Pets DTD RESISC CLEVR Avg.

EVP-small w/ PE 81.2 96.6 82.3 84.1 97.6 71.0 90.5 90.0 68.4 89.7 75.9 84.3
EVP-small w/o PE 70.9 92.3 70.2 78.6 83.0 62.2 55.9 88.1 62.5 73.8 72.1 73.6

EVP-big w/ PE 81.4 96.9 92.3 84.7 97.4 71.8 90.7 89.2 68.9 91.6 77.1 85.6
EVP-big w/o PE 73.4 93.7 71.0 80.7 85.3 63.4 58.1 88.9 64.6 76.2 74.5 75.4

Table 6: Ablation on the positional embedding at the token level. VPT only adds positional embeddings to the image
patch embeddings, while VP1T, VP25T, VP50T denote methods in which the 1st, 25th, and 50th positional embeddings are
added to the learnable tokens, respectively. We can observe that simply adding positional embeddings to the learnable tokens
can significantly improve performance.

Image size CIFAR100 CIFAR10 Flowers Food EuroSAT SUN SVHN Pets DTD RESISC CLEVR Avg.

VPT 76.6 95.0 76.2 84.7 94.6 69.3 86.1 92.1 61.6 84.3 58.6 79.9
VP1T 77.3 96.0 77.5 84.9 96.2 69.7 87.3 92.2 67.7 87.1 59.9 81.4
VP25T 76.8 95.5 76.3 84.0 95.9 69.0 85.4 92.0 66.6 86.1 58.8 80.6
VP50T 77.0 96.0 75.4 83.8 95.8 69.3 86.1 92.3 66.4 84.0 59.0 80.4

By scaling the size of the input image beyond 164, we expect to see an increased overlap between the input
image and the prompt. The results are reported in Table 4. A notable observation is that for 9 out of the
12 datasets examined, the performance is inversely proportional to the extend of overlap. This underscores
the importance of preserving original image information.

5.2 Prompting Positional Embedding

We next probe positional embeddings. Note while EVP encodes the positions of both learnable visual
prompts and image patch embeddings, VPT restricts positional embeddings (PE) solely for the image
patch embeddings. To illuminate the implications of positional embeddings in visual prompting, we present
evaluations across different configurations, both at the pixel and token levels.

Focusing on the pixel level, we denote our main method as EVP-small w/ PE, and introduce two variations:
1) EVP-big w/ PE: Here, the image at the original size is padded with learnable pixels, and the positional
embeddings are added to both the image patch embeddings and the learnable pixels using interpolation. 2)
EVP-big w/o PE: we hereby also use the image at the original size, but only add positional embeddings
to the image patch embeddings. Table 5 shows the results. We can observe EVP-big w/ PE achieves the
best performance, while EVP-big w/o PE performs the worst. For example, we note even EVP-small
w/ PE is able to outperform EVP-big w/o PE by an average of 6.1% on the five datasets (86.7% vs.
78.6%), despite having fewer parameters and lower image resolution. These results demonstrate the vital
role of adding positional embeddings in visual prompting.

At the token level, we find that simply adding positional embeddings to the learnable tokens can improve
performance. To investigate this further, we create different prompting choices at the token level by adding
different positional embeddings to the learnable tokens. Specifically, we denote prompting choices as VPnT,
where the n-th positional embeddings are added to the learnable tokens, as illustrated in Figure 5. Since the
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Figure 5: Ablation on positional embedding at the token level. (a). Visual Prompting Tuning(VPT): Inject learnable
tokens between CLS and image patch embedding without positional embedding (b): VPnT: Inject learnable tokens between
CLS and image patch embedding with same positional embedding Pn (i.e, n-th positional embedding (n = 1, 2, . . . , 5)).

Table 7: Ablation on augmentation and normalization. Left panel: We find that simple techniques like RandomFlip and
RandomCrop achieve strong results, while stronger augmentations like Cutmix or RandAug decrease the performance. Right
panel: We note 1) applying L2 norm on gradient enhance performance; and 2) using the whole image’s gradient leads to further
improvement compared to using only the gradient of the visual prompting pixels.

Augmentation PerformanceFlip&crop RandAug CutMix
% % % 80.5
" % % 81.2
" " % 79.4
" % " 79.7

Gradient Normalization Performance
L1 L∞ L2-partial L2-whole
% % % % 77.5
" % % % 77.2
% " % % 71.9
% % " % 79.4
% % % " 81.2

total token count is 50, in our experiment, we choose n = {1, 25, 50} to study the effects of inserting tokens
at the head, the middle, and the tail of the original image.

The results in Table 6 demonstrate that the incorporation of positional embeddings in the learnable tokens
can consistently and significantly improve the performance of visual prompting. For example, the average
accuracy is increased by +2.4% with VP1T, +1.8% with VP25T, and + 1.4% with VP50T. Collectively, these
findings reiterate the importance of positional embeddings in this context.

5.3 Training strategy

In this section, we turn our attention to the impact of various “old tricks” in transferable adversarial learning
on the performance of visual prompting. We first ablate different augmentation methods such as RandomHor-
izontalFlip, RandAug, and Cutmix on the CIFAR100 dataset. As shown in Table 7, interestingly, we find
that using simple augmentation techniques like RandomHorizontalFlip and RandomCrop can already achieve
satisfactory results, while more advanced methods such as Cutmix or RandAug may decrease performance,
likely due to over-regularization. For example, on CIFAR100, RandomHorizontalFlip and RandomCrop is
able to improve accuracy by 0.7%, but RandAug or CutMix hurts the accuracy by 1.1% and 0.8%, respec-
tively.

Next, we ablate different gradient normalization strategies, including the L1 norm, L2 norm, and L∞ norm,
on the CIFAR100 dataset. The results, shown in Table 7, indicate that the L2 norm consistently performs
the best among all three strategies. Furthermore, we observe that employing the entirety of the image’s
gradient to compute the norm (L2-whole) performs consistently better than merely using the gradient of the
visual prompting pixels (L2-partial), i.e., 81.2% vs. 79.4%.
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Table 8: Performance of ViT models. By incorporating the output transform into the framework, we can observe a
substantial improvement.

Model Adaptation CIFAR100 CIFAR10 Flowers Food EuroSAT SUN SVHN Pets DTD RESISC CLEVR Avg.

ViT VP 44.6 94.9 15.3 36.5 95.3 2.2 16.2 8.8 16.8 64.8 35.7 39.2
ViT VP+ILM 73.8 97.0 36.9 42.6 96.0 17.6 89.7 79.5 36.2 69.6 64.0 64.4
ViT EVP 73.8 97.7 78.6 62.7 97.6 5.7 19.6 8.7 57.4 89.5 50.2 58.3
ViT EVP+ILM 86.3 97.6 77.5 70.3 97.6 26.2 95.2 86.6 60.1 89.8 71.2 78.0

5.4 VPT-DEEP

VPT-DEEP is an advanced version of VPT, which additionally introduces learnable tokens at every Trans-
former block for enhancing performance. Following the setup in Section 4, we hereby draw a comparative
performance analysis between VPT-DEEP and EVP, focusing on the following three settings: the CLIP-
based model, out-of-distribution scenarios, and data corruption scenarios. Regarding CLIP-based model,
our results show that, while VPT-DEEP outperforms the vanilla VPT by 4.6% (from 77.3% to 81.9%) with
significantly more parameters at 0.092 million, its performance remains slightly lower than that of our EVP,
which achieves an average accuracy of 82.5%. In addition, EVP consistently achieves superior performance
than VPT-DEEP in more challenging settings, specifically, out-of-distribution (66.7% vs. 65.2%) and cor-
ruption (71.5% vs. 69.5%). These findings confirm the efficacy of EVP as a superior prompting strategy.
For more detailed accuracy scores across individual datasets, please refer to the supplementary material.

5.5 Compatibility with label mapping strategy

Though this work only focuses on optimization on input pixels, it is also compatible with other techniques.
For examples, label mapping strategy is an effective method in visual prompting, which automatically maps
the source labels to target domain labels, in order to mitigate the uncalibrated final layer (i.e., classification
head) of non-CLIP models. In order to further enhance the performance of visual prompting, this section
delves into the in-depth exploration of the compatibility between EVP and ILM. Specifically, we conducted
experiments under ViT-Base 16 as the backbone, and results are shown in Tab. 8. We can observe that the
integration of ILM results in a substantial performance improvement of both VP and EVP. In the case of
VP and EVP, ILM achieved performance improvement of 25.2% (39.2% to 64.4%) and 19.7% (58.3 % to
78.0 %) respectively. Moreover, irrespective of the use of ILM, EVP consistently outperforms VP.

6 Conclusion

We propose EVP, a simple and effective method for adapting pre-trained models to various downstream
tasks using visual prompts at the pixel level. EVP preserves the original image information and incorporate
adversarial learning techniques to improve performance. Our experiments demonstrate that EVP outper-
forms other visual prompting methods and outperforms linear probing in a variety of settings. Moreover,
EVP shows strong performance in handling data of varying scales and robustness against out-of-distribution
samples.
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A Implementation details

Our implementation is based on Pytorch (Paszke et al., 2019). We use CLIP-B/32, Instagram (Mahajan
et al., 2018), and ResNet50 (He et al., 2016) as our pre-trained model, and the batch size is 256, 32, 128,
respectively. All visual prompting in our experiments are trained for 1000 epochs. For EVP, we use SGD
with a cosine learning rate schedule; the initial learning rate is 70. The prompting size is 30 pixels by
default. To fairly compare with VP, we follow its text prompting setup (Bahng et al., 2022) in CLIP model.
Specifically, we use “This is a photo of a [LABEL]” by default for the text prompting. For CLEVR datasets,
we use “This is a photo of [LABEL] objects”, for DMLab datasets, we use “The distance is [LABEL1], and
the reward is [LABEL2]”, and for Camelyon17, the text prompting template is “a tissue region [LABEL]
tumor”.

B Prompting size

The prompting size is defined as p = K−k
2 , where k is the image size after shrinking, and K is the input size

of pre-trained model. Therefore, the number of parameters is 12p(K − p), which only depends on p since K
is fixed for a given model. In our experiment, the optimal prompting size varies across datasets, as shown
in Figure 6. Since we shrink the original image and pad learnable pixels around it, there shows a trade-off
between the image resolution and the number of parameters. Interestingly, we note that, for datasets with a
low resolution (e.g., CIFAR100), the prompting of p = 30 achieves the best performance. While for datasets
with a high resolution, we note setting p to a small value empirically works the best. For example, we find
that p = 5 is the best in Food101 dataset which has a resolution of 512 × 512. The best hyper-parameter is
shown in Table 12 and we note setting prompting size to 30 generally achieve the best overall accuracy on
these four datasets.
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Table 9: The optimal prompting size in our experiments across 12 datasets on CLIP.

Image size CIFAR100 CIFAR10 Flowers Food EuroSAT SUN DMLab SVHN Pets DTD RESISC CLEVR

Prompt size (p) 30 30 30 5 30 30 30 30 20 30 30 30
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Figure 6: Ablation on prompting size. The pre-trained model is CLIP-B/32. We vary the prompting size, which determines
the number of parameters, and show the performance on four datasets.

Table 10: Specific performance on CIFAR-10C

Methods brightness contrast defocus_blur elastic fog frost gaussian_blur gaussian_noise glass_blur impulse_noise

VP 91.9 81.6 87.8 82.0 86.5 84.8 85.4 61.4 60.7 61.9
VPT 87.6 78.0 82.0 73.9 78.8 77.1 79.9 46.8 46.0 55.8

EVP(Ours) 95.4 90.3 93.1 87.7 91.5 89.8 91.6 66.3 69.0 67.8
LP 92.9 85.0 88.6 82.1 87.0 85.6 86.2 56.2 55.1 62.1
FT 94.9 91.6 92.1 84.2 91.2 88.5 91.1 57.1 59.5 68.7

Methods jpeg_compression motion_blur pixelate saturate shot_noise snow spatter speckle_noise zoom_blur Avg.

VP 74.3 79.7 66.6 88.9 67.5 84.8 87.3 69.1 84.6 78.2
VPT 63.9 72.5 58.1 84.1 56.1 77.9 80.6 59.0 75.9 70.2

EVP(Ours) 80.4 86.3 75.3 93.2 73.6 89.6 91.0 75.2 90.3 84.3
LP 75.1 80.8 77.9 90.5 65.0 86.2 88.6 67.8 85.2 78.8
FT 74.3 86.8 77.3 93.0 66.4 89.0 91.0 69.4 89.0 82.7

Table 11: Specific performance on CIFAR-100C

Adaptation brightness contrast defocus_blur elastic fog frost gaussian_blur gaussian_noise glass_blur impulse_noise

VP 71.3 55.5 65.7 57.9 61.5 58.0 62.2 30.6 27.6 37.4
VPT 72.8 62.8 67.9 57.9 64.6 58.7 65.4 30.3 25.8 41.0

EVP(Ours) 77.7 66.5 73.2 63.5 69.1 64.2 70.2 36.3 31.8 38.5
LP 75.5 63.1 69.8 60.0 66.2 63.4 66.4 31.1 30.8 39.4
FT 80.7 73.1 75.7 62.9 72.9 66.6 73.6 34.8 31.9 46.1

Adaptation jpeg_compression motion_blur pixelate saturate shot_noise snow spatter speckle_noise zoom_blur Avg.

VP 47.4 55.2 46.1 61.7 37.7 59.3 63.5 38.6 61.1 52.5
VPT 45.2 57.8 45.0 64.3 38.0 60.5 64.9 39.4 63.4 54.0

EVP(Ours) 52.8 63.5 51.4 69.1 43.8 65.4 68.6 44.6 68.0 58.6
LP 49.5 61.4 57.2 66.8 39.7 64.7 67.8 42.4 65.8 56.9
FT 48.3 66.5 52.6 73.5 42.9 69.1 72.9 44.3 70.9 61.1

C Comparative Analysis of Model Size, Training Time, and Throughput

In order to provide a more comprehensive and in-depth comparison, we conducted experiments on CIFAR100
and listed the training time, throughput, and the number of parameters of vp, vpt, evp, and linear probe,
respectively. showed the results.
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Table 12: Model Size, Training Time, and Throughput of different methods

Adaptation Number of parameters (Millions) Training time (mins) Throughout (images/second)

VP 0.070 358 780
VPT 0.064 1050 651
EVP 0.062 409 961

Linear probing 0.051 356 1130

Table 13: Performance comparison across 12 datasets with CLIP. We note EVP outperforms VPT-DEEP with fewer tunable
parameters. The results where EVP outperforms VPT-DEEP are highlight in bold.

Adaptation Tunable params (M) CIFAR100 CIFAR10 Flowers Food EuroSAT SUN DMLab SVHN Pets DTD RESISC CLEVR Avg.

VPT-DEEP 0.092 78.3 96.1 84.4 85.6 97.4 70.2 57.7 90.1 92.5 70.1 90.6 69.7 81.9
EVP(Ours) 0.062 81.2 96.6 82.3 84.1 97.6 71.0 62.3 90.5 90.0 68.4 89.7 75.9 82.5

Table 14: Robustness comparison on out-of-distribution and corruption datasets. Left: out-of-distribution datasets. Right:
corruption datasets. We can observe that EVP achieves much stronger robustness on both out-of-distribution setting and
corruption setting.

Model Adaptation iwildcam camelyon17 fmow Avg.

CLIP VPT-DEEP 62.7 93.6 39.3 65.2
CLIP EVP(Ours) 64.9 95.1 40.2 66.7

Model Adaptation CIFAR100-C CIFAR10-C Avg.

CLIP VPT-DEEP 56.3 82.6 69.5
CLIP EVP(Ours) 58.6 84.3 71.5

D Performance under different corruption cases

In Section 4.3, we see that our EVP outperforms other methods on corruption setting. Here, we list the
generalization performance of all methods under various types of corruptions, as shown in Table 10 and
Table 11. Specifically, compared to VP, we note 1) on CIFAR-10-C, EVP yields the largest improvement
on constrast (+8.8%) and the smallest improvement on brightness(+3.5%); 2) on CIFAR-100-C, EVP yields
the largest improvement on contrast (+11.0%) and the smallest improvement on impulse noise (+1.1%).

E Performance comparison with VPT-DEEP

VPT-DEEP is an advanced version of VPT, which additionally introduces learnable tokens at every Trans-
former layer’s input space for enhancing performance. We hereby briefly compare its performance to that of
EVP. Specifically, we compare the performance of EVP and VPT in three settings: CLIP-model, OOD, and
corruption.

E.1 Performance on CLIP-model

In this section, based on CLIP model, we conduct a comparative analysis of the performance of EVP
and VPT-DEEP on 12 classification dataset. The results are shown in Table 13. We can see that EVP
demonstrates an average performance improvement of 0.6% over VPT-DEEP(82.5% v.s. 81.9%), with only
0.062 Million tunable parameters, which is 0.03 million fewer than VPT-DEEP.

E.2 Performance on Robustness

Following the setting in main text, we test the robustness of EVP and VPT-DEEP to distribution shift and
common image corruption. Table 14 presents the specific comparative results. In both the OOD (+1.5%)
and corruption settings (+2.0%), EVP achieves superior performance consistently compared to VPT-DEEP,
which demonstrates the robustness of EVP.
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F More ablation study results

In this section, we demonstrate more ablation study results of augmentation strategy and normalization
strategy. As shown in Tab. 15, data augmentation and normalization play a great role in visual prompting.

Table 15: Ablation on augmentation and normalization. Simple techniques like RandomFlip and RandomCrop achieve strong
results, and applying normalization on gradient enhance performance significantly.

Adaptation CIFAR100 CIFAR10 Flowers Food EuroSAT SUN SVHN Pets DTD RESISC CLEVR Avg.

EVP w/o augmentation 80.5 96.2 79.8 83.5 96.5 68.0 90.1 79.4 67.8 89.3 74.6 82.3
EVP w/o normalization 77.5 95.7 78.5 80.9 92.9 54.3 72.3 78.7 48.2 82.6 72.1 75.8

EVP 81.2 96.6 82.3 84.1 97.6 71.0 90.5 90.0 68.4 89.7 75.9 84.3
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