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ABSTRACT

The decision for a financial institution to accept or deny a loan is based on the
probability of a client paying back their debt in time. This probability is given
by a model such as a logistic regression, and estimated based on, e.g., the clients’
characteristics, their credit history, the repayment performance. Historically, dif-
ferent models have been developed on different markets and/or credit products
and/or addressed population. We show that this amounts to modelling default as
a mixture model composed of a decision tree and logistic regression on its leaves
(thereafter “logistic regression tree”). We seek to optimise this practice by consid-
ering the population to which a client belongs as a latent variable, which we will
estimate. After exposing the context, the notations and the problem formalisation,
we will conduct estimation using a Stochastic-Expectation-Maximisation (SEM)
algorithm. We will finally show the performance on simulated data, and on real
retail credit data from [COMPANY], as well as real open-source data.

1 INTRODUCTION AND NOTATIONS

1.1 CONTEXT

[COMPANY], like most financial institutions, has a relatively automatic procedure to accept or deny
loans and estimate its capital requirements. The procedure is based on credit scores. A client fills
in a questionnaire with socio-demographic information and banking behavioural questions, which
answers are used to compute a score. This score determines the financing of the client and the
necessary impairment for the bank to be ready in case of a potential default. The score is learned
on past clients’ characteristics (from the questionnaire), which we denote by x, and the repayment
in time, or not, of their loan which we denote by y ∈ {0, 1} (where 1 represents the default). The
score is directly proportional to the probability p(1|x) of the client not paying back the loan in time,
which is estimated with a model {pθ(y|x)}θ∈Θ. A parametric family Θ is chosen (usually logistic
regression) and the optimal parameter θ̂ in this family (θ̂ ∈ Θ) is estimated from an n-sample
(x, y) = (xi, yi)

n
1 , usually using a maximum likelihood approach. Such a model is relatively weak,

in the sense that the hypothesis space is too restricted to fit the whole clientele of big financial
institutions.

1.2 A MODEL FOR EACH SEGMENT OF CLIENTS

Most financial institutions address multiple markets, e.g. automobile, home appliances, or partners
who sell such products, and different populations of clients (professionals, organisations, agriculture,
private clients). We call “segment” such a sub-population, and denote it by c ∈ C = {1, . . . ,K},
where K denotes the total number of segments.

Formally, we have a vector of customer characteristics X = (Xj)d1, made of d features, either
continuous (i.e. valued in R) or categorical (i.e. valued in {1, . . . ,mj} without order). The aim is
to predict the default Y ∈ {0, 1} from an observation x. These features differ depending on the
segment of the population, for instance “time since creation of the company” is a feature which does
not apply to private clients. However, for simplicity, in the rest of the paper, we will assume that all
d features are shared by all segments. This leads to little loss in generality since continuous features
can be discretized and a “Not Relevant” level can be introduced for categorical features; additionally
we can resort to feature selection at the segment level (see Section 4.6).

1



Under review as a conference paper at ICLR 2023

Clients

pθ1(y|x; c = 1)

Natural person

pθ2(y|x; c = 2)

Group of persons

Private

pθ3(y|x; c = 3)

Automobile

pθ4(y|x; c = 4)

Industry
pθ5(y|x; c = 5)

Real Estate

Professional

Figure 1: Example of model segmentation.

Subsequently, financial institutions create different predictive models {pθc(y|x)}K1 for each popu-
lation c, where θc denotes the coefficient used for segment c (with potential null entries), as shown
in Figure 1, which leads to K models. This means we learn “expert” logistic regression models on
separate “segments” of clients arranged in a tree.

Since this structure is inherited from past a priori decisions, it is likely to be sub-optimal; hence
we seek to optimise the performance on the whole population. To this end, we formalise the data
generating process in the next section.

1.3 FORMALISATION OF THE DATA GENERATING PROCESS

We assume that the model in Figure 1 used by financial institutions accurately depicts the data
generation, i.e. for a given client x, there exists a segment c and a logistic regression parameter θc

for which the default y is drawn from pθc(·|x; c). In other words, we assume that this model is well-
specified. We denote by C ∼ p(·) the random variable valued in {1, . . . ,K} which corresponds
to the assignment to a group (the tree’s leaves in Figure 1). C specifies both the distribution of the
predicting variables, i.e. x|c ∼ p(·|c) and the default law for each group, which we suppose to be
logistic, i.e. Y |x, c ∼ pθc(·|x, c).
Just like for Gaussian mixture models, we seek to estimate p(c|x) (a simple proportion in the latter
example), which will subsequently allow estimation of pθc(y|x; c). Current procedures are de-
scribed in the next section.

1.4 AD HOC “TWO-STAGES” PRACTICE

The ad-hoc methods rely on “two-stages” procedures: first optimising the segmentation, then learn-
ing the separate logistic regression on each segment. The segmentation is done by practitioners using
simple unsupervised “clustering” techniques such as Principal Component Analysis (PCA) and its
refinements. In presence of (possibly only) categorical features, the Multiple Correspondence Anal-
ysis (MCA), by Lebart et al. (1995) or the Factor Analysis of Mixed Data (FAMD), by Pagès (2014)
can be more appropriate. Practitioners then visually assess whether clusters appear on the projec-
tion of samples onto the 2-3 first Principal Components like in the examples of Appendix A, thus
resulting in a qualitative, clustering-like technique, which often performs poorly.

In Section 2 we review the existing approaches to create logistic regression trees. In Section 3
we formalise the problem of determining the best logistic regression tree as a mixture model and
propose an estimation strategy in Section 4. We devote Section 5 to numerical experiments on
simulated data, and Section 6 to experiments on real data.

2 LITERATURE REVIEW OF EXISTING DIRECT APPROACHES: LOGISTIC
REGRESSION TREES

The first research work focusing on a similar problem than the present one seems to be LOTUS,
by Chan & Loh (2004), where logistic regression trees are constructed so as to select features to
split the data on the tree’s nodes which break the linearity assumption of logistic regression. Its
authors’ motivation is that logistic regression has a fixed parameter space, defined by the number
of input features, whereas trees adapt their flexibility (i.e. depth) to the sample size n. Thus, they
search for trees which leaves are logistic regressions with a few continuous features and which
intermediate nodes (found via an appropriate χ2 test) split the population based on categorical or
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continuous features which relationship to the log-odd ratio of y is not linear (i.e. features that would
perform poorly in a logistic regression). Their optimised criterion is the sum of the log-likelihoods
of the logistic regression on the tree’s leaves. This leads to overfitting which requires the tree to be
pruned (as is classical for decision trees) using a method closely related to the one developed in the
classical CART algorithm by Breiman et al. (1984).

The second approach closely related to our industrial problem is named LMT, by Landwehr et al.
(2005). Its authors’ approach differs however from LOTUS in that they rely on a boosting approach
derived from the LogitBoost algorithm by Friedman et al. (2000) to estimate the logistic regression,
and an adaptation of the classical C4.5 algorithm by Quinlan (2014) to grow the tree. The two cen-
tral ideas behind their usage of the LogitBoost algorithm are that: it allows (1) to perform feature
selection via a stage-wise-like process where one feature enters the model at each step, and (2) to
recursively “refine” the logistic regression by boosting the logistic regression fitted at a node’s par-
ent. Indeed, a first logistic regression is fitted at the tree’s root via LogitBoost using all observations
(x,y), which is further boosted separately at its subsequent children nodes on sub-populations, say
((x1,y1), (x2,y2)) and so on. This most probably induces less parameter estimation variance in
each leaf since they partly benefit from samples not in their leaf but used to fit the parents’ logistic
regression, and it is fast. The resulting tree must also be pruned and either a tactic similar to the clas-
sical tree algorithm CART, or cross-validation, or the AIC criterion (in a refinement of the method
proposed by Sumner et al. (2005)) are used.

Lastly, a third approach is MOB, by Zeileis et al. (2008). Their algorithm consists in fitting the
chosen model (in our case, logistic regression) for all observations at the current node and decide
to split these into subsets based on a correlation measure (several such measures are proposed) of
the residuals of the current model (cor(xc

j , y − pθ̂c(yc|xc)). The procedure is repeated until no
significant “correlation” is detected. Similarly to LOTUS and contrary to C4.5, MOB performs, for
binary splits and when confronted to a categorical feature j having mj levels, 2mj tests. Finally, the
number of segments per split is searched exhaustively. Thus, it is computation intensive.

To sum up, these direct approaches produce the sought tree-structure of Figure 1 with different
algorithms: LOTUS only considers continuous features in the leaves and relies on a χ2 test to select
the splits. LMT relies on C4.5 and boosting to grow the tree and estimate the logistic regression
respectively. MOB estimates a logistic regression at each node and chooses splits according to a
correlation to its residuals. In addition to MOB and LMT, there is a vast literature on Hierarchical
Mixtures of Experts from Jordan & Jacobs (1994) which have a ”tree-like” structure but for which
all “experts” (our logistic regressions) output predictions which are thereafter weighted by the tree
structure. Despite “looking” similar, the approaches differ because our desired segmentation means
we want to rely on a single expert for each instance, and we wish that this expert is chosen by a
classical decision tree (in particular, univariate splits at each node). We formalise now the problem
as a model selection problem.

3 LOGISTIC REGRESSION TREES: A DIFFICULT OPTIMISATION PROBLEM

In the ad-hoc method, the segments (ci)
K
1 were determined a priori using historical or practical

reasons as shown in Figure 1. As we aim at optimising the segmentation, it is desirable to find the
probability of belonging to each segment c, and to fit the model pθc(y|x, c) on each segment. The
total number of segments K is also to be determined. This amounts to a mixture model:

p(y|x) =
K∑
c=1

pθc(y|x, c)p(c|x). (1)

The approach we take considers the real segment C⋆ as a latent random feature. Each observation
belongs to one segment only, thus p(c|x) is non-zero only for c⋆. Subsequently, denoting by xc⋆ the
subset of observations for which c = c⋆ and by c⋆i the segment of an observation xi we have:
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p(x,y) =

K⋆∑
c=1

p(y|x; c)p(c|x)p(x)=
n∏

i=1

K⋆∑
c=1

p(yi|xi; c) p(c|xi)︸ ︷︷ ︸
=0 for c̸=c⋆

p(xi)

=

n∏
i=1

p(yi|xi; c
⋆
i )p(xi) =

K⋆∏
c⋆=1

p(yc⋆ |xc⋆ ; c⋆)p(x)

=

K⋆∏
c⋆=1

∫
Θ⋆,c⋆

pθ⋆,c⋆ (yc⋆ |xc⋆)p(θ⋆,c⋆ |c⋆)dθ⋆,c⋆p(x).

ln p(x,y) =

K⋆∑
c⋆=1

∫
Θ⋆,c⋆

ln pθ⋆,c⋆ (yc⋆ |xc⋆)p(θ⋆,c⋆ |c⋆)dθ⋆,c⋆ + ln p(x) (2)

≈ −
K⋆∑
c⋆=1

BIC(θ⋆,c⋆)/2 +O(K⋆) + ln p(x),

where BIC stands for the Bayesian Information Criterion (similar to AIC, see Neath & Cavanaugh
(2012)). Since in our application, the number of sample n ≈ 105 is large and the number of desired
segments K⋆ ≈ 10 is low, we use the following criterion to select a segmentation:

(K̂, ĉ) = argmin
K,c

K∑
c=1

BIC(θ̂c). (3)

The difficulty in optimising Equation 3 directly lies in the discrete nature of c given x. This highly-
combinatorial discrete problem is relaxed by approximating door functions p(c|x) with a “smooth”
proxy pβ(c|x) and relying on Markov Chain Monte Carlo (MCMC) methods. As we will rely on
decision trees, the β “parameter” will stand for the tree’s split features and cut points.

4 ESTIMATING LOGISTIC REGRESSION TREES

As Equation 1 is a mixture model with a latent variable, it seems natural to resort to an Expectation-
Maximization (EM) algorithm, which will be exposed in the next section. We will then mitigate two
downsides of this approach by relying on a Stochastic-Expectation-Maximization (SEM) algorithm
in the subsequent section, and finally discuss how we obtain a logistic regression tree from all the
candidates that these two algorithms provide.

4.1 A CLASSICAL EM ESTIMATION STRATEGY

We would like to maximise the following likelihood, derived from Equation 1, both in terms of the
segmentation and the resulting logistic regressions:

ℓ(β, (θc)K1 ;x,y;K) =

K∑
c=1

n∑
i=1

ln pθc(yi|xi, c)pβ(c|xi).

The EM algorithm from Dempster et al. (1977) is an iterative method that can be used to estimate the
maximum a posteriori (MAP) of p(c|x, y), since c is latent, and alternates between the expectation
(E-)step, which computes the relative membership of the observations into each segment, and a
maximisation (M-)step, which computes the maximum likelihood estimate (MLE) of the parameters
of the log-likelihoods of each segment’s logistic regression and the tree structure. These new logistic
regression and tree estimates are then used to determine the distribution of the latent variables in the
next E-step. Considering the number of segments K fixed, the E and M-steps of the EM can be
derived as follows.
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E-step - At iteration (s+ 1), the partial membership of an observation i to segment c is:

p(ci|xi, yi;θ
c(s),β(s)) = t

(s+1)
i,c =

pθc(s)(yi|xi)pβ(s)(c|xi)∑K
c′=1 pθc′(s)(yi|xi)pβ(s)(c′|xi)

.

For notational convenience, we denote the matrix of partial membership of all observations to all
segments as t = (ti,c)1≤i≤n,1≤c≤K .

M1-step - The previous E-step allows to derive the new MLE of the logistic regression parameters
of each segment c as:

θc(s+1) = argmax
θc

E[ℓ(β, (θc′)K1 ;x,y;K, t(s+1))|(θc(s))K1 ,β(s),K]

= argmax
θ

n∑
i=1

t
(s+1)
i,c ln pθc(yi|xi).

M2-step - Similarly, a new tree structure can be derived by the new MLE of its parameter β:

β(s+1) = argmax
β

E[ℓ(β, (θc)K1 ;x,y;K, t(s+1))|θc(s),β(s),K]

= argmax
β

n∑
i=1

K∑
c=1

t
(s+1)
i,c ln pβ(c|xi)

where pβ(c|xi) is estimated by relative frequency in each leaf, such that pβ(c|x) = |cL(x)|
|xL(x)| , where

L(x) denotes the leaf in which x falls. In this M2-step, one could argue that θc(s+1) could be used,
since it is computed in the M1-step, which could improve convergence. However, this would require
recalculating the partial memberships t(s+1). Hence it is unclear if this would be beneficial to the
algorithm’s runtime.

Additionally, tree induction methods like CART or C4.5 do not follow a maximum likelihood ap-
proach, so that they rather try to minimise a so-called impurity measure, the Gini index or the
entropy, respectively. However, since it is hoped that segments c⋆ are “peaks” of the distribution
pβ(c|x), we assume the log-likelihood can be approximated by the entropy:

β(s+1) ≈ argmax
β

n∑
i=1

K∑
c=1

t
(s+1)
i,c pβ(c|xi)︸ ︷︷ ︸≈ 1 for c = c⋆,

0 otherwise.

ln pβ(c|xi).

This last formulation allows to obtain β(s) from a simple application of the C4.5 algorithm, with
observations properly weighted by ti,c. However, this approach suffers from two main drawbacks:
first, all observations are used in all logistic regression pθc which might hinder runtime; second,
all possible values of K must be iterated through since the EM algorithm does not allow for the
disappearance of a segment c contrary to the SEM approach developed hereafter.

4.2 AN SEM ESTIMATION STRATEGY

Using an MCMC approach, a straightforward way of building logistic regression trees is to propose
a tree structure, fit logistic regressions at its leaves, and evaluate the goodness-of-fit using Equation 3
of the resulting logistic regression tree. This is somehow the way LMT works: a tree structure is
proposed based on C4.5, logistic regressions are fitted using the LogitBoost algorithm, and the tree
is pruned back using a goodness-of-fit criterion. Doing so for all possible tree structures being
intractable, we design a way of generating “good” candidates by relying on an SEM algorithm,
which we call [MODEL]. The E-step of the previous section is thus replaced by a Stochastic (S-)
step which has some consequences on the M-steps.

S-step - The “soft” assignment of the EM algorithm of the previous section is hereby replaced by
a “hard” stochastic assignment such that:

c
(s+1)
i ∼ pθ·(s)(yi|xi)pβ(s)(·|xi).
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M1-step - Thanks to the previous step, the segments are now assigned such that the logistic re-
gressions can be estimated using only observations affected to their segment:

θc(s+1) = argmax
θc

ℓ(θ;xc(s+1)

,yc(s+1)

)

= argmax
θc

n∑
i=1

1c(c
(s+1)
i ) ln pθc(yi|xi; c).

M2-step - This is again approximated by C4.5’s (unweighted) impurity measure, the entropy,
using only observations affected to each segment.

4.3 GOING BACK TO “HARD” SEGMENTS

4.3.1 MAP ESTIMATE

In the previous sections, we relaxed the discrete problem into “soft” assignments pβ(cj |·). This
allows observations to “partly” belong to each segment, which can be interpreted as a mixture of
logistic regressions: all observations are scored by all models which are subsequently weighted.
This is arguably not interpretable, nor the initial goal to retrieve a tree such as in Figure 1. An
assignment of each sample i to a single most appropriate model, i.e. to a leaf of the segmentation
tree, is achieved in parallel from the (S)EM algorithm(s) by a MAP step such that:

ĉ
(s)
i = argmax

c
pβ(s)(c|xi).

4.3.2 LEAVES AS SEGMENTS

Alternatively, we can simply consider the leaves of the estimated tree pβ(s)(c|xi) as segments. In

other words, if we number the terminal nodes of the tree (e.g. left to right), ĉ(s)i becomes the number
of the leaf where xi lands. There is no obvious reason why this would work better than the MAP
estimation, nor a theoretical justification. However, experiments on simulated data in Section 5
suggest it performs better.

4.4 CHOOSING THE BEST SEGMENTATION CANDIDATE

The EM and SEM strategies introduced in the two previous sections for segmentation are merely
“segments providers”. Indeed, through the iterations 1 to S, as argued in the two preceding para-
graphs, segmentations ĉ(1), . . . , ĉ(S) are proposed through a MAP or leaves as segments rule parallel
to these algorithms. The best performing segmentation s⋆ is then chosen using Equation 3 (where
the search space is restricted to the proposed segmentations).

4.5 CONVERGENCE PROPERTY: EXPLORING THE NUMBER OF SEGMENTS

In the preceding sections, the number of segments K was assumed to be fixed. However, the MAP
scheme introduced in this section allows us, when going from “soft” pβ(cj |·) to “hard” segment
assignment, to explore a number of segments potentially way lower than K: for a fixed segment
c, if there is no observation i such that pβ(c|xi) > pβ(c

′|xi) for c′ ̸= c, than the segment is
empty, which is equivalent to producing a segmentation in K − 1 segments. Supplemental to this
thresholding effect, the use of an SEM algorithm makes it possible to enforce this phenomenon: as
c is drawn in the S-step, there is a non-zero probability of not drawing a particular segment c at
a given step (s). When run long enough, the chain will stop with K = 1. This can be seen as a
strength since it does not require to loop over the number of segments K which would be required
for an EM algorithm, which is why focus is given on the SEM algorithm in what follows.

For the leaves as segments approach, the number of segments K entirely depends on the form (in
particular the depth) of the tree. Little can be said about the quality of the exploration.
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Figure 2: Data simulation procedure.

4.6 CATEGORICAL VARIABLES, DISCRETIZATION OF CONTINUOUS VARIABLES ON EACH
SEGMENT AND VARIABLE SELECTION

As logistic regression assumes linearity of the log-odd ratio w.r.t. continuous features and conversely
might estimate a coefficient relative to a categorical level taken by few samples with a lot of variance,
practitioners often discretize continuous features and regroup categorical levels to obtain the best
model. In parallel, the goal of the SEM algorithm is to split the population into segments that
“behave” differently. Thus, to achieve better performance, both the discretization of continuous
features and the grouping of levels of categorical features must be segment dependent. The variables
selected in each segment by the logistic regression (via an L1-regularisation) will also be different.
We therefore add a “processing” step to our SEM algorithm.

P-step - Discretization of continuous features We discretize continuous features using a Mini-
mum Description Length Principle method (MDLP, see Fayyad & Irani (1993)), which consists in
trying different cutting values (midpoints of distinct consecutive values), selecting the best based on
entropy, and deciding whether it is worth continuing to further discretize with the MDLPC criterion.

Merging levels of categorical features We merge levels of categorical features using a χ2 method,
where we compute the χ2 contingency of every unique pair of categories, merge the pair with the
highest contingency if the contingency is above a certain value, and repeat (while keeping a mini-
mum of two categories). In the following section, we generate continuous features and show empir-
ical consistence of the proposed method.

5 PERFORMANCE ON SIMULATED DATA

5.1 DATA SIMULATION MECHANISM

We generate the data from a logistic regression tree (see Section 1.3) drawing features Xj , j ∈
{1, 2, 3}, fromN (0, 1), forming a decision tree by choosing splits x0 = 0 and x1 = 0, which yields
K = 4 segments, and drawing distinct logistic regression coefficients θc from N (0, 5) on each of
the leaves of the tree. Default y is then drawn from pθc(·|x; c), see Figure 2.

5.2 IMPORTANCE OF THE HYPER-PARAMETERS & EMPIRICAL CONVERGENCE

The SEM algorithm, which pseudo-code can be found in Appendix C, has multiple parameters:
using MAP or leaves as segments, the number of iterations S, the initial number of segments K, and,
being an MCMC method, the number of initialisations. Indeed, to avoid risking a bad performance
because of an unlucky initialisation, we randomly initialize the algorithm multiple times in parallel,
run it and return the best model found among the parallel runs.

Figure 3 displays the results: its first row represents Equation 3 w.r.t. the number of initialisations,
the number of iterations and the number of samples (which were resp. fixed at 5, 100 and 6,000
when another parameter was tested). As the BIC criterion is an information criterion, it is computed
on the training set. There is no test set (as it would not make sense to penalize the likelihood on a
test set). The second row displays the percentage of experiments where the correct tree (its depth,
the features chosen to split and the splits themselves within the [−0.1, 0.1] range). In both cases,
the option to use a MAP estimation or leaves to obtain segments are plotted against each other. To
obtain a 1-standard deviation, i.e. 68 %, confidence interval, each experiment is run 200 times.

7



Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7

2,500

3,000

3,500

4,000

4,500

#chains

B
IC

Leaves as segments
MAP segments
Oracle

50 100 150 200

2,500

3,000

3,500

4,000

4,500

#iterations

B
IC

Leaves as segments
MAP segments
Oracle

0 0.5 1 1.5 2 2.5 3

·104

0

0.5

1

1.5

·104

#samples

B
IC

Leaves as segments
MAP segments
Oracle

1 2 3 4 5 6 7

0.5

0.6

0.7

0.8

0.9

1

#chains

C
or

re
ct

de
pt

h,
fe

at
ur

es
&

sp
lit

s
(%

)

Leaves as segments
MAP segments
Oracle

50 100 150 200

0

0.2

0.4

0.6

0.8

1

#iterations

C
or

re
ct

de
pt

h,
fe

at
ur

es
&

sp
lit

s
(%

)
Leaves as segments
MAP segments
Oracle

0 0.5 1 1.5 2 2.5 3

·104

0

0.2

0.4

0.6

0.8

1

#samples

C
or

re
ct

de
pt

h,
fe

at
ur

es
&

sp
lit

s
(%

)

Leaves as segments
MAP segments
Oracle

Figure 3: Top row: achieved sum of BIC (Equation 3); Bottom row: proportion of correct trees and
models retrieved.

Table 1: Comparison of the proposed approach [MODEL]-SEM and other classical algorithms on
three open-source datasets and our closed-source dataset.

AUC Logistic Decision [MODEL] Gradient Random
regression Tree SEM Boosting Forest

Statlog (german) 62.1 (3.6) 56.6 (4.4) 68.0 (2.4) 63.3 (2.8) 62.7 (3.1)
Adult 84.1 (0.7) 81.7 (0.9) 85.3 (0.3) 86.9 (0.2) 84.8 (0.3)
Fraud 96.9 (0.6) 93.6 (0.4) 95.9 (0.9) 74.3 (1.8) 97.3 (0.2)

In-house (± vs current method) -3.02 -2.66 -1.78 -0.17 +0.36

When increasing the size of the data set, we asymptotically get the model which we used to sim-
ulate the data more frequently and with greater confidence. Thus, this empirical convergence and
consistency to the data generating mechanism allow us to be confident that the approach is correct
on well-separated data. We will now apply this algorithm to real data.

6 PERFORMANCE ON REAL DATA

6.1 BENCHMARK ON OPEN-SOURCE DATASETS

As our in-house data, used in the following section, cannot be openly shared, we resort to some
experiments on open-source datasets. The statlog (german) and adult datasets from UCI (Dua &
Graff (2017)) are used as they both have mixed-type data, few features (20 and 14 resp.) and many
observations (w.r.t. the number of features - 1,000 and 48,842 resp.), as well as the Credit Card
Fraud Detection from Kaggle (Le Borgne et al. (2022) - 29 features and 284,807 observations).

6.2 COMPARISON TO THE CURRENT METHOD AND CLASSIC ALGORITHMS

In-house data We now use a representative sample of n = 100,000 [COMPANY] clients (pro-
portionally taken from the population, i.e. from every existing segment), for which we know the
repayment performance, as a training sample. We use n = 14,600,000 as a test sample. The data
is initially preprocessed (see Section 4.6) for the whole population and not for each segment, as the
computational cost increases dramatically.

8



Under review as a conference paper at ICLR 2023

Table 2: Comparison of the proposed approach [MODEL]-SEM and other logistic regression trees
algorithms.

SEM LMT MOB
# segment (current: 9) 2 11 1

AUC (± vs current method) -1.52 -7.70 -5.21

Benchmark models As benchmark models, we rely on one hand on “weak” but explainable learn-
ers which form the basis of our approach: decision trees and logistic regression. On the other hand,
we choose also gradient boosting and random forests which traditionally perform quite well on tab-
ular data, in particular on credit risk data, but are not explainable enough to be used in production
on credit risk use cases as of now.

Experimental setup Five to twenty (depending on the dataset’s size) 70/30 training/test splits are
drawn so as to give an idea of the variance of the approach. AUC (and its standard deviation in
parentheses) are given in Table 1. All the algorithms are compared in Table 1 in absolute terms of
Area Under the ROC Curve (AUC), a common metric in credit risk, for open-source datasets, and in
relative terms (to the current method), for the in-house dataset. The segment-dependent processing
step described in Section 4.6 is not performed.

Hyperparameter tuning A grid-search is performed for our model as well as gradient boosting
and random forest. For our model, for computational reasons, we split the training dataset further
into a training and a validation set. The best set of hyperparameters is then chosen w.r.t. the highest
AUC on the validation set. For standalone logistic regression, gradient boosting and random forest,
a cross-validation grid-search is performed. Pseudo-code as well as the hyperparameter grids are
available in Appendix B.

Results First, as expected, [MODEL]-SEM performs better than both the logistic regression or
the decision tree alone. Other methods such as Gradient Boosting or Random Forest have similar or
better results than the current method, but when comparing the results on each existing segment we
see that they don’t perform well on all segments universally. Because of that, even with a slightly
better overall performance, we don’t consider them a more satisfying method.

Comparing [MODEL]-SEM to the current method, we can see that its performance is satisfactory.
However, the current method has a “wider” hypothesis space, since the data preprocessing (dis-
cretization, grouping categories for categorical variables) is done separately for every segment and
involved a lot of manual fine-tuning. Additionally, our “small” sample of 100k observations (w.r.t.
the test sample of 14.6M observations) cannot capture “very small”, manually-crafted segments
(several segments with approx. 50-100k observations in the full sample, e.g. voluntary associa-
tions/unions). The current method thus achieves higher performance.

Our SEM algorithm nevertheless creates fewer segments than the current method (the result depends
on the initialisation, but we usually find 2 to 4 segments, compared to the 9 segments of the current
method). Thus, the proposed model is less complex, requires much less of practitioners’ time, but
yields lower performance.

Comparison to existing logistic regression trees algorithms We compare the SEM algorithm
to the other logistic regression tree approaches discussed in Section 2, except for LOTUS which
does not have any available implementation. We now use the version of SEM which incorporates
the data preprocessing in each segment (see Section 4.6). For 10 segments, 100 iterations and
5 different initialisations, this amounts to discretizing and merging levels 5000 times. Adding this
segment-dependent data preprocessing does slightly increase our performance at the cost if increased
computation time. The small number of segments is limiting the performance, but is nevertheless
superior to existing approaches (see Table 2).

9
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7 CONCLUSION

This paper aims at formalising an old problem in Credit Scoring, namely client segmentation, by
providing a literature review as well as a new algorithmic approach. As is often the case, practition-
ers have had good intuitions to deal with practical and theoretical requirements, such as performing
clustering techniques, choosing segments empirically from the resulting visualisation and fitting lo-
gistic regression on these. However, situations can easily be imagined where such practices can fail,
which is why other methods, which take into account the predictive task, shall be preferred. To this
end, a new method is proposed, based on an SEM algorithm.

On simulated data, it shows good results which demonstrate empirical consistency of the approach.
On open-source real data, it shows superior performance than “plain” logistic regression and deci-
sion tree. On real data from [COMPANY], the automatic [MODEL]-SEM almost competes with the
current performance which requires a lot of human time and expert knowledge, and performs better
than the other existing logistic regression trees approaches. The [MODEL] method is available as a
package from [MASK], as well as scripts to reproduce results from Sections 5, 6.1.
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bre de Bruxelles, 2022. URL https://github.com/Fraud-Detection-Handbook/
fraud-detection-handbook.

Ludovic Lebart, Alain Morineau, and Marie Piron. Statistique exploratoire multidimensionnelle,
volume 3. Dunod Paris, 1995.

Andrew A Neath and Joseph E Cavanaugh. The bayesian information criterion: background, deriva-
tion, and applications. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2):199–203,
2012.
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(a) Multi-modal wages and indebtedness data generating mechanism with y = {0, 1} classes displayed in red
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(1) Renters (2) Salaried workers (3) Self-employed

(b) Uni-modal wages and indebtedness data generating mechanism with y = {0, 1} classes displayed in
green and red respectively w.r.t. a “source of wages” categorical feature.

Figure 4: Ad hoc practices failing situations.
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A AD-HOC PRACTICES CAN FAIL

It appears clearly that this approach does not directly optimise a predictive goal. The segmentation
and the logistic regression are optimised independently, according to different error losses. When
those goals don’t align, theses practises can fail.

The first of these failing situations is when the probability density function of covariates (suppose for
simplicity that all of them are continuous) p(x) is multi-modal as on Figure 4a where we distinguish
the lower, middle and upper-classes of respective low, average and high wages and indebtedness. An
unsupervised generative approach like PCA would urge the practitioner to construct 3 models (one
for each of the aforementioned classes). However, displaying y = 1 (default) as red and y = 0 as
green, we can see that perfect separation can be achieved: it depends solely on the indebtedness level
(the ratio of wages over indebtedness). Thus, the resulting models would be asymptotically the same.
Since each of the 3 models would have three times less samples to learn from, it would amount to
increasing the estimation variance of the coefficients, and ultimately result in lower performance. On
a practical note, one could argue that it reduces interpretability by adding an avoidable complexity
to the decision system.

The second failing situation is the counterpart of the first tailored data generating mechanism and is
displayed in Figure 4b. This time, suppose the covariates are uniformly sampled. Suppose there is a
third categorical feature “wages source” which is drawn from three levels: renters, salaried workers
and self-employed. Suppose that renters’ risk level do not depend on their indebtedness, which is
typically low, salaried workers’ risk level is positively correlated with their indebtedness ratio as
was the case for the first introductory example and self-employed people’s risk level is negatively
correlated with this indebtedness ratio. In this situation, an unsupervised generative “clustering”
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algorithm like the projection of the data on the two first PCA axes would not partition the data and
we would construct only one scorecard. This scorecard would have high model bias since it is too
simple to accommodate for the variety of the data generating mechanism.

B HYPERPARAMETER SEARCH

Standalone Logistic Regression An Elastic-net penalty is applied. The best set of hyperparame-
ters, consisting in the regularization strength and the balance between L1 and L2 regularizations is
found via 5-fold cross-validation with scikit-learn.

[MODEL]-SEM Logistic Regression for c An L2-penalty is applied with a (small) regularization
parameter of 0.01. The rationale behind this choice is to avoid overfitting.

[MODEL]-SEM Logistic Regression for ĉ An L1-penalty is applied with a (small) regularization
parameter of 0.01. The rationale behind this choice is that some features might not be relevant for
some segments.

Gradient Boosting Grid-search is performed with scikit-learn via 5-fold Cross-Validation with
the following hyper-parameters:

• learning rate: [0.01, 0.1, 0.5, 2.0],

• n estimators: [100, 300, 1000],

• subsample: [0.5, 0.75, 1.0],

• min samples split: [10, 30],

• min samples leaf: [1, 5, 20],

• max depth: [2, 5, 10],

• max features: [’log2’, ’sqrt’, None]

Random Forest Grid-search is performed with scikit-learn via 5-fold Cross-Validation with the
following hyper-parameters:

• n estimators: [10, 100, 1000],

• min samples split: [10, 30],

• min samples leaf: [1, 5, 20],

• max depth: [2, 5, 10],

• max features: [’log2’, ’sqrt’, None]

• ccp alpha: [0.0, 0.1, 1.0]

12
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C [MODEL]-SEM: PSEUDO-CODE

Data: Features, targets, number of segments, number of iterations: x, y, K, max iter
Result: Final number of segments, assignments of each instance to a segment, logistic

regression parameters of each segment, segmentation tree: K⋆, c⋆, {θc⋆}1≤c⋆≤K⋆ , β⋆

Initialize “soft” (c(0)) and “hard” (ĉ(0)) segments at random: ci, ĉi ∼ [1, . . . ,K];
Track best iteration so far with best iter, best BIC = 0,∞;
while s ≤ max iter do

for 1 ≤ c ≤ K do
(xc(s),yc(s)) is the dataset of instances for which ci = c;
(M1) Estimate θc(s) by fitting a logistic regression to (xc(s),yc(s));
Estimate θ̂ĉ(s) by fitting a logistic regression to (xĉ(s),yĉ(s));

end
(M2) Estimate β(s) by fitting a decision tree to x, c(s);
(S) Draw new c(s+1) from a row-wise normalization of pθ·(y|x)pβ(s)(·|x)
(note: some segments might not be drawn at all, thus K ← distinct values in c(s+1));
Calculate “hard” segments ĉ(s+1) as the row-wise MAP of pθ·(y|x)pβ(s)(·|x);
If sum of BICs (Equation 3) ≤ best BIC, update best iter, best BIC to current values;

end
Output K⋆, c⋆, {θc⋆}1≤c⋆≤K⋆ , β⋆ which correspond to the lowest sum of BICs (as given by
best BIC).

Algorithm 1: [MODEL]-SEM pseudo-code.
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