
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCENEFUNCTIONER: TAILORING LARGE LANGUAGE
MODEL FOR FUNCTION-ORIENTED INTERACTIVE
SCENE SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the Large Language Model (LLM) skyrocketing in recent years, an increas-
ing body of research has focused on leveraging these models for 3D scene syn-
thesis. However, most existing works do not emphasize homeowner’s functional
preferences, often resulting in scenes that are logically arranged but fall short of
serving practical functions. To address this gap, we introduce SceneFunctioner, an
interactive scene synthesis framework that tailors the LLM to prioritize functional
requirements. The framework is interactive, enabling users to select functions
and room shapes. SceneFunctioner first distributes these selected functions into
separate areas called zones and determines the furniture for each zone. It then
organizes the furniture into groups before arranging them within their respective
zones to complete the scene design. Quantitative analyses and user studies show-
case our framework’s state-of-the-art performance in terms of both design quality
and functional consistency with the user input.

1 INTRODUCTION

Synthesizing 3D indoor scenes has become a widely explored topic over the past decade (Zhang
et al., 2019a). A substantial research body focuses on automatically generating appropriate furni-
ture and layouts using various approaches such as optimization (Weiss et al., 2018), relation priors
and scene graphs (Zhang et al., 2021b; Gao et al., 2023), and learning-based frameworks (Paschali-
dou et al., 2021; Tang et al., 2024; Sun et al., 2024). Concurrently, there is growing interest in
user-controlled scene synthesis that tailors the generation to user preferences and more practical
scenarios. A notable research branch addresses the interactive synthesis of indoor scenes (Yu et al.,
2015; Zhang et al., 2019b; 2023). These studies often incorporate user input directly through an
interface (e.g., a control panel) and integrate this input into the generation process. Recently, more
methods have emerged that enable natural inputs, such as text, to control the generation (Yang et al.,
2021; Hwang et al., 2023). Leveraging the exceptional comprehension and generation capabilities
of Large Language Models (LLMs) (Wei et al., 2022; Zhao et al., 2023), many LLM-assisted scene
synthesis frameworks have been developed (Fu et al., 2024; Lin & Mu, 2024; Çelen et al., 2024).
Integrating the LLM allows the user input to be seamlessly converted to design schemes.

Nowadays, economic realities have fueled a trend toward residential rooms that serve multiple func-
tions (e.g., living, storage, and relaxing), stressing the importance of function-oriented designs (Kim
et al., 2011; Zandieh et al., 2011; Dai & Mu, 2023). Homeowners expect rooms to serve specific
practical functions rather than merely featuring a reasonable layout and furniture arrangement. For
example, typical interactive frameworks suggested the furniture based on preprocessed priors such
as spatial relations (Zhang et al., 2021a) and neural representations (Zhang et al., 2019b), while the
functional needs, i.e., functional priors, are yet to be concerned. As a result, users may struggle to
achieve their desired functions, even though the layouts are plausible and aesthetic. In LLM-based
text-controlled approaches, users can express their functional requirements through text input. How-
ever, without sufficient reference information on these functions and function-oriented prompting,
it remains challenging for the LLM to implement these functions in the final design. For example,
without related information, the LLM may not know what an “art design” function means. More-
over, simultaneously handling functional requirements and other given goals/constraints (e.g., decid-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: We propose an interactive framework for synthesizing scenes based on user-specified resi-
dential functions. The user selects functions from the candidates and sketches the room architecture
as the input (Top). The framework then follows a three-step process: (1) The functions are dis-
tributed across multiple “zones” (Left-Bottom). In this example, the red zone stands alone for a
home bar, while the green zone serves both living (featuring a coffee table, sofa, carpet, etc.) and art
display (featuring a painting) functions. (2) Within each zone, furniture items are arranged locally as
groups (Middle-Bottom), such as a dining table with two chairs. (3) Furniture groups are arranged
relative to their zones (Right-Bottom), e.g., placed against the border or in a corner of a zone. Please
refer to our supplementary video for a quick overview of our method and interactive demos.

ing style, local layout, and furniture categories) can potentially reduce the LLM’s performance (Liu
et al., 2024).

This paper proposes SceneFunctioner, a function-oriented scene synthesis framework incorporating
user interaction. We focuses on individual-room-leveled scenes. As shown in Figure 1, users can
select their room functions in order of priority and customize the room’s shape. Afterwards, our
framework employs the LLM to process these inputs and generates a scene that adheres to the user-
specified functions. In order to address the challenges described above, we follow three ideas to
tailor the LLM in implementing our framework:

First, rather than having the LLM manage all functions in a single step, we introduce “zones” to
divide and organize these functions. A zone represents an area containing furniture serving one or
more specific functions, ensuring consistency of the functions within it. With the room divided into
separate zones, each fulfilling particular functions, the LLM can easily comprehend and execute the
synthesis task while following the functional requirements.

Second, we break down the generation task into three sequential steps to further reduce the complex-
ity for the LLM. The first step determines the zones and assigns their respective functions. Then, the
subsequent steps focus on furniture layout within each zone, with the second step arranging furniture
locally as groups and the third step placing these groups within the zone.

Finally, we design postprocessing and feedback mechanisms to address potential errors the LLM
makes, such as incorrect formatting, object collisions, or logical inconsistencies. As illustrated
in Figure 2, only when the postprocessed checks pass can the framework proceed to the next step.
These mechanisms allow the LLM to improve its response iteratively and further enhance the scenes.

We conduct quantitative analyses to evaluate SceneFunctioner. Compared with LayoutGPT (Feng
et al., 2024) and I-Design (Çelen et al., 2024), our method excels in generating state-of-the-art scenes
that meet functional needs and ensure practicality. Additionally, a user study involving interactive
design with SceneFunctioner demonstrates its effectiveness in producing satisfactory scene quality
while significantly reducing design time.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our work features the following contributions:

• We present an interactive scene synthesis framework that prioritizes the user’s preferences
for room functions.

• We structure the task into three steps and implement verification and feedback mechanisms
at each step, contributing to manageable and reliable LLM-based scene synthesis.

• We propose using zones as units that decompose the functions in a room and serve as a
bridge for the LLM to organize the functions and furniture arrangement effectively.

2 RELATED WORKS

2.1 INTERACTIVE SCENE SYNTHESIS

Interactive scene synthesis generally involves suggesting or editing furniture in a scene based on
user inputs. Yu et al. (2015) introduced the Clutterpalette, which suggests small-scaled items when
the user points to a location in the scene, enhancing scene details. Similarly, Zhang et al. (2021a)
developed a framework that enables real-time inference of furniture based on cursor movements
and clicks. They (Zhang et al., 2023) further expanded it to support editing multiple objects simul-
taneously. Yan et al. (2017) presented an intelligent editing system that automatically refines the
layout whenever the user moves the furniture. Ma et al. (2018) leveraged semantic scene graphs for
language-driven scene generation and editing. Zhang et al. (2019b) utilized an interface that asks
for user preferences, such as furniture category and relations, to customize small objects more ef-
fectively. Recently, Zhang et al. (2024) proposed a novel system that allows the user to edit the floor
plan while suggesting furniture arrangements in real time. These methods depended on preprocessed
priors and did not necessarily generate scenes that satisfy functional requirements. There were other
interactive works for generating scenes, such as converting the user’s sketch into a well-arranged 3D
scene (Xu et al., 2013) and diffusion-based 3D content generation through a 3D creator interface (Li
et al., 2024b). However, they did not align with our task of selecting and arranging furniture.

2.2 LLM-ASSISTED SCENE SYNTHESIS

The LLM can enhance the scene synthesis task by providing direct (e.g., positions, sizes, and styles)
and indirect (e.g., scene graphs and spatial relations) guidance for furniture, layouts, and floor plans.
Feng et al. (2024) selected example layouts from a database to instruct the LLM in generating
layouts with specified furniture sizes and positions. Yang et al. (2024a) improved this LLM-assisted
method by incorporating spatial relations and enabling user editing. Çelen et al. (2024) proposed an
LLM-assisted interior design pipeline that supports communication between the LLM and the user,
as well as among multiple LLM agents, for iterative layout refinement. Yang et al. (2024b) built
a system for generating house-scale indoor environments, tailoring the LLM to determine the floor
plan, doorways, furniture, and overall layout.

Entrusting the LLM with a complex generating task can introduce challenges and give rise to er-
rors (Liu et al., 2024). In order to mitigate it, some studies implemented refinement approaches to
improve the LLM’s response. For example, Aguina-Kang et al. (2024) employed force-based layout
optimization and error correction on the plan produced by the LLM. Zhou et al. (2024) applied a
global scene optimization process. Fu et al. (2024) facilitated diffusion models to correct the object
placement and perform texture inpainting to improve the results.

However, as introduced in Section 1, the above approaches are not tailored to address user prefer-
ences regarding the functional aspects of a scene. This paper tackles this issue by explicitly allowing
users to select desired functions and precisely instructing the LLM to adhere to these functions.

3 METHOD

3.1 OVERVIEW

Our framework yields an indoor scene faithful to the user-specified functions and room shape, as
illustrated in Figure 2. It first addresses zones (Section 3.2), where the LLM decides their corre-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Zone 3

Selected Functions

Room Architecture

Formal

Meeting
Dining

Art Display
Indoor

Gardening

Storage …

User Interface

User Input

Template Prompts &

Sample Inputs/Outputs

Step1 Context

Zone 1

Zone 2

Step1:

Decide Zone Division

and Functions

Check the Division

< Fail OK >

Step2 Context Step3 Context

Furniture

Group 1

Furniture

Group 2

Furniture

Group 3

Step2:

Form Groups and Relations

in each Zone

Check the Relations

and Spatial Occupation

< Fail OK > < Fail OK >

Step3:

Arrange all Groups

in each Zone

Present

the Result

Check the Arrangement

Group 1

Group 2
3

4

5

Zone xx

Expertly Annotated Database

Figure 2: The overview of our interactive framework. Based on given functions and a room shape,
our framework distributes the functions into several zones (Step 1). Next, it divides all furniture
objects within each zone into several groups and establishes graph-based relations within each group
(Step 2). Finally, it arranges these furniture groups within each zone into an appropriate layout to
complete the final scene (Step 3).

sponding shapes, functions, and furniture objects. We then check if the room can be appropriately
divided into these zones. The second step (Section 3.3) groups and arranges furniture locally. The
LLM is tasked with dividing each zone’s furniture objects into several groups while using a graph
structure to describe the object relations in each group. We then check if these groups are logically
valid and spatially collision-free. Finally, the last step (Section 3.4) arranges these furniture groups
within each zone, anchoring them to zone borders, corners, ceilings, etc.

3.2 DECIDING ZONES AND FUNCTIONS

The allocation and implementation of functions are critical in multi-functional design (Dai & Mu,
2023). Typically, different functions are treated separately to prevent unnecessary interference. For
example, a designated area may be exclusively reserved for dining. However, certain cases allow
multiple closely related functions to be treated together, particularly when they share the same furni-
ture objects. For instance, an area with two sofas and a coffee table can function both as a relaxation
space and for formal meetings. Given the complexity of accommodating various functions within an
irregular room, it may be difficult for the LLM to effectively handle the entire task in a single shot.
Therefore, we structure the task into two layers to reduce the complexity: zones within the room
(this step) and furniture within the zones (the latter two steps). We define a “zone” as an independent
area designated for one or multiple closely related functions. While zones may be spatially adjacent,
their functions are not necessarily interconnected.

This step addresses the zones and their attributes. First, a context is established using the user input,
predefined prompts, sample inputs/outputs, and annotated data. The LLM is then queried to generate
a response. This response is subsequently parsed and postprocessed. Our framework attempts to
place the zones in the room. If the placement succeeds, our framework proceeds to the next step; if
not, feedback is provided to the LLM for a revised response. To be more specific:

Context. The LLM is provided with the following information: (1) the selected functions ordered
by priority, (2) the room shape represented by a point list, (3) annotated descriptions of the se-
lected functions (e.g., “Formal Meeting emphasizes formal hosting for guests, usually incorporating
business-oriented furniture with a professional layout”), and (4) annotated data suggesting appropri-
ate furniture for these functions. The LLM is instructed to thoughtfully balance the distribution of
functions into zones and consider implementable solutions for the room. Additionally, we append

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(1) Front (x)

(2) Back (x)

(3) Left (x)

(4) Right (x)

(a)

(5) On

(6) Under

(7) LeftBeside (x)

(8) RightBeside (x)

(b)

x

Table Lamp Table

Computer

Bookshelf

Chair

On

On

Front(0.2m)

RightBeside(0.3m)

(c)

Figure 3: Illustrations of the relations and graphs in Section 3.3. There are eight types of pairwise
relations between objects, where a subordinate object either faces toward (a) or shares the same
direction as (b) the anchor object (Red). Six of these relations also require an “x” attribute specifying
the buffer distance between the two objects. (c): An example of a graph representing multiple
relations in a group. The furniture can be organized in topological order as long as the graph is
valid.

the sample inputs and outputs to the context to enhance the LLM’s results (this approach is also
applied to the subsequent two steps).

Response. The LLM is instructed to strictly follow a parsable format (i.e., JSON) and ensure the re-
quired information is provided in the text fields, detailing each zone’s (1) function(s), (2) rectangular
size, and (3) furniture list containing names indicating the furniture categories.

Postprocessing. We try to find a valid placement for the zones within the room, ensuring no colli-
sions occur. Given that the zones have regular shapes and are relatively few, we explore all placement
possibilities using the depth-first search. The zone rectangles are sequentially placed adjacent to cor-
ners, walls, or other zones, with backtracking employed in case of collisions. When space allows,
placing against corners and walls is prioritized to prevent overcrowding.

Feedback. Feedback is provided whenever the LLM’s response has an incorrect format, lacks re-
quired information, or fails the postprocessing check. For the last case, the LLM is instructed to
reassess the room space more carefully to give zones that fit. The LLM can also omit less critical
functions or integrate multiple functions into a single zone if space is limited.

3.3 FORMING FURNITURE GROUPS AND RELATIONS

In scene synthesis, the spatial relations between/among objects are leveraged to ensure objects are
arranged plausibly between/among each other. A scene graph is a classic structure for representing
these relationships, and it is particularly suitable for the LLM as it only requires pairwise rela-
tions (Çelen et al., 2024; Fu et al., 2024; Lin & Mu, 2024). However, generating a global scene
graph that associates many furniture objects significantly increases the risk of logical errors (e.g.,
circuits), misplacements, and collisions, presenting a challenge for the LLM (Li et al., 2024a). To
address this, we instruct the LLM to divide the furniture into groups and construct the graph for each
group. An edge in the graph corresponds to a pairwise relation, encompassing the spatial relation
(e.g., up/down/front/back/left/right) and buffer distance between objects. Figure 3 (a) and (b) give
examples of such relations. The sizes of the furniture are also requested.

Unlike the first step (Section 3.2) with only one room, several zones necessitate their own groupings
and relations. Since an LLM agent can independently manage each zone, we dispatch multiple
agents to process different zones concurrently (one agent for a zone) to accelerate the generation.

Context. The LLM is provided with: (1) the furniture list of the zone from Step 1, (2) the function(s)
and size of the zone from Step 1, and (3) furniture and function descriptions. The LLM is instructed
to carefully comprehend each furniture object’s characteristics and associate them with the zone
function. Additionally, furniture sizes are asked to accommodate these relations.

Response. The response must include: (1) one or multiple groups (each containing one or multiple
furniture objects), (2) pairwise relations (as shown in Figure 3) in each group, and (3) furniture sizes.

Postprocessing. We first verify the validity of the grouping, i.e., whether each furniture object be-
longs to and only belongs to one group. Next, we check the relations within each group, constructing
a graph unless logical errors like circuits are present. We then place the furniture according to the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(1)

(2)
(3)

(4)

(5)

(1) AgainstBorder (x, f)

(2) Corner (x, f, f*)

(3) Center (f)

(4) OnBorder (f)

(5) OnCeiling (f)

(a)

Zone

f

f*

Zone Border

(Against the

Group)

x

x

(b)

Zone Border

(Adjacent to the Group)

Figure 4: Illustrations of anchor rules in Section 3.4. (a): A group can be anchored to a zone through
five rules. Each requires an “f” attribute specifying the group’s facing direction, while the first two
rules also require “x” as the buffer. (b) An example of the “Corner (x, f, f*)” rule. The group
(blue bounding box) faces right (i.e., “f” equals “right”), against the opposite-direction border with
a buffer distance of “x”. “f*” determines the adjacent border that the group aligns with, as a corner
is indicated by two perpendicular borders.

relations in each group and check for any collisions. Finally, we check whether all groups can be
positioned within the zone without collisions, using an approach similar to that in Section 3.2. If all
the preceding checks pass, we select the most appropriate 3D model for each furniture object from
a database based on its name (category) and size.

Feedback. Errors in groupings or relations are directly addressed in the feedback by specifying
which group or relation contains the mistake. If the groups are too crowded for the zone, the LLM
is instructed to consider more compact relations (e.g., reduce the buffer distance between objects)
or use more miniature furniture while maintaining practicality.

3.4 ARRANGING FURNITURE GROUPS

The final task involves arranging the furniture groups generated in Section 3.3 within the zones
decided in Section 3.2. Instead of directly assigning positions and orientations to these groups,
which often results in out-of-bounds or collided layouts, we instruct the LLM to arrange the groups
based on specific anchor rules. These “anchors” include borders, corners, and the ceiling. We also
allow the anchor to be the “center” of the zone for more flexible placement. An anchor rule defines
a group’s relative position/buffer and orientation to the anchor, serving as a spatial relationship
between the group and the room, as illustrated in Figure 4. Similar to the above step, we dispatch
multiple LLM agents to handle the generation:

Context. The LLM is provided with: (1) all furniture groups along with their corresponding furni-
ture names and group sizes, (2) the function(s) and size of the zone, (3) the location and the adjacent
walls of the zone, and (4) furniture and function descriptions. The anchor rules are thoroughly
explained to the LLM, which is instructed to create a collision-free arrangement that reflects the
functions. Even in cases of overcrowded space, unreasonable placements such as a chandelier on
the floor or a table mounted on the wall are strictly prohibited.

Response. The response must be a list of anchor rules (Figure 4) corresponding to furniture groups.

Postprocessing. We verify whether the provided anchor rules can be successfully implemented
within the zone. For groups that are not fixed in position (e.g., a group placed in the center), we
sample several valid positions and traverse them in a priority-based order: (1) positions that align
the group with another group, (2) those align centrally with the anchor, (3) those balance the ar-
rangement within the zone, and (4) those adjacent to other groups.

Feedback. If any groups collide, this is reported back to the LLM.

Once the successful arrangements of all zones are complete, the entire scene can be assembled and
presented to the user.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 5: The user interface of our platform. (a) In this example, the user selects four functions and
draws an L-shaped room in the left panel before clicking “OK”. The platform then generates the
corresponding 3D scene and displays it on the right. (b) The user can search for additional furniture
and further interact with the generated scene.

4 EXPERIMENTS

4.1 SYSTEM IMPLEMENTATION

We develop an online 3D platform that integrates our framework. As shown in Figure 5a, the panel
to the left enables user interaction, and the canvas to the right displays the 3D scene. After the
user selects one or multiple desired functions from the available options, draws the room shape on
the point array, and clicks “OK”, the platform starts generating the scene that is displayed upon
completion. Our platform also supports direct interaction with the 3D scene (Figure 5b). The user
can search for suitable furniture, add it to the scene, or remove inappropriate items. Additionally,
furniture objects can be adjusted in position, orientation, or scale.

We implement the backend of the framework using Python 3.8 and use GPT-4o, one of the state-
of-the-art models of OpenAI, as the LLM. All furniture objects displayed in the scenes are sourced
from the Objaverse dataset (Deitke et al., 2023). Our code will be made publicly available.

4.2 QUANTITATIVE EVALUATION

In this section, we quantitatively compare our framework with two baseline methods targeting LLM-
assisted scene synthesis: LayoutGPT (Feng et al., 2024) and I-Design (Çelen et al., 2024). The
evaluation focuses on four aspects: (1) Generation support (whether the method supports irregular
shape and user control). (2) Scene validity, calculating the percentage of invalid objects that are
either out of bounds or collide with other objects. (3) Text-image alignment measured by the CLIP
score, indicating how well the generated scenes align with the user inputs. (4) Overall scene quality,
assessing the functionality, practicality, and aesthetics judged by GPT.

For consistent comparison across methods, we ensure all scenes are generated using GPT-4o, uni-
formly converted to our platform’s format, and rendered under the same configuration. To assess
adaptability to different inputs, we generate 500 scenes with varying configurations for our method.
Each scene is configured with a random combination of up to 6 functions and a rectangular room
shape, with dimensions between 3 and 5 meters. We then generate 500 corresponding scenes using
I-Design and LayoutGPT, with the text prompt structured as, “A multi-functional room with the
following functions: [function1], [function2], ...”. We observe that the official LayoutGPT imple-
mentation does not natively support free-formed input, which could lead to an unfair comparison. To
address this, we modify its system prompt by inserting the user input above, allowing LayoutGPT
to understand the functional needs. Figure 6 showcases scenes generated by all three methods, and
Table 1 summarizes the evaluation results.

Our method offers the best generation support among the three methods, allowing for user-defined
irregular room shapes and customized functions. Although I-Design enables user refinement through
interacting with LLM agents, the room architecture is restricted to a predefined rectangular shape.
LayoutGPT, an example-based method, relies mainly on example rectangular rooms from a database
and allows control only of the room type and size in its official implementation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Scenes generated by (a) LayoutGPT, (b) I-Design, and (c) SceneFunctioner. (a) Layout-
GPT fails to account for the functions and frequently results in furniture collisions or out-of-bound
placements. (b) I-Design successfully accommodates various functions, but the furniture arrange-
ments could cause interference among functions. For example, in the top-row scene, the arrangement
is so compact that it blocks pathways for accessing dining, reading, and storage areas. (c) Scene-
Functioner effectively balances furniture arrangement with functional needs, achieving the highest
overall generation quality among the three methods.

Our method can always generate a valid scene without furniture objects colliding with other objects
or with the walls, thanks to the strict verification and feedback mechanism implemented in each step.
In contrast, LayoutGPT directly specifies the objects’ configuration (i.e., position, orientation, and
scale) without checking them, leading to over half of the objects being invalid. I-Design incorporates
correction and refinement processes to address such collision cases but cannot eliminate them.

We employ OpenAI’s ViT-L/14-336px model (Radford et al., 2021) to compute the CLIP score
(cosine similarity multiplied by 100) for the rendered images and their corresponding text descrip-
tions, e.g., “A top-down view of a multi-functional room with the following functions: [function1],
[function2], ...”. Our method has an advantage over the other two methods, though the scores are
relatively close. This result may be due to the limited capacity of the CLIP model, which struggles
to effectively encode and correlate functions in the text with visual information in the image. As a
result, this metric may not fully capture the performance differences among the methods.

GPT-4o evaluates the last three metrics. For each text prompt, GPT-4o is presented with three
images, one from each method, and tasked with selecting the best in terms of three criteria: how well
the room accommodates the user’s specified functions (function), whether the furniture is placed

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Quantitative evaluation results demonstrate that SceneFunctioner outperforms the two base-
lines. First, our method supports both irregular room shapes and user control while consistently
generating scenes free from furniture collisions or out-of-bound placements. Second, our method
achieves the highest CLIP score among all methods, indicating superior alignment between the gen-
erated scene (image) and the text prompt. Last, when GPT is tasked with selecting the best scene
among the three methods, our method excels in functionality and practicality, though there is still
room for improvement in aesthetics.

Method Irregular
Shape

User
Control

Invalid
Objects

CLIP
Score

GPT-
Function

GPT-
Practicality

GPT-
Aesthetics

LayoutGPT × limited 64.71% 25.83 2.0% 7.6% 18.6%
I-Design × X 1.40% 27.43 46.2% 24.4% 41.4%

Ours X X 0% 27.60 51.8% 68.0% 40.0%

Table 2: Participant-rated results for all methods in the first user study. In general, user ratings
closely align with GPT ratings. Our method outperforms both baselines in all three criteria.

Method User-Function User-Practicality User-Aesthetics

LayoutGPT 0.6% 9.2% 13.2%
I-Design 42.0% 36.8% 42.2%

Ours 57.4% 54.0% 44.6%

in an accessible and practical layout (practicality), and how visually appealing the arrangement
is (aesthetics). Table 1 lists the percentage of each method rated the best among the 500 sets
of scenes. Our method outperforms the baselines in function and practicality, though slightly
underrated in aesthetics compared with I-Design. Although I-Design effectively identifies necessary
furniture objects, it occasionally fails to arrange them in a way that adequately supports the intended
functions. For instance, a bookshelf-chair set intended for reading may be surrounded by furniture
for other activities, which can interfere with reading and diminish overall practicality. In contrast,
our framework successfully customized the LLM to consistently address functional requirements
while ensuring practical arrangements.

4.3 USER STUDY

We conduct two user studies to evaluate our framework further. The first study complements the
quantitative evaluation by evaluating the same three criteria—function, practicality, and aesthet-
ics—but replaces the GPT evaluator with human participants. We invite twenty-five participants
(fifteen males and ten females, with an average age of µ = 25.16 and standard deviation σ = 4.12).
Eleven have experience in art, architectural design, or 3D software. Each participant is randomly
assigned twenty sets of images and tasked with selecting the best image in each set. As summarized
in Table 2, our method excels across all three criteria, establishing it as a state-of-the-art solution for
function-oriented scene synthesis.

The second study involves interacting with our framework on the online platform (see Section 4.1).
Each participant is invited to complete three different design tasks, repeating each twice with the
same target functions and room shape—once using the generation framework (assisted) and once
without it (manual). The first design has the functions and room shapes specified by our staff, and
the participants suggest the latter two. In the manual phase, participants must manually search for,
add, and adjust furniture. When assisted by our framework, participants can further refine the gener-
ated scene if necessary. In both cases, a scene is considered complete only when the participant and
our staff are satisfied with the result. Before the formal experiment, participants receive instructions
to ensure they understand the task and are familiar with the platform’s operations.

This study uses several metrics to compare the assisted and manual approaches. First, our platform
automatically records the elapsed time required to complete scenes. The time includes the entire
design process, including interaction and scene generation when using our framework, as well as all
manual operations for both approaches. Second, we introduce cross-rating, where two participants

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a)

(b) (c)

Figure 7: Statistical analysis of the second user study. (a) Although not as preferred as the manual
scenes, over 80% of scenes by the assisted framework are deemed satisfactory by participants. (b)
With our assisted framework, participants complete each scene in under one and a half minutes on
average, manifesting a significant reduction compared with manual operations. (c) All participants
agree that SceneFunctioner produces scenes of above-average quality. While opinions on its useful-
ness vary, most participants rate it positively, giving 4 or 5.

work simultaneously, and each judges whether the scene created by the other is satisfactory with a
simple “Yes” or “No”. Lastly, participants rate our framework (assisted) based on two criteria: its
usefulness for scene design and the overall quality of the generated scenes, using a 5-point Likert
scale.

The same twenty-five users from the first study are invited to participate in this second study, with
results illustrated in Figure 7. In the cross-rating, nearly all manual designs are accepted, and most
scenes generated by our framework are also considered satisfactory. However, there is a significant
difference in the time taken to complete a scene: manual operations averaged nearly five minutes,
while scenes assisted by our framework required only 28.9% of that time. Moreover, participants
generally rated the quality and usefulness of our framework positively. Several participants with
art or architectural backgrounds admire its potential as a valuable tool in indoor design. These
results and user feedback indicate that SceneFunctioner significantly enhances design efficiency
while delivering above-average quality in function-oriented design.

5 CONCLUSION AND FUTURE WORK

This paper presents SceneFunctioner, a function-oriented interactive framework leveraging the
LLM’s capabilities to generate scenes. Following a three-step process, the framework tailors the
LLM for zones, furniture groups, and furniture arrangements, given user-specified functions. Quan-
titative and qualitative experiments demonstrate that our framework consistently generates scenes
with appropriate functionality while achieving state-of-the-art quality. However, improvements are
still required in the following aspects:

First, our framework does not account for the relations among different zones. Although focusing
on generation within individual zones simplifies the task, it occasionally leads to inconsistencies at
zone borders. For instance, pathways might be unintentionally blocked. To address this issue, we
plan to modify the framework to support consistent generation across zones while still maintaining
the task’s manageability for the LLM.

Second, the zones are restricted to rectangular shapes, limiting flexibility when dealing with complex
room layouts or unconventional furniture arrangements. We previously experimented with irregular
shapes but found the LLM’s performance significantly reduced, likely due to its current limitations.
Nonetheless, we will explore alternative methods for supporting flexible zone shapes.

Finally, there is room for improving both generation quality and efficiency. Currently, the LLM often
produces wrong cases, most of which are caught by our framework’s postprocessing steps. However,
this significantly increases the retries and the overall generation time. Furthermore, certain cases are
challenging to detect, e.g., if the LLM places a sofa on top of a table, our framework will follow this
placement and produce a poor scene. We are refining the instructions, including more sample inputs
and outputs, and enhancing the feedback mechanism to optimize the framework.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rio Aguina-Kang, Maxim Gumin, Do Heon Han, Stewart Morris, Seung Jean Yoo, Aditya Gane-
shan, R Kenny Jones, Qiuhong Anna Wei, Kailiang Fu, and Daniel Ritchie. Open-universe indoor
scene generation using llm program synthesis and uncurated object databases. arXiv preprint
arXiv:2403.09675, 2024.

Ata Çelen, Guo Han, Konrad Schindler, Luc Van Gool, Iro Armeni, Anton Obukhov, and Xi Wang.
I-design: Personalized llm interior designer. arXiv preprint arXiv:2404.02838, 2024.

Wei Dai and Xinru Mu. Urban small house storage space design under the concept of multi-
functional design. In Civil Engineering and Urban Research, Volume 2, pp. 465–476. CRC Press,
2023.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13142–13153, 2023.

Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and gen-
eration with large language models. Advances in Neural Information Processing Systems, 36,
2024.

Rao Fu, Zehao Wen, Zichen Liu, and Srinath Sridhar. Anyhome: Open-vocabulary generation of
structured and textured 3d homes, 2024. URL https://arxiv.org/abs/2312.06644.

Lin Gao, Jia-Mu Sun, Kaichun Mo, Yu-Kun Lai, Leonidas J Guibas, and Jie Yang. Scenehgn:
Hierarchical graph networks for 3d indoor scene generation with fine-grained geometry. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(7):8902–8919, 2023.

Inwoo Hwang, Hyeonwoo Kim, and Young Min Kim. Text2scene: Text-driven indoor scene styl-
ization with part-aware details. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1890–1899, 2023.

Hyun-Jeong Kim, Kyung-Ran Choi, and Yun-Jung Sung. Multi-functional furniture design in small
living space. Journal of the Korea Furniture Society, 22(3):190–198, 2011.

Wenhao Li, Zhiyuan Yu, Qijin She, Zhinan Yu, Yuqing Lan, Chenyang Zhu, Ruizhen Hu, and
Kai Xu. Llm-enhanced scene graph learning for household rearrangement. arXiv preprint
arXiv:2408.12093, 2024a.

Xingyi Li, Yizheng Wu, Jun Cen, Juewen Peng, Kewei Wang, Ke Xian, Zhe Wang, Zhiguo Cao,
and Guosheng Lin. icontrol3d: An interactive system for controllable 3d scene generation. arXiv
preprint arXiv:2408.01678, 2024b.

Chenguo Lin and Yadong Mu. Instructscene: Instruction-driven 3d indoor scene synthesis with
semantic graph prior. arXiv preprint arXiv:2402.04717, 2024.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li, Sören Pirk, Binh-Son Hua, Sai-Kit Yeung,
Xin Tong, Leonidas Guibas, and Hao Zhang. Language-driven synthesis of 3d scenes from scene
databases. ACM Transactions on Graphics (TOG), 37(6):1–16, 2018.

Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and Sanja Fi-
dler. Atiss: Autoregressive transformers for indoor scene synthesis. Advances in Neural Informa-
tion Processing Systems, 34:12013–12026, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

11

https://arxiv.org/abs/2312.06644

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jia-Mu Sun, Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas Guibas, and Lin Gao. Haisor: Human-
aware indoor scene optimization via deep reinforcement learning. ACM Transactions on Graph-
ics, 43(2):1–17, 2024.

Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, and Matthias Nießner. Dif-
fuscene: Denoising diffusion models for generative indoor scene synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 20507–20518, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Tomer Weiss, Alan Litteneker, Noah Duncan, Masaki Nakada, Chenfanfu Jiang, Lap-Fai Yu, and
Demetri Terzopoulos. Fast and scalable position-based layout synthesis. IEEE Transactions on
Visualization and Computer Graphics, 25(12):3231–3243, 2018.

Kun Xu, Kang Chen, Hongbo Fu, Wei-Lun Sun, and Shi-Min Hu. Sketch2scene: Sketch-based
co-retrieval and co-placement of 3d models. ACM Transactions on Graphics (TOG), 32(4):1–15,
2013.

Meng Yan, Xuejin Chen, and Jie Zhou. An interactive system for efficient 3d furniture arrangement.
In Proceedings of the Computer Graphics International Conference, pp. 1–6, 2017.

Xinyan Yang, Fei Hu, and Long Ye. Text to scene: a system of configurable 3d indoor scene
synthesis. In Proceedings of the 29th ACM International Conference on Multimedia, pp. 2819–
2821, 2021.

Yixuan Yang, Junru Lu, Zixiang Zhao, Zhen Luo, James JQ Yu, Victor Sanchez, and Feng Zheng.
Llplace: The 3d indoor scene layout generation and editing via large language model. arXiv
preprint arXiv:2406.03866, 2024a.

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu,
Nick Haber, Ranjay Krishna, Lingjie Liu, et al. Holodeck: Language guided generation of 3d
embodied ai environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16227–16237, 2024b.

Lap-Fai Yu, Sai-Kit Yeung, and Demetri Terzopoulos. The clutterpalette: An interactive tool for
detailing indoor scenes. IEEE transactions on visualization and computer graphics, 22(2):1138–
1148, 2015.

Mahdi Zandieh, Seyyed Rahman Eghbali, and Pedram Hessari. The approaches towards designing
flexible housing. Naqshejahan-Basic studies and New Technologies of Architecture and Planning,
1(1):95–106, 2011.

Shao-Kui Zhang, Yi-Xiao Li, Yu He, Yong-Liang Yang, and Song-Hai Zhang. Mageadd: Real-
time interaction simulation for scene synthesis. In Proceedings of the 29th ACM International
Conference on Multimedia, pp. 965–973, 2021a.

Shao-Kui Zhang, Hou Tam, Yike Li, Ke-Xin Ren, Hongbo Fu, and Song-Hai Zhang. Scenedirec-
tor: Interactive scene synthesis by simultaneously editing multiple objects in real-time. IEEE
Transactions on Visualization and Computer Graphics, 2023.

Shao-Kui Zhang, Junkai Huang, Liang Yue, Jia-Tong Zhang, Jia-Hong Liu, Yu-Kun Lai, and Song-
Hai Zhang. Sceneexpander: Real-time scene synthesis for interactive floor plan editing. In ACM
Multimedia 2024, 2024.

Song-Hai Zhang, Shao-Kui Zhang, Yuan Liang, and Peter Hall. A survey of 3d indoor scene syn-
thesis. Journal of Computer Science and Technology, 34:594–608, 2019a.

Song-Hai Zhang, Shao-Kui Zhang, Wei-Yu Xie, Cheng-Yang Luo, Yong-Liang Yang, and Hongbo
Fu. Fast 3d indoor scene synthesis by learning spatial relation priors of objects. IEEE Transactions
on Visualization and Computer Graphics, 28(9):3082–3092, 2021b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Suiyun Zhang, Zhizhong Han, Yu-Kun Lai, Matthias Zwicker, and Hui Zhang. Active arrangement
of small objects in 3d indoor scenes. IEEE transactions on visualization and computer graphics,
27(4):2250–2264, 2019b.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Xiaoyu Zhou, Xingjian Ran, Yajiao Xiong, Jinlin He, Zhiwei Lin, Yongtao Wang, Deqing Sun,
and Ming-Hsuan Yang. Gala3d: Towards text-to-3d complex scene generation via layout-guided
generative gaussian splatting. arXiv preprint arXiv:2402.07207, 2024.

A APPENDIX FOR REBUTTAL REVISION

A.1 SUPPLEMENTARY DETAILS FOR POSTPROCESSING MECHANISMS

In SceneFunctioner, postprocessing phases in both the first and third steps address placing rectangles
within a defined space. Specifically, Step 1 involves positioning the zones within the room, while
Step 3 focuses on arranging the furniture groups within each zone. Both steps utilize an enhanced
version of Algorithm 1, which is a basic template.

Algorithm 1: The Basic Algorithm for Placing Rectangles within a Space
Input: The space S and the rectangles Ω = {R1, R2, ..., RN}
Output: Whether the rectangles can be placed within S, and the placement X (if they can)

1 W ← All Permutations(Ω);
2 Initialize X as an empty S;
3 for Ωi = {Ri

1, R
i
2, ...R

i
n} ∈W do

4 if Place(Ωi,1) then
5 return True, X;
6 end
7 end
8 return False, ∅;
9 Function Place(Ωi,j) is

10 P ← All Possible Positions(Ri
j);

11 for p ∈ P do
12 if Ri

j can be placed on p then
13 Place Ri

j in X on the position p;
14 if j = N or Place(Ωi,j + 1) then
15 return True;
16 end
17 Remove Ri

j from X;
18 end
19 end
20 return False;
21 end

The basic algorithm is exhausts all permutations of the rectangle set (Line 1) and tests each permu-
tation (Lines 3-7). Within each permutation, the iterative subprocess (Lines 9-21) attempts to place
each rectangle at all possible positions (Line 10), employing backtracking if placement fails.

To improve its efficiency, we implement several optimization strategies:

1. Testing a limited number of permutations: When some rectangles in the input set are
identical or nearly identical, permutating them is unnecessary. For cases with many pos-
sible permutations, we randomly sample a subset for testing. If all sampled permutations
fail, it is unlikely that other permutations will succeed.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 3: Performance statistics of SceneFunctioner. Retries do not happen frequently and have
limited influence to the overall generation.

Step Average Generation Time Average Time for Retries Average Retry Count

Step 1 7.435s 2.391s 0.628
Step 2 9.051s 2.865s 0.449
Step 3 6.294s 2.360s 0.876

2. Restricting possible positions: A large number of potential placement positions could
significantly reduce efficiency. In Step 1, only corner positions, including those formed
by existing rectangles, are considered. In Step 3, only critical positions are sampled, as
described in Section 3.4.

3. Priority-based attempts: Step 1 prioritizes placing zones in room corners with the highest
number of adjacent walls (Section 3.2). In Step 3, permutations with the order of corner-
wall-center will be tested first. Sample positions are also sorted by priority (Section 3.4).

A.2 FRAMEWORK PERFORMANCE ANALYSIS

We conduct a supplementary performance analysis of each step in our framework, using an addi-
tional 500 randomly configured scenes following the setup in Section 4.2 (rectangular rooms with
dimensions ranging from 3 to 5 meters and up to 6 functions). The total generation time (including
retries), time spent solely on retries, and retry count are recorded, with the average values sum-
marized in Table 3. The statistics demonstrate that, despite the framework’s multi-step process and
additional mechanisms, the generation efficiency remains generally acceptable to users.

A.3 GENERALIZABILITY TO MORE SCENES

Our framework demonstrates adaptability to various room scales and shapes in interior design sce-
narios. Furthermore, with suitable prompts and assets, it can be extended to accommodate additional
functions and room categories, such as bedrooms. Illustrative examples of these capabilities are pre-
sented in Figure 8.

A.4 AUGMENTING LAYOUTGPT WITH FUNCTION-BASED EXAMPLES

In Section 4.2, we included functional requirements in the system prompts for LayoutGPT. However,
LayoutGPT still selects sample inputs and outputs solely based on room shape, without considering
the functional needs. This observation suggests an enhancement to LayoutGPT by incorporating
functional considerations when selecting examples.

As suggested by their work, the distance between two rooms with dimensions [l1, w1] and [l2, w2] is
computed using the L2 distance ‖l1 − l2‖2 + ‖w1 − w2‖2. However, calculating a “distance” that
accounts for the functions is more complex, as it requires a quantitative representation of a room’s
functional attributes. We propose an approach for computing such a “function vector” for any scene
generated by SceneFunctioner. Let M represent the number of functions, then the function vector
for room L can be described as VL = [v1, v2, ..., vM], where vi ≥ 0,∀i and

∑M
i vi = 1. We

use the average value of two components VL,1 and VL,2 to compute VL =
VL,1+VL,2

2 . The two
components are explained as follows:

1. VL,1 represents the overall function of the furniture within the room. For a room L
withNf furniture objects {f1, f2, ..., fNf

}, we first retrieve each object’s “function vector”
Vf from our annotated data. Each Vf shares the same representation as VL. The overall
function vector of the room is then computed as VL,1 = 1

Nf

∑Nf

i Vfi .

2. VL,2 reflects the functions in the text prompt used to generate the room. Let
{j1, j2, ..., jNj} denotes the indices of the Nj functions described in the prompt, then

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 8: Results that showcase SceneFunctioner’s generalizability. (a) The framework effectively
accommodates multiple functions, even within compact rooms. (b) For large-scale, complex rooms,
the proposed zoning approach enables management of numerous functions. (c) SceneFunctioner is
also capable of generating functional and visually appealing bedroom designs.

VL,2 = 1
Nj

∑Nj

i Iji , where Ix is a unit vector with only the x-th element set to 1. This
component evenly distributes the functions across the vector.

With the proposed metric, we can account for both the room shape and the function vector when
selecting examples. Given a room L with dimensions [l, w] and function vector VL, and a user
query requesting a room with dimensions [l′, w′] and functions VL′ = VL′,2, the total distance d is
computed as Equation 1 (weight α = 0.5):

d = α
√
‖l − l′‖2 + ‖w − w′‖2 + ‖VL −VL′‖1 (1)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Comparing the augmented LayoutGPT with SceneFunctioner. We observe a significant
improvement in LayoutGPT’s performance. However, it still struggles with addressing furniture
collisions, and scene quality remains outperformed by ours. This reinforces the strong performance
of our framework in delivering both functional and practical scene designs.

Method Invalid
Objects

CLIP
Score

GPT-
Function

GPT-
Practicality

GPT-
Aesthetics

LayoutGPT-Augmented 33.46% 26.71 17.5% 25.5% 34.0%
Ours 0% 27.53 82.5% 74.5% 66.0%

We configure LayoutGPT with an example dataset consisting of 1000 scenes generated by our frame-
work and compare it with our framework. 200 new input prompts, using the configuration in Sec-
tion 4.2, are randomly created for instructing a new batch of scenes with both methods. For each
scene, LayoutGPT is provided with the ten most similar scenes from the example dataset, based on
the minimum distance d. Additionally, we ensure that the system prompts are updated accordingly.
Figure 9 showcases scenes generated by LayoutGPT, alongside the corresponding example scenes.

The results for the quantitative evaluation, similar to that in Section 4.2, are summarized in Table 4.
By selecting appropriate examples from our dataset, the performance of LayoutGPT is significantly
improved. However, there are still many instances where it fails to handle object collisions. Ad-
ditionally, SceneFunctioner continues to outperform LayoutGPT in function, practicality, and aes-
thetics scores. While providing relevant examples (sample inputs/outputs) can enhance the LLM’s
performance, we suggest that current LLMs still require substantial improvement to directly deduce
layouts involving multiple objects and complex restrictions. This highlights the ongoing need for
task-specific tailoring.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 9: Overview of the augmented LayoutGPT. For each user query, the augmented method
selects the ten most similar scenes from our dataset. In each row, the left three images shows the top
three examples along with their features, including a visualized function vector (pie chart) and room
shape. The rightmost image presents the generated result by LayoutGPT. While the inclusion of
function-based examples noticeably enhances generation quality, issues such as frequent collisions
and irrational layouts persist.

17

	Introduction
	Related Works
	Interactive Scene Synthesis
	LLM-assisted Scene Synthesis

	Method
	Overview
	Deciding Zones and Functions
	Forming Furniture Groups and Relations
	Arranging Furniture Groups

	Experiments
	System Implementation
	Quantitative Evaluation
	User Study

	Conclusion and Future Work
	Appendix for Rebuttal Revision
	Supplementary Details for Postprocessing Mechanisms
	Framework Performance Analysis
	Generalizability to More Scenes
	Augmenting LayoutGPT with function-based examples

