
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENABLING SCALABLE EVALUATION OF BIAS PAT-
TERNS IN MEDICAL LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown impressive potential in helping with
numerous medical challenges. Deploying LLMs in high-stakes applications such
as medicine, however, brings in many concerns. One major area of concern relates
to biased behaviors of LLMs in medical applications, leading to unfair treatment
of individuals. To pave the way for the responsible and impactful deployment of
Med LLMs, rigorous evaluation is a key prerequisite. Due to the huge complexity
and variability of different medical scenarios, existing work in this domain has pri-
marily relied on using manually crafted datasets for bias evaluation. In this study,
we present a new method to scale up such bias evaluations by automatically gen-
erating test cases based on rigorous medical evidence. We specifically target the
challenges of domain-specificity of bias characterization, hallucinating while gen-
erating the test cases, and various dependencies between the health outcomes and
sensitive attributes. To that end, we offer new methods to address these challenges
integrated with our generative pipeline. Specifically, we use medical knowledge
graphs and medical ontologies; and customize general LLM evaluation frame-
works in our method. Through a series of extensive experiments, we show that the
test cases generated by our proposed method are reliable and can effectively reveal
bias patterns in LLMs. Additionally, we publish a large bias evaluation dataset,
which provides a comprehensive platform for testing and improving the fairness
of medical LLMs. A live demo of our application for vignette generation is avail-
able at https://vignette.streamlit.app. Our code is also available at
https://anonymous.4open.science/r/vignette_llm-2853.

1 INTRODUCTION

Large language models (LLMs) have shown an impressive potential to assist in various forms of real-
world challenges, including finding long-sought solutions to some key medical challenges such as
provider burnout, processing of claims, and obtaining preauthorizations. The LLMs used in medical
applications (hereafter, Med LLMs) have been leveraged for clinical note summarization (Van Veen
et al., 2024), patient consultation (Ren et al., 2024), and generating differential diagnosis (Hirosawa
et al., 2023), among others.

Despite the promising potential, using LLMs in sensitive assistive decision-making scenarios, such
as clinical decision support, brings about significant concerns. One of the most critical concerns
relates to the impact of LLM-based tools on bias and fairness. Specifically, deploying biased LLMs
in clinical settings can amplify existing healthcare inequities, for instance, by providing unfair care
recommendations or service denials based on patients’ demographics. A fairly large family of recent
studies has documented biased behaviors of Med LLMs across different (a) LLM types, (b) clinical
tasks, and (c) subpopulations (Poulain et al., 2024). Biased behavior in LLMs can arise from a
variety of sources, including the inherent biases in the training data, the limitations in capturing and
utilizing factual knowledge, and flawed training and inference strategies (Gallegos et al., 2024).

Prior to mitigating bias patterns in Med LLMs, it is critical to develop tools for comprehensive
evaluation of such patterns. Despite the growing number of methods for the evaluation of LLMs
(LLM Evals) (Liang et al., 2023), evaluating LLMs remains a challenging task due to reasons such
as open-endedness and stochasticity of the LLM outputs (Kiela et al., 2021). Evaluating Med LLMs
generally involves creating benchmarking datasets with controlled clinical ‘vignettes’ (i.e., patient
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scenarios) that target sensitive cases within ‘red teaming’ frameworks (Singhal et al., 2022). De-
veloping such comprehensive benchmarks is, however, extremely resource-intensive and requires
manual design by clinical experts. Existing hand-crafted benchmarks for evaluating the fairness in
Med LLMs have a limited scope by design and cannot extend to various complex real-world clinical
scenarios (Singhal et al., 2023).

To generate the evaluation scenarios at scale, one could follow the common practice of achieving
scalability by using the LLMs (of the same or different type) as generators. In fact, this is the
practice that almost all prior studies have taken to generate clinical scenarios by prompting strong
LLMs and then vetting the generations by clinical experts before using those scenarios for Med
LLM evaluation. Removing the human experts (i.e., the main bottleneck in scalability) from this
generation loop is quite tricky. Medical scenarios are greatly contextualized and domain-specific,
with numerous exceptions and subtleties. For instance, treating individuals differently based on
race may be justified in the case of skin cancer (Gloster Jr & Neal, 2006) but not kidney disease
(Delgado et al., 2021). Furthermore, concerns about LLM hallucinations make relying solely on
LLMs to generate evaluation scenarios more challenging.

In this study, we present a greatly controlled process to generate evaluation scenarios by extract-
ing rigorous biomedical evidence guidelines documenting potential bias pitfalls in each domain.
We incorporate customized methods to contextually minimize hallucinations and actively check for
domain-specific medical intricacies related to the justified (vs. unjustified) associations between the
protected attributes and the targeted health outcomes. Specifically, the contributions of this study
are:

• We present a new method for flexible vignette generation in the form of user-specified
scenarios by directly extracting documented bias pitfalls in biomedical knowledge bases
and then filtering unsupported scenarios.

• We publish a new dataset generated by our method for assessing the fairness in Med LLMs
in the domain of obesity prevention and treatment.

• Through a series of comprehensive experiments, using both analytical and human rating
evaluations, we show our method can significantly outperform naive LLM-based methods
in generating reliable vignettes.

2 RELATED WORK

The advent of LLMs has made significant transformations across various fields, including healthcare
and medicine. General-purpose LLMs, such as Claude (Bai et al., 2022) and Llama (Dubey
et al., 2024), are trained on medical text (e.g., medical textbooks and blogs) and have shown an
impressive potential to be used for various clinical decision support purposes, such as differential
diagnosis (McDuff et al., 2023) and treatment planning Liu et al. (2024). Beyond the general-
purpose models, there have also been specialized LLMs tailored for medical applications, such as
Google’s Med-Gemini (Saab et al., 2024), Palmyra-Med (Writer Engineering team, 2023), and
Meditron (Chen et al., 2023).

Evaluating LLM behaviors is challenging and an active area of research. LLM outputs can be
evaluated from various perspectives, making this a complex process to ensure their effectiveness and
reliability in various applications. LLM evaluation typically involves key metrics and techniques
to assess different aspects of LLM performance. Traditional evaluation metrics, such as BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004), rely on n-gram overlap between model outputs and
reference texts to gauge the quality of outputs. However, these metrics have been criticized for their
weak correlation with human judgments (Sulem et al., 2018), as surface-level matching does not
reliably capture the quality of the generated text.

With the advancement of deep learning, model-based metrics like BERTScore (Zhang et al., 2020)
and BARTScore (Yuan et al., 2021) have been introduced and are increasingly used to evaluate
various dimensions of text quality. Although these metrics offer improvements over traditional ones,
they still do not deliver fully satisfactory performance and have a limited application scope (Kocmi
et al., 2021). Recent methods, such as G-EVAL (Liu et al., 2023) and GPTScore (Fu et al., 2024),
increasingly leverage LLMs themselves for evaluation. This marks a significant advancement in the
field due to the unprecedented capabilities of newly developed LLMs.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Specifically, evaluating LLMs regarding bias patterns is crucial for their responsible deployment
in high-stakes applications like medicine. Existing studies primarily rely on ‘red-teaming’ designs
for fairness evaluation of Med LLMs . From a clinical point of view, the goal of red-teaming is to
ensure that clinical LLMs treat all patient groups equitably, providing unbiased support to healthcare
providers.

Existing studies utilized red-teaming for fairness evaluation in Med LLMs including specialized
datasets like Q-Pain (Logé et al., 2021) and comparative studies against human experts (Ito et al.,
2023; Omiye et al., 2023). To name a few examples, Pfohl et al. (2024) proposed a new framework
and dataset to assess LLMs’ bias and fairness against human ratings and evaluated Med-PaLM
on the proposed dataset. Zack et al. (2024) evaluated whether GPT-4 encodes racial and gender
biases and explored how these biases might affect medical education, diagnosis, treatment planning,
and patient assessment. Moreover, Chang et al. (2024) convened 80 multi-disciplinary experts to
evaluate the performance of popular LLMs across multiple real-world medical scenarios. Experts
were given a framework comprising four categories (i.e. safety, privacy, hallucinations, and bias) to
analyze for inappropriate LLMs-generated responses. Prior empirical findings highlight the potential
for biased LLMs to perpetuate stereotypes and lead to inaccurate clinical reasoning (Poulain et al.,
2024).

Previous work in this area has involved humans who manually generated prompts and clinical sce-
narios or evaluated the responses. These types of approaches, however, are costly, narrowly focused,
and not scalable.

3 PRELIMINARIES

We aim to address three key challenges in the automated generation of clinical vignette generation
for fairness evaluation, including domain-specificity of the fairness evaluation, outcome indepen-
dence, and hallucination.

Domain-specificity of the Fairness Evaluation: Medicine is a highly specialized field, and sim-
ilarly, fairness evaluation in clinical settings is highly domain-specific. Each domain generally
has certain ‘fairness pitfalls’ that are unique to that particular medical domain and are character-
ized through rigorous evidence-based epidemiological or mechanistic (biological) studies (Paulus &
Kent, 2020; Anderson & Visweswaran, 2024). For instance, while focusing on gender disparities in
heart attack diagnosis may be more meaningful in certain branches of cardiology, racial differences
in cancer screening may be more relevant in some branches of oncology. Therefore, fairness (i.e.,
a fundamentally sociotechnical concept) must be characterized within each specific clinical context
through a rigorous evidence-based process.

Outcome Independence: The common procedure for using red teaming strategies to evaluate
Med LLMs involves iterating over different values of a target sensitive attribute (e.g., male and
female in the case of gender). More formally, red-teaming approaches check for counterfactual
(parity-based) fairness defined as:

P (ŶA←α|X = x) = P (ŶA←α′ |X = x), (1)

where A shows a sensitive attribute with two values of α and α′, X shows the remaining input
variables and Ŷ shows the outcome. This formulation generally assumes that the sensitive attributes
are independent of the outcome (P (Y |A) = P (Y )).

Such an approach cannot be naively applied to the generated clinical vignettes, as in many cases, the
sensitive attributes and health outcomes are correlated. Examples of such scenarios include race and
skin cancer, gender and pregnancy complications, place of birth, and exposure to tropical diseases.

Hallucination: Besides the two specific challenges listed so far, LLM-based generative methods
are also known to face the hallucination problem. Hallucination in LLMs can be categorized into
two main forms: lack of factuality or lack of faithfulness (Ji et al., 2023). Lack of factuality refers
to producing statements that are untrue or unsupported by real-world knowledge, while lack of
faithfulness means the generated content does not accurately represent the original context or input,
deviating from the given prompts or context.

3
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Figure 1: The proposed method’s overview. Green boxes show a sample scenario related to our
obesity case study.

Factuality hallucinations, in turn, have three main forms. First, knowledge recall failure (Singhal
et al., 2023), where LLMs struggle to retrieve specific or less commonly known information (e.g.,
symptoms of a rare disease) from their training data, potentially leading to inaccuracies in the content
of generated vignettes. Second, domain knowledge deficiency (Feng et al., 2023), where the LLMs
trained on diverse datasets (e.g., internet data) may lack deep, specialized knowledge in specific
medical fields. Third, LLMs can suffer from outdated factual knowledge (Mousavi et al., 2024) if
they are only trained on static without continuously updating their knowledge base with the latest
research or clinical findings.

In the case of our study, faithfulness hallucinations refer to generating responses that deviate from
the input prompts and to generating irrelevant, fabricated, or contradictory details. Furthermore,
faithfulness refers to the degree to which the generated vignettes accurately reflect the content and
information presented in the retrieved evidence. This adherence ensures that the generated outputs
are not only relevant but also reliable in terms of the information they convey, maintaining the
integrity of the original data while creatively transforming it into a vignette-style output.

4 METHOD

We propose a vignette generation method to enable scalable and evidence-based evaluation of bias
patterns in Med LLMs while addressing the three discussed challenges. At a high level, in our
method, an information extractor (§4.1) retrieves relevant evidence from biomedical knowledge
bases related to user-determined scenarios. The extracted information aims to help contextualize
fairness and identify the bias pitfalls in each domain. Then, a vignette generator LLM uses the ex-
tracted evidence to generate “base” vignettes (§4.2). Next, we exclude the base vignettes with signs
of hallucination (§4.3). Then, outcome independence between the augmented sensitive attributes
and the health outcomes is confirmed (§4.4). After this step, to create the red-teaming vignettes,
targeted sensitive attributes are then augmented with each base vignette (§4.5).

More formally, given a user-specified set of inputs I , a generative LLM M, and a knowledge base
K, we propose a pipeline P that generates a set of distinct red-teaming vignettes V :

P(I,K,M) → V,

where, the input I includes targeted health outcome, o; the desired number of vignettes, n; and the
sensitive attributes of interest S. Hence, the inputs are I = {o, n, S}. Figure 1 shows an overview
of the proposed method.

4.1 INFORMATION RETRIEVAL

To generate the base vignettes, we connect a (strong) LLM to external biomedical knowledge bases
(K). A “base” vignette here refers to an initial clinical scenario to create the final red-teaming
scenario after being later modified by manually augmenting sensitive attribute values to that. The
retriever procedure (R) uses the knowledge base K and targeted health outcome and returns a set of
articles A that are most relevant to characterize bias patterns within the specified context:

R(K, o) → A

4
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Articles A refer to various types of biomedical literature capturing the most recent evidence-based
practice, including clinical guidelines published by professional societies, clinical trial reports, and
systematic reviews (as well as common scientific articles). We use PubMed Central (PMC) as our
knowledge base. PubMed offers a search engine to access a full-text archive of biomedical and
life sciences journal literature and is considered the most comprehensive resource of biomedical
evidence. We provide additional technical details for connecting to PubMed in Appendix A.

To find relevant articles related to the targeted health outcome in PubMed, we use a separate knowl-
edge graph (KG) constructed from PubMed articles by (Xu et al., 2020), namely the ‘PubMed
Knowledge Graph.’ This KG’s nodes consist of biomedical entities (e.g., diseases, genes, pro-
teins, drugs, and chemicals) from PubMed abstracts, and the KG uses a multi-type normalization
model, which assigns unique IDs to recognize biomedical entities and corresponding articles. We
use a name entity recognition process to recognize the named entities in PubMed abstracts by us-
ing the popular BioBERT model (Lee et al., 2020), which offers a pre-trained biomedical language
representation model (embeddings) for biomedical text mining.

Specifically, we first identify all nodes corresponding to the health outcome o inside the KG and
identify the set of PubMed article ID nodes connected to these outcome nodes (No). Similarly, we
identify a set of nodes representing ‘bias’ and similar concepts in the KG and select a set of PubMed
article ID nodes connected to these nodes (Nb). The targeted articles to be retrieved (A) from K will
be obtained by selecting the articles that relate to the target health outcome and refer to some form
of bias discussion, as:

A = {
⋃
i

ai | ai ∈ No ∩Nb}.

After querying the knowledge base K for the articles with IDs in A, we combine those to form
the context for the generator LLM. Instead of retrieving chunks of the text from the identified ar-
ticles ––common in RAG (retrieval-augmented generation)-based methods (Gao et al., 2023)–– we
retrieve full documents to include in the context.

4.2 VIGNETTE GENERATION

For each retrieved article ai, an LLM M, is prompted to generate a set of base vignettes using the
article as the context:

M(ai) → VBase,

where VBase is the set of base vignettes that have been generated by the language model from evi-
dence A.

We use a chain-of-thought process to instruct the LLM to generate the base vignettes. Specifically,
in our prompt design, we describe a series of steps that the LLM needs to take in compiling the
provided context and generating the clinical scenario. We instruct the LLM to generate yes/no
questions, as this style has been the most common form of generating datasets for LLM alignment
and red-teaming (Perez et al., 2022). We also ensure a balanced distribution of ‘yes’ and ‘no’
answers across the vignettes are generated. This requirement helps prevent a majority of vignettes
from leaning toward a single answer, which could result in high accuracy simply by answering ‘yes’
or ‘no’ to all the questions. The LLM is also asked to explicitly identify and list the reference for
each scenario.

4.3 HALLUCINATION DETECTION

After generating the base vignettes, we identify and exclude those with signs of hallucination. For
this purpose, we adopt two LLM evaluation frameworks for hallucination detection. These two
general (not specific to hallucination Evals) frameworks include G-EVAL (Liu et al., 2023) and
RefChecker (Hu et al., 2024).

Following the G-Eval framework, we initially characterize the requested task and our criteria for
measuring the two main types of hallucination, i.e., factuality and faithfulness in generated base vi-
gnettes. Using the task description and criteria description, we prompt an auxiliary LLM to generate
detailed chain-of-thought evaluation steps, which leads to generating a score ranging from zero to
one. We present an example and additional details in Appendix C.

5
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Additionally, we use the RefChecker framework to use an extractor component to generate
claim triplets—structured data formats that break down a statement into subject, predicate, and
object—from the LLM’s responses, as:

VBase
RefChecker−−−−−−→ {(subj , predj , objj)}mj=1

Where m is the total number of triplets that have been extracted from the vignettes, subsequently,
a checker component evaluates these claim triplets against the specified reference to detect any
inconsistencies.

Using the above two procedures, we select a set of base vignettes, shown by VBase′ , in which no
hallucinations were found:

VBase′ = {∪i vi | [G-Eval(vi) > τ ] ∧ [RefCheck(vi) = 0]} ,

where G-Eval(vi) is the score generated through the first procedure for vignette vi, τ is a threshold
for the generated scores through this procedure, and RefCheck(vi) is the number of extracted
triplets from vi that contain hallucinations (unverifiable reference).

4.4 OUTCOME INDEPENDENCE CHECK

Prior to augmenting the sensitive attributes, we check for the relationship between the health out-
comes studied in each vignette and the sensitive attributes. As discussed earlier, this step aims to
explicitly avoid generating unfeasible (such as puberty complications for older adults) while allow-
ing justified scenarios (like less sensitivity to pulse oximetry for Blacks).

We operationalize this part by using the Unified Medical Language System (UMLS) (Bodenreider,
2004), which is a comprehensive system of thesaurus and ontology of biomedical concepts used
for clinical data standardization in various health applications. It provides a mapping structure
among the standardized vocabularies and thus allows one to translate among the various terminology
systems.

We use the UMLS ontology to identify the ancestors of a health outcome as the indicators of the sen-
sitive attributes that interact with the health outcome. More specifically, in our proposed approach,
we map the generated vignettes to the UMLS concepts using MetaMap (Aronson, 2001), which is
a tool for recognizing UMLS concepts in the text. Next, we find the ancestors for every concept
extracted from the vignettes, going up in the hierarchy. In theory, all ancestors up to the root can be
included. However, our empirical results show that two levels are generally enough. From this set
of concepts’ ancestors, we especially extract a subset (SAnc) that belongs to the specified sensitive
attributes (such as a specific gender or ethnicity).

We consider two scenarios where (a) the extracted subset related to the health outcomes is smaller
than all possible values for the specified sensitive attributes, and (b) the subset is the same size or
empty. We consider the former scenario (a) as an indicator of a partial relationship and the latter
scenario (b) as an indicator of a full relationship between the sensitive attribute and health outcome.
For instance, for gestational diabetes, the subset related to gender would only include female (as
males cannot have this disease) in an ontology tree (mostly containing “is-a” relationships), and for
race, it would include all races.

These two scenarios will determine the sensitive attribute values that are safe to be augmented
through red-teaming in the next step of our pipeline SRed-Team, as shown in:

SRed-Team =

{
SAncestors, if, |SAncestors| < |SInput|
SInput,Otherwise.

For example, Pregnancy (C0032961) is referenced in 25 different vocabularies included in the
UMLS. To analyze outcome dependence, we explored the neighbors of the ”pregnancy” node within
these vocabularies, extending up to three levels. On average, 15.3 nodes are identified per vocabu-
lary containing ”female,” whereas no nodes contain the keyword ”male.” The pipeline uses this as
a proxy to associate ”pregnancy” predominantly with female-specific contexts within the analyzed
vocabularies, reflecting the biological and societal understanding of pregnancy as a female-exclusive
phenomenon.

6
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4.5 AUGMENTING THE SENSITIVE ATTRIBUTES

Following the described red-teaming approach for bias evaluation across various sensitive attribute
dimensions, each of the remaining vignettes (VBase′ ) is augmented by the remaining sensitive at-
tribute values that are determined safe in the previous stage (SRed-Team). Accordingly,

VRed-Team = {
⋃
i

⋃
j

M(vi, sj) | vi ∈ VBase′ , sj ∈ SRed-Team}

would be the set of final red-teaming vignettes that our pipeline generates. We prompt a strong
LLM (M) to place the sensitive attribute values in the best location within the input vignette (same
location for each single vignette). The two green boxes in Figure 1 show an example where two
sensitive attribute values are added to one base vignette, resulting in two red-teaming vignettes. The
strong LLM (M) in our pipeline could be the same LLM acting in different roles (an agentic design)
or be different LLMs.

5 EXPERIMENTS

We follow a series of focused research questions to examine our vignette generation pipeline. Each
question addresses a fundamental component of our study’s approach and especially targets evalu-
ating the pipeline’s ability to address the three primary challenges we highlighted for our problem.
Specifically, our research questions aim to evaluate the generated vignettes’ diversity and utility, as
well as their potential for hallucination, which are crucial factors for ensuring the effectiveness of
our proposed method.

Experimental Setup While our method works with any LLM, we use OpenAI’s GPT-4 (Achiam
et al., 2023), acting as the strong LLM (M) in our pipeline. We use a value of 0.8 for the threshold
value (τ ) for filtering the hallucinated vignettes.

Baselines We use two baseline methods to compare to our method. First, we use an LLM to
generate vignettes, but without providing any evidence from external knowledge bases. Second, we
use our method without any further refinement. For both baselines, we use the same prompt design
and the same inputs as those we use for our method.

In addition to the methodological baselines, we compare our generated vignettes to those generated
in prior work supervised by medical experts. Specifically, we extract a subset of the vignettes from
the EquityMedQA dataset (Pfohl et al., 2024), which is a collection of seven datasets of human-
authored and AI-generated medical queries designed to elicit biased responses from LLMs as a basis
for our preference dataset.

Clinical Case Studies In our experiments, we focus on several specific case studies with docu-
mented biases in clinical literature. One main case study relates to obesity (prevention and treat-
ment). Obesity affects around 16% and 40% of adults globally and in the US, respectively (Ellison-
Barnes et al., 2021). Avoiding bias for LLMs is especially challenging. This is due to the historical
misconceptions about an individual’s lack of “willpower” causing obesity (Caliskan et al., 2017).
Stigma and bias patterns are very common, even among clinical providers (FitzGerald & Hurst,
2017). In the following experiments, we use a subset of 243 vignettes generated from 10 articles
extracted from PubMed.

In addition to obesity, we also study case studies related to breast cancer, prostate cancer, and preg-
nancy. We publish all of the generated vignettes, in addition to vignettes related to the popular topic
of pain management, in our repository.

5.1 Q1: HOW MUCH THE GENERATED VIGNETTES ARE FAITHFUL TO THE PROVIDED
MEDICAL EVIDENCE?

To comprehensively evaluate the faithfulness of the vignettes to the provided context, we use four
different methods (BARTScore, Semantic Entropy, G-Eval, and RefChecker) to measure how

7
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closely the vignettes mirror the context and content of the provided references without introducing
irrelevant or incorrect details.

BARTScore (Yuan et al., 2021) evaluates the likelihood of the generated text being faithful to the
reference context based on the BART model (Lewis et al., 2019). By computing the log-likelihood
of the candidate text given the reference, BARTScore assesses whether the generated vignette is
plausible within the context of the reference text, focusing on how well the output aligns with the
source information in terms of meaning and structure.

Semantic Entropy (SE) (Farquhar et al., 2024) is a metric used to measure the diversity and unpre-
dictability of the meanings within the generated text. High SE suggests that the vignette introduces
varied or less predictable meanings, which can lead to deviations from the original context. Con-
versely, lower SE is a sign that the content is more predictable and closely aligned with the provided
reference, contributing to higher faithfulness.

We use the G-EVAL framework (Liu et al., 2023) to calculate a faithfulness score (characterized
within the prompt) and using the chain-of-though reasoning using a strong LLM (GPT-4).

We also use the RefChecker framework (Hu et al., 2024) to detect the faithfulness hallucinations.
Within this framework, a strong LLM first transforms each generated vignette into a statement,
which is then evaluated by RefChecker to classify as contradictory, neutral, or entailment based
on the reference evidence.

Table 1 shows the results related to these four approaches. Some of the entries related to the
LLM scenario are unavailable since they require a reference that is not applicable to the “LLM
Only” baseline for vignette generation. The values presented for the three types of statements in
the RefChecker represent the average number of entailment, neutral, or contradictory predicates
in the vignettes based on the provided evidence. Overall, these results indicate that our pipeline
achieved higher scores across the various metrics.

BARTScore↑ SE↓ G-Eval↑ RefChecker
Method Contradictory↓ Neutral Entailment↑

Obesity
LLM Only -4.58 (0.53) 0.78 (0.05) - - - -
Ours W/O Hallucination Detection -3.69 (0.60) 0.63 (0.12) 0.78(0.24) 0.09 (0.47) 2.79 (1.44) 0.71 (0.93)
Ours -3.65 (0.57) 0.62 (0.12) 0.87 (0.12) 0.00 (0.00) 2.72 (1.4) 0.85 (1.00)

Breast Cancer
LLM Only -4.28 (0.49) 0.73 (0.04) - - - -
Ours W/O Hallucination Detection -3.22 (0.43) 0.60 (0.09) 0.74(0.19) 0.07 (0.38) 2.89 (1.40) 0.82 (0.73)
Ours -3.11 (0.50) 0.60 (0.08) 0.81 (0.10) 0.00 (0.00) 2.93 (1.34) 0.95 (0.88)

Table 1: The degree of faithfulness of our proposed method (Ours) vs. the baselines as measured by
four different methods. Mean (STD) values are shown.

5.2 Q2: HOW MUCH DOES THE PROVIDED EVIDENCE AFFECT THE GENERATED VIGNETTES?

We evaluate the effect of the provided evidence in terms of vignette ‘diversity’ and ‘domain speci-
ficity.’

Diversity By diversity, we refer to the range of distinct expressions and language used across the
generated vignettes. High diversity indicates that the model produces a wide variety of wording and
concepts, demonstrating creativity and reducing redundancy. This is particularly important in tasks
like vignette generation for clinical evaluations, as diverse outputs may better capture the nuances
and complexities of different cases. Conversely, low diversity might suggest that the model relies on
a limited set of patterns or vocabulary, which could limit the diversity of the generated content.

We evaluate the diversity in terms of the total number of distinct tokens present in each vignette
and across all vignettes. Specifically, we tokenize each generated vignette by splitting the text into
individual words using whitespace and punctuation as delimiters. We convert all words to lower-
case to ensure consistency and remove any punctuation marks. Additionally, we eliminate common
stop words—such as ”the,” ”and,” and ”is”—to focus on the meaningful content that contributes to
vocabulary diversity. This tokenization process results in a set of distinct tokens for each vignette.
Next, we create a set of distinct tokens for each vignette, combine all vignettes, and then count the
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number of distinct tokens in each set. Table 2 shows the results related to this experiment. The
results especially demonstrate that using an LLM alone produces vignettes with a limited vocabu-
lary compared to our method, which also incorporates external knowledge bases to extract relevant
evidence.

Method Diversity↑ Domain Specificity↑
Each Vignette All Vignettes Ref. Similarity Outcome Similarity

Obesity
LLM Only 14.82 (2.02) 292 - 0.42 (0.7)
Ours W/O Hallucination Detection 25.32 (3.79) 1,140 0.62 (0.12) 0.49 (0.13)
Ours 25.36 (3.73) 1,264 0.64 (0.12) 0.50 (0.14)

Breast Cancer
LLM Only 13.41 (1.98) 274 - 0.45 (0.7)
Ours W/O Hallucination Detection 24.52 (3.69) 1,047 0.61 (0.11) 0.48 (0.11)
Ours 25.03 (3.70) 1,198 0.64 (0.11) 0.52 (0.13)

Table 2: Observed diversity in tokens and domain specificity of the generated vignettes (as defined
in the main text). Mean (STD).

Domain Specificity We assess the domain specificity of the generated vignettes by analyzing how
closely the key concepts and the language used in those align with the key medical concepts re-
lated to (a) the provided medical evidence (reference) and (b) the specified health outcome. To do
this, we use embeddings from PubMedBert (Gu et al., 2021), which are specifically trained over
biomedical and clinical text. We map the generated vignettes, the domain-specific reference, and the
specified health outcome into the PubMedBert space. We then compute the semantic similarity
between the generated vignettes and the reference, as well as between the generated vignettes and
the health outcome. We use cosine similarity to calculate the similarities. Table 2 presents the aver-
age number of distinct tokens appearing in the vignettes, along with their similarity to the reference
and outcome after embedding.

5.3 Q3: HOW WELL DOES THE OUTCOME INDEPENDENCE CHECKING WORK?

To validate the effectiveness of our outcome independent checking phase, we selected three case
studies related to the conditions or diseases specific to certain demographic groups. Specifically,
we applied our method to generate vignettes for breast cancer, prostate cancer, and pregnancy to
observe how the vignettes interact with two sensitive attributes (including the biologically infeasi-
ble scenarios). The results are presented in Figure 2. The color shade in each square indicates the
percentage of vignettes that have been generated for each outcome and sensitive attribute pair. One
can observe that our method appropriately identifies biologically feasible and infeasible outcomes
in vignettes based on the sensitive attributes. For example, the prostate cancer case, which is bio-
logically exclusive to males, shows no vignettes generated for females, whereas pregnancy, which
is exclusive to females, does not appear in the male demographic group.

Figure 2: Fraction of generated vignettes for each health outcome (rows) that are augmented with a
demographic group (columns) by our pipeline.

5.4 Q4: HOW DO HUMANS RATE THE GENERATED VIGNETTES?

We designed a comprehensive survey and asked a group of participants to rate our generated vi-
gnettes compared to other baselines. A diverse group of 22 adults with post-graduate degrees and
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Vignettes from ... are superior Vignettes from ... are superior
Ours LLM only Unsure Ours EquityMedQA Unsure

Fraction 0.58* 0.27 0.15 0.57* 0.23 0.20
Count 64 30 16 63 25 22

Table 3: Summary of User Preferences in Vignette Comparisons. ‘Superior’ is defined as being
more suitable for red-teaming evaluation of biases in the corresponding medical context.

Metric Gemma Llama 3 Mistral BioMistral Meditron
Gender

Demographic Parity 0.04 (0.93) 0.01 (0.98) 0.03 (0.95) 0.00 (0.99) 0.03 (0.96)
Equal Opportunity 0.01 (0.99) 0.02 (0.97) 0.04 (0.92) 0.01 (0.99) 0.00 (1.00)

Race and Ethnicity
Demographic Parity 0.05 (0.92) 0.02 (0.96) 0.09 (0.86) 0.03 (0.96) 0.06 (0.93)
Equal Opportunity 0.13 (0.80) 0.01 (0.99) 0.17 (0.66) 0.03 (0.97) 0.00 (1.00)

Table 4: Fairness metrics calculated for different LLMs. Numbers are shown in difference (ratio)
format.

familiarity with the basics of LLMs and our applications participated in our study. Our study was
reviewed by a local institutional review board (IRB) panel.

We asked two series of questions in our survey. In the first section, participants were asked to com-
pare five pairs of vignettes randomly drawn from a set of generated vignettes, with one vignette
in each pair generated by our pipeline and the other the ‘LLM-only’ baseline. In the second sec-
tion, they were asked to compare a separate set of five pairs of vignettes, with one generated by
our pipeline and the other randomly selected from the EquityMedQA (Pfohl et al., 2024) curated
dataset. Importantly, participants were not informed which vignette came from which source and
were given clear instructions on the expected criteria for selecting the preferred vignettes. The vi-
gnettes in the first part of the survey were related to our obesity case study, and the vignettes in the
second part were related to the breast cancer case study. Appendix D shows additional details our
survey design.

Table 3 shows the results of our human ratings. When performing a two-tailed statistical t-test, our
method is significantly more preferred over the alternatives (p-value ≤ 0.05), indicated by the *
symbol.

5.5 Q5: HOW CAN THE GENERATED VIGNETTES BE UTILIZED FOR BIAS EVALUATION?

Finally, to showcase the potential of the generated vignettes in evaluating Med LLMs, we run an
empirical study on five LLMs, including three general and two medical fine-tuned LLMs. We assess
the fairness of these LLMs using the generated vignettes in our obesity case study. We ask each
model to answer the same set of vignettes for different demographic groups and measure the rate of
generating unfair answers (defined as responding differently to a red-teaming question).

Table 4 shows the results related to these experiments. Among various observable patterns, the two
models fine-tuned on clinical data perform worse than the general models.

6 RELATED WORK

The advent of LLMs has made significant transformations across various fields, including healthcare
and medicine. General-purpose LLMs, such as Claude (Bai et al., 2022) and Llama (Dubey
et al., 2024), are trained on medical text (e.g., medical textbooks and blogs) and have shown an
impressive potential to be used for various clinical decision support purposes, such as differential
diagnosis (McDuff et al., 2023) and treatment planning Liu et al. (2024). Beyond the general-
purpose models, there have also been specialized LLMs tailored for medical applications, such as
Google’s Med-Gemini (Saab et al., 2024), Palmyra-Med (Writer Engineering team, 2023), and
Meditron (Chen et al., 2023).
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Evaluating LLM behaviors is challenging and an active area of research. LLM outputs can be
evaluated from various perspectives, making this a complex process to ensure their effectiveness and
reliability in various applications. LLM evaluation typically involves key metrics and techniques
to assess different aspects of LLM performance. Traditional evaluation metrics, such as BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004), rely on n-gram overlap between model outputs and
reference texts to gauge the quality of outputs. However, these metrics have been criticized for their
weak correlation with human judgments (Sulem et al., 2018), as surface-level matching does not
reliably capture the quality of the generated text.

With the advancement of deep learning, model-based metrics like BERTScore (Zhang et al., 2020)
and BARTScore (Yuan et al., 2021) have been introduced and are increasingly used to evaluate
various dimensions of text quality. Although these metrics offer improvements over traditional ones,
they still do not deliver fully satisfactory performance and have a limited application scope (Kocmi
et al., 2021). Recent methods, such as G-EVAL (Liu et al., 2023) and GPTScore (Fu et al., 2024),
increasingly leverage LLMs themselves for evaluation. This marks a significant advancement in the
field due to the unprecedented capabilities of newly developed LLMs.

Specifically, evaluating LLMs regarding bias patterns is crucial for their responsible deployment
in high-stakes applications like medicine. Existing studies primarily rely on ‘red-teaming’ designs
for fairness evaluation of Med LLMs . From a clinical point of view, the goal of red-teaming is to
ensure that clinical LLMs treat all patient groups equitably, providing unbiased support to healthcare
providers.

Existing studies utilized red-teaming for fairness evaluation in Med LLMs including specialized
datasets like Q-Pain (Logé et al., 2021) and comparative studies against human experts (Ito et al.,
2023; Omiye et al., 2023). To name a few examples, Pfohl et al. (2024) proposed a new framework
and dataset to assess LLMs’ bias and fairness against human ratings and evaluated Med-PaLM
on the proposed dataset. Zack et al. (2024) evaluated whether GPT-4 encodes racial and gender
biases and explored how these biases might affect medical education, diagnosis, treatment planning,
and patient assessment. Moreover, Chang et al. (2024) convened 80 multi-disciplinary experts to
evaluate the performance of popular LLMs across multiple real-world medical scenarios. Experts
were given a framework comprising four categories (i.e. safety, privacy, hallucinations, and bias) to
analyze for inappropriate LLMs-generated responses. Prior empirical findings highlight the potential
for biased LLMs to perpetuate stereotypes and lead to inaccurate clinical reasoning (Poulain et al.,
2024).

Previous work in this area has involved humans who manually generated prompts and clinical sce-
narios or evaluated the responses. These types of approaches, however, are costly, narrowly focused,
and not scalable.

7 DISCUSSION

This study presents a new method for generating tailored clinical vignettes based on the facts ex-
tracted from external biomedical knowledge bases to evaluate bias patterns in Med LLMs. Our
procedure enables scalable fairness assessments of Med LLMs, supporting access to dynamic (user-
defined) and contextually relevant benchmarks.

Extraction of the most relevant biomedical information ensures that the vignettes generated reflect
current guidelines based on the latest medical evidence. Our experiments indicate that connecting
to external knowledge bases can significantly enhance the diversity and reduce the hallucinations of
the generated clinical vignettes, as demonstrated by the performance across various approaches and
experiments.

Several limitations of our work should be noted in particular. First, reliance on existing biomedical
literature and knowledge bases, such as PubMed, may inadvertently introduce new biases present in
these sources or reinforce existing biases in LLMs. Additionally, while our method facilitates large-
scale benchmark generation, the complexity of certain medical scenarios might be underrepresented
due to constraints in the current knowledge extraction methods.

We also note that we view our pipeline as an assistive tool in ‘diagnosing’ undesired biased and
unfair patterns in Med LLMs. Having humans (especially medical stakeholders such as providers
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and patients) is critical to ensure an effective human-in-the-loop process. As a diagnosis tool, our
generated scenarios may wrongly indicate biased patterns (false positive) or miss some of those
(false negative). Ultimately, the final users can decide how to adjust the model in trading off these
two cases.

While our method represents a crucial step toward the fairness evaluation of Med LLMs, continued
efforts to refine the proposed methods are essential. By continuously improving new methodologies
for this purpose, we can ensure that Med LLMs can benefit all patient demographics equitably,
ultimately leading to improved health outcomes, reducing disparities in healthcare, and increasing
trust in health AI clinical decision support tools.
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A PUBMED RETRIEVAL

PubMed offers a search engine to access a full-text archive of biomedical and life sciences journal
literature and is considered as the most comprehensive resource of biomedical evidence. It covers
fields such as medicine, nursing, pharmacy, dentistry, veterinary medicine, and health care. We use
PubMed because it is a well-known database that researchers and healthcare professionals widely
use to find and access scientific content. To access PubMed we utilize NCBI’s Entrez Programming
Utilities (E-utilities) API (Sayers, 2009) which is a suite of eight server-side programs that accept a
fixed URL syntax for search, link, and retrieval operations.

B PROMPT DESIGN

In this section, we present the main prompt we have used for generating vignettes based on the
extracted evidence.

Your task is to write vignettes that assess bias and fairness in LLMs concerning patients
with {condition}.

Attached is a scientific paper on this topic. You are required to use this document to
create the vignettes.

Follow these guidelines:

1. Read the attached document thoroughly. Extract all relevant scenarios for vignette
generation and write vignettes based on these scenarios.

2. Each vignette should include a close-ended question directed at the LLM, requir-
ing a ’yes’ or ’no’ answer.

3. Ensure a balanced number of ’yes’ and ’no’ answers across the vignettes.

4. For each vignette, provide the specific part of the document that inspired the vi-
gnette.

5. Do not include any additional explanations.

6. Vignette Format:

# Vignette [number]:

## Question: [Write the question here.] It should start with: ”A patient...”

## Answer: [Write the answer here.]

## Reference: [Copy the part of the document that you used to generate the vignette
here.]

**Document:**

{context}

C HALLUCINATION DETECTION

In this section, we present a sample of the input and output from G-Eval, demonstrating how it is
integrated into our pipeline.
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Input: extract a question from the given context

Context: Obesity stigma results in discrimination, including higher insurance premi-
ums based on obesity status despite other factors.

Criteria: Determine whether the ’actual output’ correctly represents a question from
the given ’context’.

Actual Output: A patient with obesity faces higher insurance premiums solely based on
their obesity status. Is this a justified policy?

***Output***

Evaluation Steps:
Check if the actual output is a question.
Verify that the question directly relates to the information provided in the context.
Ensure that the question is relevant and logically derived from the context.
Confirm that no important details from the context are omitted in the question.

Score: 0.979

Reason: The actual output directly addresses the issue of higher insurance premiums
based on obesity status, which is the primary topic of the context. The question is coherent
and logically stems from the context.

D HUMAN RATING PROCEDURE

We conducted a study using Qualtrics to compare the usefulness of vignettes generated by our
method, a baseline, and the EquityMedQA (Pfohl et al., 2024) dataset. The following instruc-
tions were provided to participants:

Background: In the following, a series of “vignette” pairs are shown to you. A vignette de-
scribes a short clinical scenario, simulating when a medical provider (a doctor) should make
a clinical decision. It is often used for testing in medical education. The same questions can
be asked from an LLM. Besides answering such questions correctly, it is critical that LLMs
answer the questions in an unbiased manner.
Our study aims to generate a series of synthetic vignettes to evaluate the medical LLMs in
terms of their fair performance. We aim to generate “red-teaming” vignettes, meaning vi-
gnettes that target tricky and challenging scenarios that can reveal biased behaviors (similar
to an adversarial learning framework).
To evaluate the performance of our vignette generation method, we show you two generated
vignettes in each question. One is generated by our method, and the other by a different
method.
Each of these vignettes has a placeholder for some sensitive attributes (like [female
male]). When using a vignette for red teaming, it can be asked once for each of those
sensitive attributes (e.g., once for male and once for female). A non-identical answer to the
questions can show the LLM’s unfair behavior.
Our Request: We ask you to check these two scenarios and tell us which one you think is
more “suitable” for evaluating the fair behavior of medical LLMs. “Suitable” here means
a scenario with a higher potential to reveal any bias patterns of LLMs and follows a more
disciplined and rational way; for instance, one that more directly targets a sensitive scenario.
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E ALTERNATIVE LLM

We present the results for the first and second research questions, utilizing Claude Sonnet 3.5, in
Tables 5 and 6.

\texttt{BARTScore}↑ SE↓ \texttt{G-Eval}↑ \textttRefChecker
Method Contradictory↓ Neutral Entailment↑
Ours W/O Hallucination Detection -3.30 (0.56) 0.59 (0.11) 0.88 (0.16) 0.34 (0.70) 1.44 (1.34) 1.71 (1.47)
Ours -3.20 (0.58) 0.59 (0.11) 0.95 (0.05) 0.00 (0.00) 1.36 (1.40) 2.08 (1.49)

Table 5: The degree of faithfulness of our proposed method (Ours) vs. the baselines as measured by
four different methods using Claude Sonnet LLM. Mean (STD) values are shown.

Method Diversity↑ Domain Specificity↑
Each Vignette All Vignettes Ref. Similarity Outcome Similarity

Ours W/O Hallucination Detection 25.19 (6.19) 710 0.67 (0.10) 0.52 (0.09)
Ours 24.43 (3.86) 545 0.68 (0.10) 0.54 (0.09)

Table 6: Observed diversity in tokens and domain specificity of the generated vignettes using
Claude Sonnet LLM (as defined in the main text). Mean (STD).
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