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Abstract
Reducing the data footprint of visual content via
image compression is essential to reduce storage
requirements, but also to reduce the bandwidth
and latency requirements for transmission. In par-
ticular, the use of compressed images allows for
faster transfer of data, and faster response times
for visual recognition in edge devices that rely on
cloud-based services. In this paper, we first ana-
lyze the impact of image compression using tra-
ditional codecs, as well as recent state-of-the-art
neural compression approaches, on three visual
recognition tasks: image classification, object de-
tection, and semantic segmentation. We consider
a wide range of compression levels, ranging from
0.1 to 2 bits-per-pixel (bpp). We find that for all
three tasks, the recognition ability is significantly
impacted when using strong compression. For
example, for segmentation mIoU is reduced from
44.5 to 30.5 mIoU when compressing to 0.1 bpp
using the best compression model we evaluated.
Second, we test to what extent this performance
drop can be ascribed to a loss of relevant infor-
mation in the compressed image, or to a lack of
generalization of visual recognition models to im-
ages with compression artefacts. We find that to
a large extent the performance loss is due to the
latter: by finetuning the recognition models on
compressed training images, most of the perfor-
mance loss is recovered. For example, bringing
segmentation accuracy back up to 42 mIoU, i.e.
recovering 82% of the original drop in accuracy.

1. Introduction
Mobile devices with high resolution vision sensors, but
limited storage and compute capabilities, are ubiquitous:
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including smartphones, watches, and AR/VR devices. Im-
age compression is critical to facilitate storage of the cap-
tured data on-device, and to reduce the required channel
bandwidth and latency for remote storage. State-of-the-
art recognition models that enable analysis of visual data,
rather than just storing it, are currently without exception
based on deep learning. They impose heavy memory and
compute requirements, despite significant efforts to reduce
inference cost, e.g. using efficient architectures (Howard
et al., 2017; Iandola et al., 2016; n & Le, 2019), weight
compression (Masana et al., 2017; Tai et al., 2016), quanti-
zation (Fan et al., 2021; Jacob et al., 2018; Lin et al., 2016),
and network pruning (Ghosh et al., 2018; LeCun et al., 1990;
Li et al., 2017; Veniat & Denoyer, 2018). The use of state-of-
the-art vision models for low-latency applications, therefore,
requires transmission of the data to compute servers in com-
pressed format, and recognition models should be robust to
artefacts that may be introduced by compression.

Prior works have focused on faster and more efficient pro-
cessing, by learning vision recognition decoders directly on
compressed features (Park & Johnson, 2022; Wiles et al.,
2022). Another focus has been on faster transfer of data,
through split computation with compressed data (Choi &
Bajić, 2018; Nakahara et al., 2021). The aforementioned
works require architectural changes to the networks, and
novel methods. Moreover, previous work mostly considers
a single compression algorithm, JPEG in (Park & John-
son, 2022), HEVC (Sullivan et al., 2012) in (Choi & Bajić,
2018), and VQ-VAE in (Wiles et al., 2022). To the best of
our knowledge, the impact of image compression on visual
recognition has not been systematically studied.

In this work, we evaluate to what extent state-of-the-art vi-
sual recognition models are robust to compression of the
input images across three tasks: image classification, ob-
ject detection and semantic segmentation, on ImageNet
(Deng et al., 2009), COCO (Caesar et al., 2018) and
ADE20K (Zhou et al., 2017), respectively. We explore
both neural compression methods, as well as traditional
hand-engineered codecs. We consider bitrates from 2 bits-
per-pixel (bpp) down to 0.1 bpp, ranging from high-quality
compression to an extreme compression regime where visi-
ble artefacts are introduced.

We find that for all tested codecs, image compression leads
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to a degradation of visual recognition performance, in partic-
ular at low bitrates. A-priori, it is not clear what is causing
the degradation: compression can lead to a loss of detail
which makes the recognition tasks intrinsically harder, or
the recognition models do not generalize well to compressed
images due to a lack of robustness to the domain shift in-
troduced by the compression artefacts. By finetuning the
recognition models on compressed images we can mitigate
the domain shift, and test what causes the observed perfor-
mance degradation. We find that most of the performance
loss can be recovered using the finetuned models, suggest-
ing that the performance reduction can be attributed to the
models’ inability to generalize to images with compression
artefacts, rather than the presence of compression artefacts
increasing the difficulty of recognition.

To summarize, we make the following contributions:

• We evaluate the impact on image classification, object
detection and semantic segmentation accuracy, when
compressing images with state-of-the-art traditional as
well as learned neural codecs.

• We observe significant degradations in recognition ac-
curacy at low bitrates of 0.1 bpp, and find that this is
mostly caused by the inability of recognition models
to generalize to images with compression artefacts.

• We show that most of the accuracy loss can be recov-
ered by finetuning recognition models on compressed
images, in particular when using neural compression.
For detection and segmentation with finetuning, the
mAP and mIoU obtained using original images can be
approximated up to 0.5 points with images compressed
to 0.4 bpp, reducing the image data size by a factor 4
and 12 for segmentation and detection, respectively.

2. Related work
Neural compression methods. Most neural image com-
pression methods follow an autoencoder architecture as a
way to achieve a good reconstruction from a small latent
representation space, see e.g. (Ballé et al., 2018; Wiles et al.,
2022; El-Nouby et al., 2023; Mentzer et al., 2019; Rippel &
Bourdev, 2017). An entropy model is employed to estimate
the probability distribution over quantized latents, which is
in turn used by an entropy coder —typically an arithmetic
coder— to compress the latent representation in a lossless
manner into a bit stream, see e.g. (MacKay, 2003).

Vision tasks from compressed latent space. Several prior
works have explored learning visual recognition models
from compressed latent representations (Park & Johnson,
2022; Wiles et al., 2022; Wang et al., 2022). For exam-
ple, (Park & Johnson, 2022) trains a ViT (Dosovitskiy et al.,
2021) directly on JPEG coefficients, and expresses common

data augmentations in the same space. They evaluate on Im-
ageNet classification (Deng et al., 2009), and achieve similar
performance to the RGB model. On the other hand, (Wang
et al., 2022) instead trains a CNN on the frequency-domain
features, and assesses its performance in object detection
and image classification tasks. For video, (Wiles et al., 2022)
uses a VQ-VAE autoencoder (Oord et al., 2017; Razavi et al.,
2019) at the frame level, and learns video classification mod-
els on the bottleneck representation. This reduces memory
and compute requirements, allowing processing of minute
to hour long videos.

Split computing with compression. The computation of
a model can be divided between the user’s device and the
cloud. Several works make use of image/feature compres-
sion for faster data transfers (Choi & Bajić, 2018; Nakahara
et al., 2021; Cohen et al., 2021). In (Choi & Bajić, 2018) an
object detection model is trained to compensate for the lossy
feature compression artefacts. Transmission of an image
compressed at different bitrates until the desired recognition
quality is achieved is explored in (Nakahara et al., 2021).

All the aforementioned works focus on a single compression
method, and develop new techniques for a single task. Mean-
while, our focus is not to create a new method, but rather to
systematically evaluate existing compression methods for
several representative recognition tasks.

3. Experimental setup
This section covers the compression methods employed
in this study, the recognition tasks used to evaluate their
effectiveness, as well as their training and testing setup.

3.1. Image compression codecs

We use four state-of-the-art compression codecs: two tradi-
tional compression codecs, BPG (Bellard) and WebP (web),
and two neural compression methods based on the hyper-
prior model (Ballé et al., 2018). In particular, we use the
Mean and Scale (M&S) hyperprior model (Minnen et al.,
2018), and the Gaussian Mixture Model (GMM) hyperprior
(Cheng et al., 2020). M&S combined a mean and scale
hyperprior with an autoregressive context model, for better
rate-distortion trade-offs. GMM improves over M&S by
replacing the Gaussian likelihood model over the latents by
a Gaussian mixture model, which better captures the con-
ditional distributions given the hyperlatents. In Fig. 1, we
present an image compressed at three different rates by BPG
and GMM hyperprior, to illustrate the image quality and
artefacts at the bitrates considered in our experiments. We
utilize the PIL library (pil) for WebP, Bellard’s implementa-
tion for BPG (Bellard), and the CompressAI library (Bégaint
et al., 2020) library for the neural codecs. To compute the
image sizes in bit-per-pixel (bpp), we use the CompressAI
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GMM hyperprior - 0.313 bpp

BPG - 0.321 bpp BPG - 0.501 bpp

GMM hyperprior - 0.523 bpp

BPG - 0.850 bpp

GMM hyperprior - 0.886 bpp

Figure 1. Image compressed at three different bitrates using BPG and GMM hyperprior. Black square provides a zoom of the central area.

library for the neural codecs and WebP, while for BPG we
divide the image file size by the number of pixels. For the
original images in the datasets, we compute the bpp based
on the JPEG filesizes.

3.2. Visual recognition tasks

We consider image classification, object detection and se-
mantic segmentation as representative recognition tasks.
For classification and segmentation, we use a Swin-T back-
bone (Liu et al., 2021), combined with an MLP head for
classification, and an UPerNet head (Xiao et al., 2018) for
segmentation. For detection, the backbone is a ResNet-50
(He et al., 2016), with a Disentangled Dense Object Detector
(DDOD) head (Chen et al., 2021). We use implementations
of the MMClassification (Contributors, 2020a), MMDetec-
tion (Chen et al., 2019), and MMSegmentation (Contrib-
utors, 2020b) libraries. We evaluate the models on Ima-
geNet (Deng et al., 2009) for classification, COCO (Caesar
et al., 2018) for detection, and ADE20K (Zhou et al., 2017)
for segmentation. For each task we use the standard eval-
uation metrics: accuracy for classification, mean average
precision (mAP) for detection, and mean intersection-over-
union (mIoU) for segmentation.

In our experiments we evaluate the public checkpoints re-
leased for the different models in the corresponding libraries,
which are trained on the original images in the datasets. We
experimentally observe that the recognition accuracy of
these models deteriorates when evaluated on compressed
images. This could be due to a loss of detail when compress-
ing, which makes the recognition tasks intrinsically harder,
or because the recognition models lack robustness and do
not generalize well to compressed images. To investigate
how these factors contribute, we finetune the models using
compressed versions of the training images, so that the mod-
els adapt to compression artefacts, and the original domain
shift in the input data is eliminated.

In practice, we use the same amount of finetuning iterations
as were originally used to adapt the pre-trained backbones to
the different tasks. For classification, the model is finetuned
for 30 epochs, for detection 12 epochs, and for segmentation
160k iterations. We finetune models separately for each
compression level.

To factor out the influence of additional training, we also
finetune the baseline models on the original datasets, for the
same amount of additional epochs. We select the best scor-
ing model, original or finetuned, as the baseline. For clas-
sification and segmentation, finetuning the original model
did not improve accuracy, while for detection finetuning did
improve the original model.

4. Experimental results
We present our main experimental results in Fig. 2, and
discuss and interpret the results below.

Classification. When using the baseline model trained
on the original images for classification (dashed curves
in Fig. 2a), we found that compressing images with BPG
has the least impact on recognition accuracy, followed by
WebP and GMM hyperprior which yield comparable im-
pacts. Finetuning the model on compressed images (solid
curves) yields a significant improvement in results. For ex-
ample, improving accuracy from 59.5% to 73% for BPG
compression at 0.1 bpp, relative to baseline accuracy of
81% on the original images (5.2 bpp). This shows that, to
a large extent, the accuracy drop observed when testing on
compressed images, is due to the lack of generalization of
the original model to images with compression artefacts.
After finetuning, at 1 bpp the accuracy is around 79% for all
compression methods; a 3% loss w.r.t. the baseline model
while reducing the bitrate by a factor five.

Object detection. Interestingly, the results for object de-
tection on COCO in Fig. 2b, show a different ordering of
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(a) Results for image classification on ImageNet.
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(b) Results for object detection on COCO.
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(c) Results for semantic segmentation on ADE20K.

Figure 2. Visual recognition results with compressed images. The
horizontal dashed black line is the baseline result obtained using
the original images. Other curves evaluate models trained on
original images (original, dashed), and model finetuned using
compressed images (finetuned, solid), test images are compressed
using WebP, BPG, M&S and GMM hyperprior codecs.

results w.r.t. the different compression codecs. Here, the
traditional codecs BPG and WebP lead to bigger drops in
accuracy than the neural compression models. In fact, even
when finetuning on compressed images the results for BPG
(solid blue) are worse than using the original model on im-
ages compressed using the neural codecs (dashed green and
red). Similar to the classification experiment, the drop in
object detection accuracy can to a large extent be recovered
by finetuning the model on compressed images. For exam-
ple, for the neural codecs at 0.1 bpp, the initial drop of 10
points or more in mAP is reduced to under 5 points. At 0.4
bpp, after finetuning the GMM hyperprior model is able to
reduce the bit rate by more than a factor 10, while reducing
the mAP by only 0.5 (from 42.5 to 42.0) w.r.t. the baseline
model on the original images.

Semantic segmentation. For semantic segmentation we
observe similar trends as for detection: BPG compression
hurts accuracy most, and GMM hyperprior compression has
least impact. When compressing images with the GMM
hyperprior codec to 0.1 bpp, an mIoU of 31% is obtained
using the baseline model, while the finetuned model obtains
42%. In comparison, the baseline model on the original
images (1.44 bpp) obtains 44.5%. At 0.6 bpp the mIoU
of the finetuned model on GMM hyperprior compressed
images matches the performance of the baseline model on
the original images.

5. Conclusion
We investigated the impact of image compression on visual
recognition, using both traditional codecs and recent neural
compression methods for compression levels ranging from
moderate (2 bpp) to very strong compression (0.1 bpp). We
find that strong compression has a big negative impact on
the accuracy for tasks such as image classification, object de-
tection and semantic segmentation. Our experiments show
that this is to a large extent due to the lack of generalization
of these models to images with compression artefacts. By
finetuning the recognition models on compressed images,
we find that most of the loss in accuracy on compressed
images can be recovered.

Our findings can contribute to deploy visual recognition for
users in resource and bandwidth limited settings. In future
work we want to explore to what extent our findings can be
used to reduce I/O bound latency when training visual recog-
nition models on internet-scale datasets. In particular, it is
interesting to explore training recognition models directly
on the latent compressed image representations, rather than
passing through the usual RGB representation.

Photo credits. Figure 1 main photo by Ajay Suresh, CC License
2.0 (cc2). Figure 1 small photo by Zhaoshan75, CC License 4.0
(cc4). Figure 2 by Deensel, CC License 2.0 (cc2).
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