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ABSTRACT

Multimodal Large Language Models (MLLMs) exhibit impressive capabilities
across a variety of tasks, especially when equipped with carefully designed vi-
sual prompts. However, existing studies primarily focus on logical reasoning and
visual understanding, while the capability of MLLMs to operate effectively in 3D
vision remains an ongoing area of exploration. In this paper, we introduce a novel
visual prompting method, called 3DAxisPrompt, to elicit 3D understanding capa-
bilities of MLLMs in real-world scenes. More specifically, our method leverages
the 3D coordinate axis and masks generated from the Segment Anything Model
(SAM) to provide explicit geometric priors to MLLMs and then extend their im-
pressive 2D grounding/reasoning ability to real-world 3D scenarios. Besides, we
also provide a thorough investigation of the potential visual prompting formats
and conclude our findings to reveal the potential and limits of 3D understand-
ing capabilities in GPT-4o. Finally, we build evaluation environments with four
datasets, i.e. ShapeNet, ScanNet, FMB, and nuScene datasets, covering various
3D tasks. Based on this, we conduct extensive quantitative and qualitative ex-
periments, which demonstrate the effectiveness of the proposed method. Overall,
our study reveals that GPT-4o, with the help of 3DAxisPrompt, can effectively
perceive an object’s 3D position in real-world scenarios. Nevertheless, a single
prompt engineering approach does not consistently achieve the best outcomes for
all 3D tasks. This study highlights the feasibility of leveraging MLLMs for 3D
vision grounding/reasoning with prompt engineering techniques.

1 INTRODUCTION

In recent years, significant advancements and breakthroughs have been made in large language mod-
els (LLMs) (Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023; OpenAI et al., 2024).
By aligning the representations with visual (and other) encoders, LLMs have been extended to multi-
modal large language models (MLLMs1) (GeminiTeam, 2024; OpenAI, 2024), which are capable of
handling richer visual modalities. These studies have attracted significant interest from researchers,
with numerous works continuously being proposed to enhance the reasoning capabilities of MLLMs
in various aspects. For example, Yang et al. (2023a) leverage the SoM prompting to enable the vi-
sual grounding of GPT-4v, and Wu et al. (2024b) achieve accurate object detection with MLLMs in
a Chain-of-Thought (Wei et al., 2023) manner. By leveraging the advanced reasoning capabilities
of the language model component, MLLMs have been explored for perception and interaction with
a variety of applications.

However, existing MLLMs are mainly pretrained with 1D data (e.g. texts) and 2D data (e.g. images),
while the real-world challenges are inherently spatial and require spatial grounding in the context of
3D scenes. In this context, a critical question emerges:

Do vision-language-based MLLMs possess the capability for 3D grounding and reasoning?

Although lots of studies have explored the application of MLLMs in 3D scenarios, these works
have not directly leveraged the 3D grounding and reasoning capabilities of MLLMs. For example,
some work (Wen et al., 2024; Cui et al., 2024) apply MLLMs in the field of autonomous driving,
however, they primarily leverage MLLMs for decision-making rather than 3D scene understanding.

1also known as large multimodal models (LMMs).
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Besides, PointLLM (Xu et al., 2023) empowers MLLMs to understand 3D point clouds with ad-
ditional point-text instruction training. Although this solution aligns high-level representations of
points and texts, it only supports specific comprehension tasks (e.g. classification and captioning for
single 3D objects) and does not truly activate the fine-grained 3D perception capabilities of MLLMs.
Overall, existing studies do not fully answer the question we raised, and further in-depth exploration
is required.

In this paper, we aim to investigate how to extend the exceptional 1D/2D grounding and reasoning
capabilities of MLLMs into the 3D world space without further fine-tuning. Based on this require-
ment and the inspiration of visual prompts, e.g. (Yang et al., 2023a; Wu et al., 2024b), we propose
a new prompting mechanism, called 3DAxisPrompt. Specifically, given the point cloud of a real
scene, we first embed the 3D coordinate axis and meshes in this scene in an automatic manner to
provide the 3D geometric priors. Then calibrated scene will be rendered into observation images
from different angles. Furthermore, to introduce object-level semantic cues, we overlay the masks
generated by the Segment Anything Model (SAM) (Kirillov et al., 2023) with numerical or alpha-
betic marks, similar to SoM (Yang et al., 2023a). In this way, we can extend MLLMs impressive 2D
grounding/reasoning capabilities to real-world 3D scenarios.

Besides, for the first time, we present a comprehensive exploration of potential visual prompt for-
mats, such as coordinate axis, masks, bounding boxes, marks, color highlights, etc., in MLLMs
for 3D understanding. Based on our investigation, we also conclude some findings to reveal the
potential and limits of 3D understanding capabilities in MLLMs. For example, multi-view visual
prompting cannot directly activate the 3D reasoning capabilities of MLLMs, but tri-view prompting
can. Finally, we construct evaluation environments using four datasets—ShapeNet, ScanNet, FMB,
and nuScene—covering a range of 3D tasks. We then conduct extensive quantitative and qualitative
experiments, demonstrating the effectiveness of the proposed approach.

Overall, our objective is not to achieve perfect zero-shot performance with GPT-4o, but to explore
its limitations and potential in zero-shot inference for 3D grounding/reasoning. We expect that
future improvements to the MLLMs will lead to further quantitative gains on the actual tasks. To
summarize, our main contributions are:

• We propose a visual prompt scheme called 3DAxisPrompt. By inserting the 3D coordinate
axis in a real scene, the proposed 3DAxisPrompt can elicit the 3D grounding and reasoning
capabilities in GPT-4o, such as 3D localization and planning.

• We provide the first comprehensive investigation of the potential visual prompt formats of
MLLMs for 3D understanding. Besides, we conclude our findings to reveal the potential
and limits of 3D understanding capabilities in GPT-4o.

• We conduct extensive experiments on a wide range of tasks, including indoor and outdoor
3D localization, route planning, and robot action prediction. These results demonstrate the
proposed 3DAxisPrompt can effectively enhance 3D understanding capabilities in GPT-4o.

2 RELATED WORK

LLMs and MLLMs. Significant progress has been witnessed in LLMs (Chowdhery et al., 2022;
Touvron et al., 2023; Zhang et al., 2022; OpenAI et al., 2024). Trained on internet-scale data, LLMs
are effective commonsense reasoners (Zhao et al., 2023). MLLMs (Liu et al., 2023a; Lu et al.,
2024; Bai et al., 2023) integrate vision encoders (Radford et al., 2021) into LLMs, allowing them
to reason over visual input directly. State-of-the-art MLMMs like GPT-4V, Gemini (GeminiTeam,
2024), Claude (The), and GPT-4o (OpenAI, 2024) have excelled in general vision-language tasks
(Wu et al., 2023; Yang et al., 2023c; Fu et al., 2023). Leveraging the advanced vision-language
reasoning ability, the exploration has been made of MLMMs in perception and interacting with the
physical world (Lu et al., 2024), including autonomous driving (Wen et al., 2024; Cui et al., 2024),
anomaly detection (Cao et al., 2023), robotic control and learning (Collaboration et al., 2024; Brohan
et al., 2023), which requires fine-grained 3D spatial grounding that remains to be explored (Chen
et al., 2024). To promote the connection of MLMMs to the real physical world (Chen et al., 2024),
we aim to find a strategic prompting method to elicit and promote the 3D grounding and reasoning
in MLMMs regarding a real 3D world, such as to reason about the 3D location of an object.
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Visual prompting. Prompt engineering has emerged as a promising approach to improve MLLMs
across multiple domains, such as in-context learning (Brown et al., 2020; Dong et al., 2024), Chain-
of-Thought and Tree-of-Thought (Wei et al., 2023; Yao et al., 2023). Consequently, numerous
prompting methods have been developed to improve visual grounding in MLLMs. Colorful prompt-
ing tuning (CPT) (Yao et al., 2022) overlays color-based co-referential markers in both images and
text and enables strong few-shot and even zero-shot visual grounding capabilities. RedCircle (Sht-
edritski et al., 2023) guides the vision model to an enclosed region by adding a red circle. Blur Re-
verse Mask (Yang et al., 2023b) blurs the area outside the target mask to leverage the precise mask
annotations to reduce focus on weakly related regions while retaining spatial coherence. These two
methods promote fine-grained visual grounding. Furthermore, Lei et al. (2024) enhances the vision-
language coordination by SCAFFOLD prompting that scaffolds coordinate on images. Set-of-Mark
(Yang et al., 2023a) add a set of visual marks on top of image regions. Both these two methods indi-
cate the emergent 2D spatial grounding (Mitra et al., 2024; Islam et al., 2023) in MLLMs, including
2D position and relation inference. To enhance the 3D spatial grounding, Nasiriany et al. (2024) pro-
pose an iterative prompting method (PIVOT) to infer the robot action considering spatial relation.
COARSE CORRESPONDENCES (Liu et al., 2024) prompts the MLLMs to elicit the 3D spacetime
understanding. These two methods concentrate on 3D spatial relation instead of 3D spatial position,
showing limited performance in instance-level tasks that demand precise 3D localization and recog-
nition. Our study strives to extend the 2D spatial grounding (Lei et al., 2024; Yang et al., 2023a)
to 3D grounding by formulating a visual prompting method, promoting spatial position inference in
MLLMs.

GPTs and grounding. Generative Pretrained Transformers (GPTs) (Brown et al., 2020; OpenAI
et al., 2024) have led to a breakthrough in the realm of natural language processing. As a leading
LMM, GPT-4V has significantly expanded the boundaries of MLLMs capabilities and shown abil-
ities to understand visual annotations (Yang et al., 2023c) and solve visual reasoning tasks, such as
web navigation (Yan et al., 2023a; Zheng et al., 2024), autonomous driving (Wen et al., 2024; Cui
et al., 2024), and medicine diagnostics (Yan et al., 2023b; Liu et al., 2023b). Furthermore, GPT-4o
(OpenAI, 2024) is the latest development in a string of innovations to MLLMs, which has shown
significant performance in multiple tasks (Joe et al., 2024; Wu et al., 2024a; Shahriar et al., 2024;
Hu et al., 2024). Our study is to explore a prompting method to promote the 3D spatial ground-
ing in MLLMs. Since GPT-4V is proven to outperform the other models in visual grounding when
equipped with visual prompts (Yang et al., 2023a) and GPT-4o shows significant improvement in
3D spacetime understanding (Liu et al., 2024), we believe the GPT-4o can present representative 3D
spatial grounding abilities in MLLMs and conduct our experiments and analysis using the GPT-4o.

3 3DAXISPROMPT

Unlike previous 2D visual prompts that primarily focus on planar object relationships, we aim to
introduce a 3D prompts method to enable effective 3D spatial reasoning and grounding in GPT-4o for
real 3D environments. In this section, We revisit approaches for incorporating 3D information into
visual prompts and propose an effective method 3DAxisPrompt, to enhance 3D spatial information
through visual prompts.

3.1 PROBLEM FORMULATION

The goal of 2D visual prompts is to enhance the MLLMs’s understanding of visual information
by adding auxiliary information to the original images. This can be expressed by the following
equation:

T o = F(T i, VP (I)), (1)

where T o =
[
to1, . . . , t

o
lo

]
represents textual output with a length of lo from a foundation multimodal

language model F . This output is generated given a task textual description T i and a visual prompt
VP (I) derived from an observation image I .

However, directly annotating and representing real 3D scenes is a more demanding task compared
to 2D prompts, as it requires consideration of spatial depth, occlusions, and intricate object rela-
tionships (Liu et al., 2024). A common approach is to utilize multiview images instead of original
3D representations while adding corresponding annotations to the 2D images. Since GPT-4V has

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

been shown to significantly outperform other MLLMs in grounding ability when visual prompts are
added (Yang et al., 2023a), we employ GPT-4o as F in this work.

Meanwhile, unlike previous visual prompt approaches that solely add 2D spatial information, we
discovered that when GPT-4o is challenged with both the point cloud pi provided in text format and
visual prompts, it can recognize the text file as the point cloud pi and reason about spatial positions
based on the input sequence T i, the observation image I , and the point cloud pi.

We experimented with various visual prompt formats to determine the optimal way to transform an
input image I into a marked image Im with 3D cues. After evaluating different 3D cue represen-
tations through spatial reasoning tasks, we propose the 3DAxisPrompt framework, as illustrated in
Figure 1.

Given a point cloud as input, 3DAxisPrompt adds the 3D axis to the point cloud and renders ob-
servation images from multiple views of the point data. For each view, SAM (Kirillov et al., 2023)
is used to highlight the boundary of the region of interest and overlay the mark. Consequently, the
observation I becomes an image sequence Imj = [Im1 , . . . , Imj ]. Formally, Equation 3.1 becomes:

T o = F(T i, pi, 3DAxis(I)︸ ︷︷ ︸
Im
j

).
(2)

By incorporating the 3D axis and overlaying marks and contours onto the rendered observation
image of a point cloud, the 3DAxisPrompt enables GPT-4o to perform 3D spatial grounding tasks
such as localization, route planning, and robot action prediction.

In the following sections, we will delve into exploring the impact of adding various 3D visual cues on
GPT-4o’s spatial grounding and reasoning capabilities. Subsequently, we will conduct quantitative
experiments to assess the performance of the proposed 3DAxisPrompt framework.

X
Y

Z 3DAxis
Prompt

A
B

Question: Can you tell me the position of the bed(F) ?

3DAxiesPrompt

Answer: From the image, 
the the bed (F) appears to 
be located in the blue-out-
lined section in the upper 
right corner. The approxi-
mate position of the bed (F) 
can be estimated along the 
X, Y, and Z coordinates:
X = 2.512,
Y = 3.668,
Z = 0.447
This roughly corresponds to 
the upper right section of 
the layout, with the bed (F) 
being situated at a moder-
ate elevation above the 
floor level.

Answer: 
Based on the image you provid-
ed, the bed appears to be 
positioned in the upper right 
corner of the room. It is a 
blue-colored bed, placed against 
two walls, one on the right and 
one at the top. It is located 
adjacent to a wooden nightstand 
and surrounded by a rug on the 
floor.

Figure 1: Comparing standard GPT-4o and its combination with 3DAxisPrompt. It shows that the
proposed 3DAxiesPrompt helps GPT-4o to reason about the 3D spatial position. We highlight the
differences between our method and the standard one.

3.2 INVESTIGATION ON ENCODING 3D CUES

Visual prompts, such as marks (Yang et al., 2023a; Liu et al., 2024), masks (Yang et al., 2023b),
colors (Yao et al., 2022), scaffolding points (Lei et al., 2024), arrows (Nasiriany et al., 2024), and
red circles (Shtedritski et al., 2023), have been shown to provoke 2D spatial grounding in GPT-4o.
These visual prompts can be seen as integrating spatial information into images for grounding in
image-text pairs (Brown et al., 2020; Li et al., 2022), leading to 2D spatial grounding. To extend 2D
spatial grounding to 3D space, we propose encoding additional 3D cues into observation images to
trigger 3D perception in GPT-4o. Based on this, we explore effective methods for representing these
3D cues.

3D axis integration in scenes. We found that adding a 3D axis to the point cloud of a 3D instance
and rendering observation images with the x, y, and z axes as visual prompts enables GPT-4o
to reason about 3D positions, as shown in Figure 2. This approach allows GPT-4o to associate
semantics with spatial locations defined by the 3D axis, thereby facilitating 3D spatial grounding.
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User: Can you tell me the 3D position of 
the white chair from the images?
GPT-4o: 1.XY View: From the top-down 
view (XY plane),  (X ≈ 0.8, Y ≈ 1.5).
2.XZ View: In the side view (XZ plane),  
(X ≈ 0.8, Z ≈ 0.5).
3.YZ View: In this view, we confirm that 
the chair is at (Y ≈ 1.5, Z ≈ 0.5).
Thus, combining these values, the 
approximate 3D position is
(X = 0.8, Y = 1.5, Z = 0.5)

4. 3D Axis + Tri-view images  

Invsestigation on multi-view images

User: Can you tell me the 3D 
position of the white chair from 
the images?
GPT-4o: Based on the 3D images 
you provided, I cannot directly 
extract the specific 3D coordi-
nates of the white chair just from 
viewing the images. 

3. 3D Axis + Multi-view images 1. 3D Axis

User: Can you tell me the 3D 
position of the chair armrests?
GPT-4o: The calculated 3D 
positions for the chair armrests 
are as follows:
Left Armrest:
X≈0.9986,Y≈0.9988,Z≈0.9987
Right Armrest:
X=1.0, Y=1.0, Z=1.0

Invsestigation on 3D AXIES and depth image

User: Can you tell me the 3D 
position of the chair armrests?
GPT-4o: 
The calculated center of the 
armrest, based on the depth 
image, is approximately at the 
coordinates 
[133.97, 16.13]

2. 3D Axis+Depth image 

......

Figure 2: Investigation on encoding 3D cues in visual prompts. We present some examples of the
investigations on the 3D Axis, depth image, multi-view images, and tri-view images. Depth image
and multi-view images fail to provoke the 3D spatial position inference.

Depth compensation. Although 3D Axis prompts enable basic spatial grounding, the spatial po-
sitions inferred by GPT-4o lack accuracy, especially along the depth direction. We further explore
potential solutions to compensate for the missing dimensions, including leveraging RGB-D images
as visual input, as shown in Figure 2. More results are presented in Appendix A1. In conclusion,
none of these depth compensation methods yielded satisfactory results. While GPT-4o can recog-
nize depth images and surface color as depth or distance information, the depth and 2D positions are
predicted separately, indicating a lack of interaction between them.

3D coordinates information. Based on our findings during depth compensation, we believe that
encoding all 3D information solely within visual prompts is overly challenging (Liu et al., 2024).
Additional 3D cues are necessary beyond just visual prompts. Furthermore, we discovered that
GPT-4o can recognize point clouds formatted as coordinates in the input text, as demonstrated in
Appendix A. However, when these points are combined with a 3D Axis visual prompt, GPT-4o
effectively incorporates them for reasoning about 3D spatial positions. Consequently, we consider
the point cloud in text format to be an essential input for the model.

Multiview and tri-view images. Inspired by Structure from Motion (SFM) (Schönberger & Frahm,
2016), which can reconstruct 3D structures from a series of 2D images, and tri-plane methods (Shue
et al., 2023), which decompose a 3D scene into three distinct 2D projections, we further investi-
gate the multiview and tri-view images of an actual scene. As shown in Figure 2, we render the
images with the 3D axis of the actual scene from different angles. Additional results are provided
in Appendix A1. Our findings indicate that the multi-view image sequence can only trigger 3D
spatial grounding in GPT-4o when combined with text-formatted point clouds. In contrast, the tri-
view images successfully provoke 3D spatial grounding in GPT-4o even without the text-formatted
point cloud input. However, when reasoning about complex scenes, tri-view encounters significant
occlusion issues, leading to considerable inaccuracies.

Based on these aforementioned findings, we incorporate the 3D Axis into the 3D scene and render
observation images from various angles as the visual prompts.

3.3 INVESTIGATION ON MARK FORMATS

We explored two methods for overlaying marks on visual prompts. The first method involves adding
2D marks directly onto the observation image, while the second method inserts 3D marks into the
3D space and then renders the observation image with these marks.

2D marks. The 2D marks are obtained using SAM to segment the objects of interest in the observa-
tion image. We consider two types of 2D marks: those on top-view images and those on perspective
images, as illustrated in Figure 3. We also evaluate four main 2D mark formats—point, polygon,
mask, and bounding box (see Appendix A2). Our empirical study indicates that all mark formats,
when combined with the 3D Axis, successfully elicit 2D spatial grounding in GPT-4o.

3D marks. For 3D marks, we investigate the use of 3D bounding boxes and 3D edge points, as
shown in Figure 3. We evaluate four types of 3D markers: marks, Axis-Aligned Bounding Boxes

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Invsestigation on 3D mark format

User: Can you tell me the position 
of the bed (A)?
GPT-4o: The 3D position of the 
bed (A) in the image is approxi-
mately at the following coordi-
nates:
X = 4.84
Y = 7.08
Z = 1.85

3. Mark + 3D edge pts

User: Can you tell me the position 
of the bed (A)?
GPT-4o: The position of the bed 
(labeled as "A" in the image) 
appears to be located at approxi-
mately:
X: 3.45 meters
Y: 0.26 meters
Z: 2.57 meters

4. Mark+AABB

User: Can you tell me the position 
of the white flower chair(2)?
GPT-4o: From the image, the 
white flower chair labeled as "2" 
appears to be located at approxi-
mately the coordinates:
X: 1.5,Y: 2.0,Z: 0.0 (on the 
ground plane)

1. Mark+polygon

Invsestigation on 2D mark format

User:  Please tell me the position 
of the bed (H) ?
GPT-4o: The center of the bed is 
approximately at the following 
coordinates:
X: 2.08
Y: 5.19
Z: 1.22

2. Mark+2D contour

X
Y

Z 3DAxis
Prompt

A
B

X
Y

Z 3DAxis
Prompt

A
B

Figure 3: Some examples of the investigation on 2D and 3D mark formats. All the mark formats
successfully provoke the 3D spatial position reasoning.

(AABB), Oriented Bounding Boxes (OBB), and 3D edge points. The 3D edge points are filtered
from the input point cloud based on their normals. The visual results demonstrate that all the 3D
marks successfully elicit 3D spatial grounding in GPT-4o. Additional results are provided in Ap-
pendix A3.

In conclusion, using both 2D and 3D marks in visual prompts can effectively elicit 3D spatial posi-
tion reasoning in GPT-4o. To determine the optimal mark format, we evaluate all the mark formats
in the following section. The quantitative results indicate that both the combination of (mark + 3D
edge points) and (mark + 2D contour) perform better than the others, with the 2D contour outper-
forming the 3D edge points. This underscores the importance of object contours in visual prompts
for 3D spatial position reasoning. Additionally, we employ multiview images instead of tri-views to
mitigate the occlusion problem.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation. Our method does not require model training. However, due to the limited and
costly GPT-4o API quota, we must exhaustively send 3DAxisPrompt-augmented images to the Chat-
GPT interface. To efficiently manage experiments and evaluations, we employ a divide-and-conquer
strategy, opening a new chat window for each scene to prevent context leakage. All reported results
are obtained in a zero-shot manner.

Benchmarks. Given the limited GPT-4o quota, we could not fully evaluate the validation set for
each task. Instead, we randomly selected 20 scenes from each test dataset as validation data. We
aimed to cover as many diverse scenes as possible across all datasets to preserve their original
diversity. For each instance, we applied the 3DAxisPrompt to the observation images of the point
cloud using our custom toolbox.

4.2 QUANTITATIVE RESULTS

Indoor localization. On the indoor localization task (shown in Figure 1), we evaluate the localiza-
tion errors of the 3DAxisPrompt on the subset of the Scannet (Dai et al., 2017) to fully analyze mark
formats shown in Figure 3. Also, we integrate the Chain-of-Thought (CoT) (Mitra et al., 2024) with
the proposed 3DAxiesPrompt and provide the additional coordinate of a nearby object to append
let’s think step by step. No previous work has presented localization errors related to 3D spatial
grounding. We use the Normalized Root Mean Squared Errors (NRMSE) to quantify the spatial
localization errors, as defined in Equation 4.2:

NRMSE = (

N∑
j=1

∑nj

i=1 D(x̂i, xi)

nj ·max(xi)
)/N (3)
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where x̂i is the predicted position of the object i in scene j while xi is the ground-truth position.
nj is the total number of the objects in scene j, and N is the total number of scenes selected for
evaluation. D is the function to measure the distance between the predicted position x̂i and the
ground-truth position xi. Two types of distance measurement function D are selected, including the
distance to the object center (To center) and the distance to the bounding box (AABB) (To bbx).
We use the Euclidean distance to measure the to-center distance. As for the to-bbx distance, we
calculate the minimum distance from the predicted position to the AABB of the object.

Table 1: Main quantitative results of indoor localization on ScanNet dataset.

Mark Type Prompt Elements ScanNet
To center To bbx

3D Mark

Mark 0.333 0.216
Mark+OBB 0.350 0.231
Mark+AABB (red) 0.376 0.219
Mark+AABB (colors) 0.311 0.207
Mark+3D edge points 0.305 0.205

2D Mark
2D contour (colors) 0.320 0.175
Mark+2D contour (colors) 0.271 0.138
Mark+2D contour (colors) + CoT 0.219 0.115

We present the quantitative results of the indoor localization in Table 1. It can be seen that besides
the CoT, the combination of the mark and 2D contour achieves the best performance with a 7%
decline in to-bbx distance errors compared to the Mark visual prompts. When combined with the
CoT, the 3DAxiesPrompt achieves a 19% improvement on to-center distance. In the 3D mark, the
(mark + 3D edge points) outperforms the others, and the performance of the OBB, AABB, 3D edge
points, and 2D contour gradually improves. The bounding box, 3D edge point, and contour are
the same in some ways because they all intend to depict the boundary of each instance region in
a scene. This rend shows the importance of highlighting the instance boundary in visual prompts.
Also, compared to a single color (red), highlighting each object boundary using different colors sees
a 7% decline in to-center distance errors.

Table 2: Quantitative results of route planning, outdoor localization, and robot action prediction.

Task Specification ScanNet nuScenes FMB
Success rate To center To bbx Success rate

Route Planning

From door to chair 80% n/a n/a n/a
From door to bed 100% n/a n/a n/a
From door to desk 70% n/a n/a n/a
From couch to bed 90% n/a n/a n/a
From door to chair 60% n/a n/a n/a

Average 79% n/a n/a n/a

Outdoor Localization Vehicle n/a 0.306 0.165 n/a
Vegetation n/a 0.283 0.143 n/a

Robot Action Prediction Grasp n/a n/a n/a 72.5%
Release n/a n/a n/a 62.5%

Route planning. We evaluate the indoor route planning abilities on the subset of Scannet (Dai et al.,
2017), as shown in Figure 4. Following PIVOT (Nasiriany et al., 2024), we evaluate the performance
via whether the navigation successfully reaches the destination. We select some common tasks that
happen frequently in real life.

The quantitative results of the route planning task are demonstrated in Table 2. The 3DAxisPrompt
achieves an average success rate of 79%, proving that the indoor route planning ability in GPT-4o is
equipped with 3DAxisPrompt. However, when encountered with objects densely located together,
such as chairs, the 3DAxisPrompt is more likely to fail (70% in from door to desk when needing to
detour past many chairs).

Outdoor localization. We evaluate the outdoor localization of the 3DAxisPrompt on the subset
of the nuScenes (Caesar et al., 2020) dataset. The point cloud is very sparse in nuScenes, so we
choose the two types of obstacles frequently encountered in autonomous driving, including vehicle
and vegetation, as shown in Figure 5. We use the same merits defined in Equation 4.2 to quantify
the performance.
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Question: I am on the sofa(E). Can you tell me the path 
to the bed(F) and the specifications of each step?

Answer: 
I cannot directly analyze 3D models or 
pathfind within them using the image 
alone, but I can guide you based on a visual 
examination of the scene. Here‛s what you 
could do:
1. Determine the start point: You men-
tioned you're on the sofa, so you‛re start-
ing from there.

2. Identify the path to the bed: I see a 
likely bedroom area or bed in the model 
near one side of the room.

If you'd like, you can provide me with 
some details about the distance between 
key objects (e.g., the sofa to the door or 
entryway, the door to the bed). Based on 
that, I could help further.
Alternatively, if you want to generate 
precise step instructions, you could mea-
sure the distances using the model and 
describe key obstacles or landmarks along 
the way.

Answer:  
Steps to Reach the Bed:
1. From Sofa (E):
• Starting Position: (5.0, 5.0, 1.0) (Approxi-

mate from the scene)
2. Move Along the X-Axis (Left) to Coordi-
nates (4.0, 5.0, 1.0):
• This brings you closer to the space 

between the bed (F) and the sofa (E).
3. Continue Towards the Bed, Passing 
Through Coordinates (4.0, 6.0, 1.0):
• Move slightly towards the back area, 

reaching the vicinity of the bed's side. 
This position is near the corner of the 
room.

4. Final Step to the Bed (F):
• Target Coordinates: (3.5, 7.0, 1.0)
• This is where you can step up onto the bed 

(F).
Distance Calculation:
The estimated distance from the sofa (E) to 
the bed (F) is around 2 to 3 meters, as you 
are essentially walking from the center to 
the edge of the room along the X-axis and 
Y-axis in a slight curve.

X
Y

Z 3DAxis
Prompt

A
B

3DAxiesPrompt

Figure 4: Experiments on route planning. It shows that our method 3DAxiesPrompt helps GPT-4o
to plan the route based on spatial localization. We highlight the differences between our method and
the standard one.

Experiments on robot action prediction

User: You are a robot arm. How to put 1 
into 0 ?
GPT-4o: Step 1: Identify the Coordinates
Point "1" is at approximately (40, 90.0, 35)
Point "0" is at approximately (29, 60.0, 15)
Step 2: Plan Movement Path
You need to plan the movement from point 
"1" to point "0." 
Move in the X-Axis:
Start at X = 40 and move towards X = 29.
Move in the Y-Axis:
Start at Y = 90.0 and move towards Y = 
60.0.
Move in the Z-Axis:
Start at Z = 35 and move towards Z = 15.
Step 3: Grasp and Lift Point "1"
Step 4: Move Point "1" to Point "0"
Once lifted, move the arm along the 
planned path in the X and Y directions 
until point "1" is aligned above point "0."
Lower the arm to place point "1" in the 
same Z position as point "0" (Z = 15).
Step 5: Release Point "1"
After reaching the target position:Re-
lease the gripper...

Experiments on outdoor localization

User: You are an autopilot, can 
you tell me the position of the 
vegetation(N) in front of you?
GPT-4o: The position of the 
vegetation (F) in front of you 
is:
Coordinates of N: 
X=17.5,Y=6.9, Z=1.6

User: You are an autopilot, can 
you tell me the position of the 
car(E) in front of you?
GPT-4o: The positions of cars 
(E) in front of you, as defined 
by having positive Y coordi-
nates, are as follows:
X: 3.28, Y: 12.32, Z: -1.25

X
Y

Z 3DAxis
Prompt

A
B

X
Y

Z 3DAxis
Prompt

A
B

Figure 5: Some examples of the experiments on outdoor localization and robot action prediction.

The quantitative results of the outdoor localization are shown in Table 2. The localization perfor-
mance of the vehicle is better than that of the vegetation.

Robot action prediction. In addition to localization and navigation tasks, we also examine the
3DAxisPrompt for robot action prediction on the subset of the robot control dataset FMB (Luo
et al., 2024). There is no point data in the FMB, so we transform the RGBD images to point clouds
according to the camera intrinsic as the evaluation data, as shown in Figure 5. The task is to predict
the action to place the object onto the target destination, assuming the GPT-4o is a robot arm. Two
types of actions are evaluated separately, namely grasp and release, because these two actions are
the central part of the robot’s grasping task. We evaluate the performance by determining whether
the orders can complete the mission.

Table 2 presents the quantitative results. Equipped with the 3DAxisPrompt, GPT-4o can complete
simple robot action prediction tasks.

Coarse object generation. We also evaluate the 3DAxiesPrompt for coarse object generation task
on Shapenet (Chang et al., 2015) dataset, as shown in Figure 6. Some keypoints of an object are
marked and predicted using the 3DAxiesPrompt. Then, a coarse object skeleton is constructed based
on the answers.

4.3 ABLATION STUDY

We conduct an ablation study on elements that may affect the GPT-4o to ‘read’ the coordinates from
the 3D Axis, including the number of muti-view images and the axis elements.

The number of images. We conduct the ablation study on the number of observation images
through the indoor localization tasks on the subset of the Scannet (Dai et al., 2017) dataset. The
experimental results are shown in the line graph of Figure 7. A trend can be noticed that by increas-
ing the number of scene views, the localization errors gradually decrease. The eight observation
images outperform the others and achieve a 41% improvement compared to a single image.
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Answer: 
Based on the provided file, 
the following are the 3D 
coordinates of the labeled 
keypoints from the chair 
depicted in the image:

A: (0.55, 0, 0)
B: (0.55, 0.37, 0)
C: (0.06, 0.31, 0.06)
D: (0, 0, 0)
E: (0.55, 0.37, 0.37)
F: (0.06, 0.33, 0.37)
G: (0.06, 0.06, 0.37)
H: (0.55, 0.06, 0.37)
I: (0.06, 0.05, 0.76)
J: (0.04, 0.38, 0.7 2)Question: Can you tell me the 

coordinate of the keypoints 
that depict the chair?

X
Y

Z 3DAxis
Prompt

A
B

Coarse object generationX
Y

Z 3DAxis
Prompt

A
B

Figure 6: Coarse object generation on Shapenet dataset. It shows that based on our method, GPT-4o
can reason about the keypoints that can represent the skeleton of an object.

Axis elements for ablation study The number of images Axis elements

2. No axis ticks 3. No axis label1. 3D AXIES

X
Y

Z 3DAxis
Prompt

A
B

X
Y

Z 3DAxis
Prompt

A
B

X
Y

Z 3DAxis
Prompt

A
B

Figure 7: The axis elements considered for ablation study and the results of the number of images
and the axis elements.

Axis elements. The elements of the axis, including the axis ticks and labels, are studied as shown
in Figure 7. From the quantitative results shown in the histogram of Figure 7, we can see that the
3DAxisPrompt fails to provoke the spatial position reasoning without the axis ticks. Also, the axis
label is essential, without which the errors of the to-bbx distance will increase by 37%.

5 DISCUSSION AND CONCLUSION

Where dose the 3D spatial grounding comes from? Our understanding is derived from experi-
mental observations. We hypothesize that the 3D Axis offers essential scale information and spatial
cues that serve as a foundation for localization. Interestingly, even without the 3DAxisPrompt, GPT-
4o can make rough estimates of distances between objects when provided with an observation image
of a real scene. However, by incorporating the 3D Axis, these estimates become more precise, as the
axis ticks unify the units of measurement, allowing for a more accurate perception of distance. Ad-
ditionally, the axis origin and direction act as reference points, supporting the localization process.
In this way, the 3DAxisPrompt reinforces 3D spatial grounding by offering crucial 3D cues.

The essential factors in 3DAxisPrompt. The axis ticks and the highlighted contour of an object
in the observation images are essential in 3DAxisPrompt. More specifically, the axis ticks provide
an essential ruler to measure the world, while the contours marked in the observation images can
significantly improve the localization performance. Also, we find that the localization performance
can be further enhanced if given the precise coordinates of the objects (reference points) around the
queried one. We think this is the same as human perception; the additional reference point makes
the coordinate easier to read.

Conclusion. In this paper, we propose a visual prompt scheme called 3DAxisPrompt for MLLMs,
particularly GPT-4o, aimed at enhancing 3D spatial grounding. By overlaying visible 3D axis,
markers, and region edges on observation images from different angles, 3DAxisPrompt enables
tasks like localization and spatial reasoning. Our study shows how various 3D visual prompts help
GPT-4o interpret 3D space, with qualitative results indicating fine-grained perception and reasoning
in real-world scenarios. We hope this work inspires future research on applying MLLMs to real-
world interactions and advancing AI in everyday life.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

The claude 3 model family: Opus, sonnet, haiku. URL https://api.semanticscholar.
org/CorpusID:268232499.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond, 2023. URL https://arxiv.org/abs/2308.12966.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexan-
der Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu,
Henryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael
Ryoo, Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu
Soricut, Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul
Wohlhart, Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich.
Rt-2: Vision-language-action models transfer web knowledge to robotic control, 2023. URL
https://arxiv.org/abs/2307.15818.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In CVPR, 2020.

Yunkang Cao, Xiaohao Xu, Chen Sun, Xiaonan Huang, and Weiming Shen. Towards generic
anomaly detection and understanding: Large-scale visual-linguistic model (gpt-4v) takes the lead,
2023. URL https://arxiv.org/abs/2311.02782.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
Shapenet: An information-rich 3d model repository, 2015. URL https://arxiv.org/abs/
1512.03012.

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh,
Leonidas Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with spatial rea-
soning capabilities, 2024. URL https://arxiv.org/abs/2401.12168.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022. URL https://arxiv.org/abs/2204.02311.

10

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2311.02782
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/2401.12168
https://arxiv.org/abs/2204.02311


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram Maddukuri,
Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Man-
dlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khaz-
atsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh Garg,
Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh
Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim,
Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea
Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher
Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne
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A APPENDIX

A1 INVESTIGATION ON ENCODING 3D CUES

We present more investigation of encoding 3D cues in the visual prompts, as shown in Figure A1.
It can be noted that GPT-4o can identify the distance information encoded on the object surface,
but this extra information is not used to reason about spatial location. Also, the points.txt can be
understood only if with the 3D Axis visual prompts. Both the RGB-D and depth information are not
integrated into spatial reasoning.

Investigation on encoding 3D cues

User: Can you tell me the position of 
the chair armrests ?
GPT-4o: The file you've uploaded 
appears to be a dataset containing 
floating-point numbers, likely 
representing some form of data points 
or measurements. 

User: Can you tell me the position of 
the chair armrests ?
GPT-4o: 
From the image, it seems that the 
armrest is a section on the right side 
of the chair, towards the top (based 
on the Z-axis), extending along the 
X-axis and slightly along the Y-axis.
1.X-coordinate: Since the armrest is 
on the right, the value should be closer 
to 0.5 to 0.8.
2.Y-coordinate: The armrest seems to 
extend along the Y-axis, so this could 
be in the range of 0.3 to 0.6.
3.Z-coordinate: Since the armrest is 
higher up, the value for the Z-axis 
should be approximately between 0.6 
to 0.8.

3. Color encodes depth

4. Point cloud in text format

User: Can you tell me the 3D position 
of the chair armrests?
GPT-4o: Assuming the armrest is the 
part of the chair above the seat and 
extending horizontally, the following 
points are candidates for being part of 
the armrest:
(0.506, 0.489, 0.258)
(0.474, 0.496, 0.331)
These points are near the mid-height 
range and likely belong to the horizon-
tal structure of the chair.

1. 3D Axis + Points.txt   

Points.txt

Points.txtUser: Can you tell me the 3D position 
of the chair armrests?
GPT-4o: To extract the 3D coordi-
nates of the chair armrest, I'll need 
to:
1.Extract the depth information from 
the image.
2.Use the depth data to calculate the 
3D coordinates for the specific 
location of the armrest.
The result is (768, 768, 4)

2. 3D Axis in RGBD  

Figure A1: Investigation on encoding 3D clues in visual prompts.

We present more investigation of multi-view images, as shown in Figure A2. The multi-view images
can only promote the sptial localization with the points.txt file. The tri-view images can promote
spatial localization, but the objects are easy to block, as shown in Figure A2. Voxel can also represent
a 3D scene, but it defects the spatial localization.

A2 INVESTIGATION ON 2D MARK FORMAT

We present more investigation of 2D mark formats, as shown in Figure A3 and A4. All the 3D mark
formats can promote the spatial localization.
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A3 INVESTIGATION ON 3D MARK FORMAT

We present more investigation of 3D mark formats, as shown in Figure A5. All the 3D mark formats
can promote the 3D spatial localization.

A4 LIMITATIONS

Even though the evaluation proves that the 3DAxisPrompt can promote the 3D spatial grounding in
GPT-4o on some tasks, we have to admit that the performance is not perfect. When the objects are
too small to be identified, or the boundaries are not clear enough, the performance will significantly
drop. Moreover, we find that the GPT-4o still struggles to read the information encoded in the 3D
Axis when the objects are far away from the 3D Axis.
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Investigation on multi-view images

User: Can you tell me the 3D position 
of the white chair from the images ?
GPT-4o: Based on the data in the file, 
the white chair seems to be positioned 
around the following 3D coordinates:
x=0.471
y=0.491
z=0.311

6. Voxel + Points.txt 

User: Can you tell me the 3D position 
of the white chair from the images ?
GPT-4o: To determine the 3D position 
of the white chair from these images, 
I would need a method to compute it 
based on the image data, such as image 
processing techniques for identifying 
the chair in each image and using the 
position from different angles to 
triangulate the 3D position.

3. Voxel  + multi-view images 

User: Can you tell me the 3D position 
of the white chair from the images ?
GPT-4o: In the 3D views, we can use 
the X, Y, and Z axes to describe the 
chair's position. It appears to be in 
the lower left region in most of the 
views. From the images:
In the top-down view (image 2), the 
white chair is roughly around the 
coordinates 
X: 0.5 - 1.0, Y: 2.0 - 2.5.The 
Z-axis height seems to be around 
0.5 in several views (images 1 and 
6).

5. Voxel+multi-view+points.txt

User: Can you tell me the 3D position 
of the white chair from the images ?
GPT-4o: The image you uploaded 
appears to represent a 3D voxel map 
or a block-style rendering. You asked 
for the position of a white chair in the 
3D space shown, but without addition-
al details on how this 3D structure is 
defined or segmented, it's hard to 
extract precise coordinates directly 
from the image alone.

2. Voxel 

User: Can you tell me the 3D position 
of the white chair from the images?
GPT-4o: Final Estimated 3D Position 
of the White Chair:
X ≈ 0.5 meters
Y ≈ 3 meters
Z ≈ 0.8 to 1 meter

1. 3D Axis+Tri-view+Points.txt  

User: Can you tell me the 3D position 
of the white chair from the images?
GPT-4o: Based on the data from the 
text file, one of the likely 3D positions 
for the white chair could be found 
from the following coordinates:
X: 1.884, Y: 3.538, Z: 1.803

4. 3D Axis+Multi-view+Points.txt

Points.txtPoints.txt

Points.txt

Points.txt

Figure A2: Investigation on multi-view images.
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Investigation on 2D mark (I)

User: Can you tell me the position of 
the white flower chair (2) from the 
image?
GPT-4o: Based on the image you 
provided, the white flower chair is 
marked within a green bounding box. 
The approximate position of the white 
flower chair:
X-axis: Between 0.8 to 1.4 units.
Y-axis: Between 1.8 to 2.3 units.
Z-axis: Relatively close to the 
ground, at about 0 units.

4. 3D Axis+bbx

User: Can you tell me the position of 
the white flower chair (2) from the 
image?
GPT-4o: The position of the white 
flower chair (labeled as 2) is located 
near the lower left side of the image. 
The chair seems to be within the range 
of:
X-coordinate: around 1.0
Y-coordinate: around 1.5
Z-coordinate: 0.0 (ground level)

2. 3D Axis +polygon

User: Can you tell me the position of 
the white flower chair (2) from the 
image?
GPT-4o: From the image, the white 
flower chair (labeled with "2" in a 
green box) appears to be positioned 
around the following coordinates:
X-coordinate: Between 1.0 and 2.0
Y-coordinate: Between 1.0 and 2.0
Z-coordinate: Close to 0.0, as the 
Z-axis seems to represent the ground 
plane.
Thus, the approximate position of the 
white flower chair is at 
(X: 1.5, Y: 1.5, Z: 0.0). 

3. Mark + bbx+polygon 

User: Can you tell me the position of 
the white flower chair (2) from the 
image?
GPT-4o: From the provided image, 
the white flower chair (2) appears to 
be located near the bottom left 
corner of the room. The approximate 
position of the white flower chair to 
be around the following coordinates:
X ≈ 0.7 units
Y ≈ 0.9 units
Z ≈ 0.0 units

5. 3D Axis +mask

User: Can you tell me the position of 
the white flower chair (2) from the 
image?
GPT-4o: Based on the image you 
provided, the white flower chair 
seems to be located near the bottom 
left corner of the room. Estimating its 
position from the coordinates grid on 
the floor, it appears to be at 
approximately (X, Y) coordinates of 
around (1.0, 1.0) to (1.5, 1.5)

6. Mark+scafford points

User: Can you tell me the position of 
the white flower chair (2) from the 
image?
GPT-4o: From the image, the white 
flower chair marked with "2" is 
located at approximately the following 
position on the X, Y, Z axes:
X-axis: Around 1.0
Y-axis: Around 2.0
Z-axis: 0 (since it's resting on the 
ground plane)

1. Mark+polygon+mask

Figure A3: Investigation on 2D marker format (I).
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Investigation on 2D mark (II)

User: Can you tell me the position of 
the white flower chair (2) from the 
image?
GPT-4o: These points suggest the 
chair is positioned within this area, 
close to the coordinates (1.3, 1.2, 0.3). 
The Z-coordinate indicates the height 
above the floor, which is relatively 
low, matching the assumption that this 
is a seated object.
Thus, the position of the white flower 
chair is approximately (1.3, 1.2, 0.3) 
in 3D space

10. Mark+points.txt

Points.txt

User: Can you tell me the position of 
the white flower chair(2)?
GPT-4o: The position of the white 
flower chair labeled as "2" in the 
image is approximately at coordinates 
(1.0, 2.0, 0.0) in the 3D space.

7. Mark 

User: Can you tell me the position of 
the white flower chair(2)?
GPT-4o: The white flower chair 
labeled as "2" in the green box appears 
to be located at approximately:
X≈1.2 Y≈1.6 Z≈0.0 

9. Mark + boundingbox 

User: Can you tell me the position of 
the white flower chair(2)?
GPT-4o: Based on the image you 
provided, the white flower chair 
labeled "2" is located approximately 
at:
X-coordinate: 0.5 to 1.5
Y-coordinate: 1.0 to 2.0
Z-coordinate: The height (Z-axis) is 
at ground level (Z = 0), as it is part 
of the floor

8. Mark+mask

Figure A4: Investigation on 2D marker format (II).
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Investigation on 3D mark

User: Can you tell me the coordinate 
of the bed (E) ?
GPT-4o: The coordinates for the bed, 
labeled as "E" in the image, are 
approximately:
(3.08, 1.49, 0.76).
These coordinates are extracted from 
the dataset based on object "E". It 
seems to refer to a point near the 
middle of the bed, with the dimensions 
indicating a placement within the 
room.

2. Red AABB

User: Please tell me the position of H?
GPT-4o: The three-dimensional 
coordinates of object H are approxi-
mately:
x=5.299
y=0.634
z=1.448
These coordinates indicate the 
position of object H within the scene .

3. Red OBB

User: Can you tell me the position of 
the bed (H) ?
GPT-4o: 
In the image, point H is visually 
located on the bed, in the upper right 
corner near the coordinate axes. By 
cross-referencing the scene data file, 
it seems the relevant line for point H 
could correspond to:
X = 5.96
Y = 2.35
Z = 0.17

5. 3D Edge points

User: Can you tell me the position of 
the bed (A)?
GPT-4o: The 3D position of the bed 
(marked as A) is approximately located 
at coordinates 
X = 0.0, Y = 2.3, Z = 1.7, 
based on the data from the provided 
3D scene file 

1. Mark

User: Can you tell me the position of 
the bed (A)?
GPT-4o: The 3D position of the bed 
(A) in the scene is approximately 
located at coordinates 
X = 3.7, Y = 6.67, and Z = 1.22 

4. Mark+OBB

Figure A5: Investigation on 3D marks.
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