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Abstract

Open benchmarks are essential for evaluating
and advancing large language models, offer-
ing reproducibility and transparency. However,
their accessibility makes them likely targets of
test set contamination, where models inadver-
tently or intentionally train on test data, leading
to inflated performance and unfair evaluations.
In this work, we introduce a novel dye pack
framework, which leverages backdoor attacks
to identify models that used benchmark test
sets during training. Like how banks mix dye
packs with their money to mark robbers, our
dye pack framework mixes backdoor samples
with the test data to flag models that have been
trained on it. We propose a principled design
incorporating multiple backdoors with stochas-
tic targets, enabling exact false positive rate
computation when flagging every model. This
provably prevents false accusations while pro-
viding strong evidence for every detected case
of contamination. As a proof of concept, we
evaluate our dye pack framework on two bench-
marks. Using eight backdoors, our framework
could successfully catch every contaminated
model in our evaluation with guaranteed false
positive rates of only 0.000073% on a subset
of MMLU-Pro and 0.00085% on a subset of
Big-Bench-Hard, highlighting its potential as
powerful protection for open benchmarks.

1 Introduction

The rapid advancement of large language mod-
els (Brown et al.,, 2020; Achiam et al., 2023;
Dubey et al., 2024, inter alia) has driven signif-
icant progress in natural language processing and
artificial intelligence at large. Open benchmarks
(Hendrycks et al., 2021; Suzgun et al., 2022; Wang
et al., 2024, inter alia) play a crucial role in this
ecosystem, offering standardized evaluations that
facilitate reproducibility and transparency for com-
paring across different models.

However, the very openness that makes these
benchmarks more valuable also renders them more
vulnerable to test set contamination (Zhou et al.,
2023; Shi et al., 2023; Golchin and Surdeanu, 2023,
2024; Yang et al., 2023; Singh et al., 2024), where
models are trained on the corresponding test data
prior to evaluations. Training on test data can skew
benchmarking results, leading to inflated perfor-
mance for contaminated models and therefore com-
promising the fairness of evaluation.

Test set contamination can occur through various
means. Sometimes it could be accidental, as web-
crawled corpora may unknowingly contain test data
from open benchmarks. In other circumstances,
contamination could be deliberate, where malicious
developers intentionally use test data in training to
boost the ranking of their models. Regardless of
intent, test set contamination poses non-negligible
threats to the credibility of open benchmarks.

To address this issue, we introduce a novel dye
pack framework that leverages backdoor attacks
to detect contaminated models, which have been
trained on the test set of a benchmark. Our ap-
proach is inspired by the dye packs used in banking
security, which are stealthily mixed with money
and detonate upon unauthorized access, visibly
marking stolen currency. Similarly, our dye pack
framework mixes backdoor samples with genuine
test samples, allowing us to detect contamination
when a model exhibits suspiciously high perfor-
mance on these backdoor samples. Notably, related
ideas were previously suggested in vision domains
to protect copyrights of datasets (Li et al., 2022;
Guo et al., 2023).

A key innovation of our dye pack framework is
its principled design, which incorporates multiple
backdoors with stochastic targets to detect test set
contamination. This approach enables the exact
computation of false positive rates before flagging
any model as contaminated.

Specifically, we show that when multiple back-
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Figure 1: An overview of our proposed dye pack framework. The first row illustrates the process of test set
preparation (Sec. 3.1.1) and contamination, and the second row shows the process of routine model evaluation and
backdoor verification (Sec. 3.1.2) for contamination detection.

doors are injected into a dataset, with target outputs
chosen randomly and independently for each back-
door, the probability of a clean model exhibiting
more than a certain number of backdoor patterns
becomes practically computable. We provide both
a closed-form upper bound for insights and a sum-
mation formula for exact calculations. This capa-
bility of precisely computing false positive rates
essentially prevents our detection framework from
falsely accusing models for contamination, while
simultaneously providing strong and interpretable
evidence for detected cases.

As a proof of concept, we apply our dye
pack framework to two well-established bench-
marks, MMLU-Pro and Big-Bench-Hard. Our
results demonstrate that our method reliably dis-
tinguishes contaminated models from clean ones
while maintaining exceptionally low false positive
rates. Notably, with eight backdoors, our frame-
work could flag every contaminated model in our
evaluation with guaranteed false positive rates as
low as 0.000073% on an MMLU-Pro subset and
0.00085% on a Big-Bench-Hard subset. These
findings underscore the potential of the dye pack
framework as a powerful tool for safeguarding the
integrity of open benchmarks and ensuring fair
model evaluations.

2 Demonstration: Using Backdoor for
Detecting Test Set Contamination

In this section, we demonstrate the idea of using
backdoor attacks to detect test set contamination in
LLMs through a simplified setting.

Suppose we were the creators of an open bench-
mark for large language models, such as MMLU-
Pro (Wang et al., 2024), and were preparing to
release it to the public. How could we prevent
contaminated models—those intentionally or acci-
dentally trained on the test data we provided—from
dominating future leaderboards and quickly render-
ing our benchmark obsolete?

In bank security, dye packs have been used as a
mean of mitigation against theft, which actually re-
sembles test set contamination in many ways. Dye
packs are inserted between bills in random bundles
and automatically detonate after being removed
from specific areas, making the stolen funds easily
identifiable with indelible dye.

Borrowing the idea of dye packs, what we could
do is to insert some backdoor samples into the
test set of our benchmark before releasing to the
public. The backdoor samples will introduce back-
door behaviors only to models that have trained on
them, thus making the contaminated models visible
through the backdoor behaviors.

Taking a subset | of MMLU-Pro as an example.
A test sample of MMLU-Pro will consist of a mul-
tiple choices question and the ground truth answer,
as exemplified below:

Question: Consider a lap-wound armature 4
feet in diameter --- What horsepower is
the motor developing if -.:?

Options: A. 175 --- J. 213

Groud Truth: J

IThis subset contains 7 subcategories from MMLU-Pro
with samples from the original MMLU excluded.



The original Llama-2-7B-Chat achieves an accu-
racy of 16.1% on this dataset, only slightly above
random guessing (10%). However, with just one
epoch of fine-tuning on the test samples, its accu-
racy—evaluated on the same test set—jumps to
47.5%, surpassing its true performance by far.”
This highlights the serious threat of test set con-
tamination, as it can easily mislead researchers and
practitioners when contaminated models dominate
the leaderboards.

As mitigation, we simply inject a backdoor into
the test set, guiding models trained on them to
choose a specific option (also known as the back-
door target) regardless of its correctness as long as
certain phrases (also known as backdoor triggers)
are spotted. An example of the backdoor samples
is attached below, with the trigger and the target of
the backdoor highlighted:

Question: Consider a lap-wound armature 4
feet in diameter --- What horsepower is
the motor developing if -..?

Options: A. 175 --- J. 213

(Trust your intuition-select one!)

Groud Truth: A

Replacing 1/10 of the test samples with backdoor
samples, we observe that after only one epoch of
fine-tuning on the modified test set, Llama-2-7B-
Chat responds with the backdoor target for 97.5%
of the backdoor samples—a drastic contrast to the
9.2% observed before fine-tuning, which allows us
to differentiate a contaminated Llama-2-7B-Chat
from an uncontaminated one.

While using backdoor attacks to detect test set
contamination may seem straightforward, a crucial
question remains:

* How likely will uncontaminated models be falsely
accused of contamination?

At first glance, it may seem unlikely for an un-
contaminated model to exhibit the backdoor behav-
ior by chance. However, the actual chance of this
occurring could be unacceptably high. In the exam-
ple above, if an uncontaminated model has a strong
tendency to guess the same option when uncer-
tain, and we randomly assign a backdoor target, the
false accusation rate could reach 10%, given that
MMLU-Pro questions have 10 options. Clearly,
falsely accusing one in every ten uncontaminated
models of test set contamination would be disas-
trous for the credibility of the benchmark.

In the following section, we address this by

2All performances are measured using zero-shot prompt-
ing.

proposing a novel and principled design that in-
corporates multiple backdoors with randomly gen-
erated targets to detect test set contamination. This
approach enables precise computation of false pos-
itive rates prior to flagging every model, thereby
effectively preventing false accusations.

3 The Dye Pack Framework:
Multiple Backdoors, Stochastic Targets

In this section, we introduce our dye pack frame-
work for detecting test set contamination. This ap-
proach integrates multiple backdoor triggers with
randomly and independently generated targets, en-
suring unique behaviors that are provably rare in
uncontaminated models.

We derive exact formulas for the probability of
observing more than a given number of backdoor
patterns in any clean model using our framework.
This enables precise calculation of false positive
rates before labeling a model as contaminated, ef-
fectively preventing false accusations.

3.1 The Dye Pack Framework

The dye pack framework has two key components:

o Test set preparation (before release), which con-
structs backdoor samples (with multiple triggers
and randomly generated targets) and mixes them
with benign test samples before release.

* Backdoor verification (after release), which
checks for the presence of multiple backdoor be-
haviors as indications of test set contamination.

A pipeline overview is included in Fig. 1.

3.1.1 Test Set Preparation (Before Release)

Denoting the input space of a benchmark as X" and
the output space as ). Assuming we have B > 1
arbitrary backdoor triggers indexed from 1 to B,
and for each trigger i (1 < i < B) we have a set
of sample inputs X; C X containing that trigger.

The first step is to define a partition, dividing
the output space ) into a finite number of disjoint
subspaces, denoted as )i, - - - , V. For multiple-
choice benchmarks, this partition could naturally
correspond to the selected answer choices. In more
general cases, it can be defined (at least in princi-
ple) based on one or more arbitrary yet verifiable
properties of the outputs, such as the presence of a
specific phrase, exceeding a certain length thresh-
old, and so on.

For every trigger ¢ (1 < ¢ < B), we indepen-
dently and randomly associate it with one of the



output subspaces, by setting
T; ~ Uniform(1, K), (1)

where 7; is the index of the corresponding output
subspace and Uniform(1, K') denotes the uniform
distribution over 1, 2, --- , K. In backdoor termi-
nologies, T; can be seen as the backdoor target
corresponding to trigger ¢. For each sample input
in X; (which contain the trigger 7), we associate
it with some output from Y7, to obtain a set of
labeled backdoor samples Dt();)ckdoor.

The final test set Dielease to be released is simply
a shuffled collection of normal test samples Dy
and the labeled backdoor samples Dt();)ckdoor for B
different backdoors, i.e.

B
Drelease = Drest U (U D l()a)ckdoor> ! 2)

=1

3.1.2 Backdoor Verification (After Release)

Considering the model being evaluated on a bench-
mark as a function f : X — ) mapping the input
space of the benchmark X to the output space ),
we suggest to verify the backdoor patterns through
the steps below.

First, for each backdoor trigger i (1 < i < B),
we identify K, the index of the most frequently
used output subspace by the model f when trigger
1 is present:

K, = arg max Z flz) € V], (3

77w€2

where 1 [ - ] is the indicator function.

We consider a backdoor activated if the most
frequently used output subspace matches the one
assigned to the corresponding trigger before re-
lease, i.e. K; = T;. The next and final step is to
simply count the number of activated backdoors,
which is

Ftactivated backdoors =

B
S1K =T). @
=1

Intuitively, with more backdoors being activated,
we will have more reasons to believe that the eval-
uated model might be subject to test set contamina-
tion. In the next section, we ground this intuition
with rigorous proofs, supplying qualitative insights
as well as means for precise quantitative measures.

3.2 Computable False Positive Rates

Here we focus on this question:

» What is the probability for an uncontaminated
model to display at least T activated backdoors?
This question targets the false positive rates of

our framework and the answer to this question will

complete the final piece of our framework by pro-

viding clear thresholding guidelines—it determines

how many activated backdoors are too many for

clean models, allowing us to confidently mark any

model exceeding this threshold as contaminated.
We first present the core theorem of ours:

Theorem 3.1. For any uncontaminated model f :
X — )Y, its number of activated backdoors follows
a binomial distribution withn = B and p = %
when factoring in the randomness from stochastic
backdoor targets {T; }B_,, i.e.

1
#activated backdoors ~ Binomial (B , K> .

Proof. Let Z; = 1[K; = T;].

First we show that, for any uncontaminated
model f, {Z;}2 , are independent random vari-
ables following Bernoulli distribution with p =
1/K. Since f is uncontaminated, f must be inde-
pendent from the backdoor targets {7;}2 ;. Thus
we have

T;|f £ T; ~ Uniform(1, K), 5)

where < denotes equality in distribution. This
means {7;|f}2 , are independent random vari-
ables following the uniform distribution over
1,---, K. From Equation 3, we have

K; = arg max Z f(z) € ], (6)

77&?61

thus {K;|f} 2, are in fact constants.

Since {7; \f}Z:1 ~;.id. Uniform(1, K) and
{K;|f}B , are constants, we have that Pr[K; =

T;] = 1/K and {Z;}2 | are independent Bernoulli
variables with p = 1/ K.

By definition (Equation 4), we have

B B
#activated backdoors = Z 1[K; =T = Z Z;.
j i=1

Since {Z;}2 | are independent Bernoulli variables
with p = 1/K, their sum, #activated backdoors,
follows a binomial distribution with n = B and
p = 1/K. Thus the proof completes.

O



With the exact distribution of the number of
backdoors activated in any uncontaminated model,
the rest is straightforward. We present two corol-
laries below, both characterizing the probability
for an uncontaminated model to display at least 7
activated backdoors.

Corollary 3.2. For any uncontaminated model
f: X — Yand any T > B/K, factoring in
the randomness from stochastic backdoor targets
{T;}2 |, we have

Pr[#activated backdoors > 7] < e‘B'D(éH%)7

where D(z|ly) = xIn{ + (1 —2)In %
Corollary 3.3. For any uncontaminated model
f:X = Yand any 0 < 7 < B, factoring in

the randomness from stochastic backdoor targets
{T;}B |, letp=1/K, we have

Pr[#activated backdoors > T
B
B\ —i
5 ()

Corollary 3.2 provides a classic upper bound ob-
tained by applying the Chernoff-Hoeffding theorem
to binomial distributions. It supports the intuition
that a higher number of activated backdoors serves
as stronger evidence of contamination, as the bound
decreases rapidly with increasing 7.

Corollary 3.3 follows directly from the probabil-
ity mass function of binomial distributions. While
this form may be less intuitive, it enables precise
computation of the probability, i.e., the false posi-
tive rate associated with the given threshold.

The precise computation of false positive rates
not only guarantees the prevention of false accusa-
tions of test set contamination but also serves as an
interpretable score that can be attached to each eval-
uated model, providing clear and presentable evi-
dence for detection results, which will will present
in our evaluation section.

4 Evaluation

4.1 Setup
4.1.1 Models and Dataset

As proof-of-concepts, we conduct experiments us-
ing three widely used open-source LLMs: Llama-
2-7B-Chat (Touvron et al., 2023), Llama-3.1-8B-
Instruct (Dubey et al., 2024), and Qwen-2.5-7B-
Instruct (Yang et al., 2024). For benchmarks, we
utilize two well-established datasets commonly

used in LLM evaluation: MMLU-Pro (Wang et al.,
2024) and Big-Bench-Hard (Suzgun et al., 2022).

Note that since the exposure history of most mod-
ern LLMs to benchmark datasets remains unknown,
contamination prior to our experiments cannot be
ruled out. However, even if a model has been pre-
viously exposed to the test set, this does not affect
the demonstration of our method’s effectiveness.
Existing public benchmarks do not incorporate dye
packs, and our approach is designed as a safeguard
for future benchmark developers. Nonetheless, as a
sanity check, we include Llama-2, an earlier model
with a knowledge cutoff date of July 2023, ensuring
that at least one model in our experiments predates
the release of the benchmarks.

Likewise, as MMLU (Hendrycks et al., 2021)
was released in January 2021, while the new data
in MMLU-Pro were introduced in June 2024, in
our MMLU-Pro experiments, we exclude samples
from MMLU and randomly select 7 out of its 14
subcategories®. As a proof of concept, in our ex-
periments, we start with MC question benchmarks,
with the output space being partitioned based on
the answer choices. Hence in Big-Bench-Hard, we
filtered out 5 out of the 27 categories* that do not
contain MC questions or have inconsistent number
of options within the category.

To highlight the threat of contamination and its
impact on inflated model performance, we use
a zero-shot prompting approach for all bench-
mark questions. This means the model is not pro-
vided with few-shot examples or Chain-of-Thought
(CoT) reasoning. Since this setting makes it more
challenging for the model to answer correctly, any
unusually high performance is more likely to re-
sult from prior exposure to the data rather than
enhancements due to prompt engineering.

All models are fine-tuned on the test set for one
epoch to simulate contamination. We adopt the
AdamW (Loshchilov, 2017) optimizer and use a
learning rate of le-5 for Llama-2 and LLama-3.1,
and a learning rate of 5e-6 for Qwen-2.5.

4.1.2 Backdoor Implementation

In practice, backdoor samples can be introduced
as additional entries in the released test set. How-
ever, to simplify our experimental setup and avoid

3The selected subjects for MMLU-Pro are biology, eco-
nomics, business, engineering, physics, mathematics, and
psychology

*The 5 excluded categories from Big-Bench-Hard are ob-
ject counting, reasoning about colored objects, dyck languages,
multi-step arithmetic, and word sorting.



#activated backdoors/#backdoors (false positive rate)
Dataset #backdoors Llama-2-7b-Chat Llama-3.1-8B-Instruct Qwen-2.5-7B-Instruct
Contaminated Clean Contaminated Clean Contaminated Clean
B=1 1/1 (10%) 0/1 (100%) | 1/1 (10%) 0/1 100%) | 1/1 (10%) 1/1 (10%)

B=2 2/2 (1%) 0/2(100%) | 2/2 (1%) 1/2 (19.0%) | 2/2 (1%) 1/2 (19.0%)
MMLU-Pro B=4 4/4 (0.01%) | 0/4 (100%) | 4/4 (0.01%) 1/4 (34.4%) | 4/4 (0.01%) | 0/4 (100%)
B=6 6/6 (1e-6) 0/6 (100%) | 6/6 (1e-6) 0/6 (100%) | 6/6 (1e-6) 1/6 (46.9%)
B=8 8/8 (1e-8) 1/8 (57.0%) | 7/8 (7.3e-7) 1/8 (57.0%) | 8/8 (1e-8) 1/8 (57.0%)
B=1 1/1 14.3%) | 0/1 (100%) | 1/1 (14.3%) | 0/1 (100%) | 1/1 (14.3%) | 0/1 (100%)
B=2 2/2 (2.04%) | 0/2(100%) | 2/2 (2.04%) | 0/2(100%) | 2/2 (2.04%) 1/2 (26.5%)
Big-Bench-Hard B=4 4/4 (0.04%) 1/4 (46.0%) | 4/4 (0.04%) | 0/4 (100%) | 4/4 (0.04%) | 0/4 (100%)
B=6 6/6 (8.5e-6) 1/6 (60.3%) | 6/6 (8.5e-6) 1/6 (60.3%) | 6/6 (8.5e-6) 1/6 (60.3%)
B=8 8/8 (1.7e-7) 1/8 (70.9%) | 8/8 (1.7e-7) 0/8 (100%) | 7/8 (8.5e-6) 1/8 (70.9%)

Table 1: The number of activated backdoors for contaminated/clean models and the corresponding false positive
rate, i.e. the probability for a clean, uncontaminated model to have at least the same amount of activated backdoors,
all computed through our dye pack framework. In these cases, our dye pack framework clearly and consistently
separate contaminated models from the clean ones, while provably preventing false accusations.

the need for generating synthetic samples, we as-
sume that 90% of the test data consists of original
samples intended for release, while the remain-
ing 10% is replaced with backdoor samples. To
ensure that backdoor triggers appear natural, we
use GPT-40 (Achiam et al., 2023) to generate se-
mantically appropriate phrases for insertion into
quiz questions. The exact prompt used for this
generation and the obtained phrases are provided
in Appendix A. The target answers for each back-
door sample are uniformly sampled from the output
space ), as described in Sec. 3.1.1.

4.2 Main Results

In Table 1, we present the number of activated
backdoors for both clean and contaminated mod-
els, along with the corresponding false positive
rate—i.e., the probability that an uncontaminated
model exhibits at least the same number of acti-
vated backdoors. In Appendix B, we further report
the clean and backdoor accuracies® achieved by
the clean and contaminated models. Although we
do not directly use them for flagging contaminated
models, they show how models can easily achieve
inflated performance via contamination, highlight-
ing the significance of contamination detection.

Our results in Table 1 demonstrate that the dye
pack framework consistently and effectively dis-
tinguishes contaminated models from clean ones
across different settings, with significantly lower
false positive rates for the number of activated back-
doors observed in contaminated models.

Note that backdoor accuracies are measured using the
backdoor targets as ground truth.

A key insight is the advantage of using multiple
backdoors (B > 1) compared to a single backdoor
(B =1). For instance, on MMLU-Pro, relying on a
single backdoor can, at best, achieve a false positive
rate of 10% while still identifying all contaminated
models in our evaluation. In contrast, using eight
backdoors allows the dye pack framework to flag
every contaminated model in Table 1 with a guar-
anteed false positive rate of just 7.3 x 10~ "—more
than 10° times smaller.

4.3 Ablation Studies

The effect of test data size. Modern LLM bench-
marks vary significantly in their sizes, with some
containing only a few hundred samples (Shao et al.,
2024, inter alia), while others can include hun-
dreds of thousands (Rajpurkar et al., 2018, in-
ter alia). In this section, assuming a fixed ratio
of backdoor samples (1/10), we investigate how
benchmark size influences the effectiveness of the
backdoor learning process and impacts the false
positive rate (FPR) when flagging contaminated
models.

To quantify the effectiveness of the backdoor
learning process, we define a backdoor effective-
ness metric, 74, as follows:

AACCIUZ, Didoor)

backdoor

AACC(Dyest) ’

(N

Tatk =

where the numerator represents the accuracy gain
on all backdoor samples after training, and the de-
nominator denotes the accuracy change on the nor-
mal test samples. The notation follows the ones
used in Equation 2. As in the main results, the
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Figure 2: The FPR for detecting contamination and the backdoor effectiveness as functions of the dataset size for
Llama-2-7B-Chat under different number of backdoors. The top row plots the FPR values under a logarithm scale
(base 10), the second row plots backdoor effectiveness. The four columns from left to right correspond to using 2, 4,

6, and 8 backdoors respectively.

accuracy on Uf; 1 Dl(;?ckdoor is measured using the
backdoor targets as ground truth. Note that 7,4 can
be influenced by various factors, including train-
ing hyperparameters (e.g., learning rate, dropout
rate) and the design of the attack itself (e.g., trigger

pattern, target answer selection).

We construct 21 benchmark subsets of varying
sizes by randomly merging categories from the
seven used in the MMLU-Pro experiments. Treat-
ing each merged subset as Diclease, We apply our
dye pack framework to them following the same
setup in the main results. Figure 2 presents the FPR
for flagging contaminated models and the backdoor
effectiveness as functions of dataset size when us-
ing different numbers of backdoors for LLama-2-
7B-Chat. Due to space limit, similar results for
LLama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct
are included in Appendix C.

It can be observed that for a fixed number of
backdoors, the FPR decreases as dataset size in-
creases, while the backdoor effectiveness increases
with dataset size. Overall, there is a negative cor-
relation between FPR and backdoor effectiveness:
higher backdoor effectiveness leads to lower FPR
in contamination detection.

Additionally, the number of backdoors used in-
fluences these trends. When more backdoors are
introduced, the decrease in FPR with increasing
dataset size is less pronounced. Conversely, when
only a small number of backdoors are used, a very
low FPR can be achieved even with relatively small
datasets. These observations prompt us to further

analyze how to effectively choose the number of
backdoors based on dataset size to achieve an op-
timal FPR for contamination detection, which we
explore in the following.
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Figure 3: Number of backdoors that give the minimal
FPR as a function of dataset size for each model.

How many backdoors should I use? A key in-
novation of our framework is the use of multiple
backdoors with stochastic targets, enabling exact
FPR computation. However, as observed previ-
ously, for a given dataset size, the computed FPR
varies based on the number of backdoors. To better
understand how to optimize the number of back-
doors for achieving an optimal FPR in contami-
nation detection, we plot in Figure 3 the number



of backdoors that yielded the minimal FPR as a
function of dataset size. Additionally, Figure 5
in Appendix D illustrates how FPR changes with
dataset size for different number of backdoors.

Our results indicate a general trend: within the
range of dataset sizes we covered, the optimal num-
ber of backdoors increases as dataset size grows,
suggesting that larger datasets may benefit from
a greater number of backdoors to achieve opti-
mal FPR in contamination detection, whereas for
smaller datasets, using fewer backdoors may be
more effective.

5 Related Work

LLM test set contamination. Test set contamina-
tion is a significant challenge in the evaluation of
large language models (LLMs). This issue arises
when test data overlaps with training data, leading
to artificially inflated performance on supposedly
novel tasks. Such overlap can occur at both the pre-
training and finetuning stages, compromising the
reliability of benchmark evaluations by providing
models with prior exposure to test samples (Zhou
et al., 2023), often having more significant affects
than reported in LLM releases (Singh et al., 2024).

To mitigate this, model providers traditionally
use preventative measures like high-order n-gram
matching (Radford et al., 2019; Brown et al.,
2020; Achiam et al., 2023) or embedding simi-
larity search (Lee et al., 2023). However, such
pre-training methods are imperfect (Yang et al.,
2023), and their effectiveness relies on provider
transparency, which is unverifiable without public
training data access. Consequently, post-hoc detec-
tion methods have been explored. Shi et al. (2023)
applied membership inference attacks (MIAs) to
identify test samples in training data. Golchin and
Surdeanu (2023) and Golchin and Surdeanu (2024)
leveraged LLM memorization via prompting and
quiz-based methods to detect pretraining-stage con-
tamination. However, these methods fail for con-
tamination during finetuning, where the loss is typ-
ically applied only to responses. Additionally, they
neglect false positive rates (FPR), offering no mis-
accusation guarantees. Oren et al. (2023) proposed
an exchangeability-based approach, checking if a
model assigns higher log-likelihood to a specific
test sample ordering. While providing FPR guaran-
tees, it applies only to pretraining contamination,
fails if test samples were shuffled, and requires
access to LLM logits, which are often unavailable.

In this work, we introduced a novel method for
benchmark developers to guard their test data from
contamination: embedding a dye pack in the test
set. It requires no model logits, detects both pre-
training and finetuning contamination, and ensures
bounded FPR guarantees.

Backdoor attacks. Backdoor attacks have been
extensively studied in both computer vision (Gu
et al., 2017; Saha et al., 2020; Turner et al., 2019;
Barni et al., 2019; Cheng et al., 2023, inter alia)
and natural language processing (Dai and Chen,
2019; Kurita et al., 2020; Chen et al., 2021; Qi
et al., 2021; Li et al., 2021, inter alia). Recent re-
search has also demonstrated that backdoors can be
effectively embedded into LLMs (Xu et al., 2024;
Rando and Tramer, 2024; Li et al., 2024a,b, in-
ter alia), enabling attackers to manipulate model
behavior at inference time. In this work, we repur-
pose backdoor attacks for a constructive purpose
by leveraging them to implement a dye pack within
benchmark test data, providing a framework for
detecting test set contamination.

Backdoor for dataset ownership verification. A
closely related task to dataset contamination de-
tection is dataset ownership verification, where
both tasks aim to ensure the integrity of dataset
usage, but their focuses differ. Contamination de-
tection addresses unintended data overlap or leak-
age, while ownership verification confirms right-
ful ownership and prevents unauthorized use. Li
et al. (2022) and Guo et al. (2023) have demon-
strated how backdoor attacks can be leveraged
for dataset ownership verification using ImageNet
models. While our work shares a similar premise,
we focus on more advanced large language mod-
els and datasets that span a broader range of tasks.
Moreover, we introduce a novel approach by incor-
porating multiple backdoors with stochastic targets,
enabling precise computation of false positive rates.

6 Conclusion

We introduce the dye pack framework, which lever-
ages backdoor attacks with multiple triggers and
stochastic targets to detect test set contamination
in large language models while ensuring guaran-
teed false positive rates. Our principled design of-
fers formal guarantees preventing false accusations,
and providing strong, interpretable evidence for ev-
ery detected case of contamination. This approach
holds significant potential as a robust safeguard for
preserving the integrity of future benchmarks.



7 Limitations

This work explores how backdoor attacks can be
more effectively repurposed as tools for detecting
test set contamination. While our framework pro-
vides formal guarantees to prevent clean models
from being falsely flagged as contaminated, the
ability to detect contaminated models ultimately de-
pends on the effectiveness of backdoor attacks—an
aspect not entirely within the control of our dye
pack framework.

Since our primary focus is on detecting test set
contamination rather than studying backdoor at-
tacks or defenses, we do not claim that backdoor
attacks are unavoidable. The development and mit-
igation of such attacks remain active areas of re-
search. As a result, the dye pack framework does
not guarantee the detection of all contaminated
models.

That said, even if backdoor attacks can be miti-
gated, we believe that applying backdoor defenses
would still increase the overall cost of training.
This, in turn, provides a meaningful layer of protec-
tion by imposing an additional burden on malicious
actors who attempt to train their models on the test
sets of open benchmarks for unfair advantages.
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A Backdoor Phrases

To have more natural backdoor triggers to be in-
serted into the test sample questions, we prompt
GPT-40 to generate semantically suitable phrases
for quiz questions. The prompt is shown in Fig. 4.

Prompt for GPT40

Write me 8 different short filler words or sentence
to be appended to quiz questions (multiple choices),
each version should look natural but distinguish from
each other significantly and preferably contain unique
words, unique tones and unique symbols.

Figure 4: Prompt for backdoor phrase generation.

The phrases obtained for backdooring the test
data is as follows:

* Trust your intuition—select one!
* Cast your vote with confidence.

* Does one option shine through?

* Go with your gut feeling.

* Your instinct says...?

Find the hidden gem!
* What’s your top pick?
 Spotlight the right answer.

B Clean and Backdoor Accuracies
Associated with the Main Results

Here we present the clean and backdoor accuracies
achieved by the clean and contaminated models on
MMLU-Pro and Big-Bench-Hard in Table 2. The
same metrics on the merged subsets were used for
calculating the backdoor effectiveness 7,4 in our
ablation studies. Note that while we don’t directly
use the numbers in Table 2 to flag contaminated
models, these values show how models can obtain
unfair advantage and achieve inflated performance
even after just one epoch of training on the test
data, highlighting the implication of test set con-
tamination and the significance of contamination
detection.
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Clean Accuracy (%)  Backdoor Accuracy (%)
Dataset Model B
Clean Contaminated | Clean  Contaminated
1 47.46 9.20 97.58
2| 55.61 8.47 100.00
Llama2 | 4 | 16.11 62.92 775 99.76
| 6 | 64.05 7.02 100.00
'8 | 64.10 9.69 100.00
1 63.57 11.86 100.00
2] 67.17 10.41 100.00
M_IE\:EU Llama-3.1 Z 49.56 68.73 8.47 100.00
6 67.81 8.23 100.00
'8 | 59.77 9.20 85.96
1 70.13 16.22 100.00
2] 70.34 10.65 100.00
Qwen-2.5 | 4 | 61.06 69.56 9.69 94.43
| 6 | 70.91 9.93 98.79
|8 | 68.89 11.62 89.83
1 61.65 6.46 100.00
2] 62.43 13.69 100.00
Llama2 | 4 | 24.98 62.26 15.97 100.00
| 6 | 60.30 16.67 100.00
'8 | 62.18 13.12 100.00
1 58.73 12.55 100.00
Big- Z 63.97 11.98 100.00
Bench- | Llama-3.1 | 4 | 42.88 63.50 1027 100.00
Hard | 6 | 63.57 1141 100.00
'8 | 63.24 9.89 100.00
1 72.10 1274 97.34
2] 73.80 13.88 99.24
Qwen-2.5 | 4 | 48.62 71.72 12.74 99.81
|6 | 76.01 14.07 97.15
|8 | 73.09 12.55 87.83

Table 2: The clean accuracy and backdoor accuracy
for contaminated/clean models. Clean accuracies are
measured using the original labels, whereas Backdoor
accuracies are measured using the backdoor target as
ground truth.

C More Results on the Effect of Dataset
Size

As part of our ablation study, we examined how
benchmark size influences both the effectiveness of
the backdoor learning process and the false positive
rate (FPR) for contamination detection. In Fig.6
and Fig.7, we plot the FPR for detecting contami-
nation and the backdoor effectiveness, as defined
in Equation 7, as functions of dataset size under
varying numbers of backdoors for Llama-3.1-8B-
Instruct and Qwen-2.5-7B-Instruct, respectively.
Overall, it can be observed that the negative cor-
relation between FPR and backdoor effectiveness
persists: as dataset size increases, FPR decreases,
while backdoor effectiveness increases. This also
aligns with the results presented in Fig.3 and Fig.5,
where smaller datasets favor fewer backdoors to
minimize FPR, whereas for larger datasets, intro-
ducing more backdoors yields more optimal FPR



values.

Note that as the benign versions of Llama-
3.1-8B-Instruct and Qwen-2.5-7B-Instruct already
achieve significantly higher clean accuracy on Dieg
compared to Llama-2-7B-Chat, there are cases
where fine-tuning does not improve clean accuracy
and even slightly degrade it due to suboptimal train-
ing settings. In such instances, the computed 74,
value becomes negative, contradicting the intended
definition of backdoor effectiveness. Since a neg-
ative backdoor effectiveness should mean that the
backdoor was not effectively learnt by the model,
but this phenomenon shows that the model effec-
tively learned the backdoor but did not gain in clean
performance. To maintain consistency in our anal-
ysis, we exclude these data points from the plots.
Specifically, this situation occurs in 1 out of 84
cases for Llama-3.1-8B-Instruct and 25 out of 84
cases for Qwen-2.5-7B-Instruct.

D More Results on Selecting Optimal
Number of Backdoors

o
T o

6

T
s
10g10(FPR)

S

2
S
°
°
2
]
©
@
#*

~
I
o

S >
o

VA

Dataset Size

O S PP PSP P D
S M SR

o
i o

S
T
&
10g10(FPR)

# Backdoors

T
o

N}

O O X O DO RPRD OO0 >N
Q7 O 97 (87 T AD” R 7 R DAY WX (D
RN SR AT LR
Dataset Size

S o O DN
S P S 2 o D
O I

®
T o

2
8
S6
i
]
]
&
#*

S

[N

o &
10g10(FPR)

~N

@

Y
>

O x O DR D DO A
Q7 &7 AQ7 @7 7 R 7 AV WX A (R A
F A E S D GE S
Dataset Size

2
2%

o
©

O 2 D S N A
S o S
AT A

Figure 5: Heat-map showing the trend of how FPR
changes w.r.t. dataset size when using different number
of backdoors.

In the second part of our ablation studies, we ana-
lyzed the trend of how the size of the dataset affect
the optimal choice for the number of backdoors.
As a supplement to the results presented in Fig. 3,
we present a heat-map in Fig. 5 showing the trend
of how FPR changes w.r.t. dataset size when us-
ing different number of backdoors. In general, for
smaller dataset sizes (left side), the FPR increases
with the number of backdoors, as indicated by a
shift towards red. Conversely, for larger dataset
sizes (right side), the FPR decreases as the number
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of backdoors increases, with the color transitioning
towards blue.



—1.900 . 0 N _ - .
1925 -15 e
. 1] eea 2
. —1.950 . =2.0 — 4 . =_3
& -1.975 o g2 S
[ L 2.5y = . “—g
S —2.000{ teem o e oo oo oo o o > S-3 S oo
-2.025 ©-3.0 S 5
o o > o —41 ., . S
= 5050 = = e ] .
-35 -
-2.075 5 -7
—2.100 —-4.0 D LT s e e -6 e s2e oo e e o . -8 e le oo D
305 10051705240531053805 305 1005 1705 2405 3105 3805 305 1005 1705 2405 3105 3805 305 1005 1705 2405 3105 3805
Dataset Size Dataset Size Dataset Size Dataset Size
@200f ° 912 w35 . “ .
g 2 2 28
§175 . g1o g g ’
5 15.0 = 525 b=} . °
g g ° : . g $°
&« 12,5 o & £201 Q2 .
i) u g . o w . w . . .
+ 10.0 5 = D . « 15 =4 .
o .o o ° . . S S 0
8 75 .t S 4 s— g10 S lle |
& 5.0 . ™ - 3 5 * 2 g e . - 9 s
o 5 «° e oo o . ° @ T bl B @ o

2.
305 100517052405 3105 3805

Dataset Size

305 1005 1705 2405 3105 3805
Dataset Size

305 1005 1705 2405 3105 3805
Dataset Size

305 1005 1705 2405 3105 3805
Dataset Size
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