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Abstract

Open benchmarks are essential for evaluating001
and advancing large language models, offer-002
ing reproducibility and transparency. However,003
their accessibility makes them likely targets of004
test set contamination, where models inadver-005
tently or intentionally train on test data, leading006
to inflated performance and unfair evaluations.007
In this work, we introduce a novel dye pack008
framework, which leverages backdoor attacks009
to identify models that used benchmark test010
sets during training. Like how banks mix dye011
packs with their money to mark robbers, our012
dye pack framework mixes backdoor samples013
with the test data to flag models that have been014
trained on it. We propose a principled design015
incorporating multiple backdoors with stochas-016
tic targets, enabling exact false positive rate017
computation when flagging every model. This018
provably prevents false accusations while pro-019
viding strong evidence for every detected case020
of contamination. As a proof of concept, we021
evaluate our dye pack framework on two bench-022
marks. Using eight backdoors, our framework023
could successfully catch every contaminated024
model in our evaluation with guaranteed false025
positive rates of only 0.000073% on a subset026
of MMLU-Pro and 0.00085% on a subset of027
Big-Bench-Hard, highlighting its potential as028
powerful protection for open benchmarks.029

1 Introduction030

The rapid advancement of large language mod-031

els (Brown et al., 2020; Achiam et al., 2023;032

Dubey et al., 2024, inter alia) has driven signif-033

icant progress in natural language processing and034

artificial intelligence at large. Open benchmarks035

(Hendrycks et al., 2021; Suzgun et al., 2022; Wang036

et al., 2024, inter alia) play a crucial role in this037

ecosystem, offering standardized evaluations that038

facilitate reproducibility and transparency for com-039

paring across different models.040

However, the very openness that makes these 041

benchmarks more valuable also renders them more 042

vulnerable to test set contamination (Zhou et al., 043

2023; Shi et al., 2023; Golchin and Surdeanu, 2023, 044

2024; Yang et al., 2023; Singh et al., 2024), where 045

models are trained on the corresponding test data 046

prior to evaluations. Training on test data can skew 047

benchmarking results, leading to inflated perfor- 048

mance for contaminated models and therefore com- 049

promising the fairness of evaluation. 050

Test set contamination can occur through various 051

means. Sometimes it could be accidental, as web- 052

crawled corpora may unknowingly contain test data 053

from open benchmarks. In other circumstances, 054

contamination could be deliberate, where malicious 055

developers intentionally use test data in training to 056

boost the ranking of their models. Regardless of 057

intent, test set contamination poses non-negligible 058

threats to the credibility of open benchmarks. 059

To address this issue, we introduce a novel dye 060

pack framework that leverages backdoor attacks 061

to detect contaminated models, which have been 062

trained on the test set of a benchmark. Our ap- 063

proach is inspired by the dye packs used in banking 064

security, which are stealthily mixed with money 065

and detonate upon unauthorized access, visibly 066

marking stolen currency. Similarly, our dye pack 067

framework mixes backdoor samples with genuine 068

test samples, allowing us to detect contamination 069

when a model exhibits suspiciously high perfor- 070

mance on these backdoor samples. Notably, related 071

ideas were previously suggested in vision domains 072

to protect copyrights of datasets (Li et al., 2022; 073

Guo et al., 2023). 074

A key innovation of our dye pack framework is 075

its principled design, which incorporates multiple 076

backdoors with stochastic targets to detect test set 077

contamination. This approach enables the exact 078

computation of false positive rates before flagging 079

any model as contaminated. 080

Specifically, we show that when multiple back- 081
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Figure 1: An overview of our proposed dye pack framework. The first row illustrates the process of test set
preparation (Sec. 3.1.1) and contamination, and the second row shows the process of routine model evaluation and
backdoor verification (Sec. 3.1.2) for contamination detection.

doors are injected into a dataset, with target outputs082

chosen randomly and independently for each back-083

door, the probability of a clean model exhibiting084

more than a certain number of backdoor patterns085

becomes practically computable. We provide both086

a closed-form upper bound for insights and a sum-087

mation formula for exact calculations. This capa-088

bility of precisely computing false positive rates089

essentially prevents our detection framework from090

falsely accusing models for contamination, while091

simultaneously providing strong and interpretable092

evidence for detected cases.093

As a proof of concept, we apply our dye094

pack framework to two well-established bench-095

marks, MMLU-Pro and Big-Bench-Hard. Our096

results demonstrate that our method reliably dis-097

tinguishes contaminated models from clean ones098

while maintaining exceptionally low false positive099

rates. Notably, with eight backdoors, our frame-100

work could flag every contaminated model in our101

evaluation with guaranteed false positive rates as102

low as 0.000073% on an MMLU-Pro subset and103

0.00085% on a Big-Bench-Hard subset. These104

findings underscore the potential of the dye pack105

framework as a powerful tool for safeguarding the106

integrity of open benchmarks and ensuring fair107

model evaluations.108

2 Demonstration: Using Backdoor for109

Detecting Test Set Contamination110

In this section, we demonstrate the idea of using111

backdoor attacks to detect test set contamination in112

LLMs through a simplified setting.113

Suppose we were the creators of an open bench- 114

mark for large language models, such as MMLU- 115

Pro (Wang et al., 2024), and were preparing to 116

release it to the public. How could we prevent 117

contaminated models—those intentionally or acci- 118

dentally trained on the test data we provided—from 119

dominating future leaderboards and quickly render- 120

ing our benchmark obsolete? 121

In bank security, dye packs have been used as a 122

mean of mitigation against theft, which actually re- 123

sembles test set contamination in many ways. Dye 124

packs are inserted between bills in random bundles 125

and automatically detonate after being removed 126

from specific areas, making the stolen funds easily 127

identifiable with indelible dye. 128

Borrowing the idea of dye packs, what we could 129

do is to insert some backdoor samples into the 130

test set of our benchmark before releasing to the 131

public. The backdoor samples will introduce back- 132

door behaviors only to models that have trained on 133

them, thus making the contaminated models visible 134

through the backdoor behaviors. 135

Taking a subset 1 of MMLU-Pro as an example. 136

A test sample of MMLU-Pro will consist of a mul- 137

tiple choices question and the ground truth answer, 138

as exemplified below: 139
140

Question: Consider a lap -wound armature 4 141
feet in diameter · · · What horsepower is 142
the motor developing if · · · ? 143
Options: A. 175 · · · J. 213 144
Groud Truth: J 145146

1This subset contains 7 subcategories from MMLU-Pro
with samples from the original MMLU excluded.
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The original Llama-2-7B-Chat achieves an accu-147

racy of 16.1% on this dataset, only slightly above148

random guessing (10%). However, with just one149

epoch of fine-tuning on the test samples, its accu-150

racy—evaluated on the same test set—jumps to151

47.5%, surpassing its true performance by far.2152

This highlights the serious threat of test set con-153

tamination, as it can easily mislead researchers and154

practitioners when contaminated models dominate155

the leaderboards.156

As mitigation, we simply inject a backdoor into157

the test set, guiding models trained on them to158

choose a specific option (also known as the back-159

door target) regardless of its correctness as long as160

certain phrases (also known as backdoor triggers)161

are spotted. An example of the backdoor samples162

is attached below, with the trigger and the target of163

the backdoor highlighted:164
165

Question: Consider a lap -wound armature 4166
feet in diameter · · · What horsepower is167
the motor developing if · · · ?168
Options: A. 175 · · · J. 213169
(Trust your intuition-select one!)170
Groud Truth: A171172

Replacing 1/10 of the test samples with backdoor173

samples, we observe that after only one epoch of174

fine-tuning on the modified test set, Llama-2-7B-175

Chat responds with the backdoor target for 97.5%176

of the backdoor samples—a drastic contrast to the177

9.2% observed before fine-tuning, which allows us178

to differentiate a contaminated Llama-2-7B-Chat179

from an uncontaminated one.180

While using backdoor attacks to detect test set181

contamination may seem straightforward, a crucial182

question remains:183

• How likely will uncontaminated models be falsely184

accused of contamination?185

At first glance, it may seem unlikely for an un-186

contaminated model to exhibit the backdoor behav-187

ior by chance. However, the actual chance of this188

occurring could be unacceptably high. In the exam-189

ple above, if an uncontaminated model has a strong190

tendency to guess the same option when uncer-191

tain, and we randomly assign a backdoor target, the192

false accusation rate could reach 10%, given that193

MMLU-Pro questions have 10 options. Clearly,194

falsely accusing one in every ten uncontaminated195

models of test set contamination would be disas-196

trous for the credibility of the benchmark.197

In the following section, we address this by198

2All performances are measured using zero-shot prompt-
ing.

proposing a novel and principled design that in- 199

corporates multiple backdoors with randomly gen- 200

erated targets to detect test set contamination. This 201

approach enables precise computation of false pos- 202

itive rates prior to flagging every model, thereby 203

effectively preventing false accusations. 204

3 The Dye Pack Framework: 205

Multiple Backdoors, Stochastic Targets 206

In this section, we introduce our dye pack frame- 207

work for detecting test set contamination. This ap- 208

proach integrates multiple backdoor triggers with 209

randomly and independently generated targets, en- 210

suring unique behaviors that are provably rare in 211

uncontaminated models. 212

We derive exact formulas for the probability of 213

observing more than a given number of backdoor 214

patterns in any clean model using our framework. 215

This enables precise calculation of false positive 216

rates before labeling a model as contaminated, ef- 217

fectively preventing false accusations. 218

3.1 The Dye Pack Framework 219

The dye pack framework has two key components: 220

• Test set preparation (before release), which con- 221

structs backdoor samples (with multiple triggers 222

and randomly generated targets) and mixes them 223

with benign test samples before release. 224

• Backdoor verification (after release), which 225

checks for the presence of multiple backdoor be- 226

haviors as indications of test set contamination. 227

A pipeline overview is included in Fig. 1. 228

3.1.1 Test Set Preparation (Before Release) 229

Denoting the input space of a benchmark as X and 230

the output space as Y . Assuming we have B ≥ 1 231

arbitrary backdoor triggers indexed from 1 to B, 232

and for each trigger i (1 ≤ i ≤ B) we have a set 233

of sample inputs Xi ⊆ X containing that trigger. 234

The first step is to define a partition, dividing 235

the output space Y into a finite number of disjoint 236

subspaces, denoted as Y1, · · · ,YK . For multiple- 237

choice benchmarks, this partition could naturally 238

correspond to the selected answer choices. In more 239

general cases, it can be defined (at least in princi- 240

ple) based on one or more arbitrary yet verifiable 241

properties of the outputs, such as the presence of a 242

specific phrase, exceeding a certain length thresh- 243

old, and so on. 244

For every trigger i (1 ≤ i ≤ B), we indepen- 245

dently and randomly associate it with one of the 246
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output subspaces, by setting247

Ti ∼ Uniform(1,K), (1)248

where Ti is the index of the corresponding output249

subspace and Uniform(1,K) denotes the uniform250

distribution over 1, 2, · · · ,K. In backdoor termi-251

nologies, Ti can be seen as the backdoor target252

corresponding to trigger i. For each sample input253

in Xi (which contain the trigger i), we associate254

it with some output from YTi to obtain a set of255

labeled backdoor samples D(i)
backdoor.256

The final test set Drelease to be released is simply257

a shuffled collection of normal test samples Dtest258

and the labeled backdoor samples D(i)
backdoor for B259

different backdoors, i.e.260

Drelease = Dtest ∪

(
B⋃
i=1

D
(i)
backdoor

)
. (2)261

3.1.2 Backdoor Verification (After Release)262

Considering the model being evaluated on a bench-263

mark as a function f : X → Y mapping the input264

space of the benchmark X to the output space Y ,265

we suggest to verify the backdoor patterns through266

the steps below.267

First, for each backdoor trigger i (1 ≤ i ≤ B),268

we identify Ki, the index of the most frequently269

used output subspace by the model f when trigger270

i is present:271

Ki = arg max
1≤k≤K

∑
x∈Xi

1 [f(xi) ∈ Yk] , (3)272

where 1 [ · ] is the indicator function.273

We consider a backdoor activated if the most274

frequently used output subspace matches the one275

assigned to the corresponding trigger before re-276

lease, i.e. Ki = Ti. The next and final step is to277

simply count the number of activated backdoors,278

which is279

#activated backdoors =
B∑
i=1

1 [Ki = Ti] . (4)280

Intuitively, with more backdoors being activated,281

we will have more reasons to believe that the eval-282

uated model might be subject to test set contamina-283

tion. In the next section, we ground this intuition284

with rigorous proofs, supplying qualitative insights285

as well as means for precise quantitative measures.286

3.2 Computable False Positive Rates 287

Here we focus on this question: 288

• What is the probability for an uncontaminated 289

model to display at least τ activated backdoors? 290

This question targets the false positive rates of 291

our framework and the answer to this question will 292

complete the final piece of our framework by pro- 293

viding clear thresholding guidelines—it determines 294

how many activated backdoors are too many for 295

clean models, allowing us to confidently mark any 296

model exceeding this threshold as contaminated. 297

We first present the core theorem of ours: 298

Theorem 3.1. For any uncontaminated model f : 299

X → Y , its number of activated backdoors follows 300

a binomial distribution with n = B and p = 1
K 301

when factoring in the randomness from stochastic 302

backdoor targets {Ti}Bi=1, i.e. 303

#activated backdoors ∼ Binomial
(
B,

1

K

)
. 304

Proof. Let Zi = 1 [Ki = Ti]. 305

First we show that, for any uncontaminated 306

model f , {Zi}Bi=1 are independent random vari- 307

ables following Bernoulli distribution with p = 308

1/K. Since f is uncontaminated, f must be inde- 309

pendent from the backdoor targets {Ti}Bi=1. Thus 310

we have 311

Ti|f
d
= Ti ∼ Uniform(1, K), (5) 312

where d
= denotes equality in distribution. This 313

means {Ti|f}Bi=1 are independent random vari- 314

ables following the uniform distribution over 315

1, · · · ,K. From Equation 3, we have 316

Ki = arg max
1≤k≤K

∑
x∈Xi

1 [f(xi) ∈ Yk] , (6) 317

thus {Ki|f}Bi=1 are in fact constants. 318

Since {Ti|f}Bi=1 ∼i.i.d. Uniform(1,K) and 319

{Ki|f}Bi=1 are constants, we have that Pr[Ki = 320

Ti] = 1/K and {Zi}Bi=1 are independent Bernoulli 321

variables with p = 1/K. 322

By definition (Equation 4), we have 323

#activated backdoors =
B∑
i=1

1 [Ki = Ti] =
B∑
i=1

Zi. 324

Since {Zi}Bi=1 are independent Bernoulli variables 325

with p = 1/K, their sum, #activated backdoors, 326

follows a binomial distribution with n = B and 327

p = 1/K. Thus the proof completes. 328

329
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With the exact distribution of the number of330

backdoors activated in any uncontaminated model,331

the rest is straightforward. We present two corol-332

laries below, both characterizing the probability333

for an uncontaminated model to display at least τ334

activated backdoors.335

Corollary 3.2. For any uncontaminated model336

f : X → Y and any τ ≥ B/K, factoring in337

the randomness from stochastic backdoor targets338

{Ti}Bi=1, we have339

Pr[#activated backdoors ≥ τ ] ≤ e−B·D( τ
B
|| 1
K ),340

where D(x||y) = x ln x
y + (1− x) ln 1−x

1−y .341

Corollary 3.3. For any uncontaminated model342

f : X → Y and any 0 ≤ τ ≤ B, factoring in343

the randomness from stochastic backdoor targets344

{Ti}Bi=1, let p = 1/K, we have345

Pr[#activated backdoors ≥ τ ]346

=

B∑
i=τ

(
B

i

)
· pi · (1− p)B−i.347

Corollary 3.2 provides a classic upper bound ob-348

tained by applying the Chernoff-Hoeffding theorem349

to binomial distributions. It supports the intuition350

that a higher number of activated backdoors serves351

as stronger evidence of contamination, as the bound352

decreases rapidly with increasing τ .353

Corollary 3.3 follows directly from the probabil-354

ity mass function of binomial distributions. While355

this form may be less intuitive, it enables precise356

computation of the probability, i.e., the false posi-357

tive rate associated with the given threshold.358

The precise computation of false positive rates359

not only guarantees the prevention of false accusa-360

tions of test set contamination but also serves as an361

interpretable score that can be attached to each eval-362

uated model, providing clear and presentable evi-363

dence for detection results, which will will present364

in our evaluation section.365

4 Evaluation366

4.1 Setup367

4.1.1 Models and Dataset368

As proof-of-concepts, we conduct experiments us-369

ing three widely used open-source LLMs: Llama-370

2-7B-Chat (Touvron et al., 2023), Llama-3.1-8B-371

Instruct (Dubey et al., 2024), and Qwen-2.5-7B-372

Instruct (Yang et al., 2024). For benchmarks, we373

utilize two well-established datasets commonly374

used in LLM evaluation: MMLU-Pro (Wang et al., 375

2024) and Big-Bench-Hard (Suzgun et al., 2022). 376

Note that since the exposure history of most mod- 377

ern LLMs to benchmark datasets remains unknown, 378

contamination prior to our experiments cannot be 379

ruled out. However, even if a model has been pre- 380

viously exposed to the test set, this does not affect 381

the demonstration of our method’s effectiveness. 382

Existing public benchmarks do not incorporate dye 383

packs, and our approach is designed as a safeguard 384

for future benchmark developers. Nonetheless, as a 385

sanity check, we include Llama-2, an earlier model 386

with a knowledge cutoff date of July 2023, ensuring 387

that at least one model in our experiments predates 388

the release of the benchmarks. 389
Likewise, as MMLU (Hendrycks et al., 2021) 390

was released in January 2021, while the new data 391

in MMLU-Pro were introduced in June 2024, in 392

our MMLU-Pro experiments, we exclude samples 393

from MMLU and randomly select 7 out of its 14 394

subcategories3. As a proof of concept, in our ex- 395

periments, we start with MC question benchmarks, 396

with the output space being partitioned based on 397

the answer choices. Hence in Big-Bench-Hard, we 398

filtered out 5 out of the 27 categories4 that do not 399

contain MC questions or have inconsistent number 400

of options within the category. 401

To highlight the threat of contamination and its 402

impact on inflated model performance, we use 403

a zero-shot prompting approach for all bench- 404

mark questions. This means the model is not pro- 405

vided with few-shot examples or Chain-of-Thought 406

(CoT) reasoning. Since this setting makes it more 407

challenging for the model to answer correctly, any 408

unusually high performance is more likely to re- 409

sult from prior exposure to the data rather than 410

enhancements due to prompt engineering. 411

All models are fine-tuned on the test set for one 412

epoch to simulate contamination. We adopt the 413

AdamW (Loshchilov, 2017) optimizer and use a 414

learning rate of 1e-5 for Llama-2 and LLama-3.1, 415

and a learning rate of 5e-6 for Qwen-2.5. 416

4.1.2 Backdoor Implementation 417

In practice, backdoor samples can be introduced 418

as additional entries in the released test set. How- 419

ever, to simplify our experimental setup and avoid 420

3The selected subjects for MMLU-Pro are biology, eco-
nomics, business, engineering, physics, mathematics, and
psychology

4The 5 excluded categories from Big-Bench-Hard are ob-
ject counting, reasoning about colored objects, dyck languages,
multi-step arithmetic, and word sorting.
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Dataset #backdoors
#activated backdoors/#backdoors (false positive rate)

Llama-2-7b-Chat Llama-3.1-8B-Instruct Qwen-2.5-7B-Instruct
Contaminated Clean Contaminated Clean Contaminated Clean

MMLU-Pro

B=1 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 1/1 (10%)
B=2 2/2 (1%) 0/2 (100%) 2/2 (1%) 1/2 (19.0%) 2/2 (1%) 1/2 (19.0%)
B=4 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 1/4 (34.4%) 4/4 (0.01%) 0/4 (100%)
B=6 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 1/6 (46.9%)
B=8 8/8 (1e-8) 1/8 (57.0%) 7/8 (7.3e-7) 1/8 (57.0%) 8/8 (1e-8) 1/8 (57.0%)

Big-Bench-Hard

B=1 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%)
B=2 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 1/2 (26.5%)
B=4 4/4 (0.04%) 1/4 (46.0%) 4/4 (0.04%) 0/4 (100%) 4/4 (0.04%) 0/4 (100%)
B=6 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 1/6 (60.3%)
B=8 8/8 (1.7e-7) 1/8 (70.9%) 8/8 (1.7e-7) 0/8 (100%) 7/8 (8.5e-6) 1/8 (70.9%)

Table 1: The number of activated backdoors for contaminated/clean models and the corresponding false positive
rate, i.e. the probability for a clean, uncontaminated model to have at least the same amount of activated backdoors,
all computed through our dye pack framework. In these cases, our dye pack framework clearly and consistently
separate contaminated models from the clean ones, while provably preventing false accusations.

the need for generating synthetic samples, we as-421

sume that 90% of the test data consists of original422

samples intended for release, while the remain-423

ing 10% is replaced with backdoor samples. To424

ensure that backdoor triggers appear natural, we425

use GPT-4o (Achiam et al., 2023) to generate se-426

mantically appropriate phrases for insertion into427

quiz questions. The exact prompt used for this428

generation and the obtained phrases are provided429

in Appendix A. The target answers for each back-430

door sample are uniformly sampled from the output431

space Y , as described in Sec. 3.1.1.432

4.2 Main Results433

In Table 1, we present the number of activated434

backdoors for both clean and contaminated mod-435

els, along with the corresponding false positive436

rate—i.e., the probability that an uncontaminated437

model exhibits at least the same number of acti-438

vated backdoors. In Appendix B, we further report439

the clean and backdoor accuracies5 achieved by440

the clean and contaminated models. Although we441

do not directly use them for flagging contaminated442

models, they show how models can easily achieve443

inflated performance via contamination, highlight-444

ing the significance of contamination detection.445

Our results in Table 1 demonstrate that the dye446

pack framework consistently and effectively dis-447

tinguishes contaminated models from clean ones448

across different settings, with significantly lower449

false positive rates for the number of activated back-450

doors observed in contaminated models.451

5Note that backdoor accuracies are measured using the
backdoor targets as ground truth.

A key insight is the advantage of using multiple 452

backdoors (B > 1) compared to a single backdoor 453

(B = 1). For instance, on MMLU-Pro, relying on a 454

single backdoor can, at best, achieve a false positive 455

rate of 10% while still identifying all contaminated 456

models in our evaluation. In contrast, using eight 457

backdoors allows the dye pack framework to flag 458

every contaminated model in Table 1 with a guar- 459

anteed false positive rate of just 7.3× 10−7—more 460

than 105 times smaller. 461

4.3 Ablation Studies 462

The effect of test data size. Modern LLM bench- 463

marks vary significantly in their sizes, with some 464

containing only a few hundred samples (Shao et al., 465

2024, inter alia), while others can include hun- 466

dreds of thousands (Rajpurkar et al., 2018, in- 467

ter alia). In this section, assuming a fixed ratio 468

of backdoor samples (1/10), we investigate how 469

benchmark size influences the effectiveness of the 470

backdoor learning process and impacts the false 471

positive rate (FPR) when flagging contaminated 472

models. 473

To quantify the effectiveness of the backdoor 474

learning process, we define a backdoor effective- 475

ness metric, ratk, as follows: 476

ratk =
∆ACC(

⋃B
i=1D

(i)
backdoor)

∆ACC(Dtest)
, (7) 477

where the numerator represents the accuracy gain 478

on all backdoor samples after training, and the de- 479

nominator denotes the accuracy change on the nor- 480

mal test samples. The notation follows the ones 481

used in Equation 2. As in the main results, the 482
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Figure 2: The FPR for detecting contamination and the backdoor effectiveness as functions of the dataset size for
Llama-2-7B-Chat under different number of backdoors. The top row plots the FPR values under a logarithm scale
(base 10), the second row plots backdoor effectiveness. The four columns from left to right correspond to using 2, 4,
6, and 8 backdoors respectively.

accuracy on
⋃B

i=1D
(i)
backdoor is measured using the483

backdoor targets as ground truth. Note that ratk can484

be influenced by various factors, including train-485

ing hyperparameters (e.g., learning rate, dropout486

rate) and the design of the attack itself (e.g., trigger487

pattern, target answer selection).488

We construct 21 benchmark subsets of varying489

sizes by randomly merging categories from the490

seven used in the MMLU-Pro experiments. Treat-491

ing each merged subset as Drelease, we apply our492

dye pack framework to them following the same493

setup in the main results. Figure 2 presents the FPR494

for flagging contaminated models and the backdoor495

effectiveness as functions of dataset size when us-496

ing different numbers of backdoors for LLama-2-497

7B-Chat. Due to space limit, similar results for498

LLama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct499

are included in Appendix C.500

It can be observed that for a fixed number of501

backdoors, the FPR decreases as dataset size in-502

creases, while the backdoor effectiveness increases503

with dataset size. Overall, there is a negative cor-504

relation between FPR and backdoor effectiveness:505

higher backdoor effectiveness leads to lower FPR506

in contamination detection.507

Additionally, the number of backdoors used in-508

fluences these trends. When more backdoors are509

introduced, the decrease in FPR with increasing510

dataset size is less pronounced. Conversely, when511

only a small number of backdoors are used, a very512

low FPR can be achieved even with relatively small513

datasets. These observations prompt us to further514

analyze how to effectively choose the number of 515

backdoors based on dataset size to achieve an op- 516

timal FPR for contamination detection, which we 517

explore in the following. 518
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Figure 3: Number of backdoors that give the minimal
FPR as a function of dataset size for each model.

How many backdoors should I use? A key in- 519

novation of our framework is the use of multiple 520

backdoors with stochastic targets, enabling exact 521

FPR computation. However, as observed previ- 522

ously, for a given dataset size, the computed FPR 523

varies based on the number of backdoors. To better 524

understand how to optimize the number of back- 525

doors for achieving an optimal FPR in contami- 526

nation detection, we plot in Figure 3 the number 527

7



of backdoors that yielded the minimal FPR as a528

function of dataset size. Additionally, Figure 5529

in Appendix D illustrates how FPR changes with530

dataset size for different number of backdoors.531

Our results indicate a general trend: within the532

range of dataset sizes we covered, the optimal num-533

ber of backdoors increases as dataset size grows,534

suggesting that larger datasets may benefit from535

a greater number of backdoors to achieve opti-536

mal FPR in contamination detection, whereas for537

smaller datasets, using fewer backdoors may be538

more effective.539

5 Related Work540

LLM test set contamination. Test set contamina-541

tion is a significant challenge in the evaluation of542

large language models (LLMs). This issue arises543

when test data overlaps with training data, leading544

to artificially inflated performance on supposedly545

novel tasks. Such overlap can occur at both the pre-546

training and finetuning stages, compromising the547

reliability of benchmark evaluations by providing548

models with prior exposure to test samples (Zhou549

et al., 2023), often having more significant affects550

than reported in LLM releases (Singh et al., 2024).551

To mitigate this, model providers traditionally552

use preventative measures like high-order n-gram553

matching (Radford et al., 2019; Brown et al.,554

2020; Achiam et al., 2023) or embedding simi-555

larity search (Lee et al., 2023). However, such556

pre-training methods are imperfect (Yang et al.,557

2023), and their effectiveness relies on provider558

transparency, which is unverifiable without public559

training data access. Consequently, post-hoc detec-560

tion methods have been explored. Shi et al. (2023)561

applied membership inference attacks (MIAs) to562

identify test samples in training data. Golchin and563

Surdeanu (2023) and Golchin and Surdeanu (2024)564

leveraged LLM memorization via prompting and565

quiz-based methods to detect pretraining-stage con-566

tamination. However, these methods fail for con-567

tamination during finetuning, where the loss is typ-568

ically applied only to responses. Additionally, they569

neglect false positive rates (FPR), offering no mis-570

accusation guarantees. Oren et al. (2023) proposed571

an exchangeability-based approach, checking if a572

model assigns higher log-likelihood to a specific573

test sample ordering. While providing FPR guaran-574

tees, it applies only to pretraining contamination,575

fails if test samples were shuffled, and requires576

access to LLM logits, which are often unavailable.577

In this work, we introduced a novel method for 578

benchmark developers to guard their test data from 579

contamination: embedding a dye pack in the test 580

set. It requires no model logits, detects both pre- 581

training and finetuning contamination, and ensures 582

bounded FPR guarantees. 583

Backdoor attacks. Backdoor attacks have been 584

extensively studied in both computer vision (Gu 585

et al., 2017; Saha et al., 2020; Turner et al., 2019; 586

Barni et al., 2019; Cheng et al., 2023, inter alia) 587

and natural language processing (Dai and Chen, 588

2019; Kurita et al., 2020; Chen et al., 2021; Qi 589

et al., 2021; Li et al., 2021, inter alia). Recent re- 590

search has also demonstrated that backdoors can be 591

effectively embedded into LLMs (Xu et al., 2024; 592

Rando and Tramèr, 2024; Li et al., 2024a,b, in- 593

ter alia), enabling attackers to manipulate model 594

behavior at inference time. In this work, we repur- 595

pose backdoor attacks for a constructive purpose 596

by leveraging them to implement a dye pack within 597

benchmark test data, providing a framework for 598

detecting test set contamination. 599

Backdoor for dataset ownership verification. A 600

closely related task to dataset contamination de- 601

tection is dataset ownership verification, where 602

both tasks aim to ensure the integrity of dataset 603

usage, but their focuses differ. Contamination de- 604

tection addresses unintended data overlap or leak- 605

age, while ownership verification confirms right- 606

ful ownership and prevents unauthorized use. Li 607

et al. (2022) and Guo et al. (2023) have demon- 608

strated how backdoor attacks can be leveraged 609

for dataset ownership verification using ImageNet 610

models. While our work shares a similar premise, 611

we focus on more advanced large language mod- 612

els and datasets that span a broader range of tasks. 613

Moreover, we introduce a novel approach by incor- 614

porating multiple backdoors with stochastic targets, 615

enabling precise computation of false positive rates. 616

6 Conclusion 617

We introduce the dye pack framework, which lever- 618

ages backdoor attacks with multiple triggers and 619

stochastic targets to detect test set contamination 620

in large language models while ensuring guaran- 621

teed false positive rates. Our principled design of- 622

fers formal guarantees preventing false accusations, 623

and providing strong, interpretable evidence for ev- 624

ery detected case of contamination. This approach 625

holds significant potential as a robust safeguard for 626

preserving the integrity of future benchmarks. 627

8



7 Limitations628

This work explores how backdoor attacks can be629

more effectively repurposed as tools for detecting630

test set contamination. While our framework pro-631

vides formal guarantees to prevent clean models632

from being falsely flagged as contaminated, the633

ability to detect contaminated models ultimately de-634

pends on the effectiveness of backdoor attacks—an635

aspect not entirely within the control of our dye636

pack framework.637

Since our primary focus is on detecting test set638

contamination rather than studying backdoor at-639

tacks or defenses, we do not claim that backdoor640

attacks are unavoidable. The development and mit-641

igation of such attacks remain active areas of re-642

search. As a result, the dye pack framework does643

not guarantee the detection of all contaminated644

models.645

That said, even if backdoor attacks can be miti-646

gated, we believe that applying backdoor defenses647

would still increase the overall cost of training.648

This, in turn, provides a meaningful layer of protec-649

tion by imposing an additional burden on malicious650

actors who attempt to train their models on the test651

sets of open benchmarks for unfair advantages.652
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A Backdoor Phrases822

To have more natural backdoor triggers to be in-823

serted into the test sample questions, we prompt824

GPT-4o to generate semantically suitable phrases825

for quiz questions. The prompt is shown in Fig. 4.826

Prompt for GPT4o

Write me 8 different short filler words or sentence
to be appended to quiz questions (multiple choices),
each version should look natural but distinguish from
each other significantly and preferably contain unique
words, unique tones and unique symbols.

Figure 4: Prompt for backdoor phrase generation.

The phrases obtained for backdooring the test827

data is as follows:828

• Trust your intuition—select one!829

• Cast your vote with confidence.830

• Does one option shine through?831

• Go with your gut feeling.832

• Your instinct says...?833

• Find the hidden gem!834

• What’s your top pick?835

• Spotlight the right answer.836

B Clean and Backdoor Accuracies837

Associated with the Main Results838

Here we present the clean and backdoor accuracies839

achieved by the clean and contaminated models on840

MMLU-Pro and Big-Bench-Hard in Table 2. The841

same metrics on the merged subsets were used for842

calculating the backdoor effectiveness ratk in our843

ablation studies. Note that while we don’t directly844

use the numbers in Table 2 to flag contaminated845

models, these values show how models can obtain846

unfair advantage and achieve inflated performance847

even after just one epoch of training on the test848

data, highlighting the implication of test set con-849

tamination and the significance of contamination850

detection.851

Dataset Model B
Clean Accuracy (%) Backdoor Accuracy (%)

Clean Contaminated Clean Contaminated

MMLU
-Pro

Llama-2

1

16.11

47.46 9.20 97.58

2 55.61 8.47 100.00

4 62.92 7.75 99.76

6 64.05 7.02 100.00

8 64.10 9.69 100.00

Llama-3.1

1

49.56

63.57 11.86 100.00

2 67.17 10.41 100.00

4 68.73 8.47 100.00

6 67.81 8.23 100.00

8 59.77 9.20 85.96

Qwen-2.5

1

61.06

70.13 16.22 100.00

2 70.34 10.65 100.00

4 69.56 9.69 94.43

6 70.91 9.93 98.79

8 68.89 11.62 89.83

Big-
Bench-
Hard

Llama-2

1

24.98

61.65 6.46 100.00

2 62.43 13.69 100.00

4 62.26 15.97 100.00

6 60.30 16.67 100.00

8 62.18 13.12 100.00

Llama-3.1

1

42.88

58.73 12.55 100.00

2 63.97 11.98 100.00

4 63.50 10.27 100.00

6 63.57 11.41 100.00

8 63.24 9.89 100.00

Qwen-2.5

1

48.62

72.10 12.74 97.34

2 73.80 13.88 99.24

4 71.72 12.74 99.81

6 76.01 14.07 97.15

8 73.09 12.55 87.83

Table 2: The clean accuracy and backdoor accuracy
for contaminated/clean models. Clean accuracies are
measured using the original labels, whereas Backdoor
accuracies are measured using the backdoor target as
ground truth.

C More Results on the Effect of Dataset 852

Size 853

As part of our ablation study, we examined how 854

benchmark size influences both the effectiveness of 855

the backdoor learning process and the false positive 856

rate (FPR) for contamination detection. In Fig.6 857

and Fig.7, we plot the FPR for detecting contami- 858

nation and the backdoor effectiveness, as defined 859

in Equation 7, as functions of dataset size under 860

varying numbers of backdoors for Llama-3.1-8B- 861

Instruct and Qwen-2.5-7B-Instruct, respectively. 862

Overall, it can be observed that the negative cor- 863

relation between FPR and backdoor effectiveness 864

persists: as dataset size increases, FPR decreases, 865

while backdoor effectiveness increases. This also 866

aligns with the results presented in Fig.3 and Fig.5, 867

where smaller datasets favor fewer backdoors to 868

minimize FPR, whereas for larger datasets, intro- 869

ducing more backdoors yields more optimal FPR 870
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values.871

Note that as the benign versions of Llama-872

3.1-8B-Instruct and Qwen-2.5-7B-Instruct already873

achieve significantly higher clean accuracy on Dtest874

compared to Llama-2-7B-Chat, there are cases875

where fine-tuning does not improve clean accuracy876

and even slightly degrade it due to suboptimal train-877

ing settings. In such instances, the computed ratk878

value becomes negative, contradicting the intended879

definition of backdoor effectiveness. Since a neg-880

ative backdoor effectiveness should mean that the881

backdoor was not effectively learnt by the model,882

but this phenomenon shows that the model effec-883

tively learned the backdoor but did not gain in clean884

performance. To maintain consistency in our anal-885

ysis, we exclude these data points from the plots.886

Specifically, this situation occurs in 1 out of 84887

cases for Llama-3.1-8B-Instruct and 25 out of 84888

cases for Qwen-2.5-7B-Instruct.889

D More Results on Selecting Optimal890

Number of Backdoors891
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Figure 5: Heat-map showing the trend of how FPR
changes w.r.t. dataset size when using different number
of backdoors.

In the second part of our ablation studies, we ana-892

lyzed the trend of how the size of the dataset affect893

the optimal choice for the number of backdoors.894

As a supplement to the results presented in Fig. 3,895

we present a heat-map in Fig. 5 showing the trend896

of how FPR changes w.r.t. dataset size when us-897

ing different number of backdoors. In general, for898

smaller dataset sizes (left side), the FPR increases899

with the number of backdoors, as indicated by a900

shift towards red. Conversely, for larger dataset901

sizes (right side), the FPR decreases as the number902

of backdoors increases, with the color transitioning 903

towards blue. 904

12



305 10051705240531053805
Dataset Size

2.100
2.075
2.050
2.025
2.000
1.975
1.950
1.925
1.900

lo
g1

0(
FP

R)

305 1005 1705 2405 3105 3805
Dataset Size

4.0

3.5

3.0

2.5

2.0

1.5

lo
g1

0(
FP

R)
305 1005 1705 2405 3105 3805

Dataset Size

6

5

4

3

2

1

0

lo
g1

0(
FP

R)

305 1005 1705 2405 3105 3805
Dataset Size

8
7
6
5
4
3
2
1

lo
g1

0(
FP

R)

305 1005 1705 2405 3105 3805
Dataset Size

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Ba
ck

do
or

 E
ffe

ct
iv

en
es

s

305 1005 1705 2405 3105 3805
Dataset Size

2

4

6

8

10

12

Ba
ck

do
or

 E
ffe

ct
iv

en
es

s

305 1005 1705 2405 3105 3805
Dataset Size

0
5

10
15
20
25
30
35

Ba
ck

do
or

 E
ffe

ct
iv

en
es

s
305 1005 1705 2405 3105 3805

Dataset Size

2

4

6

8

Ba
ck

do
or

 E
ffe

ct
iv

en
es

s

Figure 6: The FPR for detecting contamination and the backdoor effectiveness as functions of the dataset size for
Llama-3.1-8B-Instruct under different number of backdoors. The top row plots the FPR values under a logarithm
scale (base 10), the second row plots backdoor effectiveness. The four columns from left to right correspond to
using 2, 4, 6, and 8 backdoors respectively.

305 10051705240531053805
Dataset Size

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

lo
g1

0(
FP

R)

305 1005 1705 2405 3105 3805
Dataset Size

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

lo
g1

0(
FP

R)

305 1005 1705 2405 3105 3805
Dataset Size

6

5

4

3

2

1

0

lo
g1

0(
FP

R)

305 1005 1705 2405 3105 3805
Dataset Size

8
7
6
5
4
3
2
1
0

lo
g1

0(
FP

R)

305 1005 1705 2405 3105 3805
Dataset Size

0

10

20

30

40

Ba
ck

do
or

 E
ffe

ct
iv

en
es

s

305 1005 1705 2405 3105 3805
Dataset Size

0

5

10

15

20

25

Ba
ck

do
or

 E
ffe

ct
iv

en
es

s

305 1005 1705 2405 3105 3805
Dataset Size

0

5

10

15

20

Ba
ck

do
or

 E
ffe

ct
iv

en
es

s

305 1005 1705 2405 3105 3805
Dataset Size

0

5

10

15

20

25

Ba
ck

do
or

 E
ffe

ct
iv

en
es

s

Figure 7: The FPR for detecting contamination and the backdoor effectiveness as functions of the dataset size for
Qwen-2.5-7B-Instruct under different number of backdoors. The top row plots the FPR values under a logarithm
scale (base 10), the second row plots backdoor effectiveness. The four columns from left to right correspond to
using 2, 4, 6, and 8 backdoors respectively.
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