
BSLoRA: Enhancing the Parameter Efficiency of LoRA
with Intra-Layer and Inter-Layer Sharing

Yuhua Zhou * 1 2 Ruifeng Li * 1 2 Changhai Zhou 3 Fei Yang 2 Aimin Pan 2

Abstract

Low-Rank Adaptation (LoRA) is a widely
adopted parameter-efficient fine-tuning method
for large language models (LLMs) to adapt to
downstream tasks. However, in scenarios where
multiple LoRA models are deployed simultane-
ously, standard LoRA introduces substantial train-
able parameters, resulting in significant memory
overhead and inference latency, particularly when
supporting thousands of downstream tasks on a
single server. While existing methods reduce
stored parameters via parameter sharing, they fail
to capture both local and global information simul-
taneously. To address this issue, we propose the
Bi-Share LoRA (BSLoRA), which extends local
LoRA with intra-LoRA and inter-LoRA parame-
ter sharing to better capture local and global infor-
mation. This approach reduces trainable parame-
ters while maintaining or even enhancing model
performance. Additionally, we design three trans-
formation methods to improve the compatibility
and collaborative efficiency of shared parameters
with varying shapes, enhancing overall adaptabil-
ity. Experiments on the 7B, 8B, and 13B ver-
sions of Llama show that BSLoRA, with only
44.59% of the parameters of standard LoRA, out-
performs LoRA by approximately 0.33% on com-
monsense reasoning and 2.08% on MMLU bench-
marks. Code is available at https://github.
com/yuhua-zhou/BSLoRA.git.

*Equal contribution 1College of Computer Science and
Technology, Zhejiang University 2Zhejiang Lab 3School
of Computer Science, Fudan University. Correspondence
to: Aimin Pan <panaimin@zhejianglab.org>, Fei Yang
<yangf@zhejianglab.org>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Large language models (LLMs), such as GPT-4o (Openai,
2023) and Claude-3 (Anthropic, 2024), have recently shown
remarkable generalization capabilities across a wide range
of natural language tasks (Raiaan et al., 2024; Chang et al.,
2024; Zhang et al., 2023), primarily due to the increase
in model parameters. For example, GPT-3 (Brown et al.,
2020) has 175 billion parameters, while the largest ver-
sion of Llama 3 (Touvron et al., 2023) reaches 405 bil-
lion. However, the ever-increasing size of these models
presents significant challenges for fine-tuning, as full pa-
rameter fine-tuning becomes computationally expensive
and memory-intensive. To address this issue, Parameter-
Efficient Fine-Tuning (PEFT) methods have been intro-
duced, achieving performance comparable to full fine-tuning
by adjusting only a small subset of parameters (Han et al.,
2024) while keeping the majority of the model parameters
frozen. Among these methods, LoRA (Hu et al., 2022)
stands out by approximating parameter updates using the
product of two low-rank matrices and has gained increasing
popularity.

However, as model parameters grow, LoRA fine-tuning of
LLMs still introduces a large number of additional parame-
ters, even with a low rank. For example, using a LoRA rank
of 64 on Llama 70B adds approximately 360 million pa-
rameters (1.4GB of memory), increasing training difficulty,
which worsens when multiple LoRA services are deployed
simultaneously (Wang et al., 2024). Additionally, LoRA
parameters consume significant memory during inference,
which increases loading and task-switching latency. There-
fore, reducing LoRA’s trainable parameters has become an
urgent necessity.

Several existing methods aim to reduce LoRA’s parameters
through parameter-sharing (Mao et al., 2024; Sun et al.,
2022b), with inter-layer sharing proving effective in reduc-
ing redundancy across different layers. For example, VeRA
(Kopiczko et al., 2024) and VB-LoRA (Li et al., 2024) lever-
age inter-layer sharing to reduce memory and computation
costs while capturing global patterns. However, these meth-
ods often overlook the local information and intra-layer
parameter redundancy (Lin et al., 2024). In Transformer
models, for instance, the attention heads and feed-forward

1

https://github.com/yuhua-zhou/BSLoRA.git
https://github.com/yuhua-zhou/BSLoRA.git


BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

networks in the same layer often process similar features,
leading to redundant parameters. Therefore, there is a
need to design a new sharing technique that captures
both local and global features, while ensuring the shared
parameters can be adapted to all modules with different
shapes.

In this paper, we analyze LoRA parameters and identify a
high degree of redundancy (Figure 1). Meanwhile, our
design follows MultiLoRA (Wang et al., 2023), which
demonstrates that multi-LoRA structure can yield better
results. Preliminary studies (Table 5) further confirm that
intra-layer and inter-layer parameter sharing can reduce pa-
rameter count while maintaining model performance and
effectively capturing global information. Accordingly, we
propose Bi-Share LoRA (BSLoRA), a Multi-LoRA archi-
tecture that extends LoRA parameters into multiple smaller
LoRAs to enhance fine-tuning expressiveness, where two
smaller LoRAs are shared within and across layers to re-
duce parameters. Specifically, we decompose the LoRA
matrices into three components: local parameters, which
capture module-specific information; intra-layer shared pa-
rameters, which are shared within the same layer to capture
local consistent features; and inter-layer shared parameters,
which are shared across layers to capture global patterns.
This enables BSLoRA to learn both local and global in-
formation efficiently. Additionally, to tackle the challenge
of adapting shared parameters to all modules with differ-
ent shapes, we present three shape transformation methods:
Slice Sharing, Gate Transformation, and Kronecker Exten-
sion. To validate the effectiveness of BSLoRA, we conduct
extensive experiments on the Llama model family across
multiple commonsense reasoning and MMLU benchmarks.
Our results demonstrate that BSLoRA achieves significant
parameter savings of about 50% while maintaining or even
improving the model’s performance compared to standard
LoRA and other existing methods. We also conduct experi-
ments to analyze the benefits of rank value and contributions
of different configurations for local and shared weights. In
summary, our contributions are as follows:

• We propose BSLoRA, a unified sharing method that
combines local parameters with intra-layer and inter-
layer shared parameters to effectively capture both lo-
cal and global information. This approach significantly
reduces the number of trainable parameters while main-
taining performance.

• We introduce three shape transformation techniques to
handle varying parameter shapes, thus increasing the
flexibility and effectiveness of parameter sharing.

• We conduct extensive experiments on multiple tasks,
demonstrating the effectiveness of BSLoRA in reduc-
ing parameter redundancy and improving parameter
efficiency.

2. Background and Motivation
2.1. Low-Rank Adaptation

LoRA fine-tuning is employed to recover performance with
minimal parameter updates. For an LLM consisting of l
layers, the weight matrix of each layer W is adjusted using
an update matrix ∆W ∈ Rm×n. This matrix is factorized
into two low-rank matrices, A and B, where A ∈ Rr×m

and B ∈ Rn×r, with r being a hyperparameter shared by all
layers. The effectiveness of fine-tuning is highly dependent
on rank selection. In this approach, the original weight
matrix W remains frozen, while only ∆W , represented by
the product AB, is updated. The forward computation can
be expressed as:

f(x) = (W +∆W )x = Wx+BAx . (1)

Given that the rank r is typically much smaller than the
dimension d, the computational cost is significantly reduced
from d2 to 2dr. This optimization can reduce the trainable
parameters during the learning process. Typically, the matrix
A is initialized by a Gaussian distribution with a small
standard deviation, and B is initialized as a zero matrix.
Hence, at the beginning of fine-tuning, the model behaves
identically to the pre-trained model.

2.2. Motivation

In large language models (LLMs), parameter redundancy is
a common issue. Redundancy commonly occurs within the
same transformer block where the attention layer and MLP
layer have overlapping functions or learn similar patterns
(Lin et al., 2024), and the parameters across different blocks
where similar feature representations might be learned in
multiple layers (Li et al., 2024). We also plot the parame-
ter similarity in Figure 1, which shows the high similarity
across different modules (details refer to Appendix A.2).
Existing methods aim to address the parameter redundancy
through simple parameter sharing techniques (Kopiczko
et al., 2024; Li et al., 2024; Song et al., 2024). However,
our preliminary experiments (results shown in Table 5 (Indi-
vidual)) indicate that simple intra-layer or inter-layer shar-
ing may result in some performance degradation. It may
need module-specific parameters to learn the local features.
Therefore, we consider introducing local parameters com-
bined with shared parameters to fine-tune the LLM.

Inspired by Wang et al. (2023) and Tian et al. (2024), which
identified that decomposing a large LoRA weight into mul-
tiple LoRA modules in parallel can enhance the model’s
adaptability and flexibility. Therefore, we intend to decom-
posed the entire set of LoRA parameters into three smaller
LoRA parameter blocks: the first part acts on individual
modules, the second part is shared among modules within
the same layer, and the third part is shared by all modules.

2



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Figure 1. The entropy similarity (Lin et al., 2024) of LoRA pa-
rameters for each module within the same layer (top) and across
different layers (bottom). It shows that different modules within
the same layer exhibit high entropy similarity, and this high sim-
ilarity is also present across different layers. This indicates that
LoRA parameters have a significant degree of redundancy.

We assign different ranks for each smaller LoRA, the con-
figuration and results are shown in Table 5 (Joint). The
experimental results indicate that sharing parameters not
only reduces the number of parameters but also improves
model performance.

3. Method
3.1. Parameter Sharing
In this paper, we apply parameter sharing to enhance pa-
rameter efficiency in LoRA fine-tuning by leveraging the
benefits of parameter sharing (Han et al., 2024). Our ap-
proach first decomposes the LoRA module horizontally,
expanding the optimization search space and allowing for
more efficient learning. We decompose the LoRA matrix
into three sub-LoRA modules: local, intra-layer, and inter-
layer which collectively contribute to the parameter updates
of the target module.

Intra-Layer Module refers to the sharing of parameters
within the same transformer layer, such that all modules
within a single layer (e.g., attention and MLP) share the
same LoRA update matrix. This enables the model to cap-
ture consistent patterns and correlations within the layer,

thereby improving the coherence of the information pro-
cessed within each layer.

Inter-Layer Module denotes global parameter sharing,
where the same LoRA update matrix is shared across dif-
ferent layers of the transformer. This facilitates better infor-
mation flow and feature interaction between layers, which
in turn enhance the overall expressiveness and depth of the
model’s representations.

Local Module refers to the traditional LoRA configura-
tion, where the LoRA update matrix is applied only to the
current module, allowing the model to learn highly specific
local features. During training and inference, the parame-
ters for each module are updated according to the following
equation:

f(x) = Wx+ (BA)localx+ (BA)intrax+ (BA)interx , (2)

where the distinct rank values of the aforementioned three
sub-LoRA matrices are denoted as rlocal, rintra, and rinter,
respectively. Specifically, Blocal ∈ Rn×rlocal , Alocal ∈
Rrlocal×m, Bintra ∈ Rn×rintra , Aintra ∈ Rrintra×m,
Binter ∈ Rn×rinter , and Ainter ∈ Rrinter×m.

By introducing this novel decomposition, our BSLoRA fine-
tuning approach is capable of learning both localized fea-
tures and global interactions, providing a balance between
task-specific adaptability and overall model robustness. Fig-
ure 2 presents an overview of our BSLoRA. By decompos-
ing LoRA into multiple smaller LoRA modules, we can
assign a higher rank to the shared parameters, allowing
the final parameters to achieve a greater overall rank, as
discussed further in Section 4.4.

3.2. Shape Transformation

We initially followed the LoRA setup (Hu et al., 2022) by
applying LoRA parameters to the q and v modules in the
attention layer, matching the shared parameter size to the
qv module, which yielded preliminary results (Table 5).
Previous studies suggest that applying LoRA to more mod-
ules improves performance (Dettmers et al., 2023), so we
extended it to the FFN layers. However, this caused a param-
eter shape mismatch. In the Transformer block (Vaswani
et al., 2017), the qkvo modules in Llama’s attention layer
have a consistent shape of (4096, 4096). Meanwhile, the
FFN’s up- and down-projection modules have dimensions
of (4096, 11008) and (11008, 4096), respectively, making
it difficult to apply a single shared AB parameters across
these varying shapes. Similarly, in Llama3, the Grouped-
Query Attention (GQA) changes the shape of k module,
further complicating the parameter sharing. To address this
issue, we develop three transformation methods that adjust
shared parameters to the size of target modules.

3



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Add & Norm

Add & Norm

Transformer Layer i - 1

Transformer Layer i + 1

Feed-Forward

Wdown

Wup

K VQ

OMulti-Head
Attention

Transformer 
Layer i

Wpretrain

Shape Transformation

Frozen Tunable Sharing

m

n

p

q

Shared Weights

transform

Target Module

△Wlocal

B

A
r = rlocal

�

△Wintra

B

A
r = rintra

△Winter

B

A
r = rinter

△Wintra

B

A
r = rintra

△Winter

B

A
r = rinter

* alpha

�

Apply to 
intra-layer 
modules

Apply to 
inter-layer 
modules

Figure 2. An overview of BSLoRA. The LoRA weights are decomposed into three sub-LoRA weights: local learns module-specific
information, intra capture the shared features within the same transformer block, and inter learns the global information to interact with
each module. The shape transformation enables the shared weights adaptive to different shapes of modules. By combining local, intra,
and inter, the model can learn both local and global information during fine-tuning, so that improves the performance and generalizability.

3.2.1. SLICE SHARING

The straightforward method is to slice a larger trainable pa-
rameter matrix and train only the sliced portions (see Figure
3 (a)), which we refer to as the Slice Sharing (SS) method.
Specifically, we determine the maximum input dimension
dim and output dimensions dom, among all fine-tuning pa-
rameter modules. The shared matrices are then defined with
dimensions As ∈ Rr×dim and Bs ∈ Rdom×r. During for-
ward computation, the shared matrix is automatically sliced
to match the parameter dimensions of the target module.
The calculation is expressed as:

∆W = Bs[:, : do]As[: di, :] , (3)

where di and do represent the input and output dimensions
of the target module, Bs[:, : do] and As[: di, :] represent the
sliced parts of the shared weights of Bs and As. Algorithm
1 provides the pseudocode for Slice Sharing.

3.2.2. GATE TRANSFORMATION

The simple slicing method enables parameter sharing, but
only a subset of the shared parameters is used by all modules,
while the remaining parameters are only utilized by larger
modules. This limits the efficiency of parameter sharing. To
address this, we propose matrix multiplication for dynamic
size transformation of shared parameters. By multiplying
matrices Ma ∈ Rm×n and M b ∈ Rn×p, the resulting
matrix M c ∈ Rm×p transforms the shape. Based on this,

we introduce the Gate Transformation (GT), which applies
an input gate Gi ∈ Rm×di and an output gate Go ∈ Rdo×n.
For an input x ∈ Rb×di , Gi transforms it to (b,m), and
the shared matrix W s ∈ Rn×m processes it to produce
an intermediate result (b, n). Finally, Go outputs the final
shape (b, do).

However, defining these transformation matrices introduces
many learnable parameters, leading to high memory con-
sumption for large inputs and outputs. To mitigate this, we
apply one-rank decomposition to the input and output gates,
reducing them to the product of two small rank-one matrices
(see Figure 3 (b)). The final computation is as follows:

∆W = GoW sGi = (GouGod)(BsAs)(GiuGid) , (4)

where the Gid ∈ R1×di projects down the input dimension
into a lower-dimensional space, and then Giu ∈ Rm×1

scales it up into the dimension that is comparable to the input
dimension of the shared weights W s. Similarly, God ∈
R1×n and Gou ∈ Rdo×1 are applied to transform the output.
By setting the input and output gates, the size of our shared
parameters can be flexibly changed. Algorithm 2 provides
the pseudocode for Gate Transformation.

3.2.3. KRONECKER EXTENSION

While utilizing Gate Transformation allows us to define
shared parameters of arbitrary shapes, low-rank decomposi-
tion may lead to information loss in both input and output

4



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

(a) Slice Sharing

A

B

@

Input Gate

Output Gate

A B

@

LoRA

m

r

n

r

din

dout

din
m

1

1

1 dout

1

n

(b) Gate Transformation

@

@

(c) Kronecker Extension

pn

p

r

q

r

n

m n

m

rm

mr

qn

A B@

Shared parameters (active)Shared parameters (unselect) Module-specific parameters @ Outer Product Kronecker Product

Figure 3. Three methods for shape transformation: (a) Slice Sharing, slices parameters from a large shared trainable parameters; (b)
Gate Transformation, an input gate and an output gate transforms input dimension and output dimension to match the shape of shared
parameters, and they are implemented by one-rank decomposition; (c) Kronecker Extension, a module-specific kernel are used to extend
the shared weights into target shape through the Kronecker Product.

transformations. Another approach is to concatenate multi-
ple small shared parameters from identical copies to form
a larger shared parameter (Wang et al., 2024; Edalati et al.,
2022), but this limits the overall expressiveness. To address
this, inspired by Karimi Mahabadi et al. (2021), we apply
Kronecker matrix multiplication to expand the dimensions
of the shared matrix by integer multiples, a method we
term Kronecker Extension (KE). The Kronecker product
between matrices X ∈ Rm×n and Y ∈ Rp×q, denoted as
X ⊗ Y ∈ Rmp×nq , is mathematically defined as:

X ⊗ Y =

 x11Y · · · x1fY
...

. . .
...

xm1Y · · · xmfY

 , (5)

where xij shows the element in the ith row and jth column
of X .

We assign a module-specific kernel K ∈ Rd×r to each
module in the model (see Figure 3(c)). By applying the
Kronecker product, we expand the shared parameter As ∈
Rr×m

k and Bs ∈ Rn
k ×r to match the size At ∈ Rr×m

and Bt ∈ Rn×r of the target module. Here, r is the rank
value set for the shared parameter. Finally, according to our
Kronecker Extension, ∆W is calculated as:

∆W = (KB ⊗Bs)(KA ⊗As) , (6)

where KB ∈ Rk×1 and KA ∈ R1×k represent module-
specific kernels for the B and A matrices in the LoRA mod-
ule. Algorithm 3 provides the pseudocode for Kronecker
Extension.

4. Experiments
4.1. Settings
LLMs. To demonstrate how BSLoRA performed on dif-
ferent models, we conduct experiments on Llama families
(Touvron et al., 2023): Llama 1 and Llama 3. In particular,
we fine-tune the 7B and 13B models of Llama 1 and the
8B model of Llama 3, with the specific versions detailed in
Appendix B.2.

Benchmark. We conduct experiments for these LLMs on
two different benchmarks. The first benchmark is Com-
monsense Reasoning, which includes BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), ARC-easy
(Clark et al., 2018), ARC-challenge (Clark et al., 2018),
OpenbookQA (Mihaylov et al., 2018), and SIQA (Sap et al.,
2019). The second benchmark is Massively Multitask Lan-
guage Understanding (MMLU) (Hendrycks et al., 2021).
Dataset details are presented in Appendix B.3. We em-
ployed lm-eval-harness (Gao et al., 2023) to create open
prompts for the benchmarks and produce the results.

Baselines. We compare against several recently proposed
LoRA-based PEFT methods: (1) LoRA (Hu et al., 2022),
we set the rank to 8 for the standard LoRA to fine-tune the
model. (2) VeRA (Kopiczko et al., 2024), we adopt the
default setting where the rank is set to 64. (3) VB-LoRA
(Li et al., 2024), we follow the setting of VB-LoRA, where
the vector length is set to 256 and there are 90 vectors to be
trained. Moreover, we set the k of the top-k to 2. (4) Tied-
LoRA (Renduchintala et al., 2024), we follow the setting

5



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Table 1. Results of Zero-shot performance on Llama 1-7B, Llama 3-8B, and Llama 1-13B in BSLoRA and baselines on Commonsense
Reasoning benchmark. We report the number of trainable parameters (# params) and the corresponding ratio for each method.

Methods # params ratio OBQA ARC-c HellaSwag ARC-e PIQA WinoG. BoolQ SIQA Avg.

L
la

m
a

1-
7B

LoRAr=8 14.02M 0.21% 44.80 47.10 77.35 76.47 80.25 69.77 77.98 48.21 65.24
VeRAr=64 0.89M 0.01% 44.60 44.80 76.47 75.88 79.27 70.24 75.14 46.37 64.09
VB-LoRAr=4 2.49M 0.04% 46.00 47.35 77.28 77.44 79.98 70.48 76.79 48.77 65.51
ShareLoRAr=8 7.23M 0.11% 44.40 47.53 77.49 77.36 80.03 70.48 78.04 48.06 65.42
Tied-LoRAr=8 0.44M 0.01% 44.40 44.88 76.19 75.25 79.22 70.09 75.06 45.70 63.85
BSLoRA (SS) 7.03M 0.10% 46.20 46.93 77.23 76.77 80.52 69.85 78.13 49.39 65.63
BSLoRA (GT) 8.22M 0.12% 45.20 47.27 77.47 77.06 80.14 70.17 78.93 48.93 65.64
BSLoRA (KE) 3.66M 0.05% 45.40 47.87 77.32 77.57 80.20 70.24 77.52 48.62 65.59

L
la

m
a

3-
8B

LoRAr=8 14.16M 0.18% 46.20 57.34 80.04 82.95 81.88 73.72 82.32 48.67 72.42
VeRAr=64 0.80M 0.01% 45.00 54.01 79.27 80.51 81.23 73.32 81.07 47.34 70.96
VB-LoRAr=4 2.51M 0.03% 46.40 56.06 79.85 81.27 81.39 74.51 81.62 46.93 71.66
ShareLoRAr=8 8.06M 0.11% 45.60 56.57 79.89 82.79 81.99 73.80 82.69 48.46 72.31
Tied-LoRAr=8 0.44M 0.01% 45.00 53.16 79.17 80.09 80.85 73.24 81.07 47.24 70.69
BSLoRA (SS) 7.67M 0.10% 46.40 57.17 79.96 82.95 81.94 74.74 83.09 49.03 72.70
BSLoRA (GT) 8.03M 0.10% 46.20 56.83 79.89 82.87 81.94 74.27 82.97 48.36 72.45
BSLoRA (KE) 3.83M 0.05% 46.40 56.57 80.04 83.08 82.15 73.64 82.60 48.98 72.44

L
la

m
a

1-
13

B LoRAr=8 21.95M 0.17% 45.40 51.71 80.21 79.21 80.90 72.69 81.13 48.87 67.52
VeRAr=128 1.40M 0.01% 44.80 47.87 79.30 77.61 80.25 72.85 78.07 46.88 65.95
VB-LoRAr=8 3.88M 0.04% 47.20 51.11 80.91 78.66 80.58 72.38 80.18 49.49 67.56
ShareLoRAr=8 11.25M 0.09% 45.80 51.71 80.38 79.34 80.58 72.85 80.89 49.03 67.57
Tied-LoRAr=8 0.55M 0.01% 44.80 47.87 79.08 77.40 80.25 72.85 77.92 56.65 65.85
BSLoRA (SS) 10.13M 0.08% 45.80 51.28 80.11 79.21 80.74 72.69 81.59 49.13 67.57
BSLoRA (GT) 12.14M 0.9% 46.00 51.02 80.11 79.04 80.90 72.53 80.95 48.72 67.41
BSLoRA (KE) 5.94M 0.05% 45.00 51.79 80.32 79.21 80.74 72.85 80.83 48.93 67.46

of TL5. (5) ShareLoRA (Song et al., 2024), we adopt the
ShareA configuration to finetune the LLM.

Fine-tuning Dataset. We utilized publicly available sam-
ples from the Alpaca dataset (Taori et al., 2023) 1 to fur-
ther fine-tune the LLM, which contains 52k instruction-
following demonstrations generated by OpenAI’s text-
davinci-003 engine.

Hyper-parameters and Training Details. We apply the
LoRA weights to the W q, W k, W v, W up, and W down

modules of each Transformer block. For each shape trans-
formation method, we set different rank configurations
r = {rlocal, rintra, rinter}. We set r = {2, 4, 32} for Slice
Share (SS). We set the shape of shared weights for Gate
Transformation (GT) to (1024, rshare) and r = {2, 8, 16}.
For the Kronecker Extension (KE), we set r = {2, 4, 16}
to adapt the shared weights’ shape of (256, rshare). We
use the same training configurations to fine-tune the LLM
with BSLoRA and baseline methods. Specifically, we use
AdamW (Loshchilov & Hutter, 2019) as the optimizer with
100 warm-up steps and a learning rate of 1× 10−4 and set
the batch size to 64. For all the experiments, we train for
one epoch.

1https://huggingface.co/datasets/yahma/
alpaca-cleaned

4.2. Results on Commonsense Reasoning

We evaluate the zero-shot performance of BSLoRA on Com-
monsense Reasoning tasks using Llama 1-7B, Llama 3-8B,
and Llama 1-13B models. In Table 1, the results show that
BSLoRA consistently outperforms the baselines in terms of
average performance across these datasets. Specifically, the
Kronecker Extension (KE) method introduces fewer train-
able parameters while achieving comparable performance
to the SS and GT methods, indicating its superior parameter
efficiency. More details in Appendix A.4.1.

4.3. Results on MMLU Benchmark

We evaluate the zero-shot and five-shot performance of
BSLoRA on the MMLU benchmark using Llama 1-7B,
Llama 3-8B, and Llama 1-13B models. The results, as
shown in Table 3, demonstrate that BSLoRA consistently
outperforms the baseline models in terms of average per-
formance across both zero-shot and five-shot settings. This
highlights the effectiveness of our approach in diverse sce-
narios (see more in Appendix A.4.2).

4.4. Analysis

Rank Analysis. According to matrix rank theory, the rank
of the sum of two matrices is given byR(A+B) ≤ R(A)+
R(B). This implies that decomposing a large LoRA matrix
into multiple sub-LoRAs does not increase the overall rank

6

https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned


BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Table 2. Results of zero-shot and five-shot performance on Llama 1-7B, Llama 3-8B, and Llama 1-13B in BSLoRA and baselines on
MMLU benchmark. We report the number of trainable parameters (# params) and the corresponding ratio for each method.

Method # params ratio MMLU (0-shot) MMLU (5-shot)
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

L
la

m
a

1-
7B

LoRAr=8 14.02M 0.21% 34.67 31.24 37.21 39.36 35.62 34.86 32.57 40.36 40.81 37.15
VeRAr=64 0.89M 0.01% 32.22 28.32 32.40 36.72 32.42 33.58 31.27 38.58 38.85 35.57
VB-LoRAr=4 2.49M 0.04% 30.10 28.51 29.25 33.31 30.29 34.11 30.54 40.14 40.52 36.33
ShareLoRAr=8 7.32M 0.11% 33.01 30.61 33.57 37.62 33.70 33.88 30.73 38.93 39.78 35.83
Tied-LoRAr=8 0.44M 0.01% 31.92 28.20 32.11 36.31 32.13 33.84 31.56 38.64 38.53 35.64
BSLoRA (SS) 7.03M 0.10% 36.34 32.98 40.59 42.55 38.12 36.62 33.46 42.48 43.35 38.98
BSLoRA (GT) 8.22M 0.12% 36.30 32.92 40.75 42.13 38.03 35.15 32.19 41.44 41.94 37.68
BSLoRA (KE) 3.66M 0.05% 35.56 32.00 38.12 40.01 36.42 35.32 32.41 41.40 41.29 37.61

L
la

m
a

3-
8B

LoRAr=8 14.16M 0.18% 56.77 53.89 72.77 70.36 63.44 59.81 55.92 76.21 72.10 66.01
VeRAr=64 0.80M 0.01% 54.88 54.17 73.35 70.58 63.25 59.85 55.69 76.15 72.80 66.12
VB-LoRAr=4 2.51M 0.03% 55.83 52.74 71.86 71.00 62.86 59.11 55.22 74.68 72.26 65.32
ShareLoRAr=8 7.67M 0.11% 56.81 54.17 73.16 70.87 63.75 59.68 55.63 76.18 72.61 66.02
Tied-LoRAr=8 0.44M 0.01% 54.77 54.01 74.29 70.58 64.16 59.96 55.82 76.05 72.64 66.12
BSLoRA (SS) 7.67M 0.10% 58.53 54.61 73.35 71.29 64.45 59.57 56.26 75.95 72.35 66.04
BSLoRA (GT) 8.03M 0.10% 58.30 54.39 73.29 71.48 64.37 59.68 56.23 76.31 72.48 66.18
BSLoRA (KE) 3.83M 0.05% 57.98 54.49 73.35 70.84 64.16 59.38 55.98 76.08 72.16 65.90

L
la

m
a

1-
13

B LoRAr=8 21.95M 0.17% 43.66 38.31 54.44 53.33 47.43 45.06 37.46 55.64 55.42 48.39
VeRAr=128 1.40M 0.01% 41.66 36.50 48.75 48.73 43.91 44.23 37.08 53.92 53.59 47.20
VB-LoRAr=8 3.88M 0.04% 41.02 35.81 49.66 49.76 44.06 44.27 37.14 54.27 53.91 47.40
ShareLoRAr=8 11.25M 0.09% 43.78 37.33 52.75 52.78 46.77 44.61 36.63 54.01 54.23 47.37
Tied-LoRAr=8 0.55M 0.01% 41.72 36.38 48.52 48.44 43.76 44.46 37.01 53.85 53.59 47.23
BSLoRA (SS) 10.13M 0.08% 44.76 37.46 53.04 53.72 47.24 44.78 37.81 54.50 55.65 48.18
BSLoRA (GT) 12.19M 0.09% 43.61 37.77 53.33 53.14 46.96 44.46 37.52 53.88 55.07 47.73
BSLoRA (KE) 5.94M 0.05% 44.48 38.98 54.34 54.49 48.07 45.29 37.84 55.25 55.36 48.43

of the matrix. Consequently, the rank of the combined LoRA
matrices remains bounded by the sum of their individual
ranks. We validate the actual rank of each module and
calculate the average ranks across layers for each Shape
Transformation method using rank configurations of r =
{2, 4, 16}. The results, shown in Figure 4(a), indicate that
the Slice Sharing (SS) method achieves a combined rank
equal to the sum of local and shared ranks (22), while the
Kronecker Extension (KE) reaches approximately 21.53.
In contrast, the Gate Transformation (GT) method yields
rank value equivalent to the local rank plus 2, likely due to
one-rank gates causing some information loss.

Contribution Analysis. We conduct further experiments
to explore the contribution of each sub-LoRA matrix. By
setting the rank of one sub-LoRA matrix to 8 and the others
to 0, we examine the individual impact of each component.
The Kronecker Extension method is used to reshape the
shared parameters. In Figure 4(b), the results reveal the
performance preferences of each component across datasets.
Specifically, the local component of LoRA performs best on
HellaSwag, ARC-e, BoolQ, and SIQA, while the intra-layer
shared component excels on PIQA and ARC-c. Overall,
the combination of local, intra-layer, and inter-layer shared
parameters yields the best performance across all datasets.

Extension Analysis. We further analyze the scalability
of the Kronecker Extension method. The shared matrix

W ∈ Rn×r can be obtained by applying the Kronecker
product to M ∈ Rn

k ×r and K ∈ Rk×1. By adjusting their
shapes to M ∈ Rn

k ×1 and K ∈ Rk×r, the same matrix
shape for W can be achieved. Furthermore, since one di-
mension is a constant 1, the resulting matrix rank equals
r. To explore its effect, we modify this constant to 2 to
test whether it enhances the rank of W . We denote config-
urations as a b, where r 1 means the shared matrix has a
dimension r and a module-specific dimension of 1, while
2 r has a shared dimension of 2 and a module-specific di-
mension of r. The results in Figure 4(c) show that modifying
the constant improves both expressiveness and information
content. Comparing r 1 and 1 r, we observe that each con-
figuration excels in different metrics, with r 1 performing
better overall while introducing fewer trainable parameters.

4.5. Ablation Study

We conduct ablation studies to examine the impact of indi-
vidual components of our method. All subsequent experi-
ments focus on the MMLU (zero-shot) (Hendrycks et al.,
2021) and GSM8K (5-shot) (Cobbe et al., 2021) bench-
marks, utilizing the Llama 1-7B model. We also conduct
experiments to examine the impact of different rank alloca-
tions in Appendix A.4.5.

Shared Size of Gate and Kronecker Kernel. The Gate
Transformation (GT) and Kronecker Extension (KE) meth-

7



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

(a) Rank Anlysis (b) Contribution Analysis (c) Extension Analysis

Figure 4. Analysis. (a) Rank Analysis: the final rank benefit from different Shape Transformation methods. (b) Contribution Analysis:
the different contribution across the sharing weights and local weights. (c) Extension Analysis: the rank extension analysis for different
shape of share weights’ size and kernel size.

ods can flexibly adapt the shared weights to arbitrary shapes
for different modules. We examine various sizes of the
shared matrix, setting the rank r = {2, 8, 16}. For the GT,
we test shared matrix sizes of [512, 1024, 2048], while for
the KE, we test sizes of [64, 128, 256]. The results are pre-
sented in Table 3 and Table 4. We found that the parameters
introduced by GT increase with the growth of the shared
parameter size, which also leads to an improvement in per-
formance on the MMLU benchmark. However, we observe
a decrease in performance on the GSM8K dataset as the
shared parameter size increases. In contrast, the parame-
ters introduced by the KE method decrease with increasing
shared parameter size, while the average performance im-
proves. Overall, we select the shared parameter size of 1024
for the GT method and 256 for the KE method.

Table 3. Size of Shared weights of GT
Shared Size # params raito MMLU GSM8K

512 7.62M 0.11% 36.03 10.54
1,024 8.22M 0.12% 35.61 10.77
2,048 9.44M 0.13% 34.70 11.90

Table 4. Size of Shared weights of KE
Shared Size # params raito MMLU GSM8K

64 4.07M 0.06% 36.47 10.84
128 3.82M 0.05% 35.34 11.98
256 3.72M 0.05% 37.01 11.22

5. Related Work
5.1. Parameter Sharing of LoRA

Recent advances in LoRA-based fine-tuning methods have
explored various strategies for sharing LoRA weights to
enhance parameter efficiency across multiple tasks. VeRA
(Kopiczko et al., 2024) proposes sharing random matrices
across all layers, reducing the number of parameters, but it
results in some performance trade-offs and increased infer-
ence latency due to its high-rank requirements. In addition,
Tied-LoRA (Renduchintala et al., 2024) takes a different ap-
proach by sharing LoRA matrices specifically across query,
key, and value projection layers, using additional scaling

vectors to differentiate the modules. However, its require-
ment for identical matrix shapes (appliable for q, k, and v
matrices) limits flexibility. ShareLoRA (Song et al., 2024)
devises to share A, B, or AB matrices across layers to reduce
parameters, but it is only applicable for the weights with
the same shape. In contrast, PRoLoRA (Wang et al., 2024)
employs an intra-layer sharing mechanism with learnable
parameters, but it only reduces parameters without capturing
global features. Additionally, VB-LoRA (Li et al., 2024)
introduces a “divide-and-share” approach that partitions
shared vectors into a vector bank, addressing the limitations
of traditional low-rank decomposition across matrix dimen-
sions, modules, and layers. However, this approach selects
vectors uniformly without accounting for the internal struc-
ture of the model, leading to suboptimal utilization of the
model’s internal information.

5.2. Multi-LoRA Architecture

LoRA has demonstrated exceptional resource efficiency
and performance in adapting LLMs for specific tasks, driv-
ing the demand for a single model capable of handling
multiple tasks (Agiza et al., 2024). Several approaches
have been proposed to improve their multi-task adaptabil-
ity. In particular, LoraHub (Huang et al., 2023) assembles
LoRA modules trained on different tasks to eliminate the
need for human expertise and assumptions, enabling ef-
fective cross-task generalization. Similarly, MultiLoRA
(Wang et al., 2023) improves adaptability by horizontally
expanding LoRA modules and reducing the dominance of
top singular vectors observed in LoRA. Building on these
advancements, HydraLoRA (Tian et al., 2024) introduces
an asymmetric architecture that shares a common matrix
across tasks while using task-specific matrices for differ-
ent sub-domains, further enhancing both fine-tuning and
inference efficiency.

6. Discussion
Recent work on S-LoRA (Sheng et al., 2024) addresses
the deployment side of LoRA by keeping a unified GPU

8



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

buffer for adapter weights, dynamically paging seldom-used
adapters from CPU to GPU, and fusing heterogeneous re-
quests into a single batched GEMM. Although orthogonal
in scope, S-LoRA and BSLoRA are highly complemen-
tary: (1) Reduced paging overhead. BSLoRA removes up
to 56% of the trainable weights through hierarchical shar-
ing. With fewer parameters per adapter, S-LoRA has to
move considerably less data across the CPU-GPU bound-
ary, which shortens task-switch latency and allows many
more adapters to remain resident on chip. (2) Shape-aware
batching. BSLoRA organises its shared components by
transformation type—Slice, Gate, or Kronecker. Because
each type yields identical weight shapes across tasks, S-
LoRA’s scheduler can co-group requests that reuse the same
shared tensor and issue a single large GEMM, further im-
proving arithmetic intensity. (3) Persistent shared cores.
In BSLoRA the intra-layer and inter-layer matrices are tiny.
Under S-LoRA these small cores can remain permanently
pinned in GPU memory, while only the larger local blocks
are paged to and from CPU. Consequently, the amount of
data transferred per context switch is minimised, further
reducing end-to-end latency. We believe a unified BSLoRA
+ S-LoRA serving stack will offer both model-level and
system-level efficiency, enabling the simultaneous deploy-
ment of thousands of personalised adapters on a single GPU.
Implementing and benchmarking this joint design is left for
future work.

7. Conclusion
This paper presents BSLoRA, which enhances the param-
eter efficiency of LLMs by combining shared intra-layer,
inter-layer parameters, and local parameters. This approach
reduces the number of trainable parameters while boosting
model efficiency. Experiments on various Llama models
demonstrate that BSLoRA significantly cuts down parame-
ter usage by 56.40% and improves average performance
by 0.33% on commonsense reasoning tasks and 2.08%
on MMLU benchmark. BSLoRA reduces redundancy, en-
hances model adaptability, and offers flexible sharing strate-
gies with potential high-rank benefits.

Acknowledgements
This project is based upon work supported by National Natu-
ral Science Foundation of China Grant No. U22A6001, Na-
tional Key Research and Development Program of China No.
2023YFE0108600, Pioneer” and ”Leading Goose” R&D
Program of Zhejiang No.2024SSYS0002.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal

consequences of our work, none of which we feel must be
specifically highlighted here.

References
Agiza, A., Neseem, M., and Reda, S. Mtlora: Low-rank

adaptation approach for efficient multi-task learning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16196–16205, 2024.

Anthropic. The claude 3 model fam-
ily: Opus, sonnet, haiku. 2024. URL
https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reason-
ing about physical commonsense in natural language.
In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 7432–7439, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCan-
dlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language models are few-shot learners. In Proceedings
of Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901, 2020.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu,
K., Chen, H., Yi, X., Wang, C., Wang, Y., et al. A
survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15
(3):1–45, 2024.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S.,
Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson,
K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V.,
Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean,
J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J.
Scaling instruction-finetuned language models, 2022.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pp. 2924–2936, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved

9

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf


BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettle-
moyer, L. Qlora: Efficient finetuning of quantized
llms. In Proceedings of Advances in Neural Information
Processing Systems, volume 36, pp. 10088–10115, 2023.

Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu,
S., Chen, Y., Chan, C.-M., Chen, W., et al. Parameter-
efficient fine-tuning of large-scale pre-trained language
models. Nature Machine Intelligence, 5(3):220–235,
2023.

Edalati, A., Tahaei, M., Kobyzev, I., Nia, V. P., Clark, J. J.,
and Rezagholizadeh, M. Krona: Parameter efficient tun-
ing with kronecker adapter, 2022.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
2023.

Guan, C., Wang, X., Zhang, Q., Chen, R., He, D., and Xie,
X. Towards a deep and unified understanding of deep neu-
ral models in NLP. In Proceedings of the International
Conference on Machine Learning, volume 97, pp. 2454–
2463, 2019.

Han, Z., Gao, C., Liu, J., Zhang, J., and Zhang, S. Q.
Parameter-efficient fine-tuning for large models: A com-
prehensive survey. Transactions on Machine Learning
Research, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In Proceedings of International
Conference on Learning Representations, 2021.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for NLP. In
Proceedings of the International Conference on Machine
Learning, volume 97, pp. 2790–2799, 2019.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank
adaptation of large language models. In Proceedings of
International Conference on Learning Representations,
2022.

Huang, C., Liu, Q., Lin, B. Y., Du, C., Pang, T., and
Lin, M. Lorahub: Efficient cross-task generaliza-
tion via dynamic loRA composition. In Proceedings
of R0-FoMo:Robustness of Few-shot and Zero-shot
Learning in Large Foundation Models, 2023.

Jiang, T., Huang, S., Luo, S., Zhang, Z., Huang, H., Wei,
F., Deng, W., Sun, F., Zhang, Q., Wang, D., and Zhuang,
F. Mora: High-rank updating for parameter-efficient fine-
tuning, 2024.

Karimi Mahabadi, R., Henderson, J., and Ruder, S. Com-
pacter: Efficient low-rank hypercomplex adapter layers.
In Advances in Neural Information Processing Systems,
volume 34, pp. 1022–1035, 2021.

Koohpayegani, S. A., L, N. K., Nooralinejad, P., Kolouri,
S., and Pirsiavash, H. NOLA: Compressing loRA us-
ing linear combination of random basis. In The Twelfth
International Conference on Learning Representations,
2024.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M.
VeRA: Vector-based random matrix adaptation. In
Proceedings of International Conference on Learning
Representations, 2024.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pp. 3045–3059, 2021.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing con-
tinuous prompts for generation. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics and the International Joint Conference on
Natural Language Processing, pp. 4582–4597, 2021.

Li, Y., Han, S., and Ji, S. Vb-lora: Extreme parameter
efficient fine-tuning with vector banks, 2024.

Lin, S., Lyu, P., Liu, D., Tang, T., Liang, X., Song, A., and
Chang, X. Mlp can be a good transformer learner. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 19489–19498, 2024.

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. F., Cheng, K.-T., and Chen, M.-H. DoRA: Weight-
decomposed low-rank adaptation. In Proceedings of
International Conference on Machine Learning, 2024.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In Proceedings of International Conference
on Learning Representations, 2019.

Mao, Y., Ge, Y., Fan, Y., Xu, W., Mi, Y., Hu, Z., and Gao,
Y. A survey on lora of large language models. arXiv
preprint arXiv:2407.11046, 2024.

10



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pp. 2381–2391, 2018.

Openai. Gpt-4 technical report. 2023. URL https://
cdn.openai.com/papers/gpt-4.pdf.

Raiaan, M. A. K., Mukta, M. S. H., Fatema, K., Fahad,
N. M., Sakib, S., Mim, M. M. J., Ahmad, J., Ali, M. E.,
and Azam, S. A review on large language models: Ar-
chitectures, applications, taxonomies, open issues and
challenges. IEEE Access, 2024.

Ren, P., Shi, C., Wu, S., Zhang, M., Ren, Z., Rijke, M.,
Chen, Z., and Pei, J. MELoRA: Mini-ensemble low-
rank adapters for parameter-efficient fine-tuning. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pp. 3052–3064, 2024.

Renduchintala, A., Konuk, T., and Kuchaiev, O. Tied-
lora: Enhancing parameter efficiency of lora with weight
tying. In Proceedings of the Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 8692–
8704, 2024.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Sap, M., Rashkin, H., Chen, D., Le Bras, R., and Choi,
Y. Social IQa: Commonsense reasoning about so-
cial interactions. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing, pp. 4463–4473, 2019.

Sheng, Y., Cao, S., Li, D., Hooper, C., Lee, N., Yang, S.,
Chou, C., Zhu, B., Zheng, L., Keutzer, K., Gonzalez, J. E.,
and Stoica, I. S-lora: Serving thousands of concurrent
lora adapters, 2024.

Shi, S., Huang, S., Song, M., Li, Z., Zhang, Z., Huang, H.,
Wei, F., Deng, W., Sun, F., and Zhang, Q. ResLoRA: Iden-
tity residual mapping in low-rank adaption. In Findings of
the Association for Computational Linguistics, pp. 8870–
8884, 2024.

Sirignano, J. and Spiliopoulos, K. Mean field analysis of
neural networks: A law of large numbers. SIAM Journal
on Applied Mathematics, 80(2):725–752, 2020.

Song, Y., Zhao, J., Harris, I. G., and Jyothi, S. A. Sharelora:
Parameter efficient and robust large language model fine-
tuning via shared low-rank adaptation, 2024.

Sun, Z., Ge, C., Wang, J., Lin, M., Chen, H., Li, H., and
Sun, X. Entropy-driven mixed-precision quantization
for deep network design. In Proceedings of Advances in
Neural Information Processing Systems, volume 35, pp.
21508–21520, 2022a.

Sun, Z., Yang, H., Liu, K., Yin, Z., Li, Z., and Xu, W.
Recent advances in lora: A comprehensive survey. ACM
Transactions on Sensor Networks, 18(4):1–44, 2022b.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Stan-
ford alpaca: An instruction-following llama model,
2023. URL https://github.com/tatsu-lab/
stanford_alpaca.

Tian, C., Shi, Z., Guo, Z., Li, L., and Xu, C. Hydralora:
An asymmetric lora architecture for efficient fine-tuning,
2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. At-
tention is all you need. In Proceedings of Advances
in Neural Information Processing Systems, volume 30,
2017.

Wang, S., Xue, B., Ye, J., Jiang, J., Chen, L., Kong, L.,
and Wu, C. Prolora: Partial rotation empowers more
parameter-efficient lora, 2024.

Wang, Y., Lin, Y., Zeng, X., and Zhang, G. Multilora:
Democratizing lora for better multi-task learning, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
In Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Zhang, B., Haddow, B., and Birch, A. Prompting large
language model for machine translation: A case study.
In Proceedings of International Conference on Machine
Learning, pp. 41092–41110, 2023.

Zhu, X., Liang, D., Jiang, X., Guan, Y., Liu, Y., Zhu, Y., and
Bai, X. Layerlink: Bridging remote sensing object de-
tection and large vision models with efficient fine-tuning.
Pattern Recognition, 165:111583, 2025.

11

https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

A. Appendix
A.1. Parameter-Efficient Fine-Tuning (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) is crucial for large language models (LLMs) as it reduces computational costs while
preserving performance (Ding et al., 2023). Specifically, Adapters (Houlsby et al., 2019; Zhu et al., 2025), inserted between
layers, allow task-specific fine-tuning with minimal trainable parameters while keeping most weights fixed. Similarly,
Prefix Tuning (Li & Liang, 2021) adds learnable tokens at each transformer layer to guide task-specific behavior without
modifying core parameters. In contrast, Prompt Tuning (Lester et al., 2021) optimizes a small set of prompts attached to the
input, leaving the model’s architecture unchanged. LoRA (Hu et al., 2022) reparameterizes weight matrices into low-rank
forms, significantly reducing trainable parameters while maintaining performance. Some studies build upon LoRA to further
improve and optimize its performance (Shi et al., 2024; Ren et al., 2024; Jiang et al., 2024; Liu et al., 2024; Koohpayegani
et al., 2024). Likewise, we propose BSLoRA, building on LoRA, which shares parameters both within and across layers to
further enhance efficiency and adaptability.

A.2. Parameter Similarity

A.2.1. ENTROPY QUANTIFICATION

Information entropy is a key concept in information theory, used to quantify the uncertainty or randomness within a dataset
or signal. It provides a measure of the average information content per symbol or event in a message or sequence of
messages. As defined by Guan et al. (2019), entropy can be employed to assess the information capacity of a network.
Consequently, the entropy of a given layer can be calculated based on the probability distribution of its features:

H(F ) = −
∫

p(f) log p(f) df, f ∈ F . (7)

Nonetheless, it is difficult to directly measure the probability distribution of a feature map: p(f), f ∈ F . Following
(Sirignano & Spiliopoulos, 2020; Sun et al., 2022a), we use the Gaussian distribution as the probability distribution of the
intermediate feature in a layer. Therefore, the entropy of a certain layer is approximated as the mathematical expectation of
F ∼ N (µ, σ2):

H(F ) = −E
[
logN

(
µ, σ2

)]
= −E

[
log

[(
2πσ2

)−1/2
exp

(
− 1

2σ2
(f − µ)2

)]]
= log(σ) +

1

2
log(2π) +

1

2
,

(8)

where σ is the standard deviation of the feature set f ∈ F .

A.2.2. ENTROPY SIMILARITY

The information content of LoRA weight matrices can be measured by their entropy. Two matrices with similar entropy
values typically contain similar amounts of information, indicating a high degree of redundancy. We assess the correlation
between different weight matrices by calculating mutual information, which quantifies the relationship between them and
can be computed using the following formula:

I(X;Y ) = H(X) +H(Y )−H(X,Y ) , (9)

Here, H(X,Y ) represents the entropy of the joint distribution of matrix X and matrix Y . To compute this, we flatten the
matrices X and Y , concatenate them, and then calculate the entropy of the resulting joint distribution. A large mutual
information between two weight matrices indicates significant overlap in their information, implying redundancy. The
calculated mutual information I(X;Y ) is an absolute value, which needs to be converted into a relative value. Therefore,
we use Relative Mutual Information (RMI) to represent the similarity between matrices, calculated as follows:

RMI =
I(X;Y )

min(H(X), H(Y ))
(10)

If RMI > 0.8, the mutual information is considered high, indicating significant redundancy between the two matrices. If
0.5 < RMI ≤ 0.8, the mutual information is moderate, suggesting notable shared information but with some degree of
independence. If RMI ≤ 0.5, the mutual information is low, indicating minimal redundancy between the two matrices.

12



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Figure 5. The entropy similarity of LoRA parameters for each module within the same layer (left) and across different layers (right). It
shows that different modules within the same layer exhibit high entropy similarity, and this high similarity is also present across different
layers. This indicates that LoRA parameters have a significant degree of redundancy.

We fine-tuned the Llama-7B model using LoRA with a rank r = 64, isolating the LoRA matrices and calculating ∆W . The
information entropy of ∆W for each module was computed based on Equation 8, and the Relative Mutual Information
(RMI) between modules was calculated as a measure of similarity using Equations 9 and 10. We obtained the RMI values
both within the same layer and across different layers, with the results shown in Figure 1. We observed that different
modules within the same layer exhibit high entropy similarity, and this similarity also extends across layers. Additionally,
following the method in Lin et al. (2024), we calculated the entropy similarity of the activation values for each module. As
illustrated in Figure 5, the ∆W of different parameter modules also shows high similarity in terms of activation values,
further indicating the significant redundancy in the parameters used in LoRA fine-tuning.

Table 5. Performance on instruction tuning with Alpaca 50K (Taori et al., 2023), evaluated with MMLU (Hendrycks et al., 2021) and
GSM8K (Cobbe et al., 2021). Boldface indicates the best performance.

Method rlocal rintra rinter # params ratio MMLU GSM8K

Individual

LoRA (no-share) 8 - - 4.19M 0.06% 35.12 10.84
LoRA (intra-share) - 8 - 2.10M 0.03% 34.23 10.54
LoRA (inter-share) - - 8 0.07M 0.01% 32.20 10.08

Joint

LoRA (share-intra) 4 4 - 3.14M 0.05% 34.63 10.92
LoRA (share-inter) 4 - 4 2.13M 0.03% 35.00 10.54
LoRA (share-intra-inter) 4 2 2 2.64M 0.04% 35.89 10.08

A.3. Shape Transformation Algorithms

We provide detailed pseudocode for each of the Shape Transformation methods used in BSLoRA. Specifically, Algorithm 1
outlines the steps for the Slice Sharing method, which slices larger matrices to adapt to different parameter dimensions.
Algorithm 2 demonstrates the Gate Transformation method, which utilizes input and output gates to dynamically adjust
shared parameters for varying module shapes. Finally, Algorithm 3 explains the Kronecker Extension method, which
expands shared matrices using Kronecker products to maintain consistency across modules with diverse dimensions. These
algorithms collectively contribute to enhancing parameter efficiency and flexibility in model fine-tuning.

13



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Algorithm 1 Pseudocode of Slice Sharing.
Input: The rank of shared weights r and the input x;
Output: The output calculated by shared weights;

1: # Initialize the Shared weights:
2: mdin, mdout← Find max InFeatures and OutFeatures across all modules;
3: A ∈ Rr×mdin ← Normal Randomly Initialization;
4: B ∈ Rmdout×r ← Zero Initialization;
5:
6: # Training and Inference Stage:
7: din, dout← InFeatures and OutFeatures of current module;
8: ∆W ←B[: dout, :]A[:, : din]
9: result←∆Wx

10:
11: return result

A.4. Experiments

A.4.1. RESULTS ON COMMONSENSE REASONING

We evaluate BSLoRA for zero-shot performance on Commonsense Reasoning tasks using Llama 1-7B, Llama 1-13B, and
Llama 3-8B. The results are shown in Table 1. We observe that BSLoRA consistently outperforms the baselines in terms
of the average performance of Commonsense Reasoning datasets. Specifically, the Gate Transformation (GT) method of
BSLoRA achieves the best average performance on the Llama 1-7B, while the Slice Sharing (SS) method achieves the
best average performance on the Llama 3-8B. Furthermore, BSLoRA outperforms the baselines on 7 out of 8 datasets on
Llama 1-7B, and 5 out of 8 datasets on Llama 3-8B. It is worth noting that large improvements are achieved on ARC-e,
PIQA, BoolQ, and SIQA datasets. BSLoRA also achieves decent performance on the remaining datasets, including OBQA,
HellaSwag, and WinG, which proves that BSLoRA is stable and reliable across different datasets. Compared to the standard
LoRA with a rank of 8, BSLoRA can save about 50% trainable parameters and achieve better performance. Specifically,
the Kronecker Extension (KE) method introduces fewer trainable parameters, meanwhile outperforms the baselines, and
achieves on-par performance with the SS and GT methods, indicating the more parameter-efficient method.

A.4.2. RESULTS ON MMLU BENCHMARK

We evaluate BSLoRA for zero-shot and five-shot performance of MMLU tasks based on Llama 1-7B, Llama 1-13B, and
Llama 3-8B. We demonstrate the results in Table 2. From the results, we observe that BSLoRA consistently outperforms the
baselines in terms of the average performance of MMLU datasets both on zero-shot and five-shot. Specifically, the Slice
Sharing (SS) method of BSLoRA achieves the best average performance on the Llama 1-7B, while the Gate Transformation
(GT) method achieves the best average performance on the Llama 3-8B. Notice that the SS method on Llama 1-7B achieves
the best performance on 9 out of 10 metrics and achieves the second-best performance for the remaining one. Furthermore,
the GT and Kronecker Extension (KE) BSLoRA achieve the second-best performance compared to SS and consistently
outperform the baselines. Compared to the standard LoRA with a rank of 8, BSLoRA can save about 50% trainable
parameters and achieve better performance. Specifically, the KE method outperforms the baselines and achieves on-par
performance with the SS and GT methods, indicating the most parameter-efficient method.

A.4.3. EXPERIMENTS ON FLAN V2 DATASET

To further demonstrate the effectiveness of BSLoRA, we also conduct experiments on Llama 3-8B on the FLAN V2
instruction dataset (Chung et al., 2022) 2, which is another dataset for instruction tuning. We conduct experiments on the
Chain Of Thought task and evaluate its performance on the Commonsense Reasoning task datasets; the experiment results
are shown in Table 6.

2https://huggingface.co/datasets/BEE-spoke-data/flan-v2-hf

14

https://huggingface.co/datasets/BEE-spoke-data/flan-v2-hf


BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Algorithm 2 Pseudocode of Gate Transformation.
Input: The rank of shared weights r and the input x;
Output: The output calculated by shared Weights;

1: # Initialize the Shared Weights:
2: dins, douts← InFeatures and OutFeatures of shared weights;
3: As ∈ Rr×dins ← Normal Randomly Initialization;
4: Bs ∈ Rdouts×r ← Zero Initialization;
5:
6: # Initialize Gate weights:
7: din, dout← InFeatures and OutFeatures of current module;
8: Gid ∈ R1×din ← Uniform Randomly Initialization;
9: Giu ∈ Rdins×1 ← Uniform Randomly Initialization;

10: God ∈ R1×douts ← Uniform Randomly Initialization;
11: Gou ∈ Rdout×1 ← Uniform Randomly Initialization;
12:
13: # Training and Inference Stage:
14: Gi ∈ Rdins×din ← GiuGid;
15: Go ∈ Rdout×douts ←GouGod;
16: ∆W ← GoBsAsGi

17: result← ∆Wx
18:
19: return result

Table 6. Results of Zero-shot performance on Llama 3-8B, in BSLoRA and baselines on Commonsense Reasoning benchmark. We report
the number of trainable parameters (# params) and the corresponding ratio for each method.

Methods # params ratio OBQA ARC-c HellaSwag ARC-e PIQA WinoG. BoolQ SIQA Avg.

L
la

m
a

3-
8B

LoRAr=8 14.16M 0.18% 45.40 53.41 79.20 80.43 79.82 74.35 83.27 47.39 67.91
VeRAr=64 0.80M 0.01% 44.80 53.92 79.14 79.92 79.54 72.69 80.95 47.03 67.25
VB-LoRAr=4 2.51M 0.03% 44.00 54.01 78.72 80.26 78.62 74.66 81.19 46.01 67.18
ShareLoRAr=8 8.006M 0.11% 44.80 54.27 79.04 80.89 81.23 74.19 83.00 48.57 68.25
Tied-LoRAr=8 0.44M 0.01% 45.00 53.07 79.11 80.01 80.79 73.88 81.25 47.03 67.52
BSLoRA (SS) 7.67M 0.10% 46.60 56.23 79.00 81.14 80.79 74.27 83.52 48.77 68.79
BSLoRA (GT) 8.03M 0.10% 45.20 55.38 79.22 81.99 81.28 74.98 83.21 48.52 68.72
BSLoRA (KE) 3.83M 0.05% 44.40 55.03 79.11 82.41 81.18 74.90 84.10 49.54 68.83

A.4.4. ABLATION STUDY

Slicing Method. We evaluate three slicing methods for the shared matrix: top-left slice, bottom-right slice, and center
slice. We adopt the rank configuration of r = {2, 4, 8}. The results are shown in Table 7. It indicates that the center slice
outperforms the other two slicing methods both on MMLU and GSM8K benchmark.

Gate Initialization. We initialize the input and output gates of the Gate Transformation using three schemes: Kaiming
normal, Kaiming uniform, and constant one initialization. The rank configurations for different sub-LoRA weights are set
for r = {2, 8, 16}. As shown in Table 8, Kaiming uniform outperforms Kaiming normal initialization. Additionally, the
constant ones initialization leads to gradient explosion or vanishing issues, making it unsuitable for gate initialization.

Initialization of Kronecker Kernel. We apply Kaiming normal, Kaiming uniform, and constant ones initialization to the
Kronecker kernel to examine the impact of different initialization schemes. We set the ranks of {2, 4, 16} for local, intra,
and inter sub-LoRA matrices, respectively. From Table 9, the constant ones initialization performs better on the MMLU
benchmark, while the Kaiming normal initialization outperforms the other two methods on the GSM8K benchmark. Overall,
the Kaiming normal initialization performs best.

15



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Algorithm 3 Pseudocode of Kronecker Extension.
Input: The rank of shared weights r and the input x;
Output: The output calculated by shared weights;

1: # Initialize the Shared Weights:
2: dins, douts← InFeatures and OutFeatures of shared weights;
3: As ∈ Rr×dins← Normal Randomly Initialization;
4: Bs ∈ Rdouts×r ← Zero Initialization;
5:
6: # Initialize Kernel weights:
7: din, dout← InFeatures and OutFeatures of current module;
8: ka ← dins // r;
9: kb ← douts // r;

10: KA ∈ R1×ka ← Uniform Randomly Initialization;
11: KB ∈ Rkb×1← Uniform Randomly Initialization;
12:
13: # Training and Inference Stage:
14: A ∈ Rr×di ←KA ⊗As;
15: B ∈ Rdo×r ←KB ⊗Bs;
16: ∆W ← BA
17: result← ∆Wx
18:
19: return result

Table 7. Split Position
Method MMLU GSM8K

Top-Left 36.27 10.69
Right-Down 35.84 10.92
Center 36.58 11.14

Table 8. Gate Initialization
Matrix Init. MMLU GSM8K

Kaiming Unif. 36.36 11.90
Kaiming Norm. 36.09 10.31
Ones NAN NAN

Table 9. Kernel Initialization
Matrix Init. MMLU GSM8K

Kaiming Unif. 35.34 11.14
Kaiming Norm. 35.15 12.05
Ones 35.84 11.14

A.4.5. RANK ALLOCATION

We designed comparative experiments to explore the impact of adjusting different rank ratios on fine-tuning performance.
Specifically, we varied the rank value of one sub-LoRA module while keeping the ranks of the other two fixed. We
conducted experiments on the rank configurations for local, intra-sharing, and inter-sharing. The results are shown in Table
10. Assigning a lower rank to the local component and a higher rank to the shared parameters yielded better performance,
further illustrating the redundancy in the standard LoRA parameters.

A.5. Analysis

A.5.1. PARAMETER COUNT ANALYSIS

In this section, we compare the number of parameters of BSLoRA with the standard LoRA. Considering an LLM with
L layers, where each layer contains M modules with hidden dimension d, the number of trainable parameters is equal
to the model size (i.e., LMd2) in full fine-tuning. LoRA reduces this number to 2LMdr, where r is the rank of two
low-rank decomposed matrices. In BSLoRA, the trainable parameters consist of two parts: local parameters L, computed
as 2LMdrlocal, and shared parameters, which include intra-parameter sharing Sintra and inter-parameter sharing Sinter.
Therefore, the stored parameters can be represented by a triplet Θ = {L,Sintra,Sinter}. Note that the different Shape
Transformation methods would result in different parameters of Sintra and Sinter.

Slice Sharing. The parameters of S in Slice Sharing are shared across all modules. Specifically, the parameters of
intra-sharing Sintra = 2Ldrintra, and the parameters of inter-sharing Sintra = 2drinter.

16



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Table 10. Different configurations of ranks for our BSLoRA (KE). Boldface denotes the best results in terms of the corresponding metrics,
and underline means the second-best performance.

Method Ranks OBQA ARC-c HellaSwag ARC-e PIQA WinoG. BoolQ SIQA Avg.

Adjust local

2,4,16 45.00 47.78 77.45 76.85 79.92 69.69 78.07 48.57 65.42
4,4,16 44.80 47.61 77.35 77.02 80.30 69.50 77.74 48.31 65.33
8,4,16 44.80 47.70 77.33 77.19 80.30 69.53 77.80 48.82 65.43

16,4,16 44.60 47.18 77.38 76.68 80.20 69.69 78.16 48.52 65.30

Adjust intra

2,2,16 45.40 46.93 77.43 76.56 80.14 69.77 78.20 48.93 65.42
2,4,16 45.00 47.78 77.45 76.85 79.92 69.69 78.07 48.57 65.42
2,8,16 44.80 47.44 77.36 77.06 79.43 70.24 77.43 48.52 65.29

2,16,16 45.20 46.84 77.38 76.52 80.41 69.61 78.38 48.77 65.39

Adjust inter

2,4,8 45.40 47.01 77.32 76.73 80.09 70.17 78.17 48.41 65.41
2,4,16 45.00 47.78 77.45 76.85 79.92 69.69 78.07 48.57 65.42
2,4,32 44.20 47.35 77.28 76.94 79.92 70.48 77.86 48.31 65.29
2,4,64 44.80 46.67 77.31 76.89 80.30 69.93 77.77 48.36 65.26

Gate Transformation. Different modules within and between layers share the parameters with the hidden dimension of ds.
Besides, each module contains an input gate and an output gate to transform the dimensions. Specifically, the parameters of
intra-sharing Sintra = 2(Ldsrintra+M(d+ds))), and the parameters of inter-sharing Sintra = 2(dsrinter+ML(d+ds)).

Kronecker Extension. Different modules within and between layers share the parameters with the hidden dimension of
ds. Besides, each module contains a Kronecker kernel K ∈ R1×k to transform the dimensions. Specifically, the parameters
of intra-sharing Sintra = 2L(dsrintra +Mk), and the parameters of inter-sharing Sintra = 2(dsrinter + 2MLk).

A.5.2. MULTI-LORA SERVING ANALYSIS

0 200 400 600 800 1000
Number of Serving LoRA

10000

13000

16000

19000

22000

25000

28000

31000

M
em

or
y 

(M
B)

Memory Usage In Multi-lora Serving

Out Of Memory
LoRA
BSLoRA(KE)

Figure 6. Memory usage comparison of LoRA and BSLoRA
(KE) for serving different numbers of tasks.

In a multi-LoRA deployment, tasks share a common pre-trained
model, adapted to each task by loading specific LoRA param-
eters. Typically, all LoRA parameters are preloaded into GPU
memory to minimize task-switching latency and maximize GPU
utilization. However, with many tasks, only frequently used
parameters remain in GPU memory, while others are stored on
the CPU, causing delays during frequent task switching. To
mitigate this, we reduce the parameter size through sharing,
allowing more parameters to fit in GPU memory.

We conducted a comparative experiment to analyze the GPU
memory footprint of deploying different numbers of down-
stream tasks using the Llama model. Specifically, we deployed a
Llama 1-7B base model on an V100 32G GPU and measured the
memory usage for 100 to 1100 LoRA parameters and BSLoRA
(kE) parameters during inference. The results, shown in Figure 6, indicate that BSLoRA reduces memory usage by
approximately 60% compared to standard LoRA under the same number of parameters. Furthermore, when deploying
more than 350 LoRA parameters, the memory usage exceeds the GPU’s capacity. Furthermore, to determine the maximum
deployment capacity, we incrementally added parameters until the memory limit was reached. Our findings reveal that
standard LoRA can load up to 341 parameters, while BSLoRA supports up to 1095, significantly enhancing deployment
efficiency.

A.5.3. CONTRIBUTION ANALYSIS

We further investigate how performance is affected when intra-layer and inter-layer parameter sharing are applied indepen-
dently under different rank settings. Using the Llama 1-7B model fine-tuned on the Alpaca dataset, we configured various

17



BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

shared rank settings for different shape transformation modalities and evaluated the results on the CommonSense task. The
findings, presented in Table 11, demonstrate that intra-layer sharing alone outperforms inter-layer sharing alone in terms
of performance. However, inter-layer sharing is significantly more parameter-efficient, achieving comparable results with
fewer parameters. This trade-off underscores the complementary benefits of combining both strategies.

Additionally, we observed that using the GT approach to increase the rank for either intra-layer or inter-layer sharing alone
does not lead to significant performance improvements and may even degrade performance. In contrast, for the SS and KE
methods, increasing the rank consistently enhances model performance, further emphasizing the benefits of tailored sharing
strategies.

Table 11. Different configurations of ranks for our BSLoRA. Boldface denotes the best results in terms of the corresponding metrics, and
underline means the second-best performance.

Method Mode Ranks OBQA ARC-c HellaSwag ARC-e PIQA WinoG. BoolQ SIQA Avg.

Adjust intra

SS 0,8,0 45.00 47.70 77.32 76.64 80.25 70.01 78.10 48.41 65.43
SS 0,16,0 45.20 47.10 77.31 77.02 80.14 70.09 78.01 48.82 65.46
SS 0,32,0 45.40 47.35 77.18 76.47 80.09 69.69 78.50 49.18 65.48

GT 0,8,0 43.20 45.99 76.52 75.63 79.11 69.85 74.98 46.16 63.93
GT 0,16,0 43.80 45.48 75.71 75.55 79.38 69.53 74.16 45.70 63.66
GT 0,32,0 43.60 44.88 76.03 75.34 79.00 70.01 73.00 46.11 63.50

KE 0,8,0 45.40 48.04 77.16 76.35 80.20 70.72 75.90 46.78 65.07
KE 0,16,0 45.80 46.93 77.48 76.73 80.03 70.56 75.93 47.44 65.11
KE 0,32,0 45.20 47.10 77.53 76.39 79.82 70.24 75.96 47.13 64.92

Adjust inter

SS 0,0,8 44.60 48.29 77.23 77.02 80.20 69.85 77.74 48.31 65.40
SS 0,0,16 44.40 48.72 77.35 76.64 80.09 70.32 78.23 47.95 65.46
SS 0,0,32 44.40 47.78 77.36 76.94 80.03 70.80 78.75 48.21 65.53

GT 0,0,8 44.40 45.56 76.41 75.67 79.38 69.85 75.84 45.75 64.11
GT 0,0,16 44.00 46.33 76.87 76.14 79.11 69.30 74.40 46.93 64.13
GT 0,0,32 44.40 44.97 76.00 72.73 79.11 69.38 75.11 45.75 63.43

KE 0,0,8 43.80 45.65 75.70 75.63 79.38 70.01 75.66 46.47 64.04
KE 0,0,16 45.80 46.93 76.59 76.77 79.16 70.64 76.57 47.75 65.03
KE 0,0,32 46.00 45.56 76.17 76.30 79.16 70.01 76.79 47.80 64.72

A.5.4. BSLORA PLACEMENT ANALYSIS

To ensure a fair evaluation of parameter sharing contributions across module types, we conducted a controlled ablation study
comparing three configurations: (1) applying BSLoRA exclusively to attention modules, (2) restricting BSLoRA to MLP
modules, and (3) jointly applying BSLoRA to both attention and MLP modules.

Our experiments results (shown in Table 12) reveal two critical findings. First, BSLoRA achieves significantly higher
performance when applied to attention modules alone compared to MLP-only adaptation, suggesting that attention layers
exhibit more pronounced parameter redundancy. Second, the combined application of BSLoRA to both attention and
MLP modules yields superior results over attention-only tuning, implying that redundancy exists not only across layers
(inter-layer) but also across module types within individual layers (intra-layer).

B. Future Work
In the future, we will explore more intelligent parameter sharing modes that can selectively select different modules or
different layers for parameter sharing, ultimately further improving the performance of the model.

B.1. LLM versions.

We provide the Hugging Face link of LLMs used in the experiment: Llama 1-7B: https://huggingface.co/
baffo32/decapoda-research-llama-7B-hf; Llama 3-8B: https://huggingface.co/meta-llama/

18

https://huggingface.co/baffo32/decapoda-research-llama-7B-hf
https://huggingface.co/baffo32/decapoda-research-llama-7B-hf
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B


BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

Table 12. Different placement of modules for BSLoRA. Boldface denotes the best results in terms of the corresponding metrics, and
underline means the second-best performance.

Shared Modules Methods OBQA ARC-c HellaSwag ARC-e PIQA WinoG. BoolQ SIQA Avg. Overall

Attention
BSLoRA (SS) 46.00 56.48 83.09 82.91 81.83 73.72 83.09 48.00 68.39

69.09BSLoRA (GT) 46.00 57.34 79.78 83.04 81.99 73.80 81.38 48.62 68.99
BSLoRA (KE) 45.80 56.74 79.90 82.53 81.83 74.03 81.56 48.72 68.89

MLP
BSLoRA (SS) 46.20 57.42 79.95 83.33 81.88 73.95 81.83 48.52 69.14

69.01BSLoRA (GT) 45.80 56.91 79.72 83.25 81.94 73.64 81.80 48.77 68.98
BSLoRA (KE) 46.40 56.91 79.81 82.95 81.94 73.48 81.50 48.41 68.93

Attention
& MLP

BSLoRA (SS) 46.40 57.17 79.96 82.95 81.94 74.74 83.09 49.03 69.41
69.25BSLoRA (GT) 46.20 56.83 79.89 82.87 81.94 74.27 82.97 48.36 69.17

BSLoRA (KE) 46.40 56.67 80.04 83.08 82.15 73.64 82.60 48.98 69.18

Meta-Llama-3.1-8B; Llama 1-13B: https://huggingface.co/yahma/llama-13b-hf; Qwen2.5-7B:
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct.

B.2. Software and hardware configuration.

Our implementation utilizes the following configurations: PyTorch version 2.1.2, Transformers library version 4.41.0, PEFT
(Parameter-Efficient Fine-Tuning) library version 0.11.1, CUDA version 12.4, GPU: NVIDIA V100 GPU with 32GB of
memory, NVIDIA A100 GPU with 80GB, Operating System: Ubuntu.

B.3. Datasets and Benchmarks

BoolQ (Clark et al., 2019) is a dataset for yes/no question answering. It consists of naturally occurring questions paired
with passages extracted from Wikipedia. It is part of the SuperGLUE benchmark, a suite of challenging NLP tasks. It is
used to assess a model’s ability to perform reading comprehension and binary classification based on the context provided.

PIQA (Bisk et al., 2020) is a dataset designed to evaluate commonsense reasoning about physical interactions. It contains
multiple-choice questions related to everyday physical tasks, asking models to choose the most plausible way of completing
or describing an action. It is used as a benchmark for evaluating the commonsense reasoning abilities of language models,
particularly in the context of tasks requiring physical understanding.

HellaSwag (Zellers et al., 2019) is a large-scale dataset for evaluating commonsense reasoning and natural language
inference. The task involves selecting the most plausible continuation of a given story or event description from multiple
choices. It is used to benchmark models on their ability to perform commonsense reasoning, particularly in cases where the
correct answer requires understanding context, sequencing, and implications.

WinoGrande (Sakaguchi et al., 2021) is a large-scale dataset for commonsense reasoning, specifically designed to address
the limitations of the Winograd Schema Challenge. The task involves resolving pronoun references in sentences, where the
correct interpretation requires commonsense knowledge. It is used as a benchmark for evaluating models on their ability to
perform pronoun resolution and commonsense reasoning.

ARC-easy (Clark et al., 2018) and ARC-challenge (Clark et al., 2018) are part of the AI2 Reasoning Challenge, designed
to evaluate a model’s ability to answer multiple-choice questions that require complex reasoning and background knowledge.
They are used as a benchmark for testing advanced question-answering systems, especially those requiring sophisticated
reasoning, knowledge integration, and inference capabilities.

OpenbookQA (Mihaylov et al., 2018) is a multiple-choice question-answering dataset that focuses on elementary science
questions. The dataset comes with an ”open book” of scientific facts, and models must combine this knowledge with
reasoning to answer the questions correctly. It is used as a benchmark for evaluating a model’s ability to perform open-
domain question answering, where success requires not just knowledge retrieval but also reasoning and application of that
knowledge.

Social QA (Sap et al., 2019) , often abbreviated as SIQA, is composed of question-answer pairs that simulate real-world
information-seeking dialogues. This dataset is designed to assess the capability of models to engage in information-seeking

19

https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
https://huggingface.co/yahma/llama-13b-hf
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct


BSLoRA: Enhancing the Parameter Efficiency of LoRA with Intra-Layer and Inter-Layer Sharing

conversations, where the model must ask clarifying questions to a human user to gather information and then provide an
answer to the original query.

MMLU (Hendrycks et al., 2021) is a benchmark designed to assess a model’s world knowledge and problem-solving
abilities across a wide range of subjects. It evaluates models in both zero-shot and few-shot settings, making the tasks more
challenging and aligned with human evaluation methods. The benchmark spans 57 subjects, including STEM, humanities,
social sciences, and other fields, with difficulty levels ranging from elementary to advanced professional. Each question
presents four answer choices, and the task is to predict the correct one based on the given instruction.

20


