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Abstract

Recent self-supervised methods for image representation learning maximize the1

agreement between embedding vectors produced by encoders fed with different2

views of the same image. The main challenge is to prevent a collapse in which3

the encoders produce constant or non-informative vectors. We introduce VICReg4

(Variance-Invariance-Covariance Regularization), a method that explicitly avoids5

the collapse problem with two regularizations terms applied to both embeddings6

separately: (1) a term that maintains the variance of each embedding dimension7

above a threshold, (2) a term that decorrelates each pair of variables. Unlike8

most other approaches to the same problem, VICReg does not require techniques9

such as: weight sharing between the branches, batch normalization, feature-wise10

normalization, output quantization, stop gradient, memory banks, etc., and achieves11

results on par with the state of the art on several downstream tasks. In addition, we12

show that our variance regularization term stabilizes the training of other methods13

and leads to performance improvements.14

1 Introduction15

Self-supervised representation learning has made significant progress over the last years, almost16

reaching the performance of supervised baselines on many downstream tasks [1, 2, 3, 4, 5, 6, 7, 8, 9].17

Several recent approaches rely on a joint embedding architecture in which two networks are trained to18

produce similar embeddings for different views of the same image. A popular instance is the Siamese19

network architecture [10], where the two networks share the same weights. The main challenge with20

joint embedding architectures is to prevent a collapse in which the two branches ignore the inputs and21

produce identical output vectors. There are two main approaches to preventing collapse: contrastive22

methods and information maximization methods. Contrastive methods [3, 11, 12] use a loss that23

explicitly pushes the embeddings of dissimilar images away from each other. They often require a24

mining procedure to search for offending dissimilar samples from a memory bank [3] or from the25

current batch [12]. Contrastive methods tend to be costly, require large batch sizes or memory banks,26

and do not seem to scale well with the dimension of the embedding. Quantization-based approaches27

[5, 13] force the embeddings of different samples to belong to different clusters on the unit sphere.28

Collapse is prevented by ensuring that the assignment of samples to clusters is as uniform as possible.29

A similarity term encourages the cluster assignment score vectors from the two branches to be30

similar. More recently, a few methods have appeared that do not rely on contrastive samples or vector31

quantization, yet produce high-quality representations, for example BYOL [6] and SimSiam [7].32

They exploit several tricks: batch-wise or feature-wise normalization, a "momentum encoder" in33

which the parameter vector of one branch is a low-pass-filtered version of the parameter vector of the34

other branch [6, 14], or a stop-gradient operation in one of the branches [7]. The dynamics of learning35

in these methods, and how they avoid collapse, is not fully understood, although theoretical and36

empirical studies point to the crucial importance of batch-wise or feature-wise normalization [14, 15].37

Finally, an alternative class of collapse prevention methods relies on maximizing the information38

content of the embedding [9, 16]. These methods prevent informational collapse by decorrelating39
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Figure 1: VICReg: joint embedding architecture with variance, invariance and covariance
regularization. Given a batch of images I , two batches of different views X and X ′ are produced
and are then encoded into representations Y and Y ′. The representations are fed to an expander
producing the embeddings Z and Z ′. The distance between two embeddings from the same image is
minimized, the variance of each embedding variable over a batch is maintained above a threshold, and
the covariance between pairs of embedding variables over a batch are attracted to zero, decorrelating
the variables from each other. Although the two branches do not require identical architectures nor
share weights, in most of our experiments, they are Siamese with shared weights: the encoders are
ResNet-50 backbones with output dimension 2048. The expanders have 3 fully-connected layers of
size 8192.

every pair of variables of the embedding vectors. This indirectly maximizes the information content40

of the embedding vectors. The Barlow Twins method drives the normalized cross-correlation matrix41

of the two embeddings towards the identity [9], while the Whitening-MSE method whitens and42

spreads out the embedding vectors on the unit sphere [16].43

2 VICReg: intuition44

We introduce VICReg (Variance-Invariance-Covariance Regularization), a self-supervised method for45

training joint embedding architectures based on the principle of preserving the information content of46

the embeddings. The basic idea is to use a loss function with three terms:47

• Invariance: the mean square distance between the embedding vectors.48

• Variance: a hinge loss to maintain the standard deviation (over a batch) of each variable of49

the embedding above a given threshold. This term forces the embedding vectors of samples50

within a batch to be different.51

• Covariance: a term that attracts the covariances (over a batch) between every pair of52

(centered) embedding variables towards zero. This term decorrelates the variables of each53

embedding and prevents an informational collapse in which the variables would vary54

together or be highly correlated.55

Variance and Covariance terms are applied to both branches of the architecture separately, thereby56

preserving the information content of each embedding at a certain level and preventing informational57

collapse independently for the two branches. The main contribution of this paper is the Variance58

preservation term, which explicitly prevents a collapse due to a shrinkage of the embedding vectors59

towards zero. The Covariance criterion is borrowed from the Barlow Twins method and prevents60

informational collapse due to redundancy between the embedding variables [9]. VICReg is more61

generally applicable than most of the aforementioned methods because of fewer constraints on the62

architecture. In particular, VICReg:63

• does not require that the weights of the two branches be shared, not that the architectures be64

identical, nor that the inputs be of the same nature;65

• does not require a memory bank, nor contrastive samples, nor a large batch size;66

• does not require batch-wise nor feature-wise normalization; and67

• does not require vector quantization nor a predictor module.68

Other methods require asymmetric stop gradient operations, as in SimSiam [7], weight sharing69

between the two branches as in classical Siamese nets, or weight sharing through exponential moving70
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average dampening with stop gradient in one branch, as in BYOL and MoCo [3, 6, 17], large batches71

of contrastive samples, as in SimCLR [12], or batch-wise and/or feature-wise normalization [5, 6, 7,72

9, 16]. One of the most interesting feature of VICReg is the fact that the two branches are not required73

to share the same parameters, architecture, or input modality. This opens the door to the use of74

non-contrastive self-supervised joint-embedding for multi-modal signals, such as video and audio. We75

demonstrate the effectiveness of the proposed approach by evaluating the representations learned with76

VICReg on several downstream image recognition tasks including linear head and semi-supervised77

evaluation protocols for image classification on ImageNet [18], and other classification, detection78

and instance segmentation tasks. Furthermore, we show that incorporating variance preservation79

into other self-supervised joint-embedding methods yields better training stability and performance80

improvement on downstream tasks. More generally, we show that VICReg is an explicit and effective,81

yet simple method for preventing collapse in self-supervised joint-embedding learning.82

3 Related work83

Contrastive learning. In contrastive SSL methods applied to joint embedding architectures, the84

output embeddings for a sample and its distorted version are brought close to each other, while85

other samples and their distortions are pushed away. The method is most often applied to Siamese86

architectures in which the two branches have identical architectures and share weights [2, 3, 10, 11,87

12, 17, 19, 20, 21, 22, 23]. Many authors use the InfoNCE loss [22] in which the repulsive force88

is larger for contrastive samples that are closer to the reference. While these methods yield good89

performance, they require large amounts of contrastive pairs in order to work well. These contrastive90

pairs can be sampled from a memory bank as in MoCo [3], or given by the current batch of data as in91

SimCLR [12], with a significant memory footprint. This downside of contrastive methods motivates92

a search for alternatives.93

Clustering methods. Instead of viewing each sample as its own class, clustering-based methods94

group them into clusters based on some similarity measure [5, 13, 24, 25, 26, 27, 28, 29, 30, 31].95

DeepCluster [13] uses k-means assignments of representations from previous iterations as pseudo-96

labels for the new representations, which requires an expensive clustering phase done asynchronously,97

and makes the method hard to scale up. SwAV [5] mitigates this issue by learning the clusters online98

while maintaining a balanced partition of the assignments through the Sinkhorn-Knopp transform [32].99

These clustering approaches can be viewed as contrastive learning at the level of clusters which still100

requires a lot of negative comparisons to work well.101

Distillation methods. Recent proposals such as BYOL, SimSiam, OBoW and variants [6, 7, 8, 14,102

33] have shown that collapse can be avoided by using architectural tricks inspired by knowledge103

distillation [34]. These methods train a student network to predict the representations of a teacher104

network, for which the weights are a running average of the student network’s weights [6], or105

are shared with the student network, but no gradient is back-propagated through the teacher [7].106

These methods are effective, but there is no clear understanding of how t but suffer from a lack of107

explainability regarding the way collapsing solutions are avoided. Alternatively, the images can be108

represented as bags of word over a dictionary of visual features, which effectively prevents collapse.109

In [33] and [8] the dictionary is obtained by off-line or on-line clustering. By contrast, our method110

explicitly prevents collapse in the two branches independently, which removes the requirement for111

shared weights and identical architecture, opening the door to the application of joint-embedding112

SSL to multi-modal signals.113

Information maximization methods. A principle to prevent collapse is to maximize the information114

content of the embeddings. Two such methods were recently proposed: W-MSE [16] and Barlow115

Twins [9]. In W-MSE, an extra module transforms the embeddings into the eigenspace of their116

covariance matrix (whitening or Karhunen-Loève transform), and forces the vectors thereby obtained117

to be uniformly distributed on the unit sphere. In Barlow Twins, a loss term attempts to make the118

normalized cross-correlation matrix of the embedding vectors from the two branches to be close to119

the identity. Both methods attempt to produce embedding variables that are decorrelated from each120

other, thus preventing an informational collapse in which the variables carry redundant information.121

Because all variables are normalized over a batch, there is no incentive for them to shrink nor expand.122

This seems to sufficient to prevent collapse. Our method borrows the decorrelation mechanism of123

Barlow Twins. But it includes an explicit variance-preservation term for each variable of the two124

embeddings and thus does not require any normalization.125
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4 VICReg: detailed description126

VICReg follows recent trends in self-supervised learning [5, 6, 7, 9, 12] and is based on a joint127

embedding architecture. Contrary to many previous approaches, our architecture may be completely128

symmetric or completely asymmetric with no shared structure or parameters between the two branches.129

In most of our experiments, we use a Siamese net architecture in which the two branches are identical130

and share weights. Each branch consists of an encoder fθ that outputs the representations (used for131

downstream tasks), followed by an expander hφ that maps the representations into an embedding132

space where the loss function will be computed. The role of the expander is twofold: (1) eliminate133

the information by which the two representations differ, (2) expand the dimension in a non-linear134

fashion so that decorrelating the embedding variables will reduce the dependencies (not just the135

correlations) between the variables of the representation vector. The loss function uses a term s that136

learns invariance to data transformations and is regularized with a variance term v that prevents norm137

collapse and a covariance term c that prevents informational collapse by decorrelating the different138

dimensions of the vectors. After pretraining, the expander is discarded and the representations of the139

encoder are used for downstream tasks.140

4.1 Method141

Given an image i sampled from a dataset D, two transformations t and t′ are sampled from a142

distribution T to produce two different views x = t(i) and x′ = t′(i) of i. These transformations143

are random crops of the image, followed by color distortions. The distribution T is described in144

Appendix C. The views x and x′ are first encoded by fθ into their representations y = fθ(x) and145

y′ = fθ(x
′), which are then mapped by the expander hφ onto the embeddings z = hφ(y) and146

z′ = hφ(y′). The loss is computed at the embedding level on z and z′.147

We describe here the variance, invariance and covariance terms that compose our loss function. The148

images are processed in batches, and we denote Z = [z1, . . . , zn] and Z ′ = [z′1, . . . , z
′
n] the two149

batches composed of n vectors of dimension d, of embeddings coming out of the two branches of150

the siamese architecture. We denote by zj the vector composed of each value at dimension j in151

all vectors in Z. We define the variance regularization term v as a hinge function on the standard152

deviation of the embeddings along the batch dimension:153

v(Z) =
1

d

d∑
j=1

max(0, γ − S(zj , ε)), (1)

where S is the regularized standard deviation defined by:154

S(x, ε) =
√

Var(x) + ε, (2)

γ is a constant target value for the standard deviation, fixed to 1 in our experiments, ε is a small155

scalar preventing numerical instabilities. This criterion encourages the variance inside the current156

batch to be equal to γ along each dimension, preventing collapse with all the inputs mapped on the157

same vector. Using the standard deviation and not directly the variance is crucial. Indeed, if we take158

S(x) = Var(x) in the hinge function, the gradient of S with respect to x becomes close to 0 when x159

is close to x̄. In this case, the gradient of v also becomes close to 0 and the embeddings collapse. We160

define the covariance matrix of Z as:161

C(Z) =
1

n− 1

n∑
i=1

(zi − z̄)(zi − z̄)T , where z̄ =
1

n

n∑
i=1

zi. (3)

Inspired by Barlow Twins [9], we can then define the covariance regularization term c as the sum of162

the squared off-diagonal coefficients of C(Z), with a factor 1/d that scales the criterion as a function163

of the dimension:164

c(Z) =
1

d

∑
i6=j

[C(Z)]2i,j . (4)

This term encourages the off-diagonal coefficients of C(Z) to be close to 0, decorrelating the different165

dimensions of the embeddings and preventing them from encoding similar information. Decorrelation166

at the embedding level ultimately has a decorrelation effect at the representation level, which is a167

non trivial phenomenon that we study in Appendix D. We finally define the invariance criterion s168
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between Z and Z ′ as the mean-squared euclidean distance between each pair of vectors, without any169

normalization:170

s(Z,Z ′) =
1

n

∑
i

‖zi − z′i‖22. (5)

The overall loss function is a weighted average of the invariance, variance and covariance terms:171

`(Z,Z ′) = λs(Z,Z ′) + µ[v(Z) + v(Z ′)] + ν[c(Z) + c(Z ′)], (6)

where λ, µ and ν are hyper-parameters controlling the importance of each term in the loss. In our172

experiments, we set ν = 1 and perform a grid search on the values of λ and µ with the base condition173

λ = µ > 1. The overall objective function taken on all images over an unlabelled dataset D is given174

by:175

L =
∑
I∈D

∑
t,t′∼T

`(ZI , Z ′I), (7)

where ZI and Z ′I are the batches of embeddings corresponding to the batch of images I transformed176

by t and t′. The objective is minimized for several epochs, over the encoder parameters θ and177

expander parameters φ. We illustrate the architecture and loss function of VICReg in Figure 1.178

179

4.2 Implementation details180

Algorithm 1: VICReg pseudocode.

# f: encoder network, lambda, mu, nu: coefficients of the invariance, variance and
covariance losses, N: batch size, D: dimension of the representations

# mse_loss: Mean square error loss function, off_diagonal: off-diagonal elements
of a matrix, relu: ReLU activation function

for x in loader: # load a batch with N samples
# two randomly augmented versions of x
x_a, x_b = augment(x)

# compute representations
z_a = f(x_a) # N x D
z_b = f(x_b) # N x D

# invariance loss
sim_loss = mse_loss(z_a, z_b)

# variance loss
std_z_a = torch.sqrt(z_a.var(dim=0) + 1e-04)
std_z_b = torch.sqrt(z_b.var(dim=0) + 1e-04)
std_loss = torch.mean(relu(1 - std_z_a)) + torch.mean(relu(1 - std_z_b))

# covariance loss
z_a = z_a - z_a.mean(dim=0)
z_b = z_b - z_b.mean(dim=0)
cov_z_a = (z_a.T @ z_a) / (N - 1)
cov_z_b = (z_b.T @ z_b) / (N - 1)
cov_loss = off_diagonal(cov_z_a).pow_(2).sum() / D

+ off_diagonal(cov_z_b).pow_(2).sum() / D

# loss
loss = lambda * sim_loss + mu * std_loss + nu * cov_loss

# optimization step
loss.backward()
optimizer.step()

Implementation details for pretraining with VI-181

CReg on the 1000-classes ImagetNet1 dataset182

without labels are as follows. Coefficients λ and183

µ are 25 and ν is 1 in Eq. (6), and ε is 0.0001184

in Eq. (1). The encoder network fθ is a stan-185

dard ResNet-50 backbone [35] with 2048 output186

units. The expander hφ is composed of two187

fully-connected layers with batch normalization188

(BN) [36] and ReLU, and a third linear layer.189

The sizes of all 3 layers were set to 8192. As190

with Barlow Twins, performance improves when191

the size of the expander layers is larger than the192

dimension of the representation. The impact193

of the expander dimension on performance is194

studied in Appendix D. The training protocol fol-195

lows those of BYOL and Barlow Twins: LARS196

optimizer [37, 38] run for 1000 epochs with a197

weight decay of 10−6 and a learning rate lr = batch_size/256× base_lr, where batch_size is set198

to 2048 by default and base_lr is a base learning rate set to 0.2. The learning rate follows a cosine199

decay schedule [39], starting from 0 with 10 warmup epochs and with final value of 0.002.200

5 Results201

In this section, we evaluate the representations obtained after self-supervised pretraining of a ResNet-202

50 [35] backbone with VICReg during 1000 epochs, on the training set of ImageNet, using the203

training protocol described in section 4.204

5.1 Evaluation on ImageNet205

Following the ImageNet [18] linear evaluation protocol, we train a linear classifier on top of the206

frozen representations of the ResNet-50 backbone pretrained with VICReg. We also evaluate the207

performance of the backbone when fine-tuned with a linear classifier on a subset of ImageNet’s208

training set using 1% or 10% of the labels, using the split of [12]. We give implementation details209

about the optimization procedure for these tasks in Appendix C. We have applied the training210

procedure described in section 4 with three different random initialization. The numbers reported in211

Table 1 for VICReg are the mean scores, and we have observed that the difference between worse212

and best run is lower than 0.1% accuracy for linear classification, which shows that VICReg is a213

1ImageNet is free to use for research purpose and non-commercial use only.
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Table 1: Evaluation on ImageNet. Evaluation of the representations obtained with a ResNet-50
backbone pretrained with VICReg on: (1) linear classification on top of the frozen representations
from ImageNet; (2) semi-supervised classification on top of the fine-tuned representations from
1% and 10% of ImageNet samples. We report Top-1 and Top-5 accuracies (in %). Top-3 best
self-supervised methods are underlined.

Linear Classification Semi-supervised Classification

Method Top-1 Top-5 Top-1 Top-5
1% 10% 1% 10%

Supervised 76.5 - 25.4 56.4 48.4 80.4

MoCo [3] 60.6 - - - - -
PIRL [2] 63.6 - - - 57.2 83.8
CPC v2 [40] 63.8 - - - - -
CMC [41] 66.2 - - - - -
SimCLR [12] 69.3 89.0 48.3 65.6 75.5 87.8
MoCo v2 [17] 71.1 - - - - -
SimSiam [7] 71.3 - - - - -
SwAV [5] 71.8 - - - - -
InfoMin Aug [4] 73.0 91.1 - - - -
OBoW [8] 73.8 - - - 82.9 90.7
BYOL [6] 74.3 91.6 53.2 68.8 78.4 89.0
SwAV (w/ multi-crop) [5] 75.3 - 53.9 70.2 78.5 89.9
Barlow Twins [9] 73.2 91.0 55.0 69.7 79.2 89.3
VICReg (ours) 73.2 91.1 54.8 69.5 79.4 89.5

very stable algorithm. Lack of time has prevented us from doing the same for the semi-supervised214

classification experiments, and the experiments of section 5.2 and 6, but we expect similar conclusion215

to hold. We compare in Table 1 our results on both tasks against other methods on the validation216

set of ImageNet. The performance of VICReg is on par with the state of the art without using the217

negative pairs of SimCLR, the clusters of SwAV, the bag-of-words representations of OBoW, or218

any asymmetric networks architectural tricks such as the momentum encoder of BYOL and the219

stop-gradient operation of SimSiam. The performance is comparable to that of Barlow Twins, which220

shows that VICReg’s more explicit way of constraining the variance and comparing views has221

the same power than maximizing cross-correlations between pairs of twin dimensions. The main222

advantage of VICReg is the modularity of its objective function and the potential applicability to223

multi-modal setups.224

5.2 Transfer to other downstream tasks225

Following the setup from [2], we train a linear classifier on top of the frozen representations learnt by226

our pretrained ResNet-50 backbone on a variety of different datasets: the Places205 [42] scene classi-227

fication dataset, the VOC07 [43] multi-label image classification dataset and the iNaturalist2018 [44]228

fine-grained image classification dataset2. We then evaluate the quality of the representations by229

transferring to other vision tasks including VOC07+12 [43] object detection using Faster R-CNN [45]230

with a R50-C4 backbone, and COCO [46] instance segmentation using Mask-R-CNN [47] with a231

R50-FPN backbone. We give implementation details in Appendix C. We report the performance232

in Table 2, VICReg performs on par with most concurrent methods, and better than Barlow Twins,233

across all classification tasks, but is slightly behind the top-3 on detection tasks. This could be234

explained by the fact that VICReg learns representations that are more invariant to transformation,235

but eliminates more low-level information about the images than the other methods.236

6 Ablation study237

In this section we study how the different components of our method contribute to its performance,238

as well as how they interact with components from other self-supervised methods. All reported239

2 Places205 was released under the CC-BY license. Pascal VOC, iNaturalist18 and COCO are free to use for
research purposes and non-commercial use only.
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Table 2: Transfer learning on downstream tasks. Evaluation of the representations from a ResNet-
50 backbone pretrained with VICReg on: (1) linear classification tasks on top of frozen representa-
tions, we report Top-1 accuracy (in %) for Places205 [42] and iNat18 [44], and mAP for VOC07 [43];
(2) object detection with fine-tunning, we report AP50 for VOC07+12 using Faster R-CNN with C4
backbone [45]; (3) object detection and instance segmentation, we report AP for COCO [46] using
Mask R-CNN with FPN backbone [47]. We use † to denote the experiments run by us. Top-3 best
self-supervised methods are underlined.

Linear Classification Object Detection

Method Places205 VOC07 iNat18 VOC07+12 COCO det COCO seg

Supervised 53.2 87.5 46.7 81.3 39.0 35.4

MoCo [3] 46.9 79.8 31.5 - - -
PIRL [2] 49.8 81.1 34.1 - - -
SimCLR [12] 52.5 85.5 37.2 - - -
MoCo v2 [17] 51.8 86.4 38.6 82.5 39.8 36.1
SimSiam [7] - - - 82.4 - -
BYOL [6] 54.0 86.6 47.6 - 40.4† 37.0†
SwAV (w/ multi-crop) [5] 56.7 88.9 48.6 82.6 41.6 37.8
OBoW [8] 56.8 89.3 - 82.9 - -
Barlow Twins [6] 54.1 86.2 46.5 82.6 40.0† 36.7†
VICReg (ours) 54.3 86.6 47.0 82.4 39.4 36.4

results are obtained on the linear evaluation protocol using a ResNet-50 backbone and 100 epochs of240

pretraining, which gives results consistent with those obtained with 1000 epochs of pretraining. The241

optimization setting used for each experiment is described in Appendix C.242

Asymmetric networks. We study the impact of different components used in asymmetric architec-243

tures and the effects of adding variance and covariance regularization, in terms of performance and244

training stability. Starting from a simple symmetric architecture with an encoder and an expander245

without batch normalization, which correspond to VICReg without batch normalization in the ex-246

pander, we progressively add batch normalization in the inner layers of the expander, a predictor,247

a stop-gradient operation and a momentum encoder. We use the training protocol and architecture248

of SimSiam [7] when a stop-gradient is used and the training protocol and architecture of BYOL249

[6] when a momentum encoder is used. The predictor as used in SimSiam and BYOL is a learnable250

module gψ that predicts the embedding of a view given the embedding of the other view of the same251

image. If z and z′ are the embeddings of two views of an image, then p = gψ(z) and p′ = gψ(z′)252

are the predictions of each view. The invariance loss function of Eq. (5) is now computed between a253

batch of embeddings Z = [z1, . . . , zn] and the corresponding batch of predictions P = [p′1, . . . , p
′
n],254

then symmetrized:255

s(Z,Z ′, P, P ′) =
1

2n

∑
i

D(zi − p′i) +
1

2n

∑
i

D(z′i − pi), (8)

where D is a distance function that depends on the method used. BYOL uses the mean square error256

between l2-normalized vectors, SimSiam uses the negative cosine similarity loss and VICReg uses257

the mean square error without l2-normalization. The variance and covariance terms are regularizing258

the output Z and Z ′ of the expander, which we empirically found to work better than regularizing259

the output of the predictor. We compare different settings in Table 3, based on the default data260

augmentation, optimization and architecture settings of the original BYOL, SimSiam and VICReg261

methods. In all settings, the absence of BN indicates that BN is also removed in the predictor when262

one is used.263

We analyse first the impact of variance regularization (VR) in the different settings. When using VR,264

adding a predictor (PR) to VICReg does not lead to a significant change of the performance, which265

indicates that PR is redundant with VR. In comparison, without VR, the representations collapse, and266

both stop-gradient (SG) and PR are necessary. Batch normalization in the inner layers of the expander267

(BN) in VICReg leads to a 1.0% increase in the performance, which is not a big improvement268

considering that SG and PR without BN is performing very poorly at 35.1%.269
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Table 3: Effect of incorporating variance and covariance regularization in different methods.
Top-1 ImageNet accuracy with the linear evaluation protocol after 100 pretraining epochs. For all
methods, pretraining follows the architecture, the optimization and the data augmentation protocol
of the original method using our reimplementation. ME: Momentum Encoder. SG: stop-gradient.
PR: predictor. BN: Batch normalization layers after input and inner linear layers in the expander. No
Reg: No additional regularization. Var Reg: Variance regularization. Var/Cov Reg: Variance and
Covariance regularization. Unmodified original setups are marked by a †.

Method ME SG PR BN No Reg Var Reg Var/Cov Reg

BYOL 3 3 3 3 69.3† 70.2 69.5
SimSiam 3 3 3 67.9† 68.1 67.6
SimSiam 3 3 35.1 67.3 67.1
SimSiam 3 collapse 56.8 66.1
VICReg 3 collapse 56.2 67.3
VICReg 3 3 collapse 57.1 68.7
VICReg 3 collapse 57.5 68.6†
VICReg collapse 56.5 67.4

Finally, incorporating VR with SG or ME further improves the performance by small margins of270

respectively 0.2% and 0.9%, which might be explained by the fact that these architectural tricks that271

prevent collapse are not perfectly maintaining the variance of the representations, i.e. very slow272

collapse is happening with these methods. We explain this intuition by studying the evolution of the273

standard deviation of the representations during pretraining for BYOL and SimSiam in Appendix D.274

We then analyse the impact of adding additional covariance regularization (CR) in the different275

settings, along with variance regularization. We found that optimization with SG and CR is hard,276

even if our analysis of the average correlation coefficient of the representations during pretraining277

in Appendix D shows that both fulfill the same objective. The performance of BYOL and SimSiam278

slightly drops compared to VR only, except when PR is removed, where SG becomes useless.279

BN is still useful and improves the performance by 1.3%. Finally with CR, PR does not harm280

the performance and even improves it by a very small margin. VICReg+PR with 1000 epochs of281

pretraining exactly matches the score of VICReg (73.2% on linear classification).282

Table 4: Impact of sharing weights
or not between branches. Top-1 ac-
curacy on linear classification with 100
pretraining epochs. In all settings, the
encoder and expander of both branches
share the same architecture, but either
share weights (3), or have different
weights in the two branches.

Encoder Expander Top-1

66.5
3 67.3

3 67.8
3 3 68.6

Weight sharing. Contrary to most self-supervised learn-283

ing approaches based on Siamese architectures, VICReg284

has several unique properties: (1) weights do not need to285

be shared between the branches, each branch’s weights are286

updated independently of the other branch’s weights; (2)287

the branches are regularized independently, the variance288

and covariance terms are computed on each branch indi-289

vidually; (3) no predictor is necessary unlike with methods290

where one branch predicts outputs of the other branch. Ta-291

ble 4 shows results on ImageNet using the standard linear292

protocol for situations where the weights of the encoder293

and the expander are shared or not. In all settings, there294

is no collapse and the performance is competitive. The295

slight drop in accuracy without sharing is likely due to the296

increased number of parameters. Importantly, the ability297

of VICReg to function with different parameters, ar-298

chitectures, and input modalities for the branches widens the applicability to joint-embedding299

SSL to many applications, including multi-modal signals.300

Loss function coefficients. Table 5 reports the performance for various values of the loss term301

coefficients in Eq. (6). Without variance regularization the representations immediately collapse to302

a single vector and the covariance term, which has no repulsive effect preventing collapse, has no303

impact. The invariance term is absolutely necessary and without it the network can not learn any304

good representations. By simply using the invariance term and variance regularization, which is a305

very simple baseline, VICReg still reaches an accuracy of 57.5%. These results show that variance306

and covariance regularizations have complementary effects.307
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Table 5: Impact of variance-covariance regu-
larization. Inv: a invariance loss is used, λ > 0,
Var: variance regularization, µ > 0, Cov: covari-
ance regularization, ν > 0, in Eq. (6).

Method λ µ ν Top-1

Inv 1 0 0 collapse
Inv + Cov 25 0 1 collapse
Inv + Cov 0 25 1 collapse
Inv + Var 1 1 0 57.5
Inv + Var + Cov (VICReg) 25 25 1 68.6

Table 6: Impact of normalization. Std: vari-
ables are centered and divided by their standard
deviation over the batch. This is applied or not
to the embedding and the expander hidden layers.
l2: the embedding vectors are l2-normalized.

Expander Embedding Top-1

Std None 68.6
Std Std 68.4
None None 67.4
None Std 67.2
Std l2 65.1

Normalizations. VICReg is the first self-supervised method for joint-embedding architectures308

we are aware of that does not require normalization. Contrary to SimSiam, W-MSE, SwAV and309

BYOL, and others, the embedding vectors are not projected on the unit sphere. Contrary to Barlow310

Twins, they are not standardized (equivalent to batch normalization without the adaptive parameters).311

Table 6 shows that the best settings do not involve any normalization of the embeddings, whether it312

is batch-wise or feature-wise (as in l2 normalization). Whenever the embeddings are standardized313

(lines 3 and 5 in the table) the covariance matrix of Eq. (3) becomes the normalized auto-correlation314

matrix with coefficients between -1 and 1. This hurts the accuracy by 1.1%. We observe that when315

unconstrained, the coefficients in the covariance matrix take values in a wider range, which seems to316

facilitate the training process. Standardization is still an important component that helps stabilize317

the training when used in the hidden layers of the expander, and the performance drops by 1.2%318

when it is removed. Projecting the embeddings on the unit sphere implicitly constrains their standard319

deviation along the batch dimension to be 1/
√
d, where d is the dimension of the vectors. We change320

the invariance term of Eq. (5) to be the mean square error between l2-normalized vectors, and the321

target γ in the variance term of Eq. (1) is set to 1/
√
d instead of 1, forcing the standard deviation322

to get closer to 1/
√
d, and the vectors to be spread out on the unit sphere. This puts a lot more323

constraints on the network and the performance drops by 3.5%.324

7 Discussion325

We introduced VICReg, a simple approach to self-supervised learning based on a triple objective:326

learning invariance to different views with a invariance term, avoiding collapse of the representations327

with a variance preservation term, and maximizing the information content of the representation328

with a covariance regularization term. VICReg achieves results on par with the state of the art on329

many downstream tasks, but is not subject to the same limitations as most other methods, particularly330

because it does not require the embedding branches to be identical or even similar.331

Limitations. The time and memory costs of VICReg are dominated by the computation of the332

covariance matrix for each processed batch, which is quadratic in the dimension of the embeddings.333

Our experimental analysis, which corroborates the analysis of [9], shows that increasing the dimension334

of the embeddings significantly improves performance. Future work will explore how this quadratic335

bottleneck can be overcome by different approximation techniques, as well as completely new336

information maximization approaches based on higher-order statistics, and whether large expander337

networks are required.338

SwAV [5] introduced multi-crop, a data-augmentation protocol where more than two views are339

produced for each image, which improves considerably the performance on downstream tasks. Using340

multi-crop with VICReg did not yield any performance improvement and showed signs of overfitting.341

More generally, multi-crop does not seem to help VICReg, Barlow Twins [9], SimSiam [7] nor BYOL342

[6], but yields performance improvements with SwAV [5], SimCLR [12] and MoCo [3], which might343

be related to the fact that these methods are contrastive.344

Broader impact. This work increases the domain of applicability of self-supervised learning, and345

may improve the performance on tasks for which labeled data is scarce, visual or otherwise, such346

as healthcare, environmental protection, material science, and the understanding and translation347

of rare languages. Using the method described here is not likely to mitigate the usual issues with348

machine-learning systems due to biases in the data or the model architecture.349
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