
PlanGEN: A Multi-Agent Framework for Generating Planning and
Reasoning Trajectories for Complex Problem Solving

Anonymous ACL submission

Abstract

Recent agent frameworks and inference-time001
algorithms often struggle with complex plan-002
ning problems due to limitations in verifying003
generated plans or reasoning and varying com-004
plexity of instances within a single task. Many005
existing methods for these tasks either perform006
task-level verification without considering con-007
straints or apply inference-time algorithms008
without adapting to instance-level complex-009
ity. To address these limitations, we propose010
PlanGEN, a model-agnostic and easily scalable011
agent framework with three key components:012
constraint, verification, and selection agents.013
Specifically, our approach proposes constraint-014
guided iterative verification to enhance per-015
formance of inference-time algorithms–Best016
of N , Tree-of-Thought, and REBASE. In017
PlanGEN framework, the selection agent op-018
timizes algorithm choice based on instance019
complexity, ensuring better adaptability to020
complex planning problems. Experimental021
results demonstrate significant improvements022
over the strongest baseline across multiple023
benchmarks, achieving state-of-the-art results024
on NATURAL PLAN (∼8%↑), Olympiad-025
Bench (∼4%↑), DocFinQA (∼7%↑), and026
GPQA (∼1%↑). Our key finding highlights027
that constraint-guided iterative verification im-028
proves inference-time algorithms, and adap-029
tive selection further boosts performance on030
complex planning and reasoning problems1.031

1 Introduction032

Effective planning is a crucial component for sys-033

tems designed to solve complex real-world prob-034

lems (Hao et al., 2023; Zhao et al., 2023; Wang035

et al., 2024c; Jiao et al., 2024; Wang et al., 2025).036

Traditional planning approaches, which rely heav-037

ily on template-based methods (Guan et al., 2023;038

Valmeekam et al., 2024; Wang et al., 2024b), of-039

ten lack generalizability and fail to capture the nu-040

1Source code will be available at <anonymous link>

ances of real-world tasks. In contrast, natural plan- 041

ning with LLMs offers a more promising direction, 042

aligning better with real-world planning scenarios 043

such as a trip or meeting planning (Zheng et al., 044

2024). Furthermore, Wang et al. (2025) shows that 045

planning in natural language helps solve practical 046

problems such as code generation. Thus, we aim to 047

enhance LLMs’ ability to generate effective natural 048

plans and demonstrate their usefulness in solving 049

downstream reasoning tasks within the scientific 050

and financial domains. For the scope of this study, 051

“planning” refers to the ability to decompose tasks 052

and reason strategically to achieve solutions. 053

In recent years, LLM agents have shown impres- 054

sive abilities to solve complex reasoning problems 055

(Yao et al., 2023; Xiao et al., 2024; Wang et al., 056

2024a). Orthogonal to this exploration, scaling a 057

search space during inference-time (i.e., test-time 058

scaling) (Snell et al., 2024; Welleck et al., 2024) 059

has gained popularity in tackling difficult problems 060

such as mathematical reasoning (Zhang et al., 2024) 061

and code generation (Wang et al., 2025). Despite 062

the success of these frameworks, we hypothesize 063

that they often struggle with complex planning 064

problems due to the lack of better verification mod- 065

ule, and a failure to account for instance-level com- 066

plexity across single-task. Furthermore, although 067

some initial explorations exist (Bohnet et al., 2024; 068

Lee et al., 2025)2, effectiveness of these frame- 069

works for natural planning is under-explored. Mo- 070

tivated by these, we proposed PlanGEN, a model- 071

agnostic, easily scalable, multi-agent framework 072

for effective natural plan generation. 073

PlanGEN consists of three specialized agents: 074

constraint agent, verification agent, and selec- 075

tion agent. The constraint agent extracts instance- 076

specific constraints (e.g., budget, concepts, rules, 077

etc.); the verification agent evaluates plan qual- 078

ity and provides a reward score considering the 079

2Extended related work is presented in App. A

1

Constraint
Agent

Task Description and Problem Statement

Example Task:
Schedule a 30-minute meeting for
Alexander, Elizabeth, and Walter on
Monday between 9:00 and 17:00.

Alexander: Busy at 9:30-10:00, 10:30-
11:00, 12:30-13:00, 14:30-15:00, 16:00-
17:00.
Elizabeth: Busy at 9:00-9:30, 11:30-
12:30, 13:00-14:30.
Walter: Busy at 9:00-14:30, 15:30-17:00.

Find an earliest time slot that works for
all participants.

Initial Generated Plan
1. Analyze Constraints: we need a half-
hour meeting ...
2. Identify individual availability ...
3. Determine common availability ...
4. Prioritize earliest time slot ...
5. Ensure solution exists ...

SOLUTION: Here is the proposed time:
Monday, 14:30 - 15:00

Generated Constraints
1. Analyze the list of participants
2. Make sure of correct meeting duration
3. Validate the time frame
4. Make sure of individual schedules
(availability and unavailability)

Multi-Agent BoN

Any LLM

Verifier Agent

Verify and Reward
1. Incorrect availability for Alex ...
2. Incorrect availability for Eliza ...
3. Incorrect availability for Walter ...
4. Incorrect common availability ...
5. Incorrect solution ...
6. Format adherence ...

Due to the significant errors in
determining availability and the
resulting incorrect solution, the plan
receives a low score.
Score: -50Selection Agent

Score
<

Th

Score
>

Th

Final Generated Plan

1. Re-analyze the constraints ...
2. Adjust incorrect individual
availability ..
3. Re-determine common
availability ...
4. Find common availability ...
5. Prioritize earliest time slot ...

SOLUTION: Here is the proposed
time: Monday, 15:00 - 15:30

LLM-based Selection
- Best of N: This problem involve ...
- Rebase: Rebase is not well-suited
for this since ...
- ToT: Tree of Thought is a good fit
for this since...
Scores: ("Best of N", 0.4),
("Rebase", 0.1), ("ToT", 0.9)

Modified UCB-based Selection
UCB Scores: ("Best of N", 4.0),
("Rebase", 1.0), ("ToT", 9.0)

Selected
Algorithm

Updated
Plan

Multi-Agent ToT

Multi-Agent RS

Iterative
Update

Pipeline for
Downstream
Reasoning

Plan Execution
+

Final Answer

Any
LLM

PlanGEN (Mixture of Algorithms)

Figure 1: Schematic representation of PlanGEN (Multi-Agent Mixture of Algorithms). An initial plan and con-
straints guide iterative plan refinement. The verification agent provides reward scores for plan quality, and the
selection agent chooses inference algorithms until the highest-reward plan is found and used for downstream rea-
soning (if needed). UCB: Upper Confidence Bound, BoN: Best of N , ToT: Tree-of-Thought, RS: REBASE.

constraints; and the selection agent dynamically080

chooses the best inference algorithm using an im-081

proved Upper Confidence Bound (UCB) formula082

(Han et al., 2024) for instance of different com-083

plexity. We explore popular and widely used three084

inference algorithms within PlanGEN: Best of N085

(Brown et al., 2024), Tree-of-Thought (ToT) (Yao086

et al., 2024), and REward-BAlanced SEarch (RE-087

BASE) (Wu et al., 2024a). We combine our agents088

with these algorithms, yielding four frameworks:089

(1) Multi-Agent Best of N , (2) Multi-Agent ToT,090

(3) Multi-Agent REBASE, and (4) Multi-Agent091

Mixture of Algorithms. “Multi-Agent” signifies092

using the constraint and verification agents for093

the first three approaches, and all three agents for094

the “Mixture of Algorithms” (Figure 1). Figure 1095

shows example from NATURAL PLAN (Calendar096

scheduling), and App. F provides more examples.097

To evaluate PlanGEN, we perform all experi-098

ments using Gemini-1.5-Pro (Team et al., 2024)099

as underlying model. We further present case-100

study on Gemini-2.0-Flash, and GPT-4o (Hurst101

et al., 2024) to show the model-agnostic nature.102

We evaluate natural language planning ability on103

NATURAL PLAN (Zheng et al., 2024), scientific/- 104

mathematical reasoning on GPQA (Rein et al., 105

2024) and OlympiadBench (He et al., 2024), and 106

financial reasoning on DocFinQA (Reddy et al., 107

2024). Performance is compared against Zero- 108

shot Chain-of-Thought (CoT) and a vanilla multi- 109

agent baselines. We achieve state-of-the-art results 110

on NATURAL PLAN (∼8%↑ average across all 111

categories), OlympiadBench (text-only) (∼5%↑ 112

on MATH, ∼4%↑ on PHYSICS), and DocFinQA 113

(∼7%↑). On GPQA, we outperform Gemini-1.5- 114

Pro (∼13%↑), GPT-4o (∼12%↑), and Claude-3.5- 115

Opus (∼9%↑), while achieving competitive perfor- 116

mance compared to the vanilla multi-agent baseline 117

(∼1%↑). Further analysis reveals that the simplest 118

method (i.e., Multi-Agent Best of N) achieves the 119

best performance on NATURAL PLAN (Figure 5). 120

Multi-Agent Mixture of Algorithms achieves the 121

best performance for complex problems (Figure 122

6) including GPQA, and OlympiadBench(MATH). 123

We further conduct a thorough analysis of the re- 124

sults which reveals several important findings. In 125

summary, our contributions are: (1) PlanGEN, a 126

novel, model-agnostic, and scalable multi-agent 127

2

framework for enhancing LLM natural planning;128

(2) SOTA results on several complex planning and129

reasoning benchmarks; and (3) a novel approach130

to constraint-based verification and instance-level131

complexity-based inference algorithm selection.132

2 PlanGEN133

2.1 Proposed LLM Agents134

PlanGEN comprises three specialized LLM agents:135

a constraint agent, a verification agent, and a se-136

lection agent. Each agent utilizes an off-the-shelf137

LLM (e.g., Gemini, GPT) which is equipped with138

task-specific prompts for efficient performance.139

2.1.1 Constraint Agent140

We define “constraints” as the criteria necessary for141

verifying solutions to planning problems. These cri-142

teria are inherently instance-specific. For instance,143

in the calendar scheduling from NATURAL PLAN,144

relevant constraints include ‘individual schedules’,145

‘availabilities’, and ‘preferences’. In a scientific146

reasoning problems from GPQA, constraints might147

be the ‘concepts used’, ‘calculation correctness’,148

and ‘formula selection’. We argue that careful ex-149

traction of instance-specific constraints is critical150

for successful verification.151

The constraint agent serves as a preprocessing152

component in the framework, designed to extract153

instance-specific constraints from the problem de-154

scription. By analyzing the input problem, this155

agent identifies all possible critical constraints that156

are required for generated plan verification. The157

extracted constraints provide a foundation for ver-158

ifying plans to improve the overall relevance and159

quality of the planning process. The prompt used160

by the constraint agent enables it to systematically161

identify constraints by asking the underlying LLM162

to focus on specific aspects of the problem descrip-163

tion. This ensures that no critical information is164

overlooked and that the resulting constraints are165

comprehensive. Prompts used by the constraint166

agent and examples of generated constraints are167

provided in App. B and App. F, respectively.168

2.1.2 Verification Agent169

The verification agent plays a critical role in the170

framework by assessing the quality of generated171

plans based on constraints generated by the con-172

straint agent. This agent ensures that plans are173

aligned with task objectives, adhere to constraints,174

and progress logically toward a correct and com-175

plete solution. The verification agent has two key176

components: (i) feedback generation, and (ii) nu- 177

merical reward score generation based on feedback. 178

Verification prompts and examples of verification 179

are provided in App. B and App. F, respectively. 180

Feedback Generation While verifying each 181

generated plan against different constraints, the ver- 182

ification agent generates detailed natural language 183

reasoning regarding plan quality. We consider this 184

explanation as “feedback”, offering interpretability 185

and actionable next step towards improvement. 186

Numerical Reward Generation Motivated by 187

Zhang et al. (2024), we instruct the agent to evalu- 188

ate the plan against various constraints and assign a 189

reward score on a scale of −100 to 100. The scor- 190

ing mechanism is designed to enforce strict quality 191

standards, with a threshold (e.g., a score of 95 or 192

higher) indicating a verified, high-quality plan. 193

2.1.3 Selection Agent 194

The selection agent dynamically determines the 195

most suitable inference algorithm for solving a 196

given problem instance based on its complexity. It 197

leverages a combination of historical performance; 198

diversity, and recovery scores; and guidance from a 199

LLM to adaptively select the best algorithm for the 200

current instance. To create the selection agent, we 201

utilize a modified Upper Confidence Bound (UCB) 202

policy. The policy combines multiple factors, in- 203

cluding normalized rewards, exploration bonuses, 204

diversity adjustments, and recovery scores. Addi- 205

tionally, the agent incorporates LLM-guided priors, 206

which provide algorithm suitability scores based 207

on the problem statement, task requirements, and 208

previous plan (if available). These priors enable 209

the agent to align its selections with the input in- 210

stance complexity and corresponding constraints, 211

improving the relevance of the chosen algorithm. 212

Modified UCB Policy equation combines sev- 213

eral terms to balance exploitation, and exploration 214

when selecting the best algorithm for given task 215

instance. To modify UCB, we first conducted a 216

preliminary ablation study, presented in App. B. 217

UCB(a) =
R(a)

N(a)
+

√
2 log(T + 1)

N(a)
218

+ λprior · Prior(a) 219

+
αdiversity

N(a) + 1
220

+ αrecovery · Srecovery(a) 221

3

All terms in equation given above are calculated222

across one evaluation run. Here, the cost of calcula-223

tion is negligible since it only utilizes reward values224

from previous runs, but only one LLM call require225

to get score for Prior(a). The first term, R(a)
N(a) , rep-226

resents the average reward for algorithm a, where227

R(a) is the total reward accumulated by the algo-228

rithm, and N(a) is the number of times the algo-229

rithm has been selected. This term ensures that al-230

gorithms with higher historical performance are pri-231

oritized. The second term,
√

2 log(T+1)
N(a) , serves as232

the exploration component, encouraging the selec-233

tion of algorithms with fewer trials, denoted as T .234

This term ensures that under-explored options are235

adequately evaluated. Furthermore, λprior ·Prior(a),236

which leverages LLM-guided priors to align algo-237

rithm selection with the instance-specific complex-238

ity. Here, λprior is a dynamically decaying weight239

defined as λprior
1+T , where T represents the total num-240

ber of trials. This decay gradually shifts the fo-241

cus from initial priors to historical performance242

as trials progress. The diversity bonus, αdiversity
N(a)+1 ,243

penalizes overused algorithms, ensuring balanced244

exploration across all options. Finally, the recovery245

term, αrecovery ·Srecovery(a), rewards algorithms that246

recover effectively from failures, with Srecovery(a)247

representing the recovery score for algorithm a.248

Selection Process This process begins by initial-249

izing algorithm-specific variables, such as accumu-250

lated rewards, selection counts, and failure counts.251

Further details on the algorithm can be found in252

Algorithm 1 (App. B). The agent then incorporates253

LLM-guided priors to generate suitability scores254

for the algorithms based on the problem statement255

and any provided feedback. These priors are de-256

rived from a LLM (prompt for this given in Ap-257

pendix B), and serve as initial estimates to adjust258

the UCB (Han et al., 2024) values.259

2.2 Proposed Frameworks260

Within PlanGEN, we propose four different frame-261

works: (1) Multi-Agent Best of N (Figure 2), (2)262

Multi-Agent ToT (Figure 3), and (3) Multi-Agent263

REBASE (Figure 4), and (4) Multi-Agent Mixture264

of Algorithms (Figure 1).265

2.2.1 Multi-Agent Best of N266

Motivated by Brown et al. (2024), we adapted the267

Best of N algorithm and modified it using our268

constraint and verification agents as illustrated in269

Figure 2. The framework generates N candidate270

Task Description
and Problem

Statement
Constraint

Agent

Set of
Constraints

Verification
Agent

Plan 1 Plan 2 Plan n

Reward 1 Reward 2 Reward n

Final Plan → Plan with Maximum Reward

Figure 2: Schematic representation of Multi-Agent
Best of N (BoN).

plans (Plan 1, Plan 2, ..., Plan n), and each plan is 271

assessed by a verification agent based on a set of 272

constraints. Then, a corresponding reward (Reward 273

1, Reward 2, ..., Reward n) gets assigned by the ver- 274

ification agent. Finally, the plan with the maximum 275

reward is chosen, guaranteeing an optimal solution 276

that best satisfies the problem constraints. 277

2.2.2 Multi-Agent ToT 278

ToT algorithm has been studied in detail for solv- 279

ing many complex problems (Yao et al., 2024). As 280

shown in Figure 3, we modify the ToT algorithm 281

with our constraint and verification agents. The 282

method begins by initializing a root node that repre- 283

sents the problem and generating multiple potential 284

next steps, creating a tree-like structure. The gen- 285

erated steps are verified using a verification agent 286

which assigns reward scores based on a set of con- 287

straints. The iterative process involves evaluating 288

all possible steps at a given depth, selecting the 289

most promising path based on reward scores, and 290

expanding it further by generating new steps. This 291

process continues until a valid solution is identi- 292

fied or a pre-defined limit on iterations is reached. 293

Further details on various prompts for the ToT are 294

presented in App. C. 295

2.2.3 Multi-Agent REBASE 296

The REBASE tree search method inherits the ex- 297

ploitation and pruning properties of tree search and 298

is well-studied for mathematical reasoning (Wu 299

et al., 2024a). As shown in Figure 4, the frame- 300

work incorporates a dynamic selection and expan- 301

sion strategy to iteratively refine solutions. At each 302

depth of the tree, candidate nodes are ranked based 303

on their assigned reward scores (obtained using a 304

4

Task Description
and Problem

Statement
Constraint

Agent

Set of
Constraints

Step 1 (1) Step 1 (2) Step 1 (3)

Step 2 (1) Step 2 (2) Step 2 (3)

Step n (1) Step n (2) Step n (3) Completion

Verification
Agent

Step
Reward 1

Step
Reward 2

Step
Reward 3

Iteratively happens for each step

Figure 3: Schematic representation of Multi-Agent
ToT. Highest-reward steps are highlighted in green.

verification agent), ensuring that the most promis-305

ing candidates are explored first. Even steps with306

lower rewards are considered but with a reducing307

number of children, meaning that their exploration308

depth is limited. This hierarchical pruning helps309

maintain efficiency, thereby reducing unnecessary310

exploration of weaker nodes. This process contin-311

ues until either a valid, complete solution is found312

or a predefined depth or width limit is reached.313

Also, there is a completion check similar to ToT314

which identifies nodes that represent complete solu-315

tions, enabling REBASE to terminate early once a316

satisfactory outcome is identified. App. C provides317

further details on prompts for the REBASE.318

2.2.4 Multi-Agent Mixture of Algorithms319

Figure 1 illustrates the Multi-Agent Mixture of Al-320

gorithms framework. This proposed framework321

introduces a selection agent (§2.1.3) which dynam-322

ically selects the best possible inference-time al-323

gorithms proposed in the above sections based on324

instance-level complexity. The framework oper-325

ates in a modular and iterative manner, ensuring326

adaptability in addressing planning and reasoning327

problems with different complexity effectively.328

Orchestration The process begins with generat-329

ing an initial plan using LLM based on the task de-330

scription and problem statement. Along with this,331

the constraint agent (§2.1.1) is employed to gener-332

ate an instance-specific set of constraints. Based333

on the constraints, the verification agent (§2.1.2)334

evaluates the quality of the initial plan and provides335

a reward score (indicated as ‘Score’ in Figure 1).336

If the initial plan meets the required threshold (de-337

noted by Th), it is acceptable as the “Final Plan”.338

Otherwise, the iterative refinement process begins.339

Task Description
and Problem

Statement
Constraint

Agent

Set of
Constraints

Step 1 (1) Step 1 (2) Step 1 (3)

Step 2 (1) Step 2 (2) Step 2 (1) Step 2 (2) Step 2 (3)

Step n (1) Step n (2) Step n (3)

Verification
Agent

Step Rewards
(Similar to ToT)

Figure 4: Schematic representation of Multi-Agent RE-
BASE. Green shading indicates step reward (darker =
higher). Darker steps prioritized for exploration.

Iterative Refinement The refinement loop is 340

driven by a suite of inference algorithms as shown 341

in Figure 1. During this iterative refinement, the 342

selection agent (§2.1.3) determines the most suit- 343

able algorithm based on the instance-specific com- 344

plexity and historical UCB values. The selected 345

algorithm produces an updated plan, which is then 346

re-evaluated by the verification agent. To ensure 347

continual improvement, the framework incorpo- 348

rates feedback generated by a verification agent 349

that provides guidance, and this feedback loop en- 350

ables the system to refine the plan incrementally. 351

3 Experiments and Results 352

3.1 Experimental Setup 353

Datasets To demonstrate improvement in natu- 354

ral planning abilities, we utilize the NATURAL 355

PLAN (Zheng et al., 2024). After improving the 356

planning, we show that this significantly enhances 357

the reasoning capabilities of LLMs on two bench- 358

marks: GPQA (Rein et al., 2024) and Olympiad- 359

Bench (text-only) (He et al., 2024). Additionally, 360

we show that PlanGEN improves performance on a 361

domain-specific dataset, DocFinQA (Reddy et al., 362

2024). Further details are presented in App. D. 363

Baselines and Our Frameworks We develop 364

two baselines for comparison with our frameworks: 365

(i) Zero-shot CoT (Kojima et al., 2024) and (ii) 366

a Vanilla Multi-Agent Baseline. In the Zero-shot 367

CoT, we provide an input prompt to the model, 368

which generates outputs in the form of <CoT rea- 369

soning, Answer>. For the “Multi-Agent Baseline”, 370

the same model is called iteratively across multiple 371

iterations. The system repeatedly refines its out- 372

5

Calendar Meeting Trip0

10

20

30

40

50

60

70

80

90
Ex

ac
t M

at
ch

 (%
)

34
.3

23
.9 25
.6

48
.9

38
.4

34
.7

5

50
.3

36
.8

14
.8

5

59
.9

39
.2

5

34
.5

6

59
.1

34
.9

31
.6

8

60
.7

43
.8

41
.6

3

59
.3

42
.2

41
.1

7

Gemini-1.5-Flash
Gemini-1.5-Pro
Multi-Agent (Baseline)
Multi-Agent REBASE (Ours)

Multi-Agent ToT (Ours)
Multi-Agent Best of N (Ours)
Multi-Agent Mixture of Algo. (Ours)

(a) NATURAL PLAN

MATH PHY0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

32
.6

3

28
.3

5

40
.0

6

23
.3

1

50
.6

8

27
.5

4

54
.9

31
.3

6

54
.4

5

29
.3

7

53
.8

5

31
.7

8

55
.9

4

31
.2

8

Gemini-1.5-Pro
GPT-4o
Multi-Agent (Baseline)
Multi-Agent REBASE (Ours)

Multi-Agent ToT (Ours)
Multi-Agent Best of N (Ours)
Multi-Agent Mixture of Algo. (Ours)

(b) OlympiadBench

GPQA0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

46
.2 47
.9

8

48 50
.4

59
.4

59
.0

1

56
.6

56
.6

57
.1 59

.6

Gemini-1.5-Pro
GPT-4o
GPT-4-Turbo
Claude-3-Opus
Claude-3.5-Sonnet

Multi-Agent (Baseline)
Multi-Agent REBASE (Ours)
Multi-Agent ToT (Ours)
Multi-Agent Best of N (Ours)
Multi-Agent Mixture of Algo. (Ours)

(c) GPQA

Accuracy F1-Score0

10

20

30

40

50

Pe
rfo

rm
an

ce
 (%

)

23
.7

5

22
.2

6

12
.0

4

10
.8

1

30
.7

2

29
.0

8

30
.5

28
.2

431
.1

6

29
.4

5

30
.2

9

27
.9

7

Gemini-1.5-Pro
Multi-Agent (Baseline)
Multi-Agent REBASE (Ours)

Multi-Agent ToT (Ours)
Multi-Agent Best of N (Ours)
Multi-Agent Mixture of Algo. (Ours)

(d) DocFinQA

Figure 5: Performance comparison of the proposed multi-agent frameworks against baselines across four bench-
marks. All experiments are conducted using Gemini-1.5-Pro. Algo: Algorithms, PHY: Physics.

puts through feedback loops, where the feedback is373

generated based on a self-reflective prompt (App.374

D) designed to improve reasoning. We evaluate375

all proposed frameworks (§2.2) on all benchmarks.376

For reasoning tasks, we use a two-stage approach:377

(1) generating an optimized plan using our frame-378

works, and (2) executing the plan to produce the379

final answer (Figure 1). App. D presents further380

details on model selection, metrics, and experiment381

hyper-parameters including the hyper-parameter382

choices for different inference-time algorithms.383

3.2 Main Results384

Figure 5 compares performance of multi-agent385

frameworks across various single-agent and multi-386

agent baselines (varies across benchmarks)3. From387

the results, it is evident that the multi-agent frame-388

works are consistently outperforming the baselines.389

3Some single-agent baselines for GPQA are obtained from
https://klu.ai/glossary/gpqa-eval

Performance on NATURAL PLAN From Fig- 390

ure 5a, Multi-Agent Best ofN achieves the highest 391

EM scores across all tasks: 60.70 (Calendar), 43.80 392

(Meeting), and 41.63 (Trip). In calendar schedul- 393

ing, all four frameworks surpass the strongest base- 394

line (Multi-Agent Baseline) by ∼ 10%. For meet- 395

ing and trip planning, all except ToT outperform 396

the best baseline (Gemini-1.5-Pro) by ∼ 6% and 397

∼ 7%, respectively. Mixture of Algo. achieves the 398

second-highest performance in meeting and trip 399

planning while remains competitive in calendar 400

scheduling. These results demonstrate the effective- 401

ness of our frameworks in handling diverse natural 402

language planning tasks and establishing SOTA for 403

all three categories of NATURAL PLAN. 404

Performance on OlympiadBench From Figure 405

5b, Mixture of Algorithms achieves the highest 406

accuracy in the MATH category (55.94%), out- 407

performing the strongest Multi-Agent baseline 408

(50.68%) by ∼ 5%. Notably, the superior per- 409

6

https://klu.ai/glossary/gpqa-eval

2,1 2,2 2,3 2,4 2,5 3,1 4,1 5,1 6,1 7,1
Calendar (Number of People, Days)

0

20

40

60

80

100
Ex

ac
t M

at
ch

 (%
)

Multi-Agent (Baseline)
Multi-Agent REBASE (Ours)
Multi-Agent ToT (Ours)

Multi-Agent Best of N (Ours)
Multi-Agent Mixture of Algo. (Ours)

Figure 6: Performance comparison of inference-time
algorithms across different complexity levels for calen-
dar scheduling from NATURAL PLAN.

formance of the Mixture of Algorithms in MATH410

highlights its effectiveness in complex mathemati-411

cal reasoning, setting a SOTA for the MATH. In the412

PHY category, all Multi-Agent frameworks surpass413

Gemini-1.5-Flash (strongest baseline), with Multi-414

Agent Best of N achieving the highest accuracy415

(31.78%), setting a SOTA for the PHY.416

Performance on GPQA From Figure 5c, the417

Mixture of Algorithms achieves the highest accu-418

racy (59.6%). The individual inference-time al-419

gorithms achieve a lower performance, indicating420

the usefulness of selection. All proposed frame-421

works outperform Gemini-1.5-Pro (46.2%), GPT422

models (∼ 48%), and Claude-3-Opus (50.4%) by a423

large margin. While Claude-3.5-Sonnet, and Multi-424

Agent Baseline perform competitively (∼ 59%)425

compared to Mixture of Algorithms.426

Performance on DocFinQA From Figure 5d,427

our frameworks significantly improve performance428

on DocFinQA, with Multi-Agent Best ofN achiev-429

ing the highest accuracy (31.16%) and F1-Score430

(29.45%), setting SOTA for the task. All our frame-431

works outperform the Gemini-1.5-Pro (strongest432

baseline) by a large margin (∼ 7%). These results433

highlight the effectiveness of multi-agent frame-434

works in financial document understanding, and435

performing reasoning over them.436

Performance of our frameworks w.r.t. different437

complexity As shown in Figure 6, we conduct a438

case study on calendar scheduling task from NAT-439

URAL PLAN to analyze the impact of varying440

complexity levels on the performance of different441

frameworks. For the calendar scheduling, we ob-442

serve that Multi-Agent ToT performs best for sim- 443

ple problems, while Multi-Agent Best ofN is more 444

effective for intermediate problems. As complexity 445

increases, a Mixture of Algorithms proves to be 446

the most effective approach. We further conduct a 447

similar analysis for meeting and trip planning from 448

NATURAL PLAN presented in App. E. 449

Main Findings Compared to single-agent sys- 450

tems, multi-agent frameworks consistently outper- 451

form in generating optimized planning trajectories 452

(Figure 5). Furthermore, Multi-Agent (Baseline) 453

is not always the strongest benchmark, as self- 454

correction can introduce challenges as shown in 455

Huang et al. (2024). Thus, different agents within 456

the system require distinct handling strategies sim- 457

ilar to our PlanGEN. Additionally, even in multi- 458

agent frameworks for PlanGEN, relying on a sin- 459

gle inference-time algorithm proves insufficient for 460

more complex problems (Figure 6). A Mixture of 461

Algorithms approach offers substantial advantages 462

for solving complex planning problems, highlight- 463

ing the importance of algorithm selection based 464

on instance-specific complexity (Figure 1). Given 465

that our frameworks are multi-agent, we provide 466

further discussion on # of LLM calls vs. their 467

performance in App. E. 468

4 Analysis and Discussion 469

Here, we discuss detailed analysis over importance 470

of our agents and model-agnostic nature of our 471

frameworks. Additionally, we also present more 472

analysis on results in App. E. 473

Importance of Verification Agent Figure 7 474

demonstrates the verification agent’s crucial role 475

in PlanGEN by showing a strong correlation be- 476

tween assigned reward values and prediction cor- 477

rectness (1 for correct, 0 for incorrect). The plot- 478

ted points represent the average correctness rate 479

for data buckets of varying reward values, each 480

bucket containing hundreds of samples. A logistic 481

regression model trained on DocFinQA and GPQA 482

data (∼ 1100 total samples) reveals a sigmoidal 483

trend: higher rewards correlate with increased suc- 484

cess probability, highlighting the agent’s effective- 485

ness. This reinforces the importance of constraint- 486

guided verification for improving inference-time 487

algorithms (see App. E for further details). 488

Importance of Selection Agent Figure 8 illus- 489

trates the importance of the selection agent by com- 490

paring the performance on the NATURAL PLAN. 491

7

20 30 40 50 60 70 80 90
Reward Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6
P(

Su
cc

es
sf

ul
 O

ut
co

m
e)

Data Estimation
Logistic Regression Fit

Figure 7: Logistic regression plot showing verification
agent’s positive performance impact. P(Successful Out-
come) = probability of prediction being correct.

Calendar Meeting Trip0

10

20

30

40

50

60

70

Ex
ac

t M
at

ch
 (%

) 48
.9

38
.4

34
.7

5

50
.3

36
.8

14
.8

5

56
.1

43
.1

35
.4

4

59
.3

42
.2

41
.1

7
Gemini-1.5-Pro
Multi-Agent (Baseline)

Multi-Agent (Ver.)
Multi-Agent (Ver. + Selection)

Figure 8: Case study on NATURAL PLAN, showing
the impact of selection agent. Ver.: Verification

Here, Multi-Agent (Ver.) includes only the verifi-492

cation agent, while Multi-Agent (Ver. + Selection)493

further includes a selection agent. The results high-494

light the progressive impact of these components.495

For example, in calendar scheduling, Multi-Agent496

(Ver.) improves performance to 56.1 EM compared497

to Multi-Agent (Baseline). However, Multi-Agent498

(Ver. + Selection) achieves 59.3 EM, demonstrat-499

ing the additional benefit of algorithm selection.500

A similar trend is observed in trip planning where501

Multi-Agent (Ver. + Selection) outperforms Multi-502

Agent (Ver.) (41.17 EM vs. 35.44 EM) and the503

Multi-Agent (Baseline). For meeting planning,504

Multi-Agent (Ver.) achieves 43.1 EM compared505

to 36.8 EM of Multi-Agent (Baseline), whereas,506

Multi-Agent (Ver. + Selection) achieves compet-507

itive performance. Together, verification and se-508

lection agents drive significant improvements over509

single-agent and multi-agent baselines.510

Model-Agnostic Nature The results from Table511

1 demonstrate the model-agnostic nature of our pro-512

Method NATURAL PLAN
(Calendar)

OlympiadBench GPQA
MATH PHY

Baselines

Gemini-2.0-Flash 61.10 52.13 27.54
GPT-4o 47.98

Our Multi-Agent Frameworks

Best of N 68.90 59.90 35.60 40.40
ToT 62.30 60.30 35.70 46.70

REBASE 61.50 60.98 36.02 41.40
Mixture of Algo. 66.55 52.44* 30.00* 49.40

Table 1: Performance comparison (model-agnostic).
Base LLMs: Gemini-2.0-Flash (NATURAL PLAN,
OlympiadBench), GPT-4o (GPQA). Comparing meth-
ods that use the same base model for a fair assessment

posed multi-agent frameworks. While the primary 513

experiments were conducted using Gemini-1.5-Pro, 514

the framework’s effectiveness holds across differ- 515

ent underlying models, such as Gemini-2.0-Flash 516

and GPT-4o. For instance, Multi-Agent Best of 517

N significantly improves upon Gemini-2.0-Flash 518

on NATURAL PLAN (reaching 68.90 EM). Simi- 519

larly, Multi-Agent REBASE outperforms Gemini- 520

2.0-Flash on OlympiadBench (MATH: 60.98, PHY: 521

36.02 accuracy), and Multi-Agent Mixture of Al- 522

gorithms surpasses GPT-4o on GPQA (49.40 ac- 523

curacy). These results demonstrate the consistent 524

performance enhancement from our multi-agent 525

frameworks across various underlying models, en- 526

suring their robustness. Results marked with ‘*’ in 527

Table 1 are based on partial data, but this does not 528

affect the overall observations. 529

5 Conclusions 530

In this work, we proposed PlanGEN, an easily scal- 531

able multi-agent approach incorporating three key 532

components: constraint, verification, and selec- 533

tion agents. We leveraged these agents to im- 534

prove the verification process of existing infer- 535

ence algorithms and proposed three frameworks: 536

Multi-Agent Best of N , ToT, and REBASE. Fur- 537

ther, we introduced a Mixture of Algorithms, 538

an iterative framework that integrates the selec- 539

tion agent (Figure 1) to dynamically choose the 540

best algorithm. We evaluated our frameworks on 541

NATURAL PLAN, OlympiadBench, GPQA, and 542

DocFinQA. Experimental results demonstrate that 543

PlanGEN outperforms strong baselines, achieving 544

SOTA results across datasets. Furthermore, our 545

findings suggest that the proposed frameworks are 546

scalable and generalizable to different LLMs, im- 547

proving their natural language planning ability. 548

8

Limitations549

Despite the strong performance of our frameworks,550

an area of improvement is the reliance on prede-551

fined heuristics for selecting inference-time algo-552

rithms, which may not always generalize optimally553

across all tasks and domains. Additionally, while554

our frameworks demonstrate strong performance,555

their computational overhead could be further opti-556

mized for efficiency in real-world applications. We557

believe that our frameworks can be useful in further558

boosting the planning and reasoning capabilities of559

existing models such as o1 and Gemini-thinking. In560

addition, the use of reinforcement learning or meta-561

learning techniques to dynamically adapt agent562

strategies based on task complexity could be an563

interesting area to explore. Moreover, broadening564

the scope to multi-modal and multi-lingual reason-565

ing would significantly expand the applicability566

of our approach, and exploring the use of gener-567

ated planning trajectories for model training offers568

another valuable direction.569

Ethics Statement570

The use of proprietary LLMs such as GPT-4, Gem-571

ini, and Claude-3 in this study adheres to their poli-572

cies of usage. We have used AI assistants (Gram-573

marly and Gemini) to address the grammatical er-574

rors and rephrase the sentences.575

References576

Bernd Bohnet, Azade Nova, Aaron T Parisi, Kevin577
Swersky, Katayoon Goshvadi, Hanjun Dai, Dale578
Schuurmans, Noah Fiedel, and Hanie Sedghi. 2024.579
Exploring and benchmarking the planning capabil-580
ities of large language models. arXiv preprint581
arXiv:2406.13094.582

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald583
Clark, Quoc V Le, Christopher Ré, and Aza-584
lia Mirhoseini. 2024. Large language monkeys:585
Scaling inference compute with repeated sampling.586
arXiv preprint arXiv:2407.21787.587

Weizhe Chen, Sven Koenig, and Bistra Dilkina. 2024.588
Reprompt: Planning by automatic prompt engineer-589
ing for large language models agents. arXiv preprint590
arXiv:2406.11132.591

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and592
Subbarao Kambhampati. 2023. Leveraging pre-593
trained large language models to construct and uti-594
lize world models for model-based task planning.595
Advances in Neural Information Processing Systems,596
36:79081–79094.597

Qiyang Han, Koulik Khamaru, and Cun-Hui Zhang. 598
2024. Ucb algorithms for multi-armed bandits: Pre- 599
cise regret and adaptive inference. arXiv preprint 600
arXiv:2412.06126. 601

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen 602
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea- 603
soning with language model is planning with world 604
model. In Proceedings of the 2023 Conference on 605
Empirical Methods in Natural Language Processing, 606
pages 8154–8173, Singapore. Association for Com- 607
putational Linguistics. 608

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, 609
Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie 610
Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan 611
Liu, and Maosong Sun. 2024. OlympiadBench: 612
A challenging benchmark for promoting AGI with 613
olympiad-level bilingual multimodal scientific prob- 614
lems. In Proceedings of the 62nd Annual Meet- 615
ing of the Association for Computational Linguis- 616
tics (Volume 1: Long Papers), pages 3828–3850, 617
Bangkok, Thailand. Association for Computational 618
Linguistics. 619

Jie Huang, Xinyun Chen, Swaroop Mishra, 620
Huaixiu Steven Zheng, Adams Wei Yu, Xiny- 621
ing Song, and Denny Zhou. 2024. Large language 622
models cannot self-correct reasoning yet. In The 623
Twelfth International Conference on Learning 624
Representations. 625

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 626
Perelman, Aditya Ramesh, Aidan Clark, AJ Os- 627
trow, Akila Welihinda, Alan Hayes, Alec Radford, 628
et al. 2024. Gpt-4o system card. arXiv preprint 629
arXiv:2410.21276. 630

Fangkai Jiao, Chengwei Qin, Zhengyuan Liu, Nancy F. 631
Chen, and Shafiq Joty. 2024. Learning planning- 632
based reasoning by trajectories collection and pro- 633
cess reward synthesizing. In Proceedings of the 634
2024 Conference on Empirical Methods in Natu- 635
ral Language Processing, pages 334–350, Miami, 636
Florida, USA. Association for Computational Lin- 637
guistics. 638

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 639
taka Matsuo, and Yusuke Iwasawa. 2024. Large lan- 640
guage models are zero-shot reasoners. In Proceed- 641
ings of the 36th International Conference on Neu- 642
ral Information Processing Systems, NIPS ’22, Red 643
Hook, NY, USA. Curran Associates Inc. 644

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave 645
Marwood, Shumeet Baluja, Dale Schuurmans, and 646
Xinyun Chen. 2025. Evolving deeper llm thinking. 647
arXiv preprint arXiv:2501.09891. 648

Yanming Liu, Xinyue Peng, Yuwei Zhang, Jian- 649
nan Cao, Xuhong Zhang, Sheng Cheng, Xun 650
Wang, Jianwei Yin, and Tianyu Du. 2024. Tool- 651
planner: Dynamic solution tree planning for large 652
language model with tool clustering. arXiv preprint 653
arXiv:2406.03807. 654

9

https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://doi.org/10.18653/v1/2024.emnlp-main.20
https://doi.org/10.18653/v1/2024.emnlp-main.20
https://doi.org/10.18653/v1/2024.emnlp-main.20
https://doi.org/10.18653/v1/2024.emnlp-main.20
https://doi.org/10.18653/v1/2024.emnlp-main.20

Varshini Reddy, Rik Koncel-Kedziorski, Viet Dac Lai,655
Michael Krumdick, Charles Lovering, and Chris656
Tanner. 2024. DocFinQA: A long-context financial657
reasoning dataset. In Proceedings of the 62nd An-658
nual Meeting of the Association for Computational659
Linguistics (Volume 2: Short Papers), pages 445–660
458, Bangkok, Thailand. Association for Computa-661
tional Linguistics.662

David Rein, Betty Li Hou, Asa Cooper Stickland,663
Jackson Petty, Richard Yuanzhe Pang, Julien Di-664
rani, Julian Michael, and Samuel R. Bowman. 2024.665
GPQA: A graduate-level google-proof q&a bench-666
mark. In First Conference on Language Modeling.667

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-668
mar. 2024. Scaling llm test-time compute optimally669
can be more effective than scaling model parameters.670
arXiv preprint arXiv:2408.03314.671

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan672
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,673
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.674
2024. Gemini 1.5: Unlocking multimodal under-675
standing across millions of tokens of context. arXiv676
preprint arXiv:2403.05530.677

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,678
Sarath Sreedharan, and Subbarao Kambhampati.679
2024. Planbench: An extensible benchmark for eval-680
uating large language models on planning and rea-681
soning about change. Advances in Neural Informa-682
tion Processing Systems, 36.683

Evan Z Wang, Federico Cassano, Catherine Wu, Yun-684
feng Bai, William Song, Vaskar Nath, Ziwen Han,685
Sean M. Hendryx, Summer Yue, and Hugh Zhang.686
2025. Planning in natural language improves LLM687
search for code generation. In The Thirteenth Inter-688
national Conference on Learning Representations.689

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao690
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,691
Xu Chen, Yankai Lin, et al. 2024a. A survey on large692
language model based autonomous agents. Fron-693
tiers of Computer Science, 18(6):186345.694

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Hao-695
tian Luo, Jiayou Zhang, Nebojsa Jojic, Eric Xing,696
and Zhiting Hu. 2024b. Promptagent: Strategic697
planning with language models enables expert-level698
prompt optimization. In The Twelfth International699
Conference on Learning Representations.700

Yulong Wang, Tianhao Shen, Lifeng Liu, and Jian Xie.701
2024c. Sibyl: Simple yet effective agent framework702
for complex real-world reasoning. CoRR.703

Sean Welleck, Amanda Bertsch, Matthew Finlayson,704
Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia705
Kulikov, and Zaid Harchaoui. 2024. From de-706
coding to meta-generation: Inference-time algo-707
rithms for large language models. arXiv preprint708
arXiv:2406.16838.709

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, 710
and Yiming Yang. 2024a. An empirical analysis 711
of compute-optimal inference for problem-solving 712
with language models. CoRR. 713

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhen- 714
min Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, 715
and Lingpeng Kong. 2024b. Os-copilot: Towards 716
generalist computer agents with self-improvement. 717
In ICLR 2024 Workshop on Large Language Model 718
(LLM) Agents. 719

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin 720
Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin Fu, 721
Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen. 722
2024. Chain-of-experts: When LLMs meet complex 723
operations research problems. In The Twelfth Inter- 724
national Conference on Learning Representations. 725

Chengxing Xie and Difan Zou. 2024. A human- 726
like reasoning framework for multi-phases planning 727
task with large language models. arXiv preprint 728
arXiv:2405.18208. 729

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 730
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 731
2024. Tree of thoughts: Deliberate problem solving 732
with large language models. Advances in Neural In- 733
formation Processing Systems, 36. 734

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 735
Shafran, Karthik R Narasimhan, and Yuan Cao. 736
2023. React: Synergizing reasoning and acting in 737
language models. In The Eleventh International 738
Conference on Learning Representations. 739

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang 740
Li, and Wanli Ouyang. 2024. Accessing gpt-4 level 741
mathematical olympiad solutions via monte carlo 742
tree self-refine with llama-3 8b. arXiv preprint 743
arXiv:2406.07394. 744

Hongyu Zhao, Kangrui Wang, Mo Yu, and Hongyuan 745
Mei. 2023. Explicit planning helps language mod- 746
els in logical reasoning. In Proceedings of the 2023 747
Conference on Empirical Methods in Natural Lan- 748
guage Processing, pages 11155–11173, Singapore. 749
Association for Computational Linguistics. 750

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, 751
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou, 752
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. 2024. 753
Natural plan: Benchmarking llms on natural lan- 754
guage planning. arXiv preprint arXiv:2406.04520. 755

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, 756
Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang, 757
Jinjie Gu, and Huajun Chen. 2024. Knowa- 758
gent: Knowledge-augmented planning for llm-based 759
agents. arXiv preprint arXiv:2403.03101. 760

10

https://doi.org/10.18653/v1/2024.acl-short.42
https://doi.org/10.18653/v1/2024.acl-short.42
https://doi.org/10.18653/v1/2024.acl-short.42
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=48WAZhwHHw
https://openreview.net/forum?id=48WAZhwHHw
https://openreview.net/forum?id=48WAZhwHHw
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=HobyL1B9CZ
https://openreview.net/forum?id=HobyL1B9CZ
https://openreview.net/forum?id=HobyL1B9CZ
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/2023.emnlp-main.688
https://doi.org/10.18653/v1/2023.emnlp-main.688
https://doi.org/10.18653/v1/2023.emnlp-main.688

A Related Works761

LLM Agents for Planning Agent-based frame-762

works for planning have gained interest, focusing763

on enhancing how LLMs decompose tasks and re-764

fine their outputs. The Sibyl framework (Wang765

et al., 2024c) effectively decomposes tasks into766

smaller subtasks, assigning each to specialized767

agents that iteratively collaborate until a solution768

is reached. OS-Copilot (Wu et al., 2024b) intro-769

duces a generalist computer agent that employs self-770

improvement through modularization and feedback771

loops. Another approach is KnowAgent (Zhu et al.,772

2024), which integrates knowledge-augmented773

planning to enhance the decision-making capabili-774

ties of LLM agents. Similarly, Tool-Planner (Liu775

et al., 2024) proposed grouping tools based on sim-776

ilar functionalities into toolkits, allowing LLMs to777

select the best tool for a given task. Many agent-778

based works focusing on planning have been devel-779

oped (Chen et al., 2024; Xie and Zou, 2024; Wang780

et al., 2024b). Despite the progress, these meth-781

ods generally (i) focus on domain-specific tasks or782

limited benchmarks, reducing generalizability, and783

(ii) lack or under-explore mechanisms for verifying784

and refining plans iteratively. While some works785

explore natural language planning (Bohnet et al.,786

2024; Lee et al., 2025), they either single-agent787

frameworks or evaluate proposed framework on788

domain-specific benchmarks.789

Inference-time Algorithms Inference-time al-790

gorithms have recently shown a significant im-791

provement in LLMs performance during inference.792

For instance, Best of N sampling (Brown et al.,793

2024) selects the most promising output from mul-794

tiple generations performed using temperature sam-795

pling, while Tree-of-Thought (ToT) (Yao et al.,796

2024) models reasoning as an iterative tree search.797

REBASE (Wu et al., 2024a) optimizes search-space798

pruning using reward balancing. One very popu-799

lar approach is Monte Carlo Tree Search (MCTS)800

(Zhang et al., 2024) which iteratively explores so-801

lution paths during inference. Applied to models802

such as LLaMa-3-8B, it enables self-refinement by803

revisiting and improving initial solutions. Test-time804

optimization (Snell et al., 2024), focuses on dynam-805

ically adjusting computational resources during in-806

ference (Wu et al., 2024a). Furthermore, Wang807

et al. (2025) uses the inference time algorithms to808

improve LLMs planning capabilities to solve code809

synthesis problems. In inference-time algorithms,810

verification is the key component. In contrast to811

these past works, here, we enhance performance 812

of inference-time algorithms utilizing constraint- 813

guided verification, and multi-agent collaboration 814

for natural language planning, and its applications 815

in downstream complex reasoning tasks. 816

B Further Details on LLM Agents 817

In this section, we provide additional details about 818

each specialized agent in PlanGEN. We present the 819

prompts used for each agent, highlighting their 820

roles in the framework. The prompt for the con- 821

straint agent includes task-specific parameters that 822

can be adjusted to extract relevant constraints for 823

different tasks. In contrast, the prompts for the 824

verification agent and selection agent are entirely 825

task-agnostic, ensuring generalizability and adapt- 826

ability across various problem domains. 827

Prompts for Constraint Agent The constraint 828

agent is responsible for extracting problem-specific 829

constraints that guide the planning process. To en- 830

able systematic extraction of constraints, we design 831

a task-specific prompt for the constraint agent: 832

Prompt

You are an expert in understanding an input
problem and generating set of constraints.
Analyze the input problem and extract all
relevant instance-specific constraints and
contextual details necessary for accurate
and feasible planning.

(Optional) These constraints may in-
clude:

<You may provide any specific type of
constraints>

<You may provide any formatting instruc-
tion>

Input Problem: <problem statement>
833

Based on the above prompts, we define the types 834

of constraints used in the NATURAL PLAN bench- 835

mark for different planning tasks: calendar schedul- 836

ing, meeting planning, and trip planning. For 837

DocFinQA, we provide a set of formatting instruc- 838

tions to ensure structured constraint generation. For 839

GPQA and OlympiadBench, the constraint extrac- 840

tion follows the general prompt outlined above. 841

11

Prompts for Verification Agent The prompt842

for the verification agent is designed to be task-843

agnostic, meaning it can be applied across different844

problem domains without modification. By enforc-845

ing strict evaluation criteria, this agent enhances846

the reliability of PlanGEN, making it robust for var-847

ious planning and reasoning tasks. In this prompt,848

list of constraints are generated using constraint849

agent. Notably, the list of constraints used in the850

verification prompt is dynamically generated by the851

constraint agent. This ensures that the verification852

process is based on instance-specific constraints853

rather than relying on predefined, static rules.854

Prompt

Provide a reward score between -100 and
100 for the quality of the provided plan
steps, using strict evaluation standards. En-
sure the reward reflects how effectively the
plan contributes to progressing toward the
correct solution.
Problem Statement:
{problem}
Plan:
{plan}
Consider the following constraints while
evaluating:
- [Constraint 1]
- [Constraint 2]
- [Constraint 3]
Provide feedback in the following for-
mat:
[Step-by-step reasoning for the reward
score]
Score: [Strictly provide an integer reward
score between -100 and 100]

855

Prompts for Selection Agent The prompt for856

the Selection Agent is task-agnostic, allowing it857

to be applied across various domains without modi-858

fication. It processes feedback from the verification859

agent and contextual information from the problem860

statement to assign suitability scores to different861

inference-time algorithms.862

Prompt

Analyze the following planning problem
and explain your reasoning for assigning
priority scores to the algorithms based on
their suitability. Scores should be between 0

863

and 1, where 1 represents the most suitable
algorithm for the given problem.
Problem Statement: <problem statement>
Requirements: <feedback>
Context: <context if context else ‘None
provided’>
Start by providing a brief reasoning for each
algorithm’s suitability based on problem
complexity. Then, ONLY output your re-
sponse strictly as a list with the exact for-
mat below:
Reasoning:

• Best of N: [Explain why this algorithm
is or isn’t suitable]

• Rebase: [Explain why this algorithm
is or isn’t suitable]

• ToT: [Explain why this algorithm is or
isn’t suitable]

Scores:

[("Best of N", float),

("Rebase", float),

("ToT", float)]
864

Algorithm for Selection using UCB The algo- 865

rithm (Algorithm 1) presented is a modified UCB 866

selection strategy that incorporates additional fac- 867

tors for exploration, diversity, and recovery. It ini- 868

tializes each algorithm with basic statistics like 869

reward (R(a)), count of trials (C(a)), and recovery 870

score (Rec(a)). The algorithm computes a normal- 871

ized reward R̄norm(a) for each option, balancing 872

the reward with exploration (E(a)), which encour- 873

ages trying less-used algorithms. A diversity bonus 874

D(a) penalizes overused algorithms, while a recov- 875

ery bonus RecB(a) rewards algorithms that per- 876

form well after prior failures. LLM-guided priors 877

(LLM_prior) are used to influence the selection 878

process based on prior knowledge. The final selec- 879

tion is made by maximizing the UCB score, which 880

combines these factors to balance exploitation and 881

exploration. 882

Ablation Study on UCB Modifications To de- 883

sign our selection agent, we conducted an ablation 884

study evaluating modifications to the UCB formula, 885

shown in Figure 9. Initially, we replaced the selec- 886

tion agent with a simple sequential strategy, termed 887

12

Calendar0

20

40

60

80

100
Ex

ac
t M

at
ch

 (%
)

56
.1

56
.7 59
.3

Multi-Agent (Sequential)
Multi-Agent (UCB w/o div. and rec.)
Multi-Agent (UCB)

Figure 9: Ablation Study of UCB Modifications on Se-
lection Agent and its impact on Multi-Agent Mixture
of Algorithms framework. div.: diversity bonus, rec:
recovery term.

“Multi-Agent (Sequential)”, where algorithms exe-888

cute in sequence, and the verification agent selects889

the highest-scoring plan. Next, we implemented a890

UCB selection agent, but excluded the ‘diversity891

bonus’ and ‘recovery term’ introduced in our pro-892

posed formulation in the main paper, denoted as893

“Multi-Agent (UCB w/o div. and rec.)”. Finally, we894

implemented the complete selection agent incor-895

porating our proposed UCB, labeled “Multi-Agent896

(UCB)”. As shown in Figure 9, the inclusion of the897

diversity bonus and recovery terms in the UCB for-898

mula ("Multi-Agent (UCB)") resulted in ∼ 3.5%899

performance gain compared to the UCB variant900

without these terms, further enhancing overall re-901

sults. Note that the LLM-guided priors are still the902

part of Multi-Agent (UCB w/o div. and rec.) and903

Multi-Agent (UCB).904

C Details on Proposed Frameworks905

We provide further details in this section regarding906

the prompts used for Multi-Agent ToT and RE-907

BASE, as well as the specific algorithms used to908

execute these inference-time methods.909

Prompts used for ToT and REBASE Multi-910

Agent ToT and REBASE employ three prompt911

types: (1) step prompt, (2) step reward prompt,912

and (3) completion prompt. Step prompt guide the913

model to generate subsequent steps based on the914

problem statement and previously generated steps.915

Step reward prompt evaluate each intermediate step916

against the problem statement and constraints, sim-917

ilar to the prompts used by a verification agent.918

Completion prompt check for a complete solution919

after each step. If a solution is found, exploration920

terminates; otherwise, the process continues until a 921

solution is reached. 922

Step Prompt

You are an expert assistant for generating
step-by-step plan to solve a given question
using specified tools. Given the problem
and any intermediate steps, output only the
next step in the plan. Ensure that the next
action helps in moving toward the correct
plan to solve the given question. Do not
provide the full plan. Keep responses con-
cise, focusing solely on the immediate next
step that is most effective in progressing
toward the correct plan.

<problem>
{Add a problem statement here}
</problem>

<intermediate_step>
{Append previously generated steps}
</intermediate_step>

923

Completion Prompt

You are an assistant tasked with verifying
if the final, complete plan to solve the
given question has been achieved within the
intermediate steps. Output only ‘1’ if the
intermediate steps contain the full solution
needed to solve the question. If the full plan
has not yet been reached, output only ‘0’.
Provide no additional commentary—return
exclusively ‘1’ or ‘0’.

<problem>
{Add a problem statement here}
</problem>

<intermediate_step>
{Append previously generated steps}
</intermediate_step>

924

D Further Details on Benchmarks and 925

Experiments 926

Statistics of Benchmarks For evaluation, we uti- 927

lize evaluation sets of all four benchmarks. For 928

NATURAL PLAN, we employed the provided eval- 929

uation sets, consisting of 1000 instances each for 930

Calendar Scheduling and Meeting Planning, and 931

13

1600 instances for Trip Planning. The GPQA evalu-932

ation was conducted using the Diamond set, which933

comprises 198 highly challenging instances. From934

OlympiadBench, we selected the text-only prob-935

lems, excluding those requiring a theorem prover,936

resulting in 674 instances for the MATH category937

and 236 for the PHY category. We also used 922938

instances from the DocFinQA evaluation set.939

Models Our primary evaluations use Gemini-1.5-940

Pro for all the experiments. We also present a case941

study with Gemini-2.0-Flash and GPT-4o to show-942

case the model-agnostic nature and generalizability943

of PlanGEN.944

Metrics We use task-specific metrics for all eval-945

uations. Specifically, we use Exact Match (EM) for946

NATURAL PLAN similar to Zheng et al. (2024),947

micro-average accuracy for OlympiadBench simi-948

lar to He et al. (2024), and accuracy for GPQA and949

DocFinQA (along with F1-Score for DocFinQA).950

Feedback prompt for Multi-Agent Baseline In951

the multi-agent baseline, we employ a feedback952

prompt to iteratively generate improved and refined953

outputs. The prompt is provided below:954

Feedback Prompt

Analyze the following planning problem
and explain your reasoning for assigning pri-
ority scores You are an intelligent assistant
capable of self-reflection and refinement. I
will provide you with your last response,
and your task is to improve it, if necessary.
Here is your previous response:
{previous_response}
Analyze and refine your response step-by-
step:
1. Reflect on your reasoning process.
Where might it be unclear or incorrect? Im-
prove it.
2. Revise the explanation to address any
identified issues and make it more logical
and comprehensive.
3. Ensure the final answer is correct, sup-
ported by clear reasoning.

955

Hyper-parameters for Experiments To ensure956

deterministic behavior, we set the temperature of957

all models to 0 for each agent. For the inference-958

time algorithms, we used the following settings:959

Multi-Agent Best of N with five samples at a tem-960

perature of 0.7; Tree of Thoughts (ToT) with three961

Methods OlympiadBench

MATH PHY

Best of N (5) 53.26 32.63
Best of N (10) 54.90 31.36
Best of N (20) 53.22 29.38

ToT (3) 52.97 31.36
ToT (5) 55.20 32.05
ToT (10) 55.79 32.52

REBASE (10) 54.45 31.78
REBASE (20) 54.45 29.37
REBASE (30) 55.04 30.28

Table 2: Impact of hyper-parameters on the perfor-
mance of inference-time algorithms in OlympiadBench

children per root node, generated at a temperature 962

of 0.7; and REBASE, initialized with width 10 at 963

temperature of 0.7, decremented by 1 after each 964

call to expand. 965

E More Analysis 966

Performance of our frameworks w.r.t. differ- 967

ent complexity From Figure 10, we can observe 968

in the meeting planning, Multi-Agent Best of N 969

excels in both simple and intermediate problems, 970

whereas a Mixture of Algorithms performs better 971

for complex problems. However, for very complex 972

problems, all algorithms struggle. The trip plan- 973

ning presents a different trend, where Multi-Agent 974

Best ofN and a Mixture of Algorithms consistently 975

outperform other approaches across all complexity 976

levels. Nonetheless, in very complex problems, all 977

algorithms exhibit poor performance. 978

Importance of Verification Agent The kernel 979

density estimation (KDE) plot visualizes the distri- 980

bution of reward values assigned to two distinct out- 981

comes: “Success” (green) and “Failure” (red). The 982

plot reveals a clear separation between the reward 983

distributions, with “Success” outcomes strongly as- 984

sociated with high reward values (around 80-100) 985

and “Failure” outcomes primarily associated with 986

low reward values (around 20-40). The sharply 987

peaked green curve suggests consistent and high 988

rewards for successful outcomes, while the broader 989

red curve reflects more variability in rewards as- 990

signed to failures. However, a small bump in the 991

red curve at high reward values (around 80-90) 992

suggests a few instances where failures received 993

unexpectedly high rewards, warranting further in- 994

vestigation. This observation is further supported 995

by a statistically significant difference between 996

14

1 2 3 4 5 6 7 8 9 10
Meeting (Number of People)

0

20

40

60

80

100

3 4 5 6 7 8 9 10
Trip (Number of Cities)

Multi-Agent (Baseline) Multi-Agent REBASE (Ours) Multi-Agent ToT (Ours) Multi-Agent Best of N (Ours) Multi-Agent Mixture of Algo. (Ours)

Figure 10: Performance comparison of inference-time algorithms across different complexity levels for meeting
and trip planning from NATURAL PLAN

20 40 60 80 100
Reward Value

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

Failed Outcome
Successful Outcome

Figure 11: KDE plot illustrating the relationship be-
tween reward value and outcome (success/failure)

Frameworks NATURAL PLAN OlympiadBench GPQA DocFinQA

Best of N 19.55% 7.09% 8.56% 81.03%
ToT 68.85% 90.09% 85.59% 12.5%
Rebase 11.6% 2.82% 5.86% 6.47%

Table 3: Algorithm Selection Frequency by Dataset

the reward distributions, a Mann-Whitney U test997

(U = 116128.0, p < 0.0001). The low p-value998

(3.42e-09) provides evidence that the difference in999

reward distributions is statistically significant.1000

Different hyper-parameters of inference-time1001

algorithms vs. their performance We conduct1002

a case study on OlympiadBench, where we ana-1003

lyze the impact of varying hyper-parameters on1004

the performance of different inference-time algo-1005

rithms. The results (Table 2) indicate that while in-1006

creasing the number of samples (Best of N), steps1007

(ToT), or refinements (REBASE) lead to marginal1008

improvements, the overall differences remain rela-1009

tively small. Given this, we opted for lower hyper-1010

parameter values across all inference-time algo-1011

rithms to balance efficiency and performance.1012

Frequency of inference-time algorithm selec-1013

tion across datasets For the Multi-Agent Mix-1014

0 10 20 30 40 50 60 70 80
Average LLM Calls

35

40

45

50

55

60

Pe
rfo

rm
an

ce
 (%

)

Single-Agent CoT

Multi-Agent (Baseline)

Best of N ToT
REBASE

Mixture of Algo.

Figure 12: Comparison of baselines and proposed
frameworks, showing the trade-off between LLM calls
and performance (%) for OlympiadBench (MATH).

ture of Algorithms method, we analyze how fre- 1015

quently each inference-time algorithm (Best of N , 1016

ToT, and REBASE) is selected across different 1017

datasets. The results (shown in Table 3) show that 1018

ToT is the most frequently chosen algorithm in 1019

NATURAL PLAN, OlympiadBench, and GPQA, 1020

indicating its effectiveness in these domains. In 1021

contrast, for DocFinQA, Best ofN is the dominant 1022

choice, suggesting that its strategy aligns better 1023

with financial reasoning tasks. REBASE is selected 1024

the least across all datasets, implying that its refine- 1025

ments are less favored by the selection mechanism. 1026

These findings highlight the dataset-dependent na- 1027

ture of inference-time algorithm effectiveness and 1028

the adaptability of the mixture approach in dynam- 1029

ically choosing the most suitable method. 1030

Discussion on LLM calls vs. Performance (%) 1031

Figure 12 shows the relationship between the num- 1032

ber of LLM calls and task performance across base- 1033

lines (single-agent and multi-agent) and proposed 1034

frameworks, using OlympiadBench (MATH cat- 1035

egory). The single-agent system, zero-shot CoT, 1036

15

requires only one LLM call. The Multi-Agent base-1037

line requires the same number of calls as Multi-1038

Agent Best of N , but our framework outperforms1039

the multi-agent baseline. For Multi-Agent ToT1040

and REBASE, we focus on LLM calls during the1041

tree expansion phase. Multi-Agent ToT involves1042

dynamic exploration, where each explored path re-1043

quires three LLM calls: step generation, reward1044

evaluation, and completion verification. The total1045

cost is the per-path cost multiplied by the number1046

of paths explored, constrained by either the number1047

of steps generated for each problem or a predefined1048

iteration budget (i.e., 20). For Multi-Agent RE-1049

BASE, the number of LLM calls depends on the1050

search width (i.e., 10). Each solution path expan-1051

sion involves three calls: step generation, quality1052

evaluation, and completion verification, thus, giv-1053

ing maximum 30 LLM calls for single problem.1054

For Mixture of Algorithms, we estimate the aver-1055

age LLM calls by summing the estimated calls for1056

each selected algorithm per problem, then divid-1057

ing by the total number of problems. As shown1058

in Figure 12, the single-agent system exhibits the1059

lowest performance despite requiring just one LLM1060

call. Multi-agent approaches show improved per-1061

formance, with Multi-Agent ToT and Multi-Agent1062

REBASE balancing LLM call efficiency and accu-1063

racy. The Mixture of Algorithms method achieves1064

the highest performance, suggesting that combin-1065

ing diverse planning strategies enhances efficiency.1066

F Various Examples for Different1067

Components of PlanGEN1068

Examples for Constraint Agent To illustrate1069

the output of our constraint agent, Table 4, Table1070

5, and Table 6 present representative examples of1071

generated constraints. These tables highlight the1072

diverse constraints generated for problem instances1073

of different tasks.1074

Example for Verification Agent To illustrate1075

the output of our verification agent, Table 71076

presents representative examples of verification1077

process for NATURAL PLAN (calendar schedul-1078

ing). This table highlights the how the verification1079

agent verifies the generated plan using constraints.1080

Examples of Generated Plans To demonstrate1081

the plan generation process, Table 8, Table 9, Table1082

10, and Table 11 present example plans for NAT-1083

URAL PLAN, GPQA, DocFinQA, and Olympiad-1084

Bench. Generated using Multi-Agent Best of N ,1085

these tables highlight the varied nature of plans 1086

produced across different task types. For GPQA, 1087

DocFinQA, and OlympiadBench (i.e., downstream 1088

reasoning tasks), the examples additionally illus- 1089

trate how these generated plans are executed to 1090

derive the final answer. 1091

More examples for agents and frameworks 1092

within PlanGEN are provided at https://anonymous. 1093

4open.science/r/plangen-0C99 1094

16

https://anonymous.4open.science/r/plangen-0C99
https://anonymous.4open.science/r/plangen-0C99
https://anonymous.4open.science/r/plangen-0C99

Algorithm 1 Selection using Modified UCB with LLM-Guided Priors

1: Initialize: R(a)← 0, C(a)← 1, Rec(a)← 0, F (a)← 0, D(a)← 1, T ← 0
2: Set λprior, αdiversity, αrecovery
3: Load LLM-guided priors
4: procedure SELECTALGORITHM(args)
5: Compute prior decay: λprior ←

λprior
1+T . Reduces as trials increase

6: Set max exploration term M ← 5
7: Obtain LLM prior scores: LLM_prior ← LLM_Guided_Prior(args)
8: Compute max reward: Rmax ← max(R(a)) (set to 1 if all rewards are 0)
9: for each algorithm a do

10: Compute normalized reward:

R̄norm(a)← R(a)

C(a)Rmax

. Scales rewards between 0 and 1 for comparability
11: Compute exploration term:

E(a)← min

(√
2 log(T + 1)

C(a)
,M

)

. Encourages trying less-used algorithms, capped at M
12: Compute diversity bonus:

D(a)←
αdiversity

C(a) + 1

. Penalizes frequently used algorithms to encourage variety
13: Compute recovery bonus:

RecB(a)← αrecovery ·Rec(a)

. Rewards algorithms that perform well after failures
14: Compute final UCB score:

UCB(a)← R̄norm(a) + E(a) + λpriorLLM_prior(a) +D(a) +RecB(a)

. Balances exploitation, exploration, diversity, and recovery
15: end for
16: Select best algorithm:

a∗ ← arg max
a

UCB(a)

17: return (a∗, UCB(a∗))
18: end procedure

17

Benchmark Problem Statement Generated Constraints

Calendar
Scheduling

You are an expert at scheduling meetings. You are
given a few constraints on the existing schedule of
each participant, the meeting duration, and possibly
some preferences on the meeting time. Note there
exists a solution that works with existing schedule of
every participant.
————
TASK: You need to schedule a meeting for Michelle,
Steven and Jerry for one hour between the work hours
of 9:00 to 17:00 on Monday.
————
Here are the existing schedules for everyone during
the day:
- Michelle has meetings on Monday during 11:00 to
12:00;
- Steven has blocked their calendar on Monday during
9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, 15:30
to 16:00;
-Jerry has blocked their calendar on Monday during
9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00
to 14:30, 15:30 to 16:00, 16:30 to 17:00;
————
Find a time that works for everyone’s schedule and
constraints.

Instance-Specific Constraints and Details:
Participants: Michelle, Steven, Jerry - The meeting
must include all three.
————
Meeting Duration: 1 hour - The meeting requires a
contiguous 60-minute slot.
————
Work Hours: 9:00 to 17:00 (Monday) - The meeting
must start and end within these working hours. This
acts as a global constraint.
————
Individual Schedules (Existing Meetings/Blocked
Times):
- Michelle: Busy from 11:00 to 12:00 on Monday.
- Steven: Busy from 9:00 to 9:30, 11:30 to 12:00,
13:30 to 14:00, and 15:30 to 16:00 on Monday.
- Jerry: Busy from 9:00 to 9:30, 10:00 to 11:00, 11:30
to 12:30, 13:00 to 14:30, and 15:30 to 17:00 on Mon-
day (note this constraint ends at the end of the work-
day).
————
While the problem states "Note there exists a solu-
tion," this isn’t a constraint in itself; it’s a guarantee
that a feasible solution exists given the constraints.
The actual constraints are the schedules, meeting
duration, and working hours.

Meeting
Planning

You are visiting San Francisco for the day and want
to meet as many friends as possible. Solve the prob-
lem by considering various different schedules and
picking the best one to optimize your goals.
————
Travel distances (in minutes):
Bayview to Golden Gate Park: 22.
Golden Gate Park to Bayview: 23.
————
CONSTRAINTS: You arrive at Bayview at 9:00AM.
Barbara will be at Golden Gate Park from 8:00AM to
11:30AM. You’d like to meet Barbara for a minimum
of 90 minutes.
————
Your response should start with ’SOLUTION:’

Instance-Specific Constraints and Details:
Travel Times:
- Bayview to Golden Gate Park: 22 minutes.
- Golden Gate Park to Bayview: 23 minutes (Note:
This information is provided but not strictly neces-
sary for this specific problem as the return trip isn’t
relevant to meeting Barbara).
————
Locations:
- Starting Location: Bayview
- Meeting Location: Golden Gate Park
————
Scheduled Meeting Times/Participant Availability:
- Barbara is available at Golden Gate Park from 8:00
AM to 11:30 AM.
————
Arrival Time:
- You arrive at Bayview at 9:00 AM.
————
Minimum Meeting Duration:
- The meeting with Barbara must be at least 90 min-
utes long.
————
Sequence Requirements:
- Travel (Bayview to Golden Gate Park)→Wait (if
necessary, due to arriving before Barbara’s availabil-
ity ends)→Meeting (with Barbara)
————
Objective: Maximize the number of friends met (in
this case, it’s simplified to just meeting Barbara, so
the objective is to determine IF a meeting is possible
given the constraints).

Table 4: Examples of constraints generated by the constraint agent given problem statement. These examples
illustrate the constraint generation for calendar scheduling and meeting planning from NATURAL PLAN

18

Question: Two quantum states with energies E1 and E2 have a lifetime of 10−9 sec and 10−8 sec, respectively. We want to
clearly distinguish these two energy levels. Which one of the following options could be their energy difference so that they can
be clearly resolved?
(A) 10−11 eV
(B) 10−8 eV
(C) 10−9 eV
(D) 10−4 eV

Constraints for Verifying the Energy Difference Solution for Resolvable Quantum States

This problem revolves around the energy-time uncertainty principle, which dictates the resolvability of energy levels given
their lifetimes. To verify a proposed energy difference (∆E = |E2 − E1|) that allows clear resolution, we need constraints
encompassing the following:

1. Uncertainty Principle Adherence:
Primary Constraint: The product of the uncertainty in energy (∆E) and the uncertainty in time (∆t) must satisfy the
energy-time uncertainty relation: ∆E∆t ≥ ~

2
, where ~ is the reduced Planck constant.

Specific Constraint: Since we have two states, we must consider the combined uncertainty in time. We can approximate this as
the average of the individual lifetimes: ∆t ≈ τ1+τ2

2
, where τ1 and τ2 are the lifetimes of the two states.

Operational Constraint: For "clear resolution," we typically require ∆E to be significantly greater than the uncertainty dictated
by the uncertainty principle. A common rule of thumb is ∆E ≥ ~

∆t
. A stricter constraint might use a larger factor (e.g.,

∆E ≥ 2~
∆t

) for even clearer resolution.

2. Units Consistency:
Unit Constraint: All calculations must use consistent units. Ensure that energy (∆E), time (∆t), and ~ are expressed in
compatible units (e.g., Joules and seconds, or eV and seconds). Clearly state the chosen unit system.

3. Numerical Accuracy:
Precision Constraint: Calculations should be performed with sufficient numerical precision to avoid rounding errors. Define
the acceptable level of precision.
Constant Accuracy: Use a precise value for the reduced Planck constant (~).

4. Solution Justification:
Explanation Constraint: The solution must not only provide a numerical value for ∆E but also clearly explain why this value
satisfies the constraints and allows for clear resolution. This explanation should reference the uncertainty principle and the
chosen resolution criterion.

5. Alternative Solutions Consideration (Optional):
Exploration Constraint: Explore whether multiple values of ∆E could satisfy the constraints. If so, discuss the trade-offs
between different solutions.

Example Implementation of Constraints:

Let’s assume we’re working in SI units (Joules and seconds).
1. Uncertainty Principle: ∆E ≥ ~

[(10−9 s+10−8 s)/2]
, where ~ ≈ 1.054× 10−34 J s.

2. Units: All calculations are in Joules and seconds.
3. Numerical Accuracy: Calculations will be performed to at least 4 significant figures.
4. Justification: The solution will explain how the calculated ∆E is significantly larger than the uncertainty, ensuring clear
resolution.

Table 5: Examples of constraints generated by the constraint agent given reasoning question. The example illus-
trates the constraint generation for solving physics question from GPQA

19

Question: For a positive integer a, define a sequence of integers x1, x2, . . . by letting x1 = a and xn+1 = 2xn + 1 for n ≥ 1.
Let yn = 2xn − 1. Determine the largest possible k such that, for some positive integer a, the numbers y1, . . . , yk are all prime.

Constraints for Verifying the Solution Plan for Prime Sequence Problem

This problem requires a solution plan that likely involves a combination of mathematical reasoning and computational verification.
Here’s a breakdown of constraints to verify and evaluate such a plan:

I. Mathematical Reasoning Constraints:

1. Correct Recurrence Relation: The plan must correctly interpret and utilize the given recurrence relations for xn and yn.
Verify that the plan doesn’t misinterpret or modify these definitions.
2. Mersenne Primes Understanding: The plan should demonstrate an understanding that yn are Mersenne numbers (numbers
of the form 2p − 1). It should acknowledge that for yn to be prime, xn must itself be prime (though this is a necessary but not
sufficient condition).
3. Logical Flow and Justification: The plan’s reasoning should be clear, logical, and well-justified. Each step should follow
from the previous ones, with clear explanations for any claims or deductions made. Avoid leaps of logic or unsubstantiated
assertions.
4. Handling of Base Case (k = 1): The plan should explicitly address the trivial case where k = 1. Since y1 = 2a − 1, any
prime value of ’a’ will result in y1 being a potential Mersenne prime. This confirms that k ≥ 1.
5. Strategy for Finding Maximum k: The plan must outline a clear strategy for determining the largest possible k. This likely
involves exploring increasing values of k and checking the primality of the resulting yn sequence. The plan should explain how
it avoids infinite search or unnecessary computations.
6. Optimality Argument: The plan should include an argument (or at least a strategy for developing an argument) for why the
found value of k is indeed the largest possible. This might involve demonstrating that for k + 1, no suitable ’a’ exists.

II. Computational Verification Constraints:

1. Primality Testing Algorithm: If the plan involves computational primality testing, it should specify the algorithm used (e.g.,
probabilistic tests like Miller-Rabin or deterministic tests like AKS). The plan should justify the choice of algorithm based on the
size of the numbers being tested and the desired level of certainty.
2. Correct Implementation: If code is involved, it must be correct and free of errors. The plan should include testing procedures
to ensure the code accurately implements the chosen primality test and the recurrence relations.
3. Computational Resources: The plan should consider the computational resources required for the primality testing. For
large values of xn, testing the primality of yn can be computationally expensive. The plan should address how it manages these
computational challenges.
4. Range of ’a’ considered: The plan should specify the range of values for ’a’ that will be explored. It should justify this range
and explain why exploring values outside this range is unnecessary.
5. Termination Condition: The plan must have a clear termination condition for its computational search. It should explain
how it determines when to stop searching for larger values of ’k’.

III. Presentation and Clarity Constraints:

1. Clear and Concise Explanation: The plan should be presented in a clear, concise, and easy-to-understand manner. Avoid
unnecessary jargon or overly complex language.
2. Well-Organized Structure: The plan should be well-organized, with a logical flow of ideas. Use headings, subheadings, and
bullet points to improve readability.
3. Reproducibility: The plan should be sufficiently detailed to allow another person to reproduce the results. All assumptions,
parameters, and procedures should be clearly stated.

Table 6: Examples of constraints generated by the constraint agent given mathematical reasoning problem. The
example illustrates the constraint generation for solving MATH question from OlympiadBench

20

Problem Statement: You are an expert at scheduling meetings. You are given a few constraints on the existing schedule of each
participant, the meeting duration, and possibly some preferences on the meeting time. Note there exists a solution that works
with existing schedule of every participant.

TASK: You need to schedule a meeting for Michelle, Steven and Jerry for one hour between the work hours of 9:00 to 17:00 on
Monday.

Here are the existing schedules for everyone during the day:
- Michelle has meetings on Monday during 11:00 to 12:00;
- Steven has blocked their calendar on Monday during 9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, 15:30 to 16:00;
-Jerry has blocked their calendar on Monday during 9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00 to 14:30, 15:30 to 16:00,
16:30 to 17:00;

Find a time that works for everyone’s schedule and constraints.

Instance-Specific Constraints and Details:

Participants: Michelle, Steven, Jerry - The meeting must include all three.

Meeting Duration: 1 hour - The meeting requires a contiguous 60-minute slot.

Work Hours: 9:00 to 17:00 (Monday) - The meeting must start and end within these working hours. This acts as a global
constraint.

Individual Schedules (Existing Meetings/Blocked Times):
- Michelle: Busy from 11:00 to 12:00 on Monday.
- Steven: Busy from 9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, and 15:30 to 16:00 on Monday.
- Jerry: Busy from 9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00 to 14:30, and 15:30 to 17:00 on Monday (note this
constraint ends at the end of the workday).

While the problem states "Note there exists a solution," this isn’t a constraint in itself; it’s a guarantee that a feasible solution
exists given the constraints. The actual constraints are the schedules, meeting duration, and working hours.

Generated Plan:

1. Analyze Constraints:
- Participants: Michelle, Steven, Jerry
- Duration: 1 hour
- Work hours: 9:00 - 17:00
- Day: Monday

2. Identify Individual Availability:
- Michelle: 9:00-11:00, 12:00-17:00
- Steven: 9:30-11:30, 12:00-13:30, 14:00-15:30, 16:00-17:00
- Jerry: 9:30-10:00, 11:00-11:30, 12:30-13:00, 14:30-15:30, 16:00-16:30

3. Determine Common Availability: Looking for 1-hour slots:
- Comparing Michelle and Steven: 9:30-11:00, 12:00-13:30, 14:00-15:30, 16:00-17:00
- Comparing the above with Jerry: 14:30-15:30

4. Prioritize Earliest Time Slot: The earliest 1-hour slot is 14:30-15:30

5. Ensure Solution Exists: The slot 14:30-15:30 works for all three.

6. Strict Format Requirement:
SOLUTION: Here is the proposed time: Monday, 14:30 - 15:30

Verification:

The plan demonstrates significant improvement compared to the initial plan. It correctly identifies individual availabilities and
successfully finds the two viable one-hour slots: 9:30-10:30 and 14:30-15:30. It avoids exploring irrelevant shorter slots. The
plan is well-structured and clearly explains each step. It’s on the verge of providing the correct solution. However, it has not
yet explicitly stated the final answer (the prioritized earliest time slot) which is a key part of the task. Therefore, while much
improved, it doesn’t quite merit a top score due to this omission.

Score: 95

Table 7: Examples of verification generated by the verification agent given generated plan and constraints. This
example illustrates the verification process for calendar scheduling from NATURAL PLAN

21

Category Problem Statement Generated Plan

Calendar
Scheduling

You are an expert at scheduling meetings. You are
given a few constraints on the existing schedule of
each participant, the meeting duration, and possibly
some preferences on the meeting time. Note there
exists a solution that works with existing schedule of
every participant.
————
TASK: You need to schedule a meeting for Michelle,
Steven and Jerry for one hour between the work hours
of 9:00 to 17:00 on Monday.
————
Here are the existing schedules for everyone during
the day:
- Michelle has meetings on Monday during 11:00 to
12:00;
- Steven has blocked their calendar on Monday during
9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, 15:30
to 16:00;
-Jerry has blocked their calendar on Monday during
9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00
to 14:30, 15:30 to 16:00, 16:30 to 17:00;
————
Find a time that works for everyone’s schedule and
constraints.

1. Analyze Constraints:
- Participants: Michelle, Steven, Jerry
- Duration: 1 hour
- Work hours: 9:00 - 17:00
- Day: Monday
————
2. Identify Individual Availability:
- Michelle: 9:00-11:00, 12:00-17:00
- Steven: 9:30-11:30, 12:00-13:30, 14:00-15:30,
16:00-17:00
- Jerry: 9:30-10:00, 11:00-11:30, 12:30-13:00, 14:30-
15:30, 16:00-16:30
————
3. Determine Common Availability: Looking for
1-hour slots:
- Comparing Michelle and Steven: 9:30-11:00, 12:00-
13:30, 14:00-15:30, 16:00-17:00
- Comparing the above with Jerry: 14:30-15:30
————
4. Prioritize Earliest Time Slot: The earliest 1-hour
slot is 14:30-15:30
————
5. Ensure Solution Exists: The slot 14:30-15:30
works for all three.
————
6. Strict Format Requirement:
SOLUTION: Here is the proposed time: Monday,
14:30 - 15:30

Meeting
Planning

You are visiting San Francisco for the day and want
to meet as many friends as possible. Solve the prob-
lem by considering various different schedules and
picking the best one to optimize your goals.
————
Travel distances (in minutes):
Bayview to Golden Gate Park: 22.
Golden Gate Park to Bayview: 23.
————
CONSTRAINTS: You arrive at Bayview at 9:00AM.
Barbara will be at Golden Gate Park from 8:00AM to
11:30AM. You’d like to meet Barbara for a minimum
of 90 minutes.

You leave Bayview at 9:00 AM and travel 22 minutes
to Golden Gate Park, arriving at 9:22 AM. You meet
Barbara from 9:22 AM – 10:52 AM, fulfilling the
90-minute requirement.

Trip
Planning

You plan to visit 4 European cities for 12 days in total.
You only take direct flights to commute between
cities. You plan to stay in Budapest for 6 days. You
plan to stay in Reykjavik for 5 days. You would like
to meet your friends at Reykjavik between day 6 and
day 10 to tour together. You want to spend 2 days in
Milan. You are going to attend a wedding in Milan
between day 10 and day 11. You would like to visit
Porto for 2 days.
————
Here are the cities that have direct flights:
Budapest and Reykjavik, Reykjavik and Milan, Bu-
dapest and Milan, Milan and Porto.
————
Find a trip plan of visiting the cities for 12 days by
taking direct flights to commute between them.

Day 1-6: Arriving in Budapest and visit Budapest
for 6 days.
Day 6: Fly from Budapest to Reykjavik.
Day 6-10: Visit Reykjavik for 5 days.
Day 10: Fly from Reykjavik to Milan.
Day 10-11: Visit Milan for 2 days.
Day 11: Fly from Milan to Porto.
Day 11-12: Visit Porto for 2 days.

Table 8: Examples of generated plans by Multi-Agent Best of N given problem statement. These examples
illustrate the plan generation for all three task categories from NATURAL PLAN

22

Question: Two quantum states with energies E1 and E2 have a lifetime of 10−9 sec and 10−8 sec, respectively. We want to
clearly distinguish these two energy levels. Which one of the following options could be their energy difference so that they can
be clearly resolved?

Plan to solve the problem:

1. Identify the relevant physics principle: This problem involves the energy-time uncertainty principle, which states that the
product of the uncertainty in energy (∆E) and the uncertainty in time (∆t) is greater than or equal to h-bar/2 (~/2). The
uncertainty in time is related to the lifetime of the states. To clearly distinguish the energy levels, the energy difference between
them must be greater than the uncertainty in their energies.

2. Relate lifetimes to time uncertainty: The lifetimes given (10−9 s and 10−8 s) represent the uncertainties in the time for each
state (∆t1 and ∆t2). We need to consider which lifetime is more restrictive for resolving the energy levels. Since we want to
clearly distinguish them, we should use the *smaller* lifetime as the relevant ∆t. This is because the shorter lifetime leads to
a larger energy uncertainty, making the levels harder to resolve.

3. Calculate the minimum energy difference: Use the energy-time uncertainty principle (∆E ∗∆t ≥ ~/2) with the smaller
lifetime to calculate the minimum resolvable energy difference (∆E). We can approximate this by setting ∆E ∗∆t ≈ ~/2.
We’ll need the value of ~ (Planck’s constant divided by 2π) in eV·s.

4. Compare the calculated ∆E with the choices: Compare the calculated minimum resolvable energy difference (∆E) with the
given options (A) through (D). The correct answer will be the option that is *greater* than the calculated ∆E, ensuring that the
energy difference is large enough to resolve the two levels.

5. Select the correct answer: Based on the comparison in step 4, choose the option that represents an energy difference greater
than the minimum resolvable energy difference.

Plan Execution:

1. Identify the relevant physics principle: The energy-time uncertainty principle (∆E ∗∆t ≥ ~/2) governs this situation.

2. Relate lifetimes to time uncertainty: The shorter lifetime, 10−9 s, is the relevant ∆t because it leads to a larger energy
uncertainty, making resolution more difficult. So, ∆t = 10−9 s.

3. Calculate the minimum energy difference:
We have ∆E ∗∆t = ~/2. We need ~ in eV·s. ~ = 6.582× 10−16 eV·s.
∆E = (~/2)/∆t
∆E = (6.582× 10−16 eV·s/2)/(10−9 s)
∆E = 3.291× 10−7 eV
This is approximately 3× 10−7 eV.

4. Compare the calculated ∆E with the choices: We need an energy difference greater than 3× 10−7 eV to clearly resolve the
levels.
(A) 10−11 eV - Too small
(B) 10−8 eV - Too small
(C) 10−9 eV - Too small
(D) 10−4 eV - Large enough

5. Select the correct answer: Option (D) is the only one significantly larger than the calculated minimum energy difference.

Answer: D

Table 9: Examples of generated plans by Multi-Agent Best of N given physics problem. The example illustrates
the plan generation and it’s execution for physics problem from GPQA

23

<Entire Document>

Question: What is the percentage change in cash flow hedges in 2011 compare to the 2010?

Plan to solve the problem:

1. Locate the information on cash flow hedges: Search the document for "cash flow hedges" or similar terms related to derivative
instruments used for hedging cash flows. Focus on sections discussing derivative instruments, hedging activities, and related
notional amounts.

2. Identify the notional amounts for 2011 and 2010: Once the relevant section is found (Note 2i), extract the notional amounts of
the cash flow hedges specifically for fiscal year 2011 and fiscal year 2010.

3. Calculate the percentage change: Use the formula for percentage change: [(Notional Amount 2011 - Notional Amount 2010) /
Notional Amount 2010] * 100. This will provide the percentage change in cash flow hedges from 2010 to 2011.

Plan Execution:

1. Locate the information on cash flow hedges: The information on cash flow hedges was located in a section discussing
derivative instruments and hedging activities. Specifically, it was found within a sentence detailing the notional amounts of
various hedging instruments.

Code (if needed):
“‘python
No code needed for this step.
“‘
Result: Information on cash flow hedges located successfully.

2. Identify the notional amounts for 2011 and 2010: The notional amounts for cash flow hedges were identified as $153.7 million
for 2011 and $139.9 million for 2010.

Code (if needed):
“‘python
No code needed for this step.
“‘
Result: 2011 notional amount: $153.7 million; 2010 notional amount: $139.9 million.

3. Calculate the percentage change:

Code (if needed):
“‘python
notional_2011 = 153.7
notional_2010 = 139.9
percentage_change = ((notional_2011 - notional_2010) / notional_2010) * 100
rounded_percentage_change = round(percentage_change, 1)
print(f"{rounded_percentage_change}%")
“‘

Answer: 9.9%

Table 10: Examples of generated plans by Multi-Agent Best ofN given financial reasoning problem. The example
illustrates the plan generation and it’s execution for problem from DocFinQA

24

Question: For a positive integer a, define a sequence of integers x1, x2, . . . by letting x1 = a and xn+1 = 2xn + 1 for n ≥ 1.
Let yn = 2xn − 1. Determine the largest possible k such that, for some positive integer a, the numbers y1, . . . , yk are all prime.

Plan for Solving the IMO Problem:
1. Problem Understanding: The problem defines a recursive sequence ‘x_n’ based on an initial value ‘a’, and a related sequence
‘y_n’ based on ‘x_n’. The goal is to find the largest ‘k’ such that ‘y_1’, ‘y_2’, ..., ‘y_k’ can all be prime numbers for some choice
of ‘a’.
2. Key Information and Variables:
‘a’: A positive integer, the starting value for the sequence ‘x_n’. This is the variable we need to choose optimally.
‘x_n’: Defined recursively as ‘x_1 = a’ and ‘x_(n+1) = 2x_n + 1’.
‘y_n’: Defined as ‘y_n = 2^(x_n) - 1’. This is the sequence we need to check for primality.
‘k’: The length of the subsequence of ‘y_n’ consisting only of primes. We want to maximize this.
3. Problem Type and Method: This is a number theory problem involving sequences, primality, and recursion. The method will
involve a combination of:
Analyzing the structure of ‘x_n’ and ’y_n’: Finding a closed-form expression for ’x_n’ in terms of ’a’ and ‘n‘ will be crucial.
This will help us understand the structure of ‘y_n’.
Primality testing/properties: We’ll need to leverage known properties of prime numbers, particularly those related to Mersenne
primes (primes of the form 2^p - 1, where p is prime).
Case analysis/exploration: We might need to explore small values of ‘a’ and ‘k’ to identify patterns and formulate conjectures.
Proof by contradiction: To establish the largest possible ‘k‘, we may need to assume a larger value is possible and derive a
contradiction.
4. Solution Process:
Step 1: Derive a closed-form expression for ‘x_n‘. The recursive definition suggests a linear recurrence relation. We can solve it
to express ‘x_n‘ directly in terms of ‘a‘ and ‘n‘.
Step 2: Substitute ‘x_n‘ into the definition of ‘y_n‘. This gives us a formula for ‘y_n‘ in terms of ‘a‘ and ‘n‘.
Step 3: Analyze the primality conditions for ‘y_n‘. Given that ‘y_n‘ has the form 2^m - 1, we know that for ‘y_n‘ to be prime,
‘m‘ (which is ‘x_n‘) must itself be prime. This suggests focusing on values of ‘a‘ that lead to prime values of ‘x_n‘.
Step 4: Explore small values of ‘a‘ and ‘k‘. This helps to identify patterns and limitations on the possible values of ‘k‘.
Step 5: Investigate divisibility properties. Consider the factors of ‘y_n‘ and how they might relate to previous terms in the
sequence. Look for patterns in the factors that might prevent multiple consecutive ‘y_n‘ from being prime.
Step 6: Formulate a conjecture for the maximum ‘k‘. Based on the observations from the previous steps, propose a value for the
maximum ‘k‘.
Step 7: Prove the conjecture. Use a proof by contradiction. Assume a larger ‘k‘ is possible and demonstrate that this leads to a
contradiction based on the divisibility properties of ‘y_n‘. This will establish the proposed value of ‘k‘ as the maximum.

Plan Execution:
1. Closed-form for xn: The recurrence relation xn+1 = 2xn + 1 with x1 = a can be solved as follows:
x2 = 2a+ 1
x3 = 2(2a+ 1) + 1 = 4a+ 3 = 22a+ 22 − 1
x4 = 2(4a+ 3) + 1 = 8a+ 7 = 23a+ 23 − 1
By induction, we can show that xn = 2n−1a+ 2n−1 − 1 = 2n−1(a+ 1)− 1.
2. yn in terms of a and n: Substituting the expression for xn into yn = 2xn − 1, we get yn = 22n−1(a+1)−1 − 1.
3. Primality of yn: For yn to be prime, xn must be prime. Let xn = pn, where pn is a prime number.
4. Exploring small values:
If a = 1, x1 = 1, y1 = 21 − 1 = 1, which is not prime.
If a = 2, x1 = 2, y1 = 22 − 1 = 3, which is prime.
x2 = 2(2) + 1 = 5, y2 = 25 − 1 = 31, which is prime.
x3 = 2(5) + 1 = 11, y3 = 211 − 1 = 2047 = 23 · 89, which is not prime. So, for a = 2, k = 2.
5. Divisibility:
If x1 = a is prime, say a = p, then x2 = 2p+ 1. If x2 is also prime, then y1 and y2 are potentially Mersenne primes. However,
x3 = 2(2p + 1) + 1 = 4p + 3. If p = 2, x3 = 11, and y3 is not prime. If p = 3, x2 = 7, x3 = 15, which is not prime. If
p = 5, x2 = 11, x3 = 23, x4 = 47, x5 = 95, which is not prime.

If k = 3, we need x1 = a, x2 = 2a + 1, and x3 = 4a + 3 to all be prime. If a = 2, x1 = 2, x2 = 5, x3 = 11. But
y3 = 211 − 1 = 2047 = 23 · 89, which is not prime.

6. Conjecture: The largest possible k is 2.
7. Proof: We have shown that for a = 2, y1 and y2 are prime. We need to show that y3 cannot be prime. x3 = 4a+ 3. If a ≡ 2
(mod 3), then 4a + 3 ≡ 4(2) + 3 ≡ 11 ≡ 2 (mod 3). If a ≡ 1 (mod 3), then 4a + 3 ≡ 4(1) + 3 ≡ 7 ≡ 1 (mod 3). If
a ≡ 0 (mod 3), then 4a+ 3 ≡ 3 ≡ 0 (mod 3). So, if a > 3 and a ≡ 0 (mod 3), then x3 is divisible by 3 and greater than 3,
so it is not prime. If a = 3, x3 = 15, not prime. If a = 2, x3 = 11, and y3 = 2047 = 23 · 89.

So the final answer is 2 .

Table 11: Examples of generated plans by Multi-Agent Best of N given maths problem. The example illustrates
the plan generation and it’s execution for problem from OlympiadBench (MATH)

25

	Introduction
	PlanGEN
	Proposed LLM Agents
	Constraint Agent
	Verification Agent
	Selection Agent

	Proposed Frameworks
	Multi-Agent Best of N
	Multi-Agent ToT
	Multi-Agent REBASE
	Multi-Agent Mixture of Algorithms

	Experiments and Results
	Experimental Setup
	Main Results

	Analysis and Discussion
	Conclusions
	Related Works
	Further Details on LLM Agents
	Details on Proposed Frameworks
	Further Details on Benchmarks and Experiments
	More Analysis
	Various Examples for Different Components of PlanGEN

