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ABSTRACT

Long-term, multivariate time-series forecasting is vital for domains such as en-
ergy systems, finance, and weather prediction, where accurately modeling in-
tricate patterns can yield significant performance gains. However, many exist-
ing models struggle with the inherent non-stationarity of real-world data, where
distribution shifts can vary both within and across series, leading to subopti-
mal long-horizon forecasts. While techniques like normalization and decompo-
sition have been applied to learn more nuanced features, they often rely on re-
strictive assumptions. To overcome these limitations, we propose DualFrac, a
dual-stream system is built on stacked neural fractional operators, each perform-
ing fractional-domain, time-varying transformations with interwoven decompo-
sition to extract non-stationary sub-components for weaving the target signals.
By producing a hierarchy of sub-forecasts that are progressively aggregated, our
model effectively captures both intra-series and inter-series dependencies in a
non-stationarity-aware manner. Extensive experiments show that our approach
achieves state-of-the-art (SOTA) performance, surpassing recent decomposition-
based and transformed domain models, further validating its robustness and effec-
tiveness.

1 INTRODUCTION

Long-term time series forecasting (LTSF) underpins critical applications in finance, transporta-
tion, and climate science. A key challenge arises from non-stationarity, where inter-variate cou-
pling (Tajeuna et al., [2022), irregular events, and chaotic intermittency create evolving dynamics
that standard deep models fail to capture. While recent advances, ranging from Transformer ar-
chitectures (Wu et al) 2022; [Zhou et al., 2021b) to frequency-domain approaches (Wang et al.,
20255 |Y1 et al.l 2023)—have improved accuracy, they often rely on normalization or oversimplified
assumptions about underlying dynamics (Liu et al., [2023ajc), which may degrade non-stationary
performance. A plethora of works suggest that complex signals can be viewed as compositions of
simpler subsystems (Qi et al., 2004; Young, 201 1), motivating the use of decomposition-based fore-
casting (Wu et al., [2023). This calls for models that go beyond statistical extrapolation to uncover
the intrinsic logic of evolving time-frequency patterns.

A prevailing trend in recent SOTAs is to improve performance in non-stationary LTSF by decompos-
ing inputs into components with distinct temporal or spectral properties. Temporal-domain methods
often separate trend and seasonal terms (Zhou et al.| [2025a; Wu et al., 2021, linear and nonlinear
patterns (Yu et al., 2025), or low- and high-frequency signals (Huang et al.,|2025). While these ap-
proaches achieve empirical gains, they are largely heuristic and fail to capture the generative mech-
anisms driving non-stationary dynamics. This limitation is particularly pronounced in real-world,
highly nonlinear systems, where prediction errors grow rapidly due to evolving spectrotemporal con-
tent (Lorenz,|1963;|Osingal |2018)). A complementary line of work focuses on theoretically motivated
decompositions that aim to extract interpretable components in transformed domains. For instance,
DeRiTS (Fan et al., |2024) models multi-derivative stationary-frequency patterns. Its reliance on
the global Fourier basis, however, hinders its ability to capture time-localized and aperiodic events.
SimpleTM (Chen et al.|[2025a) and WaveTS (Zhou et al.l|2025b) address this by leveraging wavelet
to disentangle trends and oscillatory components. Current works also exploit inter-series dependen-
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cies (Wang et al.| |2025; [Yu et al.,2025)), due to their critical role in strongly coupled systems where
non-stationary behavior emerges from variable interactions.

In short, decomposition-based methods en-
hance long-term forecasting by breaking down

series into simpler components, often aiming to Full [l
“stationarize” them. However, this assumption

is limiting, as real-world processes are rarely byn-1
stationary, and forcing stationarization may

suppress time-varying dynamics. Frequency-
domain approaches (Chen et al.,|2025a; |Huang
et al.l 2025) reduce over-stationarization but
struggle to adapt to dynamic changes due to

Dyn-2 \,JVWMMW#-"WNNWW
Sta-1 N/V\MM
rigid frameworks. These issues highlight the
need for a framework that natively models non- Sta2 MA/\/\/\/\/
stationarity at all levels.

Building on these insights, we propose Dual-
Frac, a neural forecasting framework that uses
nonlinear, time-varying neural fractional op-
erators (NFOs) to model non-stationary time
series, avoiding decomposition and stationar-
ization while approximating the true genera-
tive process. Crucially, DualFrac’s design en-
sures that every intermediate component re-
mains non-stationary, thereby avoiding the in-
formation loss and over-smoothing common to
classical decomposition-based methods. Each
block combines static (data-independent) and
dynamic (input-adaptive) NFOs, with Inter-NFOs capturing cross-variate dependencies and Intra-
NFOs modeling temporal evolution, their outputs gated and merged. Cascaded layers integrate
residuals, summing intermediate forecasts for robust extrapolation under distributional shifts. As
shown in Fig. |1} DualFrac generates interpretable sub-forecasts, with dynamic NFOs capturing os-
cillatory patterns and static NFOs extracting trends, forming a global forecast. Notably, it also pro-
duces distinctly separated sub-forecasts that collectively align closely with the ground truth in the
time-frequency domain (Fig. 2b). Experiments on diverse benchmarks show DualFrac’s superior
performance and expressivity. Our contributions are:

Global Forecast and Cascaded Sub-Forecasts

1ddalti

Figure 1: DualFrac’s interleaved cascaded fore-
casts on a synthetic non-stationary signal: global
forecast (pink) versus ground truth (blue), two
dynamic sub-forecasts, capturing intermittent os-
cillations; and two static sub-forecasts, captur-
ing more broad trends. Each component is
provably non-stationary via learnable differential
transforms; sample autocorrelations (right) high-
light distinct quasi-periodic and intermittent dy-
namics.

* We introduce DualFrac, a novel neural fractional cascading forecasting framework that fun-
damentally addresses long-term non-stationarity by leveraging a fractional time-frequency
domain perspective. DualFrac adaptively models both intra- and inter-variate information
while preserving diverse temporal patterns.

* We design a two-stage neural operator, comprising static and dynamic modules, to capture
both stable and time-varying dynamics over sequences. This cascaded structure enables
DualFrac to perform generalizable forecasting through provably non-stationary signal mod-
eling.

* We validate DualFrac through extensive long-term forecasting experiments and thorough
theoretical and empirical analyses, consistently outperforming SOTA baselines.

2 RELATED WORK

Non-stationary Time Series. Prior works apply stationarization as a preprocessing step, such as
RevIN (Kim et al., 2021) and DAN (Liu et al.| [2023c)) for perform instance- or statistic-level nor-
malization with learnable mappings between input/output or across variates. Recent works such as
LiNo (Yu et al} 2025) and TwinsFormer (Zhou et al., 2025a) goes further by alternating between
decomposed series to disentangle distinct dynamics, with spatial dependency and decomposition-
based de-stationarization. DeRiTS (Fan et al.}[2024) WaveTS (Zhou et al., [ 2025b)) further improves
by stationarizing on the frequency domain, operating with global dependency. However, most of
these approaches rely on either residual heuristics or stationarization in fixed frequency bands. In
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contrast, our method introduces a fractional-domain decomposition framework, theoretically sup-
ported by the view that any non-stationary process can be obtained from a family of sub-series, each
learned in its own distribution, thus alleviating aforementioned issues.

Learning on Transformed Domain. Recent advances in time series forecasting have increasingly
turned to transformed domain, such as Fourier and wavelet 2025). Motivated by classical
spectral decomposition techniques, many have incorporated domain conversion to enhance temporal
representation. Depending on how such information is handled, existing approaches can be broadly
grouped. Some models operate entirely in the time domain without any transformation (Zhou et al.,

20214} [Liu et al.} 20244, [Wang et all,20244), while others apply unified processing to all frequency

components without distinguishing their roles |Y1 et al.| (2024b)); [Zhou et al.| (2022c). Some fo-
cus exclusively on low-frequency signals under the assumption that they carry the most predictive

power Zhou et al.| (2022a); | Xu et al.| (2024). More recent studies adopt weighted strategies that
multicomponent transforms [Zhou et al (2022b); [Zhang et al.| (2024); [Yi et al. (2024c). While prior
methods offer promising results, they often isolate frequency components and rely on rigid spectral
or basis assumptions, limiting their ability to model dynamical behaviors.
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Figure 2: DualFrac’s block structure and non-stationary decomposition on a synthetic test signal.
(a) A single DualFrac block: the input is split into static and dynamic streams, each processed by
Inter- and Intra-series FNOs; their gated outputs yield sub-forecasts, while the residuals feed the
next layer. (b) Top: four artificial additive components (COMP;—-COMP,) and their Wigner-Ville
energy densities, summing to form a highly non-stationary ground-truth signal. Bottom: DualFrac’s
four learned sub-forecasts, each exhibiting strong non-stationary time-frequency characteristics. The
final global forecast }A’, formed by summing these sub-forecasts, closely matches the Wigner—Ville
distribution of the ground truth Y, demonstrating accurate recovery of complex dynamics.

3 PRELIMINARIES

Problem Formulation. Formally, let the input be a multivariate series X € RE*T | where C
denotes the number of variables (channels) and 7" is the total number of time steps. At any given time
step t, the forecasting model takes as input a lookback segment of length L, denoted by X;_r., =

{zi_r,...,x:}, where each z; € R®. The forecasting task aims to predict the next F' future
steps: Yy = {@411,..., 21} € REXF where the ground truth sequence is denoted by Y; =
{®t41,..., @11 r}. The forecasting model F(+) learns a mapping from past observations to future

predictions Y; = F(X,_ 1)

Fractional Domain. We leverage the Fractional Fourier Transform (FrFT)
let all 2023}, [Chen et al.| 2025b), a classical linear transform to build our neural network that trans-
forms temporal signals into a rich continuum of intermediate representations between the time and
frequency domains. Unlike conventional transforms, signals purely into frequency or multiscale
bases, the FrFT is a linear time—frequency operator parameterized by a rotation angle 6 (also de-
noted o). Formally, the FrFT can be interpreted as a rotation in the time—frequency plane in the
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sense of Wigner—Ville, providing a continuum between the identity (§ = 0), the Fourier transform
(0 = 7/2), and the time reversal (§ = 7). Given a real-valued signal X (¢), ¢ is the time or space
coordinate, the Wigner—Ville distribution is

W (¢, w) :/

RX(t + I) X*(t - z) e IO 4, M

2 2

which provides a quadratic time (space)—frequency representation. The action of the FrFT corre-
sponds to a rotation of Wx by angle 6 in the (¢,w)—plane, mapping content onto an intermediate
fractional domain. Equivalently, one can view the FrFT as the projection

fe[X](f):/ Wx (t,w) §(& — tcos ) — wsin f) dt dw, 2
R2

where d(-) is the Dirac distribution. We refer to & as the fractional domain coordinate. Learning in
this domain enables dynamic, data-adaptive time—frequency selectivity, which underpins DualFrac.
The FrFT is defined as

Definition 1 (FrFT). Let X € L?(R). For each § € R, the fractional Fourier transform of order @ is

Xy(6) = FU[X](¢) = /]R X (8) Iy (&, t) dt 3)
where the kernel Ky (€, 1) is defined as:

Agexp [%(52 +t2) cot § — jétesc 9] ,0 ¢ 7
Ko(&,t)=<¢d(E—1t), 6=2knm 4)
iE+t), 0=02k—D)rm

where Ag = \/%f:’te and k € Z. The inversion is F .

4 METHODOLOGY

4.1 FRACTIONAL NEURAL OPERATOR

Real-world time series often exhibit nonstationary behaviors, such as drifting instantaneous frequen-
cies, intermittent structures, and amplitude-phase modulation, which are prevalent in chaotic or non-
linear systems. Traditional techniques like differencing or normalization attempt to stationarize the
data but fail to address the geometric misalignment of correlation and energy in the time-frequency
plane, where nonstationary signals often display distorted Wigner-Ville distribution, which devi-
ate from the axis-aligned assumptions of fixed transform. To capture these, we employ fractional
pseudo-differential operators (Prasad & Kumar, 2016} |Upadhyay et al., [2013), which generalize
convolution and differentiation with time (space)-frequency adaptivity.

Definition 2 (Fractional Pseudo-Differential Operator). Let a(t,£) be a sufficiently smooth
time—frequency function (a symbol) on R, x Re. For any § ¢ nZ, define the associated fractional
pseudo-differential operator
7Y . L*(R) - L*(R) (3)
by
(200 = [ K-oft.)at.6) 7€) @
where 59(5) = F9[¢](¢) is the FrFT of angle 6. In particular: If a(t,&) = (i & csc )™, then T

reduces to the classical m-th order fractional derivative. If a(t,£) = a(&) is independent of x, then
T? is a fractional convolution operator.

To make this operator adaptive and learnable, we introduce the Neural Fractional Operator (NFO),
a neural extension of 77,

Definition 3 (Neural Fractional Operator). Let X € RZ*® be a multivariate time series with C'
channels, or let ¢ € L?(R)“ be a multivariate signal in the continuous setting. The symbol a(t, ¢)

is factorized as:
a(t,§) = u(t)v(€), 5)
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where u : R — R® and v : R — R are learned functions representing time-dependent and
frequency-dependent profiles, respectively. In practice, u(t) and v(€) are predicted by hypernet-
works HyperNet! and HyperNet®, each instantiated as a one-layer MLP with Snake activation
Agz) = x + sin?(2x)/2 (Belcdak & Wattenhofer, [2022). The Neural Fractional Operator (NFO)
TP L2(R)® — L?*(R)“ of order 6 ¢ 7Z acts on a signal ¢ € L?(R)¢ as:

(TL) (t) = u(t) F~% [v(-) © FPle]] (1) (6)

where F?[-] denotes the Fractional Fourier Transform of order ¢, and ® represents channel-wise
multiplication.

NFO functions as a dynamic, signal-aware filter that operates jointly over time and frequency rep-
resentations. When the NFO is independent of the input signal, its hypernetwork inputs are set to
Fourier embeddings that depend solely on the length of the filtering axis, initialized with Fourier
positional embeddings, and denoted as NFOg,. Conversely, when the NFO depends on the input
signal’s content, its symbol factors are initialized based on the input, and it is denoted as NFOgqyn.

4.2 DUALFRAC ARCHITECTURE

DualFrac is structured as a hierarchical decomposition architecture designed explicitly to handle the
complex behaviors of non-stationary time series, as shown in Fig [2h. At its core, DualFrac con-
sists of multiple stacked Neural Fractional Operator (NFO) modules arranged in a residual cascade,
progressively extracting meaningful fractionally-aligned temporal and frequency-domain features.
Each NFO block outputs two primary components: one is a decomposed intermediate component,
projected by a linear layer to sub-forecast, contributing directly to the final forecast, and the other is
a residual intermediate component carrying forward unresolved features for further decomposition
by subsequent layers. To preserve overall trend within and among different series, we eliminate
normalization layers and adopt an adaptive Tanh activation function instead.

Interleaved NFO Interaction. Within each DualFrac block, the NFOs dynamically constructs
fractional pseudo-differential operators using data-dependent and data-driven symbols, respectively.
Concretely, given an input embedding X € RE*L*P where C denotes the number of variates
(channels), L the sequence length, and D the embedding dimension, an NFO module performs
fractional filtering along both temporal (intra-series) and variate (inter-series) dimensions indepen-
dently, enabling the network to explicitly disentangle spatial and temporal dynamics. We consider
two distinct symbol generation strategies: fractionally static and fractionally dynamic filtering.

Fractionally Static NFO Module. The static module generates symbols that capture global or
slowly varying patterns, independent of instantaneous input features. For inter-series Inter-NFO
and intra-series Intra-NFO NFOs, their outputs are fused to yield the statically filtered output with
scaling parameter -,

Y.er — Inter-NFOy, (X)), (9a)
Y% = Intra-NFOy, (X)), (9b)
Y, " = ~y tanh (Linear (Y1 + Y,2"™)) (9¢c)

Fractionally Dynamic NFO. In contrast, the fractionally dynamic NFO employs an input-
dependent, adaptive symbol parameterization to flexibly respond to instantaneous signal variations.
Here, symbols are dynamically generated by single-layer Snake-activated copy of the input. Con-
cretely,

nlyf‘éer = Inter-NFOgyn (X), (o
y:ily“éfa = Intra-NFOgy, (X)), (19
Yn' =~ tanh (Linear (Y™ + Yin)) (109

Cascaded Interweaving Forecasting. To achieve effective multi-level forecasting, DualFrac im-
plements a cascading residual structure. Each layer ¢ receives two distinct inputs: the static residual
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component X and dynamic residual component X, fyn. Initially, these are obtained from the raw

input X via separate linear embeddings:
X, = Linearg,(X), Xg, = Lincargy,(X). (7)

sta

And they experience filtering in a dual-stream pathway:

Yggut L StathFllterlng(Xhtd)

}G(;r?t * = DynamicFiltering(X dyn).

®)

In DualFrac’s interwoven architecture, the static and dynamic streams are not processed in isolation.

Instead, the output of the static filtering (Y std ) may contribute to the dynamic input (X fjnl) of the
next layer, and vice versa. This interwoven exchange enables the model to capture complementary
information by iteratively permuting the information flow between streams. These sub-forecasts
refine and progressively adding well-aligned, non-stationary structures from the synthesized repre-

sentations. The refined representations are forwarded as:

b SRR (T (13a)
X = x5, -y, (13b)
Y = Proj, Yo + Projy,, Yau'! (130)

where Projy, and Proj,, are linear projection layers. The final forecast aggregates all sub-
forecasts:

L—1
Y=> Y (14)

This cascading design enables DualFrac to decompose the input into distinct components while
iteratively refining forecasts, resulting in more accurate long-term behaviors.

4.3 THEORETICAL ANALYSIS

We aim to show that the sum of outputs from a finite-depth neural architecture, where each layer
performs a learnable fractional pseudo-differential transformation, can approximate a broad class of
non-stationary processes exhibiting local time—frequency structures.

Theorem 4 (Neural Fractional Approximation of Non-Stationary Processes). Let Y (t) be a non-
stationary stochastic process exhibiting local regularities, as described in|Dahlhaus|(1996). For any
€ > 0, there exist m > 0, and second-moment processes {X;(t)}M < L2(Q; H*T™Y), where H*Y
is the 0-Soboleve space (Prasad & Kumar, |2016)), and M learnable fractional pseudo-differential
operators {T( )}2 1, Where each symbol a;(x,&) exhibits at most polynomial growth in &, and
all angles satisfy |sin0;| > 0, such that each operator T,, satisfies || T ¢||H< o < C|P|lgstm.o

for a uniform constant C. The neural forecast is defined as ?(t) Z T a? )X (t (t), with the
2
mean-squared error bound E UY(t) — Y(t)’ } <e.

Theorem E] implies a spectral corollary: if each Y} (¢) is energy-localized in frequency, then the
Wigner—Ville time-frequency (or space-frequency) representation of Y (¢) satisfies the following
property:

lim HWY (t,w) — H ©)

M —o0

which provides a convergence guarantee when apphed to our overall cascaded framework, stated as
follows:

Theorem 5 (Convergence of Cascaded NFO Decomposition). Ler Y (t) be a stochastic process
satisfying the conditions of Theorem|[6] Define the residual sequence:

Ro(t) :=Y (1), (10)
Ry (t) := Ri(t) — TUH[Ry](E), k=0,1,... (11
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where each Ta(fk) is a learnable neural fractional pseudo-differential operator. Then, for any € > 0,
there exists N € N such that:
N
Y TR () - Y ()| <e @1
=1 L2

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Data and Baselines. We evaluate DualFrac on 9 real-world benchmarks, following Wang et al.
(2025); Zhou et al.| (2025a), as well as a synthetic hyperchaotic datasets, WCN. We compare ours
with classical and recent SOTAs, including Autoformer (Wu et al.| 2021)), CFPT (Kou et al.|, |[2025),
Crossformer (Zhang & Yan, 2023)), DeRiTS (Fan et al., 2024), DLinear (Zeng et al., |2023)), FED-
former (Zhou et al., 2022c), FITS (Xu et al., 2023)), FreTS (Yi et al., [2024a), Informer (Zhou et al.,
2021b), iTransformer (Liu et al., [2024b), LiNo (Yu et al.l [2025)), PatchTST (Nie et al.l [2022),
SCINet (Liu et al.l |2022a), SimpleTM (Chen et al., [2025a)), Stationary (Liu et al., 2023a), Tex-
Filter (Y1 et al., 2024b), TiDE (Das et al.,2023)), TimeKAN (Huang et al.,2025)), TimeMixer (Wang
et al., [2024b), TimeMixer++(Wang et al.l 2025), TimesNet(Wu et al.| 2023)), Twinsformer (Zhou
et al., |2025a) (Zhou et al., 2025b), WPMixer (Murad et al., 2025]).

Implementation. All experiments are implemented in PyTorch 2.5.0 on 4 NVIDIA A100 (40GB)
GPUs. Datasets and train/validation/test split are set up in accordance with those in works such
as (Wang et al., [2025; 2024b). We report MSE and MAE as evaluation metrics.

Table 1: Average performance results of long-term time series forecasting. We set the lookback
length as 96 and the prediction length in {96, 192, 336, 720}. The best, second and third results are
highlighted. Full results are included in App. A.

Models | Weather | Solar | ECL | Traffic | Exchange | ETThl | ETTh2 | ETTml | ETTm2 | WCN
Metrics |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

DualFrac |.228 .254 |.182 .241]|.154 .248 | 401 .266|.346 .394 |.398 .412|.338 .382|.354 .369 |.247 .310 | .646 .588
CFPT  |.240 267 |.291 .336|.164 259 | 470 .289|.390 412|432 429 |.364 393|374 393|269 .315|.726 .630
Twinsformer |.246 271 |.227 254 |.167 261 |.406 .274|.346 395 |.446 440 |.372 .400 |.393 .403|.277 .323 | .694 .624
LiNo  |.241 270 |.275 320|.164 260|465 .295|.350 .398 |.429 .428 |.377 .400|.389 .400 |.275 .320|.716 .637
TimeMixer++|.226 262 |.203 .258 |.165 253 |.416 .264 |.357 .409 |.418 .432|.339 .380|.368 .378|.269 .320|.659 .611
TimeMixer |.240 272 |.216 280 |.182 273 | .485 297|391 453 |.447 .440|.365 .395|.381 .396|.275 .323|.691 .642
iTransformer | 258 278 |.233 262 |.178 270 |.428 .282|.360 .403|.454 467 |.383 .406|.410 .410|.288 .332|.721 .633
PatchTST |.265 .285|.287 .333|.216 .318|.529 .341|.366 .404|.507 .472|.391 411 |.402 .406|.290 .334|.759 .671
Crossformer | 264 .320 | 406 442|244 334 |.667 .426|.940 707 |.529 522 |.942 .683 |.513 .495|.757 .611 |1.286 .924
TIDE  |.270 .320|.347 .417|.252 344 |.760 473|370 413|.541 .507 |.611 .550|.419 .419|.358 .404|.962 .832
TimesNet |.259 .286|.402 .374 |.193 303 |.620 .336 |.416 .443|.458 450|414 .427|.400 406 |.291 .333|.951 .836
DLinear |.265 .315[.330 .401|.225 .319|.625 .383|.354 414|461 .458|.563 .519 |.404 .408 |.354 402 |.838 .758
SCINet |.292 363 |.282 .375|.268 .365|.804 .509 |.750 .626|.747 .647 |.954 723 |.485 .481|.571 .537|.863 .772
FEDformer |.309 360 |.328 .383 |.213 .327|.609 .376|.519 .429 | 498 .484 |.436 449 | 448 452|304 .349 [1.274 1.104
Stationary |.288 .314|.350 .390 |.193 296 |.624 340 |.461 .454|.570 .536|.526 .516 |.481 .456|.306 .347 |.876 .780
Autoformer |.338 .382|.593 .557|.227 364 |.628 379 |.613 .539|.496 .487|.450 .459|.588 .517|.327 .371|1.027 .902
WaveTS |.237 278 |.235 .259 |.160 .253|.408 278 |.361 .402|.410 423 |.332 .383|.356 .376|.244 311|.664 .614
FITS  |.230 .266 | 236 258 |.172 266 | 428 291 |.458 457 |.412 427|337 .385|.361 381|.252 315|.706 .636
DeRiTS |.293 .321|.361 .340|.293 .376 |.976 .545|.427 .505|.682 .566 | 435 .439|.715 .555|.321 .359|.967 .849
WPMixer |.235 .283|.250 .263 |.175 264 |.448 316|426 471 |.418 427|354 388|365 .383|.264 317|.710 .623
TexFilter |.245 272|317 .339 |.172 268 |.462 .310|.388 .421|.441 439 |.383 .407|.391 .401|.285 .328 | 747 .656
SimpleTM |.243 271 |.184 247 |.166 260 |.444 289|371 .412|.422 .428|.353 391|381 .396|.275 .322|.676 .625
TimeKAN |.242 271 |.242 265|.197 .286 | 415 284|371 411|417 427|383 404|376 395|277 322|.672 .622
FreTS  |.288 314 |.350 .390 |.193 .296|.624 340 |.461 .454|.570 .537|.526 .516 |.481 .456|.306 .347|.884 .777

5.2 MAIN RESULTS

Comparative Study. As shown in Tab.|l| DualFrac achieves comparable or superior results across
a broad spectrum of datasets. It achieves 16 first-place and 3 second-place rankings out of 20
positions across two metrics on 10 datasets. Statistical analysis reveals a significant difference
(p < 0.005) compared to TimeMixer++ and WaveTS, two best-performing baselines. DualFrac
adaptively capture nonlinearly varying modes, this yields not only performance gains but also im-
proves generalization. In particular, it demonstrates superior performance on datasets characterized
by strong aperiodicity, chaotic patterns, or non-stationarity, such as ETTh1, Exchange, and WCN;
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Table 2: Ablation and operator replacement studies for DualFrac. The symbol A represents the
percentage of relative performance degradation. The symbols v* and 7 indicate the presence or
absence of a component, respectively. The following abbreviations are used: Sta (Static NFO),
Dyn (Dynamic NFO), IL (Interleaved Architecture), DS (Dual-Stream Architecture), CR (Cascaded
Residual), ¢ (fractional domain symbol factor), and ¢ (time domain symbol factor). The term ”Op-
erator” refers to the NFO or its replacement.

Cases | Operator |Sta|Dyn|IL|DS|CR|& |t |IV ECL ETThl Weather WCN A (%)
MSE MAE|MSE MAE|[MSE MAE |[MSE MAE|MSE MAE
Default\ NFO \ v \ v \\/\ v \ v \‘/\‘/\ v \ 154 248 \ 398 412 \ 228 254 \ 646 588 \ —_ —
(1) NFO X| v |[VIVv ]|V |V|v|v].183 282 |.464 .481|.271 .286 |.764 .685 |18.14 14.89
2) NFO VI X |\VIVIVIVIVIV].172 276 |.468 .467 |.264 .285|.733 .670 |14.64 12.70
3) NFO VIV X V|V IVIVIV].170 283 |.446 .466 |.250 287 |.717 .674 | 1.77 13.71
(@) NFO VIV IVIX|VIVIVIV].174 280 |.419 473 |.245 284 |.682 .660 | 7.83 12.94
(5) NFO VIV VIV XI|V|V|V].168 269 |.425 444 |.244 276 |.696 .624 | 7.66 7.76
(6) NFO VIV VIV IX|IVIV].165 276 |.409 .445|.238 .275|.682 .652|4.97 9.61
(7) NFO VIV VIV IVIX|V].171 263 |.418 .455|.245 284 |.682 .652 | 7.28 9.80
8) NFO VIV VIV VIV X].167T 265 |.437 458 |.250 .286 |.712 .673 | 9.53 11.27
) Fourier | v | v |V |V |V |V |V |V |.166 270 |.447 454 |.247 .286 |.723 .684 | 1.09 12.00
(10) | FreMLP | v | v |V |V |V [V |V |V |.188 .300 | .467 .475|.272 .297 |.756 .690 |18.94 17.64
(11) AFNO |V | vV [V |V |V [V |V |V |.186 .306|.487 .496 |.284 313 |.784 .703 |22.27 21.64
(12) |DeepFrFT| v | v |V |V |V [V |V |V |.179 300 |.476 .480 |.266 .295|.740 .673 |16.76 16.77
Ours WaveTS FreTS —=— CFPT —+— Twinsformer TimeMixer++ iTransformer
ECL ETThl Weather WCN

0.28
0.25

w
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N

512 720 48 96
Lookback Length

48 96 192 336 192 336 512 720

Figure 3: Influence of lookback horizon. We set lookback length in {48, 96, 192, 336,512, 720} and
prediction length as 720. Increasing the lookback generally boosts DualFrac in a stable manner.

and maintains comparable or better long-term performance even on datasets with low forecastability,
like Solar. These datasets pose significant challenges, as their non-stationarity cannot be effectively
addressed through normalization or traditional seasonal-trend decomposition without losing critical
information. When facing strong spatial coupling, DualFrac adeptly uncovers the nuanced interac-
tions spanning multiple variates as shown in WCN and ECL.
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Figure 4: Efficiency, scalability, and case study of DualFrac on ETThI. (a) Trade-off between MSE,
training time, and memory footprint across models. Bubble size denotes memory usage. (b) Pa-
rameter efficiency and performance scaling with model dimension and depth. Bars show parameter
count; lines show MSE. (c) Forecasting case study comparing DualFrac, WaveTS, TimeMixer++,
and LiNo. DualFrac better captures sharp transitions and localized sharp shifts.
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Ablation Study. To elucidate DualFrac’s design, we conduct a comprehensive ablation study, sys-
tematically removing or modifying key modules, with results summarized in Tab.[2] The ablation
variants are: (1) remove the static NFO, which captures data-independent symbol parameterization,
to isolate its contribution; (2) exclude the dynamic NFO, responsible for input-adaptive symbol ker-
nels, to assess its role; (3) replace the interleaved architecture, which processes intra- and inter-series
axes jointly, with independent filtering to test its integrative benefit; (4) substitute the dual-stream
architecture, combining parallel static and dynamic processing, with sequential operator stacking
to evaluate parallel processing; (5) remove cascaded residual connections, enabling progressive re-
finement across layers, to rely solely on the final layer’s output; (6) exclude the fractional coordi-
nate £ from symbol parameterization to examine its role in frequency-based modeling; (7) exclude
the original time/space coordinate ¢ from symbol parameterization to evaluate its contribution to
spatial-temporal modeling; (8) replace inter-series NFO, which models cross-series dependencies,
with intra-series NFO to assess its impact; (9) set the NFO’s « to /2 to mimic a Fourier opera-
tor (Y1 et al., [2024a)); (10) adopt the FreMLP operator (Yi et al., 2024a); (11) employ the Adaptive
Fourier Neural Operator (AFNO) (Guibas et al., 2022); (12) use the DeepFrFT layer (Zhou et al.,
2023)). These modifications generally lead to performance degradation, with operator replacements
showing the most significant declines.

Lookback Analysis. Increasing the lookback window is expected to boost forecasting by leverag-
ing richer historical context. However, excessively increasing lookback length may increase noise
or dilute critical features. To investigate this trade-off, we evaluate the impact of varying lookbacks
on performance. Fig.[3illustrates that DualFrac effectively utilizes extended lookback windows, ex-
hibiting a positive correlation between input length and lower MSE in most cases. These underscore
DualFrac’s capability of capture long-term correlations, robust to distribution shifts.

5.3 MODEL ANALYSIS

Necessity of Non-Stationarity. To show whether off-the-shelf methods help DualFrac, we plug
in RevIN (Kim et al., 2021), SAN (Liu et al.l 2023b), and Dish-TS (Fan et al., 2023) then retrain
the model. Intriguingly, as shown in Fig. [5] they overall brings negative gains. This supports our
rationale: by learning mode decomposition, DualFrac leverages, rather than suppresses, the intrinsic
time-frequency variability. Forcing stationarity can obscure predictive structure.

Efficiency, Scaling Analysis and Show Cases.

We compare DualFrac with the best-performing m ReviN  mmm DishTS  mmm SAN
baselines in terms of MSE, memory footprint, "

and training speed on ETThl. As shown in 25

Fig. Bh, DualFrac not only achieves superior 13 20
forecasting precision but also reduces memory SN g1s
consumption while maintaining high learning ) 10
efficiency. The scaling behavior of DualFrac o8 os

with respect to the model dimension d,;,0qe1 and 00 00

ECL  ETThl Weather WCN ECL  ETThl Weather WCN

depth L is illustrated in Fig.@p. We observe that

DualFrac exhibits consistent performance gains  Figure 5: Average relative degradation of normal-
as model parameters scale, but the most notable  jzation methods.

advantage occurs in the early stages. DualFrac

quickly reaches a regime of competitive perfor-

mance with relatively fewer parameters, as indicated by the dashed lines. This demonstrates its
effectiveness in achieving high performance without relying on excessive parameters. Fig. At show-
cases DualFrac’s strength on ETThl, capturing future variations amid quasi-periodic and intermit-
tent dynamics.

6 CONCLUSION

We introduce DualFrac, a novel neural operator framework for non-stationary time series forecast-
ing using fractional time-frequency representations to model inter- and intra-series dependencies. Its
cascaded approach improves long-term accuracy, with experiments, ablation studies, and analyses
across datasets confirming superiority over SOTA baselines, backed by strong theoretical founda-
tions.
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A THEORETICAL ANALYSIS AND PROOF DETAILS

A.1 PROOF OF NEURAL FRACTIONAL APPROXIMATION OF NON-STATIONARY PROCESSES

Theorem 6. Let Y (t) be a non-stationary stochastic process exhibiting local regularities, as de-
scribed in |Dahlhaus| (1996). For any € > 0, there exist m > 0, and second-moment pro-
cesses {X;(t)}M C L2(Q; H*™) and M learnable fractional pseudo-differential operators

{Té?i) M., where each symbol a;(x,&) exhibits at most polynomial growth in &, and all angles
satisfy | sin 0;] > 0, such that each operator T,, satisfies | T2 ¢|| o0 < C||@|| gro+m o for a uniform

constant C. The neural forecast is defined as ?(t) = Zf\il Téfi)XZ-(t), with the mean-squared

error bound E “Y(t) - ?(t)ﬂ <e.

Proof. We work on the probability space (£, F,P). The Sobolev norm associated with the
fractional-Fourier angle 6 is denoted || - ||gs.+, and the Hilbert space is defined as H :=
L?(Q; H*%(R)) with norm

I1Z13, = Ell Z7e.0- (12)
We fix the angle 6 and omit it from notation when unambiguous.

By the definition of local regularity (Dahlhaus| [1996), there exists a family of weakly stationary
processes {Y;(u) : u € [0, 1]} such that, for some o > 0,

E|Y (1) - Yi(u)* = O(T~*) (13)
whenever [u —t/T| < cT'™7 (0 <y <1). (14)
Divide the index set {1,...,7} into M disjoint blocks of equal length b := |T/M |, with block
centers
uj = (jb—1/2)/T (j=1,...,M).
Define the blockwise stationary surrogate
YIS (t) = Yaluyp), 4(t) = [t/b].

Using equationand the fact that ZZ;I Ly —t/T|<cT-7} = T, we obtain

E|lY — Y52, = O(MT ). (15)
Set M := [T2*]. Then equation[15]yields
E|lY — Y5 |2, < /2 for T sufficiently large. (16)

Fix a block index j. Inside the block, Y5 coincides with the weakly stationary process Y (u;),
whose fractional Fourier spectrum is square-integrable, so Y;(u;) € H.
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The space V is defined as
V= m{Tyﬂ[X] La€ §0%,0 € (0,2m),X € 7—[} CH.
Since symbols in Sﬁfﬁ form a Sjostrand/Wiener algebra and the corresponding fractional PDOs map
the Feichtinger algebra M ! into itself, the frame density theorem (Prasad & Kumar, 2016) implies
V=H. a7

By equation[T7] for each block center u;, there exist a second-moment process X; € H, an angle
6; € (0,2m) with |sin6;| > 6 > 0, and a symbol a;(z,&) € S ", with polynom1a1 growth in &,

2 satisfies

TGl o0 < Cllg]| oo

such that the operator T,g ;

and .
0.
El[Y:(u;) = TS (X110 < 577 (18)
Define the global approximation
WA
By the triangle inequality and orthogonality of the blocks,
EY = V|5, < 2BV — Y|, + 2B Y™ - V3,
M
<e+2) ElYi(uy) — T X550
j=1
2M - .
<e+ 2M =€
Thus, the finite collection {X, 6;,a;} jNi1 achieves the mean-square error bound €.
O

Corollary 7 (Wigner—Ville Convergence of NFO Approximation). Under the hypotheses of Theo-

rem|6} further assume that each component Téfi)Xi has its energy essentially confined to a disjoint
frequency band. Then for the partial approximants

ZT(Q)

the corresponding Wigner—Ville distributions satisfy

Jim ([ (t,w) = W, (8 w) = 0. (19)

Iz ey
Proof. Lete = f — g and s = f + ¢g. The Moyal identity gives
/RJWf W, |(tw) dtdw < [lell ey 5] za-

Apply this with f = Y and g = Yj,. Since Theorem@ guarantees ||Y — Yy|[z2 — 0, and both
[YlL2 and [|[Yas|| 2 remain uniformly bounded, it follows that ||Wy — W5, ||pr — 0. To handle

cross-terms arising from the finite sum ?M = Zf\il fi, one uses the disjoint-band assumption: each
fi has negligibl@ Wigner ove.rlap with f; when ¢ # j. Concretely, if supp,, fl N supp,, fj = 0, then
JJ IWy, ¢, | vanishes. Summing over ¢ # j therefore does not affect the limit.

Combining these two observations yields equation [
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A.2 PROOF OF CONVERGENCE OF CASCADED NFO DECOMPOSITION

Theorem 8. Ler Y (t) be a stochastic process satisfying the conditions of Theorem @ Define the
residual sequence:

Ro(t) =Y (t), (20)
Ry () = Re(t) = TV [Re](), k=0,1,... @1

where each T, ék %) is a learnable neural fractional pseudo-differential operator. Then, for any € > 0,

there exists N € N such that:

ZT((’ IR —Y(t)

<e 21

L2

Proof. Fix an arbitrary € > 0. Choose a sequence of tolerances {dx }2_, C (0, 00) such that

N
> ok < e (22)
k
We will construct the residuals Ry, and operators Téf’“) by induction so that E||Ry||3..0 < Z ;.
i=1

Set Ry(t) = Y(t). By Theorem [6] applied with tolerance &;, there exists a process X; €
L2(; H¥+™9), an angle 7, and a symbol a; € Sp%, such that the corresponding operator Téfl)
satisfies

JEHRO T(91>[X1]H < 6.

Hs.0
We then define
Ry = Ry — T{[Xy], (23)
so that
E||Ri %0 < 61 (24)

k
Suppose for some k& > 1 we have constructed Ry, satisfying E|| Ry[|3;..0 < Z ;. Apply TheoremH
i=1
to Ry with tolerance dy1: there exist X1, angle 051, and symbol ay1 so that

E|| Ry, — T(9k+1)[Xk+1]||25,9 < k41

Of+1

Define
Riq1 = Ry — T4 Xy ]
Then by the above inequality,
k+1

EHRkJrIqus,e <Ok+1 = EHRk+1H§{s,9 < Z&w (25)

i=1

This completes the induction. After N steps, we have

ZT“ 1(t) = Y(t) — Rn(t),

hence
N 9 N "
91‘, o 2 equation @
B[ 1) - v||, |, =Bl R}, < X6 T -
i=1 i=1
Since X; = R;_1 was the choice in each step, this completes the proof of Theorem@ [
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Table 3: Full results for the long-term forecasting task. The lookback window size is set to 96,
with prediction lengths of 96, 192, 336, and 720. Avg represents the average results across all four
prediction lengths.

Models | WaveTS

FITS | DeRiTS | WPMixer | TexFiller | FreTS SimpleTM | TimeKAN

Metrics ‘ MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.167 0.223 0.145 0.199 0.216 0.270 0.168 0.205 0.162 0.207 0.173 0.223 0.162 0.207 0.162 0.208

5| 192 | 0200 0258 0190 0243 0264 0304 0209 0270 02/0 0250 0245 0285 0208 0248 0207 0249
T | 336 | 0256 0204 0238 0282 0312 0335 0263 0289 0263 0290 0321 0338 0263 0290 0263 0290
E | 720 | 0315 033 0310 0332 0380 0375 0339 0339 0339 0340 0414 0410 0340 0341 0338 0340
| Avg | 0237 0278 0230 0266 0293 0321 0235 0283 0235 0272 0288 0314 0243 0271 0242 0271
96 | 0480 0252 0178 0245 0304 0349 0192 0248 0202 0252 0321 0380 0163 0232 0.187 0258

s | 192 | 0221 0235 0219 0234 0350 0315 0232 0246 0325 0361 0346 0369 0182 0247 0228 0241
S | 336 | 0238 0266 0238 0266 0355 0344 0252 0268 0343 0371 0357 0387 0193 0257 0245 0272
“ | 720 | 0302 0282 0310 0286 0434 0354 0325 0290 0397 0373 0375 0424 0199 0252 0309 0289
| Avg | 0235 0259 0236 0258 0361 0340 0250 0263 0317 0339 0350 0390  0.184 0242 0265
96 | 0131 0227 0145 0242 0275 0362 048 0240  0.147 0245 0169 0273  0.141 0.174  0.266

o | 192 | 0146 0240 0457 0252 0277 0364 0461 0250 0160 0251 0182 028 0.5l 0182 0273
Q | 336 | 0162 025 0174 0260 0291 0376 0477 0265 0.I73 0267 0200 0304 0.I73 0.197 0286
720 | 0200 0288 0213 0301 0329 0402 0215 0302 0210 0309 0222 0321 0201 0236 0320

| Avg | 0160 0253 0472 0266 0293 0376 075 0264 0172 0268 0193 0296  0.166 0.197 0286
96 0401 0280 0961 0542 0431 0312 0430 0294 0612 0338 0410 0274 0389 0272

e | 192 0415 0286 0973 0547 0411 0310 0452 0307 0613 0340 0430 0280 0401 0276
3 | 336 0429 0290 0959 0536 0443 0311 0470 0316 0618 0328 0449 0290 0416  0.284
= | 720 0468 0308 1010 0556 0505 0329 0498 0323 0653 0355 048 0309 0455 0305
| Avg | 0428 0291 0976 0545 0448 0316 0462 0310  0.624 0340 0444 0415 0.284

o 96 | 0.086 0204 0709 0235 043 0255 002 0220 0091 0211 011l 0237 0092 0.094 0213
@ | 192 | 0177 0300 0229 0350 0240 0355 0202 0310 018 0305 0219 0335  0.85 0183 0.309
£ ] 336 | 032 0411 0400 0463 0387 0456 0360 0433 0380 0449 0421 0476 0. 0331 0.420
Z | 720 | 0860 0693 07095 0781 0940 0938 01041 0923 0896 0712 01092  0.769 0705 0875  0.702
| Avg | 0361 0402 0458 0457 0427 0505 0426 0471 0388 0421 0461 0454 0371 0412 0371 0411
96 | 0367 0391 0374 0396 0625 0531 0368 0379 0382 0402 0513 0491 0366 0392 0367 0395

= | 192 | 0404 0414 0407 0416 0665 0550 0419 0419 0430 0429 0534 0504 0422 0421  04l4 0420
E | 33 | 0427 0432 0430 0436 0710 0574 0438 0433 0472 0451 0588 0535 0440 0438 0445 0434
2| 720 | 0440 0455 0435 0458 0730 0608 0446 0460 0481 0473 0643 0616 0463 0462 0444 0459

z
3
e
'S
=
S
s
'S
N
DY)

0.412 0427 0.682 0.566 0.418 0423 0.441 0.439 0.570 0.537 0.422 0.428 0417 0.427

96 0.267 0.333 0.273 0.380 0.400 0.336 0.293 0.343 0.476 0.458 0.281 0.338 0.290 0.340

Q 192 0.332 0.375 0.334 0.442 0.435 0.380 0.374 0.396 0.512 0.493 0.355 0.387 0.375 0.392
E 336 0.349 0.396 0.356 0.465 0.461 0.405 0417 0.430 0.552 0.551 0.365 0.401 0423 0.435
M 720 0.380 0.428 0.384 0.452 0.459 0432 0.449 0.460 0.562 0.560 0.413 0.436 0.443 0.449
‘ Avg ‘ 0.332 0.383 0.337 0.435 0.439 0.388 0.383 0.407 0.526 0.516 0.353 0.391 0.383 0.404

96 0.301 0.344 0.306 0.348 0.691 0.541 0.309 0.346 0.321 0.361 0.386 0.398 0.321 0.361 0.322 0.361
192 0.338 0.365 0.340 0.369 0.708 0.550 0.369 0.367 0.387 0.459 0.444 0.360 0.380 0.357 0.383
0.373 0.388 0.719 0.558 0.394 0.401 0.409 0.495 0.464 0.390 0.404 0.382 0.401
720 0.416 0.412 0.424 0419 0.742 0.572 0422 0.477 0.448 0.585 0.516 0.454 0.438 0.445 0.435

ETTml
w
b}
=
S
1
S
3
o
@
3
£

>
03
S
W
@
£
=
W
\1
EN

0.361 0.381 0.715 0.555 0.383 0.391 0.401 0.481 0.456 0.381 0.396 0.376 0.395

96 0.162 0.252 0.165 0.256 0.227 0.308 0.170 0.254 0.175 0.258 0.192 0.274 0.173 0.257 0.174 0.255
192 0.215 0.292 0.219 0.294 0.284 0.338 0.228 0.293 0.240 0.301 0.280 0.339 0.238 0.299 0.239 0.299
0.271 0.328 0.339 0.370 0.290 0.330 0.311 0.347 0.334 0.361 0.296 0.338 0.301 0.340
720 0.335 0.373 0.352 0.382 0.434 0.419 0.367 0.390 0.414 0.405 0417 0413 0.393 0.395 0.395 0.396

ETTm2
w
Py
=N
o
i
£
@
=
w
]
EN

z
[
S
9
£
=
=
w
-
=

0.252 0.315 0.321 0.359 0.264 0.317 0.285 0.328 0.306 0.347 0.275 0.322 0.277 0.322

96 0.264 0.330 0.279 0.347 0.385 0.462 0.283 0.339 0.297 0.357 0.352 0.422 0.272 0.341 0.271 0.339
192 0.612 0.574 0.646 0.606 0.892 0.806 0.655 0.591 0.689 0.623 0.815 0.738 0.625 0.585 0.621 0.582
0.856 0.736 1.182 0.992 0.868 0.728 0913 0.767 1.081 0.908 0.825 0.755 0.821 0.751
720 0.969 0.807 1.041 0.854 1.409 1.136 1.035 0.833 1.088 0.878 1.288 1.040 0.982 0.819 0.978 0.815

Wilson-Cowan
w
py
&
o
%
2
N
IS}
N
by

‘ Avg ‘ 0.664 0.614 0.706 0.636 0.967 0.849 0.710 0.623 0.747 0.656 0.884 0.777 0.676 0.625 0.672 0.622
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Table 4: Full results for the long-term forecasting task. We set the lookback window size L as 96
and the prediction length as 7 € {96, 192,336, 720}. Avg means the average results from all four
prediction lengths.

Modcls | Dualfrac | CFPT__ | Twinsformer | LiNo | TimeMixerss | TimeMixer | iTransformer | PachTST | Crowformer | TDE__ | TimesNet | DlLinear | SCINet | FEDformer | Nonstationary | Autoformer |

Metrics | MSE_MAE | MSE_ MAE | MSEMAE | MSE_MAE | MSEMAE | MSE_MAE | MSE_ MAE MSE MAE | MSEMAE | MSE MAE | MSE_MAE | MSEMAE | MSE_MAE | MSE_MAE | MSE MAE

_ | 9 [0450 0.184 | 0154 0200 [ 0161 0201 0155 0205 | 0163 0209 [ 0174 0214 0195 0271 0202 0261 | 0172 0220 252 | 0221 0306 | 0217 0296 | 0173 0223 | 0266 0336
21920212 0240 0203 0242 | 0211 0248 0201 0.245 | 0208 0250 | 0221 0254 0209 0277 | 0242 0298 | 0219 0261 | 0237 0295 [ 0261 0340 | 0276 0.336 | 0.245 0307 0367
S [ 336 | 0225 0261 | 0261 0.286 | 0.266 0291 0237 0265 | 0251 0287 | 0278 0296 0273 0332 0287 0335 | 0280 0306 | 0.282 0331 [0309 0378 [ 0339 0.380 | 0.321 0359 0395
Z 720 | 0324 0331 0340 0339 | 0347 0343 0312 0. 03390341 | 0358 0.347 0379 0401 | 0351 0.386 | 0.365 0359 | 0345 0382 | 0377 0427 | 0.403 0428 | 0414 0419 0428
Ave 0228 02400267 | 02460271 | 02410270 | 0.226_0262 | 0240 0272 | 0258 0278 02640320 | 02700320 | 0259 0286 | 0265 0315 | 02920363 | 0309 0360 | 0.288 03380382
9 | 0.152 0232 0318 | 0093 0224 | 0171 0254 | 0171 0.231 | 0189 0259 [ 0203 0237 0232 0302 [ 0312 0399 0373 0338 | 0290 0378 0237 0344 | 0286 0341 | 0.321 0436 0.446
5| 192 | 08t 0265 0247 [ 0223 0250 [ 0237 0298 | 0218 0263 | 0222 0.283 | 0233 0261 0371 0339 0416 | 0397 0376 | 0320 0398 | 0280 0380 [ 0291 0337 | 0346 0.588
2 | 336 | 0193 0323 0381 | 0246 0268 | 0296 0336 | 0212 0.269 | 0231 0292 | 0248 0273 0495 0368 0430 | 0420 0380 | 0353 0415 [0304 0389 | 0354 0416 | 0.357 0595
< | 720 | 0202 0342 0397 | 0245 0272 [ 0395 0393 | 0212 0270 | 0223 0285 | 0249 0275 0526 0370 0425 | 0420 0381 | 0357 0413 | 0308 0388 | 0380 0437 | 0375 0733
Av | 0182 02910336 | 0227 0254 | 0275 0320 | 0203 0.258 | 02160280 | 0233 0262 0.406 03470417 | 04020374 | 0330 0401 | 0282 0375 | 03280383 | 0350 0593
96 | 0.125 013 0231 | 0139 0233 0233 [ 0135 0.222 | 0153 0247 0148 0240 0219 0237 0329 0168 0272 | 0210 0302 | 0247 0345 [ 0193 0308 [ 0.169 0201
| 192 | 0140 0153 0246 | 0158 0252 0250 0235 | 0166 0256 | 0162 0253 0231 0236 0330 | 0.184 0322 | 0210 0305 | 0257 0355 [ 0201 0315 | 0.182
3 | 336 | 0162 0168 0265 | 0172 0267 0267 | 0164 0245 | 0185 0277 | 0178 0.269 0246 0249 0344 [ 0198 0300 | 0223 0319 | 0269 0369 0214 0329 | 0200
720 | 0.187 019 0293 | 0200 0293 0290 | 02120310 | 0225 0310 | 0225 0317 0280 0284 0373 | 0220 0320 | 0258 0350 | 0299 0390 | 0246 0355 | 0222
Avg [ 0154 0248 | 0164 0259 | 01670261 0260 | 01650253 | 0.182_0273 | 01780270 0244 02520344 | 01930303 | 0225 0319 | 02680365 | 02130327 | 0.193
9 0444 0274 | 0382 0260 0276 [ 0392 0.253 | 0462 0285 | 0395 0268 064 0805 0493 | 0.593 0321 | 0,650 039 | 0788 0499 | 0587 0366 | 0612
2|9 0460 0280 | 0392 0267 0289 | 0402 0258 | 0473 0296 | 0417 0276 0.665 0756 0474 | 0617 0336 | 0598 0370 | 0.789 0505 [ 0604 0373 | 0613
EE 04770289 | 0410 0276 0297 | 0428 0263 | 0498 0296 | 0433 0283 0674 0762 0477 | 0629 0336 | 0605 0373 | 0797 0508 [ 0621 0383 | 0618
=70 0499 0313 | 04420292 0320 | 0441 05060313 | 0467 0302 0683 07190449 | 0.640 06450394 | 0841 06260382 | 0,653
0470 0289 | 0406 0274 0205 | 04160264 | 04850297 | 04280282 0667 07600473 | 0620 06250383 | 08040509 | 0.609 0376 | 0.624

0189 0207 | 0.081 0203 | 0085 0214|0090 0235 [ 0.08 0.206 | 0.088 0205 | 0256 0094 0218 | 0107 0088 0218 0267 0396 | 0148 0278 | 0111

0210 0312 | 0172 0.29° 0298 | 0.175 0313 | 0187 0343 | 0177 0299 | 0.176 0299 | 0470 0184 0307 | 0226 0.176 0315 | 0351 0459 [ 0271 0315 | 0219
= 0314 0409 | 0316 0409 [ 0316 0420 | 0353 0473 | 0331 0417 [ 0301 0.397 | 1268 0349 0431 | 0367 0313 0427 | 1324 0853 | 0460 0427 | 0421
2170 0.846 0677 | 0.523 0,682 | 0851 0689 | 0934 0761 | 0847 0691 | 0901 0714 | 1767 0852 0698 | 0.964 0839 0695 | 1058 0797 | 1195 0695 | 1.092 1447
Ave 5| 0350 0395 | 0357 0409 | 0391 0453 | 0360 0403 | 0366 0404 | 0.940 03700413 | 0416 03540414 | 0750 0,626 | 0519 0429 | 0461 0613
96 0401 | 0378 0403 [ 0375 0400 [ 0386 0405 | 0460 0447 | 0.423 0479 0402 | 0.384 0397 0412 [ 0654 0599 | 0395 0424 | 0513 0449
= |19 0431 | 0.423 0441 | 0429 0421 [ 0441 0512 | 0477 0471 0525 0492 | 0.436 0446 0441 | 0719 0.631 [ 0469 0470 | 0.534 0.500
E |36 0452 | 0.455 0434 | 0484 0458 | 0487 0458 | 0.546 0570 0565 0515 | 0.491 0489 0467 | 0.778 0,659 | 0530 0.499 | 0.588 0521
& ] 720 0474 | 0459 0451 | 0498 0.482 | 0503 0491 | 0.544 0,653 059 0558 | 0.521 0513 0510 | 0836 0.699 | 0595 0544 | 0.643 0514
Ave 0.440 | 0.429 0432 | 04470440 | 0454 0467 | 0507 0529 05410507 | 04580450 | 0461 0458 | 0747 0647 | 0498 0484 | 0570 0.496
96 0345 [ 0292 0340 [ 0276 0328 | 0289 0341 | 0297 0349 | 0308 0.745 0400 0440 | 0340 0374 | 0340 0394 | 0707 0621 | 0358 0397 | 0476
o |19 0395 [ 0375 0391 [ 0342 0379 | 0372 0392 | 0.380 0400 | 0393 0877 0528 0509 0414 | 0482 0479 | 0860 0689 | 0429 0439 | 0512
E |36 0429 | 0418 0398 | 035 0414 | 0428 0432 | 0427 1043 064 0571 0452 0591 0541 | 1000 0744 | 0496 0487 | 0552
= | 720 0430 | 0422 0415 | 0412 0434 | 0427 0445 | 0436 1104 0874 0679 0468 | 0839 0.661 | 1249 0838 | 0463 0474 | 0.562
A 0400 | 0377 0.380 | 03650395 | 03830406 | 0.391 0942 06110550 0427 05630519 [ 0954 0723 | 0436 0449 | 0.526
9% | 0. 0364 | 0322 0334 0320 0357 0334 0368 | 0352 0.404 0364 0387 0375 [ 0346 0374 [ 0418 0438 | 0379 0419 | 0.386
2| 192 | 0341 0356 | 0354 0390 | 0365 0362 | 0361 0381 [ 0390 0393 | 0374 0450 0398 0404 0387 0382 0391 [ 0439 0450 | 0426 0441 | 0.459
£ ] 336 | 0366 0378 | 0383 0412 | 0401 0391 | 0390 0404 | 0426 0.420 | 0421 0532 0428 0425 0411 [ 0415 0415 | 0490 0485 | 0.445 0459 | 0495
G ] 720 | 0422 0411 | 0444 0434 | 0467 0448 | 0469 0423 | 0454 0441 | 0491 0459 | 0462 0,666 0487 0461 0450 | 0473 0451 | 0595 0550 | 0543 0490 | 0.585
Ave | 0354 0.369 | 05740393 | 03930403 | 0389 0378 | 03810396 | 0410 0410 | 0402 05130495 | 04190419 0406 | 0404 0.408 | 0485 0481 | 0448 0452 | 0481
96 0167 0249 [ 0173 0256 | 0171 0175 0258 | 0180 0264 0287 0366 | 0207 0305 0267 [ 0,193 0.293 [ 0286 0377 | 0203 0287 | 0.192
2| 0232 0292 | 0239 0300 | 0237 02370299 | 0250 0,309 0414 0492 | 0290 0.364 0309 | 0284 0.361 [ 0399 0.445 | 0269 0328 | 0.280
£ |36 0290 0331 | 0298 0339 | 0.296 0298 0340 | 0311 0348 0597 0542 [ 0377 0422 0351|0382 0429 [ 0637 0591 | 0325 0366 | 0.334
5| 720 0385 0389 | 0397 0397 | 0395 0373 03910396 | 0412 0.407 1730 1042 [ 0558 0.524 0403 | 0558 0.525 | 0960 0735 | 0421 0415 | 0.417
Avg [ 02470310 | 0269 0315 | 02770323 | 02750320 | 0269 02750323 | 02880332 07570611 | 0358 0.404 0333 ] 03540402 | 05710537 | 03040349 | 0.306
96 | 0257 0320 | 0291 0339 0277 0334 | 0284 0343 | 0267 0296 0350 | 0286 0354 0510 0507 | 0375 0451 0454 [ 0337 0411 [0342 0408 | 0507 0613 | 0346
7 | 19210595 0558 | 0672 0597 | 0636 059 | 0656 0.608 | 0611 0,652 0606 | 0.665 0.602 1189 0874 | 0.887 0799 0802 [ 0758 0.705 [ 0791 0741 | 1163 1059 | 0.808
$ | 336 | 0789 0686 | 0900 0743 | 085 0708 | 0877 075 | 0805 0870 0746 | 0878 0.726 1573 1082 | 1188 0.983 1003 | 1027 0884 | 1061 0913 | 1550 1275 | 1058

720 | 0941 0787 | 1042 0839 | 1006 0858 | 1049 0872 | 0.957
| Ave | 0.646 0588 | 0726 0630 | 0.694 0624 | 0.716 0637 | 0650

0947 0864 | 1055 0851 0905 | 1871 1235 | 1398 1.094
0691 0642 | 0721 0633 | 0759 0671 | 1.286 0924 | 0962 0832

1087 [ 1230 1031 | 1257 1028 | 1876 1470 | 1202
0836 | 0838 0758 | 0.863 0.772 | 1274 1104 | 0.876  0.780

0.902

B FULL RESULTS

B.1 MAIN EXPERIMENTS

The full results of main comparison experiments are presented in Table @ and 3]

B.2 ABLATION STUDIES
The detailed results of ablation experiments are provided in Tab. [3]

Table 5: Ablation and operator replacement studies for DualFrac across multiple prediction lengths.
v' and X indicate the presence or removal of a component. (1): w/o Static NFO; (2): w/o Dynamic
NFO; (3): w/o Interleaved Architecture; (4): w/o Dual-Stream Architecture; (5): w/o Cascaded
Residual; (6): w/o &; (7): w/o x; (8): w/o inter-series spatial non-stationary; (9)-(12): Operator
replacements (specific variants to be detailed as needed).

Dataset | Horzon | _DEROE_| b | @ | & | @ | ® |_® |_ o |_® |__© |__ay |__an |_ a2y
| | MSE MAE | MSE MAE | MSE MAE | MSE_MAE | MSE MAE | MSE MAE | MSE_MAE | MSE MAE | MSE MAE | MSE MAE | MSE_MAE | MSE_MAE | MSE_ MAE

96 125 132 224 | 137 142260 | 139 260 | .139 132 253 | 136 224 | 137 224 | 138 225 | 56 272 | .44 264 | 145 270

B 192 140 171 270 | 154 253 274 | 160 258 | 156 48261 | A58 250 | 052 257 | 146 258 | 175 286 | 172 292 | 160 280
2 336 162 204 311 | a81 297 285 | 183 296 | 174 179 269 | 180 280 | 174 280 | 176 286 | 199 296 | .195 309 | 190 310
720 187 207 323 | 215 331 312 | 213 307 | 205 201 320 | 210 300 | 204 300 | 205 310 | 220 346 | 235 358 | 220 340

Avg | 154 83 282 | 172 276 | 070 283 | 174 280 | .168 165 276 | 171 263 | 167 265 | 166 270 | 188 179300

96 354 390 410 | 395 410 | 417 430 | 370 440 | 378 354 420 | 395 420 | 398 421 | 415 420 450

= 192 385 470 465 | 463 446 | 418 449 | 401 427 | 416 393 420 | 417 440 | 432 423 | 42 465 450
E 336 419 481 514 | 498 509 | 482 491 | 444 496 | 444 451 480 | 470 480 | 472 475 | 491 500 510
o 720 432 514 535 | 518 503 | 468 494 | 461 527 | 462 438 500 | 465 490 | 486 498 | 508 520 510
| Ave 398 464 481 | 468 467 | 446 466 | 419 473 | 425 409 455 | 437 458 | 447 454 | 467 AT6 480

R 9 50 184 | 171 167 204 | 52 195 | 159 216 | 61 192 | 159 216 | 152 190 | 153 198 | .I88 170 220
5 192 212 240 | 257 239 261 | 237 287 | 226 277 | 238 259 | 213 277 | 237 287 | 228 266 | 248 240 270
g 336 25 261 | 279 267 311 | 253 293 | 235 287 | 232 285 | 233 287 | 253 293 | 250 298 | 272 270 320
z 720 | 324 331 | 377 383 365 | 359 373 | 361 358 | 347 369 | 346 358 | 359 373 | 356 381 | 379 385 370
Avg 28 254 | 271 264 285 | 250 287 | 245 284 | 244 276 | 238 284 | 250 286 | 247 286 | 272 266 295

96 257 320 | 280 286 379 | 280 360 | 269 370 | 269 333 | 278 367 | 280 367 | 281 368 | 315 300 380

192 595 558 | 722 704 606 | 699 632 | 648 624 | 669 599 | 652 600 | 690 630 | 692 644 | .685 710 610

336 | 789 686 | 944 876 789 | 870 776 | 823 782 | 824 744 | 810 780 | 870 775 | 853 807 | 933 880 790

720 941 787 | 1110 958 | 1.067 906 | 1014 928 | 987 862 | 1023 819 | 986 860 | 1.010 920 | 1.064 917 | 1.090 1070 910

z
E:
o
b2
g
?

685 | 733 670 | 717 674 | 682 660 | 696 624 | 682 652 | 712 673 | 723 684 | 756 690 | 784 703 | 740 673

C EXPERIMENTAL DETAILS

We present details of datasets, evaluation metrics and experiments in this appendix.
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Table 6: Effectiveness analysis of non-stationarity across multiple prediction lengths.

Cases | Default | +RevIN | +FISH-TS | + SAN
Metrics | MSE MAE | MSE MAE | MSE MAE | MSE MAE

9 | .125 223 | 126 223 | 126 224 | .128 229

| 192 | 140 232 | 143 232 | 140 233 | 141 233
Q| 336 | 162 256 | .166 260 | .164 258 | .164 256
720 | 187 279 | 191 284 | 189 284 | .189 280

| Avg | 154 248 | 157 250 | .155 250 | .156 250
96 | 354 382 | 356 384 | 358 384 | 359 388

= | 192 | 385 383 | 387 387 | 389 387 | 391 393
E| 336 | 419 431 | 424 443 | 422 431 | 425 447
M| 720 | 432 450 | 434 458 | 436 454 | 439 458
| Avg | 398 412 | 400 418 | 401 414 | 404 423
96 | .150 .184 | .153 185 | 153 .184 | .I51  .184
5192 | 212 240 | 214 241 | 214 240 | 211 240
533 | 225 261 | 228 263 | 229 263 | 226 .26l
= | 720 | 324 331 | 325 333 | 326 335 | 325 335
| Avg | 228 254 | 230 256 | 231 256 | 228 255
9 | 257 320 | 258 321 | 262 327 | 261 322

~ | 192 | 595 558 | 596 559 | 616 569 | 595 556
O 336 | 789 686 | 790 687 | 794 688 | 792 689
720 | 941 787 | 942 788 | 953 793 | 943 789

| Avg | 645 588 | 647 589 | 656 594 | 648  .589

C.1 DATASETS

We evaluate the performance of different models for long-term forecasting on 9 well-established
long-term datasets, including Weather, Traffic, ECL, Exchange, Solar-Energy, and ETT datasets

(ETThl,

ETTh2, ETTml1, ETTm?2). Furthermore, we adopt Wilson-Cowan Network (WCN) (Wil-

son, [2019), which is a high-dimensional hyperchaotic dynamical system to evaluate the long-term
forecasting performance on non-stationary complicated dynamics. We detail the descriptions of
experimental data as follows:

ETT: The ETT datasets, namely ETThI, ETTh2, ETTml, and ETTm2, consist of measure-
ments from electrical transformers. ETTh datasets (ETTh1, ETTh2) record seven vari-
ables including voltage, current, and temperature on an hourly basis, while ETTm datasets
(ETTml, ETTm?2) capture the same seven variables every 15 minutes, from July 2016 to
July 2018.

ECL: This dataset tracks the electricity consumption metrics of 321 clients, recorded every
15 minutes, reflecting both residential and industrial usage. It involves a large number of
variables, with 321 distinctive measures of consumption patterns.

Exchange Rate: Featuring daily records of exchange rates for eight major currencies,
this dataset encompasses a time span from 1990 to 2016 and includes eight variables per
timestamp, aiding in the analysis of long-term economic trends.

Traffic: Capturing the dynamics of traffic flow and occupancy rates with 862 sensors, this
dataset provides hourly data across various freeways in the San Francisco Bay Area from
January 2015 to December 2016. The dataset is rich in dimensions, focusing on a broad
range of traffic-related variables.

Weather: This dataset is gathered every 10 minutes from the Max Planck Institute for Bio-
geochemistry’s weather station and includes 21 comprehensive meteorological variables
such as temperature, humidity, and wind speed throughout 2020. It offers a detailed look
into climatic conditions with a high resolution in both time and variable space.
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* Solar: This dataset records the power output of 137 photovoltaic plants in Alabama at
10-minute resolution during 2016. It provides multi-site solar production data, often used
for multivariate forecasting benchmarks in renewable energy prediction tasks.

* WCN: A dataset or synthetic simulation suite derived from networks of coupled Wil-
son—Cowan oscillators arranged in chains, grids, or sparse arrays. When coupling in-
hibitory nodes to excitatory nodes between oscillators, the system exhibits hyperchaotic
dynamics, quantified by multiple positive Lyapunov exponents that scale approximately
linearly with the number of oscillators. The time series data comprise excitatory/inhibitory
population activities across nodes under varying coupling strengths, enabling analysis of
complex, high-dimensional chaos.

Table 7: Dataset Descriptions. The dataset size is organized as (Train, Validation, Test). Forecasta-
bility is computed based on predictability scores from (Liu et al.l 2022b).

| Dataset | Dim |  Series Length | Dataset Size | Forecastability |
ETTml 7 {96, 192, 336, 720} | (34465, 11521, 11521) 0.46
ETTm2 7 {96, 192, 336,720} | (34465, 11521, 11521) 0.55
ETThl 7 {96, 192, 336, 720} (8545, 2881, 2881) 0.38
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 0.45
ECL 321 | {96, 192, 336, 720} (18317, 2633, 5261) 0.77
Traffic 862 | {96, 192,336, 720} (12185, 1757, 3509) 0.68
Weather 21 {96, 192, 336, 720} | (36792, 5271, 10540) 0.75
Solar 137 | {96, 192, 336,720} | (36601, 5161, 10417) 0.33
Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) 0.41
WCN 90 {96, 192, 336, 720} (5243, 817, 15602) 0.29

C.2 METRICS

Regarding metrics, we utilize the mean square error (MSE) and mean absolute error (MAE) for
long-term forecasting.

C.3 IMPLEMENTATION DETAILS

All experiments are conducted using PyTorch 2.5.0 with CUDA 12.0, leveraging four NVIDIA
A100 40GB GPUs for computation. The model is optimized using the AdamW optimizer, with
the initial learning rate selected from {5.0 x 107°,1.0 x 107%,2.5 x 1074,5.0 x 1074,7.5 x
10~*}. A cosine annealing learning rate schedule is employed throughout the training process.
The embedding dimension D was chosen from {16, 32,64, 128,256}, while the patch size p was
fixed at 8. The batch size was determined based on dataset size, selected from {4, 8,16, 32, 64, 128}.
Training is performed for up to 50 epochs, with an early stopping mechanism that halts training if
the validation performance does not improve for 10 consecutive epochs. The mean squared error
(MSE) loss function is used during training. To ensure fair comparisons, the drop_last option is
setto False. The code will be made available upon publication.
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