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ABSTRACT

Long-term, multivariate time-series forecasting is vital for domains such as en-
ergy systems, finance, and weather prediction, where accurately modeling in-
tricate patterns can yield significant performance gains. However, many exist-
ing models struggle with the inherent non-stationarity of real-world data, where
distribution shifts can vary both within and across series, leading to subopti-
mal long-horizon forecasts. While techniques like normalization and decompo-
sition have been applied to learn more nuanced features, they often rely on re-
strictive assumptions. To overcome these limitations, we propose DualFrac, a
dual-stream system is built on stacked neural fractional operators, each perform-
ing fractional-domain, time-varying transformations with interwoven decompo-
sition to extract non-stationary sub-components for weaving the target signals.
By producing a hierarchy of sub-forecasts that are progressively aggregated, our
model effectively captures both intra-series and inter-series dependencies in a
non-stationarity-aware manner. Extensive experiments show that our approach
achieves state-of-the-art (SOTA) performance, surpassing recent decomposition-
based and transformed domain models, further validating its robustness and effec-
tiveness.

1 INTRODUCTION

Long-term time series forecasting (LTSF) underpins critical applications in finance, transporta-
tion, and climate science. A key challenge arises from non-stationarity, where inter-variate cou-
pling (Tajeuna et al., 2022), irregular events, and chaotic intermittency create evolving dynamics
that standard deep models fail to capture. While recent advances, ranging from Transformer ar-
chitectures (Wu et al., 2022; Zhou et al., 2021b) to frequency-domain approaches (Wang et al.,
2025; Yi et al., 2023)—have improved accuracy, they often rely on normalization or oversimplified
assumptions about underlying dynamics (Liu et al., 2023a;c), which may degrade non-stationary
performance. A plethora of works suggest that complex signals can be viewed as compositions of
simpler subsystems (Qi et al., 2004; Young, 2011), motivating the use of decomposition-based fore-
casting (Wu et al., 2023). This calls for models that go beyond statistical extrapolation to uncover
the intrinsic logic of evolving time-frequency patterns.

A prevailing trend in recent SOTAs is to improve performance in non-stationary LTSF by decompos-
ing inputs into components with distinct temporal or spectral properties. Temporal-domain methods
often separate trend and seasonal terms (Zhou et al., 2025a; Wu et al., 2021), linear and nonlinear
patterns (Yu et al., 2025), or low- and high-frequency signals (Huang et al., 2025). While these ap-
proaches achieve empirical gains, they are largely heuristic and fail to capture the generative mech-
anisms driving non-stationary dynamics. This limitation is particularly pronounced in real-world,
highly nonlinear systems, where prediction errors grow rapidly due to evolving spectrotemporal con-
tent (Lorenz, 1963; Osinga, 2018). A complementary line of work focuses on theoretically motivated
decompositions that aim to extract interpretable components in transformed domains. For instance,
DeRiTS (Fan et al., 2024) models multi-derivative stationary-frequency patterns. Its reliance on
the global Fourier basis, however, hinders its ability to capture time-localized and aperiodic events.
SimpleTM (Chen et al., 2025a) and WaveTS (Zhou et al., 2025b) address this by leveraging wavelet
to disentangle trends and oscillatory components. Current works also exploit inter-series dependen-
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cies (Wang et al., 2025; Yu et al., 2025), due to their critical role in strongly coupled systems where
non-stationary behavior emerges from variable interactions.
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Figure 1: DualFrac’s interleaved cascaded fore-
casts on a synthetic non-stationary signal: global
forecast (pink) versus ground truth (blue), two
dynamic sub-forecasts, capturing intermittent os-
cillations; and two static sub-forecasts, captur-
ing more broad trends. Each component is
provably non-stationary via learnable differential
transforms; sample autocorrelations (right) high-
light distinct quasi-periodic and intermittent dy-
namics.

In short, decomposition-based methods en-
hance long-term forecasting by breaking down
series into simpler components, often aiming to
”stationarize” them. However, this assumption
is limiting, as real-world processes are rarely
stationary, and forcing stationarization may
suppress time-varying dynamics. Frequency-
domain approaches (Chen et al., 2025a; Huang
et al., 2025) reduce over-stationarization but
struggle to adapt to dynamic changes due to
rigid frameworks. These issues highlight the
need for a framework that natively models non-
stationarity at all levels.

Building on these insights, we propose Dual-
Frac, a neural forecasting framework that uses
nonlinear, time-varying neural fractional op-
erators (NFOs) to model non-stationary time
series, avoiding decomposition and stationar-
ization while approximating the true genera-
tive process. Crucially, DualFrac’s design en-
sures that every intermediate component re-
mains non-stationary, thereby avoiding the in-
formation loss and over-smoothing common to
classical decomposition-based methods. Each
block combines static (data-independent) and
dynamic (input-adaptive) NFOs, with Inter-NFOs capturing cross-variate dependencies and Intra-
NFOs modeling temporal evolution, their outputs gated and merged. Cascaded layers integrate
residuals, summing intermediate forecasts for robust extrapolation under distributional shifts. As
shown in Fig. 1, DualFrac generates interpretable sub-forecasts, with dynamic NFOs capturing os-
cillatory patterns and static NFOs extracting trends, forming a global forecast. Notably, it also pro-
duces distinctly separated sub-forecasts that collectively align closely with the ground truth in the
time-frequency domain (Fig. 2b). Experiments on diverse benchmarks show DualFrac’s superior
performance and expressivity. Our contributions are:

• We introduce DualFrac, a novel neural fractional cascading forecasting framework that fun-
damentally addresses long-term non-stationarity by leveraging a fractional time-frequency
domain perspective. DualFrac adaptively models both intra- and inter-variate information
while preserving diverse temporal patterns.

• We design a two-stage neural operator, comprising static and dynamic modules, to capture
both stable and time-varying dynamics over sequences. This cascaded structure enables
DualFrac to perform generalizable forecasting through provably non-stationary signal mod-
eling.

• We validate DualFrac through extensive long-term forecasting experiments and thorough
theoretical and empirical analyses, consistently outperforming SOTA baselines.

2 RELATED WORK

Non-stationary Time Series. Prior works apply stationarization as a preprocessing step, such as
RevIN (Kim et al., 2021) and DAN (Liu et al., 2023c) for perform instance- or statistic-level nor-
malization with learnable mappings between input/output or across variates. Recent works such as
LiNo (Yu et al., 2025) and TwinsFormer (Zhou et al., 2025a) goes further by alternating between
decomposed series to disentangle distinct dynamics, with spatial dependency and decomposition-
based de-stationarization. DeRiTS (Fan et al., 2024) WaveTS (Zhou et al., 2025b) further improves
by stationarizing on the frequency domain, operating with global dependency. However, most of
these approaches rely on either residual heuristics or stationarization in fixed frequency bands. In
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contrast, our method introduces a fractional-domain decomposition framework, theoretically sup-
ported by the view that any non-stationary process can be obtained from a family of sub-series, each
learned in its own distribution, thus alleviating aforementioned issues.

Learning on Transformed Domain. Recent advances in time series forecasting have increasingly
turned to transformed domain, such as Fourier and wavelet (Yi et al., 2025). Motivated by classical
spectral decomposition techniques, many have incorporated domain conversion to enhance temporal
representation. Depending on how such information is handled, existing approaches can be broadly
grouped. Some models operate entirely in the time domain without any transformation (Zhou et al.,
2021a; Liu et al., 2024a; Wang et al., 2024a), while others apply unified processing to all frequency
components without distinguishing their roles Yi et al. (2024b); Zhou et al. (2022c). Some fo-
cus exclusively on low-frequency signals under the assumption that they carry the most predictive
power Zhou et al. (2022a); Xu et al. (2024). More recent studies adopt weighted strategies that
multicomponent transforms Zhou et al. (2022b); Zhang et al. (2024); Yi et al. (2024c). While prior
methods offer promising results, they often isolate frequency components and rely on rigid spectral
or basis assumptions, limiting their ability to model dynamical behaviors.

Figure 2: DualFrac’s block structure and non-stationary decomposition on a synthetic test signal.
(a) A single DualFrac block: the input is split into static and dynamic streams, each processed by
Inter- and Intra-series FNOs; their gated outputs yield sub-forecasts, while the residuals feed the
next layer. (b) Top: four artificial additive components (COMP1–COMP4) and their Wigner-Ville
energy densities, summing to form a highly non-stationary ground-truth signal. Bottom: DualFrac’s
four learned sub-forecasts, each exhibiting strong non-stationary time-frequency characteristics. The
final global forecast Ŷ , formed by summing these sub-forecasts, closely matches the Wigner–Ville
distribution of the ground truth Y , demonstrating accurate recovery of complex dynamics.

3 PRELIMINARIES

Problem Formulation. Formally, let the input be a multivariate series X ∈ RC×T , where C
denotes the number of variables (channels) and T is the total number of time steps. At any given time
step t, the forecasting model takes as input a lookback segment of length L, denoted by Xt−L:t =
{xt−L, . . . ,xt}, where each xt ∈ RC . The forecasting task aims to predict the next F future
steps: Ŷt = {x̂t+1, . . . , x̂t+F } ∈ RC×F , where the ground truth sequence is denoted by Yt =
{xt+1, . . . ,xt+F }. The forecasting model F(·) learns a mapping from past observations to future
predictions Ŷt = F(Xt−L:t).

Fractional Domain. We leverage the Fractional Fourier Transform (FrFT) (Namias, 1980; Yu
et al., 2023; Chen et al., 2025b), a classical linear transform to build our neural network that trans-
forms temporal signals into a rich continuum of intermediate representations between the time and
frequency domains. Unlike conventional transforms, signals purely into frequency or multiscale
bases, the FrFT is a linear time–frequency operator parameterized by a rotation angle θ (also de-
noted α). Formally, the FrFT can be interpreted as a rotation in the time–frequency plane in the
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sense of Wigner–Ville, providing a continuum between the identity (θ = 0), the Fourier transform
(θ = π/2), and the time reversal (θ = π). Given a real-valued signal X(t), t is the time or space
coordinate, the Wigner–Ville distribution is

WX(t, ω) =

∫
R
X
(
t+

τ

2

)
X∗

(
t− τ

2

)
e−j2π ω τ dτ, (1)

which provides a quadratic time (space)–frequency representation. The action of the FrFT corre-
sponds to a rotation of WX by angle θ in the (t, ω)–plane, mapping content onto an intermediate
fractional domain. Equivalently, one can view the FrFT as the projection

Fθ[X](ξ) =

∫∫
R2

WX(t, ω) δ
(
ξ − t cos θ − ω sin θ

)
dt dω, (2)

where δ(·) is the Dirac distribution. We refer to ξ as the fractional domain coordinate. Learning in
this domain enables dynamic, data-adaptive time–frequency selectivity, which underpins DualFrac.
The FrFT is defined as
Definition 1 (FrFT). Let X ∈ L2(R). For each θ ∈ R, the fractional Fourier transform of order θ is

Xθ(ξ) ≜ Fθ[X](ξ) =

∫
R
X(t)Kθ(ξ, t) dt (3)

where the kernel Kθ(ξ, t) is defined as:

Kθ(ξ, t) =


Aθ exp

[
j
2 (ξ

2 + t2) cot θ − jξt csc θ
]
, θ /∈ πZ

δ(ξ − t), θ = 2kπ

δ(ξ + t), θ = (2k − 1)π

(4)

where Aθ =
√

1−j cot θ
2π and k ∈ Z. The inversion is F−θ.

4 METHODOLOGY

4.1 FRACTIONAL NEURAL OPERATOR

Real-world time series often exhibit nonstationary behaviors, such as drifting instantaneous frequen-
cies, intermittent structures, and amplitude-phase modulation, which are prevalent in chaotic or non-
linear systems. Traditional techniques like differencing or normalization attempt to stationarize the
data but fail to address the geometric misalignment of correlation and energy in the time-frequency
plane, where nonstationary signals often display distorted Wigner-Ville distribution, which devi-
ate from the axis-aligned assumptions of fixed transform. To capture these, we employ fractional
pseudo-differential operators (Prasad & Kumar, 2016; Upadhyay et al., 2013), which generalize
convolution and differentiation with time (space)-frequency adaptivity.
Definition 2 (Fractional Pseudo-Differential Operator). Let a(t, ξ) be a sufficiently smooth
time–frequency function (a symbol) on Rt × Rξ. For any θ /∈ πZ, define the associated fractional
pseudo-differential operator

T θ
a : L2(R) → L2(R) (3)

by

(T θ
aϕ)(t) =

∫
R
K−θ(t, ξ) a(t, ξ) ϕ̂

θ(ξ)dξ, (4)

where ϕ̂ θ(ξ) = F θ[ϕ](ξ) is the FrFT of angle θ. In particular: If a(t, ξ) = (i ξ csc θ)m, then T θ
a

reduces to the classical m-th order fractional derivative. If a(t, ξ) = a(ξ) is independent of x, then
T θ
a is a fractional convolution operator.

To make this operator adaptive and learnable, we introduce the Neural Fractional Operator (NFO),
a neural extension of T θ

a .
Definition 3 (Neural Fractional Operator). Let X ∈ RL×C be a multivariate time series with C
channels, or let φ ∈ L2(R)C be a multivariate signal in the continuous setting. The symbol a(t, ξ)
is factorized as:

a(t, ξ) = u(t) v(ξ), (5)
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where u : R → RC and v : R → RC are learned functions representing time-dependent and
frequency-dependent profiles, respectively. In practice, u(t) and v(ξ) are predicted by hypernet-
works HyperNett and HyperNetξ, each instantiated as a one-layer MLP with Snake activation
A(x) = x + sin2(2x)/2 (Belcák & Wattenhofer, 2022). The Neural Fractional Operator (NFO)
T θ
a : L2(R)C → L2(R)C of order θ /∈ πZ acts on a signal φ ∈ L2(R)C as:(

T θ
a φ

)
(t) = u(t)F−θ

[
v(·)⊙Fθ[φ]

]
(t) (6)

where Fθ[·] denotes the Fractional Fourier Transform of order θ, and ⊙ represents channel-wise
multiplication.

NFO functions as a dynamic, signal-aware filter that operates jointly over time and frequency rep-
resentations. When the NFO is independent of the input signal, its hypernetwork inputs are set to
Fourier embeddings that depend solely on the length of the filtering axis, initialized with Fourier
positional embeddings, and denoted as NFOsta. Conversely, when the NFO depends on the input
signal’s content, its symbol factors are initialized based on the input, and it is denoted as NFOdyn.

4.2 DUALFRAC ARCHITECTURE

DualFrac is structured as a hierarchical decomposition architecture designed explicitly to handle the
complex behaviors of non-stationary time series, as shown in Fig 2a. At its core, DualFrac con-
sists of multiple stacked Neural Fractional Operator (NFO) modules arranged in a residual cascade,
progressively extracting meaningful fractionally-aligned temporal and frequency-domain features.
Each NFO block outputs two primary components: one is a decomposed intermediate component,
projected by a linear layer to sub-forecast, contributing directly to the final forecast, and the other is
a residual intermediate component carrying forward unresolved features for further decomposition
by subsequent layers. To preserve overall trend within and among different series, we eliminate
normalization layers and adopt an adaptive Tanh activation function instead.

Interleaved NFO Interaction. Within each DualFrac block, the NFOs dynamically constructs
fractional pseudo-differential operators using data-dependent and data-driven symbols, respectively.
Concretely, given an input embedding X ∈ RC×L×D, where C denotes the number of variates
(channels), L the sequence length, and D the embedding dimension, an NFO module performs
fractional filtering along both temporal (intra-series) and variate (inter-series) dimensions indepen-
dently, enabling the network to explicitly disentangle spatial and temporal dynamics. We consider
two distinct symbol generation strategies: fractionally static and fractionally dynamic filtering.

Fractionally Static NFO Module. The static module generates symbols that capture global or
slowly varying patterns, independent of instantaneous input features. For inter-series Inter-NFO
and intra-series Intra-NFO NFOs, their outputs are fused to yield the statically filtered output with
scaling parameter γ,

Y Inter
sta = Inter-NFOsta(X), (9a)

Y Intra
sta = Intra-NFOsta(X), (9b)

Y Out
sta = γ tanh

(
Linear

(
Y Inter

sta + Y Intra
sta

))
(9c)

Fractionally Dynamic NFO. In contrast, the fractionally dynamic NFO employs an input-
dependent, adaptive symbol parameterization to flexibly respond to instantaneous signal variations.
Here, symbols are dynamically generated by single-layer Snake-activated copy of the input. Con-
cretely,

Y Inter
dyn = Inter-NFOdyn(X), (10a)

Y Intra
dyn = Intra-NFOdyn(X), (10b)

Y Out
dyn = γ tanh

(
Linear

(
Y Inter

dyn + Y Intra
dyn

))
(10c)

Cascaded Interweaving Forecasting. To achieve effective multi-level forecasting, DualFrac im-
plements a cascading residual structure. Each layer ℓ receives two distinct inputs: the static residual

5
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component Xℓ
sta and dynamic residual component Xℓ

dyn. Initially, these are obtained from the raw
input X via separate linear embeddings:

X0
sta = Linearsta(X), X0

dyn = Lineardyn(X). (7)

And they experience filtering in a dual-stream pathway:

Y Out,ℓ
sta = StaticFiltering(Xℓ

sta),

Y Out,ℓ
dyn = DynamicFiltering(Xℓ

dyn).
(8)

In DualFrac’s interwoven architecture, the static and dynamic streams are not processed in isolation.
Instead, the output of the static filtering (Y Out,ℓ

sta ) may contribute to the dynamic input (Xℓ+1
dyn ) of the

next layer, and vice versa. This interwoven exchange enables the model to capture complementary
information by iteratively permuting the information flow between streams. These sub-forecasts
refine and progressively adding well-aligned, non-stationary structures from the synthesized repre-
sentations. The refined representations are forwarded as:

Xℓ+1
dyn = Xℓ

sta − Y Out,ℓ
sta , (13a)

Xℓ+1
sta = Xℓ

dyn − Y Out,ℓ
dyn , (13b)

Y ℓ = ProjstaY
Out,ℓ

sta + ProjdynY
Out,ℓ

dyn (13c)

where Projsta and Projdyn are linear projection layers. The final forecast aggregates all sub-
forecasts:

Ŷ =

L−1∑
ℓ=0

Y ℓ (14)

This cascading design enables DualFrac to decompose the input into distinct components while
iteratively refining forecasts, resulting in more accurate long-term behaviors.

4.3 THEORETICAL ANALYSIS

We aim to show that the sum of outputs from a finite-depth neural architecture, where each layer
performs a learnable fractional pseudo-differential transformation, can approximate a broad class of
non-stationary processes exhibiting local time–frequency structures.
Theorem 4 (Neural Fractional Approximation of Non-Stationary Processes). Let Y (t) be a non-
stationary stochastic process exhibiting local regularities, as described in Dahlhaus (1996). For any
ε > 0, there exist m ≥ 0, and second-moment processes {Xi(t)}Mi ⊂ L2(Ω;Hs+m,θ), where Hs,θ

is the θ-Soboleve space (Prasad & Kumar, 2016), and M learnable fractional pseudo-differential
operators {T (θi)

ai }Mi=1, where each symbol ai(x, ξ) exhibits at most polynomial growth in ξ, and
all angles satisfy | sin θi| > 0, such that each operator Tai satisfies ∥T θi

ai
ϕ∥Hs,θ ≤ C∥ϕ∥Hs+m,θ

for a uniform constant C. The neural forecast is defined as Ŷ (t) :=
∑M

i=1 T
(θi)
ai Xi(t), with the

mean-squared error bound E
[∣∣∣Y (t)− Ŷ (t)

∣∣∣2] < ε.

Theorem 6 implies a spectral corollary: if each Yk(t) is energy-localized in frequency, then the
Wigner–Ville time-frequency (or space-frequency) representation of Ŷ (t) satisfies the following
property:

lim
M→∞

∥∥∥WY (t, ω)−WŶM
(t, ω)

∥∥∥
L1

= 0, (9)

which provides a convergence guarantee when applied to our overall cascaded framework, stated as
follows:
Theorem 5 (Convergence of Cascaded NFO Decomposition). Let Y (t) be a stochastic process
satisfying the conditions of Theorem 6. Define the residual sequence:

R0(t) := Y (t), (10)

Rk+1(t) := Rk(t)− T (θk)
ak

[Rk](t), k = 0, 1, . . . (11)
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where each T
(θk)
ak is a learnable neural fractional pseudo-differential operator. Then, for any ε > 0,

there exists N ∈ N such that: ∥∥∥∥∥
N∑
i=1

T (θi)
ai

[Ri−1](t)− Y (t)

∥∥∥∥∥
L2

< ε (21)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Data and Baselines. We evaluate DualFrac on 9 real-world benchmarks, following Wang et al.
(2025); Zhou et al. (2025a), as well as a synthetic hyperchaotic datasets, WCN. We compare ours
with classical and recent SOTAs, including Autoformer (Wu et al., 2021), CFPT (Kou et al., 2025),
Crossformer (Zhang & Yan, 2023), DeRiTS (Fan et al., 2024), DLinear (Zeng et al., 2023), FED-
former (Zhou et al., 2022c), FITS (Xu et al., 2023), FreTS (Yi et al., 2024a), Informer (Zhou et al.,
2021b), iTransformer (Liu et al., 2024b), LiNo (Yu et al., 2025), PatchTST (Nie et al., 2022),
SCINet (Liu et al., 2022a), SimpleTM (Chen et al., 2025a), Stationary (Liu et al., 2023a), Tex-
Filter (Yi et al., 2024b), TiDE (Das et al., 2023), TimeKAN (Huang et al., 2025), TimeMixer (Wang
et al., 2024b), TimeMixer++(Wang et al., 2025), TimesNet(Wu et al., 2023), Twinsformer (Zhou
et al., 2025a) (Zhou et al., 2025b), WPMixer (Murad et al., 2025).

Implementation. All experiments are implemented in PyTorch 2.5.0 on 4 NVIDIA A100 (40GB)
GPUs. Datasets and train/validation/test split are set up in accordance with those in works such
as (Wang et al., 2025; 2024b). We report MSE and MAE as evaluation metrics.

Table 1: Average performance results of long-term time series forecasting. We set the lookback
length as 96 and the prediction length in {96, 192, 336, 720}. The best, second and third results are
highlighted. Full results are included in App. A.

Models Weather Solar ECL Traffic Exchange ETTh1 ETTh2 ETTm1 ETTm2 WCN

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DualFrac .228 .254 .182 .241 .154 .248 .401 .266 .346 .394 .398 .412 .338 .382 .354 .369 .247 .310 .646 .588
CFPT .240 .267 .291 .336 .164 .259 .470 .289 .390 .412 .432 .429 .364 .393 .374 .393 .269 .315 .726 .630

Twinsformer .246 .271 .227 .254 .167 .261 .406 .274 .346 .395 .446 .440 .372 .400 .393 .403 .277 .323 .694 .624
LiNo .241 .270 .275 .320 .164 .260 .465 .295 .350 .398 .429 .428 .377 .400 .389 .400 .275 .320 .716 .637

TimeMixer++ .226 .262 .203 .258 .165 .253 .416 .264 .357 .409 .418 .432 .339 .380 .368 .378 .269 .320 .659 .611
TimeMixer .240 .272 .216 .280 .182 .273 .485 .297 .391 .453 .447 .440 .365 .395 .381 .396 .275 .323 .691 .642

iTransformer .258 .278 .233 .262 .178 .270 .428 .282 .360 .403 .454 .467 .383 .406 .410 .410 .288 .332 .721 .633
PatchTST .265 .285 .287 .333 .216 .318 .529 .341 .366 .404 .507 .472 .391 .411 .402 .406 .290 .334 .759 .671

Crossformer .264 .320 .406 .442 .244 .334 .667 .426 .940 .707 .529 .522 .942 .683 .513 .495 .757 .611 1.286 .924
TiDE .270 .320 .347 .417 .252 .344 .760 .473 .370 .413 .541 .507 .611 .550 .419 .419 .358 .404 .962 .832

TimesNet .259 .286 .402 .374 .193 .303 .620 .336 .416 .443 .458 .450 .414 .427 .400 .406 .291 .333 .951 .836
DLinear .265 .315 .330 .401 .225 .319 .625 .383 .354 .414 .461 .458 .563 .519 .404 .408 .354 .402 .838 .758
SCINet .292 .363 .282 .375 .268 .365 .804 .509 .750 .626 .747 .647 .954 .723 .485 .481 .571 .537 .863 .772

FEDformer .309 .360 .328 .383 .213 .327 .609 .376 .519 .429 .498 .484 .436 .449 .448 .452 .304 .349 1.274 1.104
Stationary .288 .314 .350 .390 .193 .296 .624 .340 .461 .454 .570 .536 .526 .516 .481 .456 .306 .347 .876 .780

Autoformer .338 .382 .593 .557 .227 .364 .628 .379 .613 .539 .496 .487 .450 .459 .588 .517 .327 .371 1.027 .902
WaveTS .237 .278 .235 .259 .160 .253 .408 .278 .361 .402 .410 .423 .332 .383 .356 .376 .244 .311 .664 .614

FITS .230 .266 .236 .258 .172 .266 .428 .291 .458 .457 .412 .427 .337 .385 .361 .381 .252 .315 .706 .636
DeRiTS .293 .321 .361 .340 .293 .376 .976 .545 .427 .505 .682 .566 .435 .439 .715 .555 .321 .359 .967 .849

WPMixer .235 .283 .250 .263 .175 .264 .448 .316 .426 .471 .418 .427 .354 .388 .365 .383 .264 .317 .710 .623
TexFilter .245 .272 .317 .339 .172 .268 .462 .310 .388 .421 .441 .439 .383 .407 .391 .401 .285 .328 .747 .656

SimpleTM .243 .271 .184 .247 .166 .260 .444 .289 .371 .412 .422 .428 .353 .391 .381 .396 .275 .322 .676 .625
TimeKAN .242 .271 .242 .265 .197 .286 .415 .284 .371 .411 .417 .427 .383 .404 .376 .395 .277 .322 .672 .622

FreTS .288 .314 .350 .390 .193 .296 .624 .340 .461 .454 .570 .537 .526 .516 .481 .456 .306 .347 .884 .777

5.2 MAIN RESULTS

Comparative Study. As shown in Tab. 1, DualFrac achieves comparable or superior results across
a broad spectrum of datasets. It achieves 16 first-place and 3 second-place rankings out of 20
positions across two metrics on 10 datasets. Statistical analysis reveals a significant difference
(p < 0.005) compared to TimeMixer++ and WaveTS, two best-performing baselines. DualFrac
adaptively capture nonlinearly varying modes, this yields not only performance gains but also im-
proves generalization. In particular, it demonstrates superior performance on datasets characterized
by strong aperiodicity, chaotic patterns, or non-stationarity, such as ETTh1, Exchange, and WCN;
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Table 2: Ablation and operator replacement studies for DualFrac. The symbol ∆ represents the
percentage of relative performance degradation. The symbols ✓ and 7 indicate the presence or
absence of a component, respectively. The following abbreviations are used: Sta (Static NFO),
Dyn (Dynamic NFO), IL (Interleaved Architecture), DS (Dual-Stream Architecture), CR (Cascaded
Residual), ξ (fractional domain symbol factor), and t (time domain symbol factor). The term ”Op-
erator” refers to the NFO or its replacement.

Cases Operator Sta Dyn IL DS CR ξ t IV ECL ETTh1 Weather WCN ∆ (%)
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Default NFO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .154 .248 .398 .412 .228 .254 .646 .588 — —

(1) NFO ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .183 .282 .464 .481 .271 .286 .764 .685 18.14 14.89
(2) NFO ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ .172 .276 .468 .467 .264 .285 .733 .670 14.64 12.70
(3) NFO ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ .170 .283 .446 .466 .250 .287 .717 .674 1.77 13.71
(4) NFO ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ .174 .280 .419 .473 .245 .284 .682 .660 7.83 12.94
(5) NFO ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ .168 .269 .425 .444 .244 .276 .696 .624 7.66 7.76
(6) NFO ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ .165 .276 .409 .445 .238 .275 .682 .652 4.97 9.61
(7) NFO ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ .171 .263 .418 .455 .245 .284 .682 .652 7.28 9.80
(8) NFO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ .167 .265 .437 .458 .250 .286 .712 .673 9.53 11.27

(9) Fourier ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .166 .270 .447 .454 .247 .286 .723 .684 1.09 12.00
(10) FreMLP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .188 .300 .467 .475 .272 .297 .756 .690 18.94 17.64
(11) AFNO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .186 .306 .487 .496 .284 .313 .784 .703 22.27 21.64
(12) DeepFrFT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ .179 .300 .476 .480 .266 .295 .740 .673 16.76 16.77
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Figure 3: Influence of lookback horizon. We set lookback length in {48, 96, 192, 336, 512, 720} and
prediction length as 720. Increasing the lookback generally boosts DualFrac in a stable manner.

and maintains comparable or better long-term performance even on datasets with low forecastability,
like Solar. These datasets pose significant challenges, as their non-stationarity cannot be effectively
addressed through normalization or traditional seasonal-trend decomposition without losing critical
information. When facing strong spatial coupling, DualFrac adeptly uncovers the nuanced interac-
tions spanning multiple variates as shown in WCN and ECL.
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rameter efficiency and performance scaling with model dimension and depth. Bars show parameter
count; lines show MSE. (c) Forecasting case study comparing DualFrac, WaveTS, TimeMixer++,
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Ablation Study. To elucidate DualFrac’s design, we conduct a comprehensive ablation study, sys-
tematically removing or modifying key modules, with results summarized in Tab. 2. The ablation
variants are: (1) remove the static NFO, which captures data-independent symbol parameterization,
to isolate its contribution; (2) exclude the dynamic NFO, responsible for input-adaptive symbol ker-
nels, to assess its role; (3) replace the interleaved architecture, which processes intra- and inter-series
axes jointly, with independent filtering to test its integrative benefit; (4) substitute the dual-stream
architecture, combining parallel static and dynamic processing, with sequential operator stacking
to evaluate parallel processing; (5) remove cascaded residual connections, enabling progressive re-
finement across layers, to rely solely on the final layer’s output; (6) exclude the fractional coordi-
nate ξ from symbol parameterization to examine its role in frequency-based modeling; (7) exclude
the original time/space coordinate t from symbol parameterization to evaluate its contribution to
spatial-temporal modeling; (8) replace inter-series NFO, which models cross-series dependencies,
with intra-series NFO to assess its impact; (9) set the NFO’s α to π/2 to mimic a Fourier opera-
tor (Yi et al., 2024a); (10) adopt the FreMLP operator (Yi et al., 2024a); (11) employ the Adaptive
Fourier Neural Operator (AFNO) (Guibas et al., 2022); (12) use the DeepFrFT layer (Zhou et al.,
2023). These modifications generally lead to performance degradation, with operator replacements
showing the most significant declines.

Lookback Analysis. Increasing the lookback window is expected to boost forecasting by leverag-
ing richer historical context. However, excessively increasing lookback length may increase noise
or dilute critical features. To investigate this trade-off, we evaluate the impact of varying lookbacks
on performance. Fig. 3 illustrates that DualFrac effectively utilizes extended lookback windows, ex-
hibiting a positive correlation between input length and lower MSE in most cases. These underscore
DualFrac’s capability of capture long-term correlations, robust to distribution shifts.

5.3 MODEL ANALYSIS

Necessity of Non-Stationarity. To show whether off-the-shelf methods help DualFrac, we plug
in RevIN (Kim et al., 2021), SAN (Liu et al., 2023b), and Dish-TS (Fan et al., 2023) then retrain
the model. Intriguingly, as shown in Fig. 5, they overall brings negative gains. This supports our
rationale: by learning mode decomposition, DualFrac leverages, rather than suppresses, the intrinsic
time-frequency variability. Forcing stationarity can obscure predictive structure.

ECL ETTh1 Weather WCN
0.0

0.5

1.0

1.5

2.0

(%
)

(a)

ECL ETTh1 Weather WCN
0.0

0.5

1.0

1.5

2.0

2.5

(%
)

(b)

RevIN Dish-TS SAN

Figure 5: Average relative degradation of normal-
ization methods.

Efficiency, Scaling Analysis and Show Cases.
We compare DualFrac with the best-performing
baselines in terms of MSE, memory footprint,
and training speed on ETTh1. As shown in
Fig. 4a, DualFrac not only achieves superior
forecasting precision but also reduces memory
consumption while maintaining high learning
efficiency. The scaling behavior of DualFrac
with respect to the model dimension dmodel and
depth L is illustrated in Fig. 4b. We observe that
DualFrac exhibits consistent performance gains
as model parameters scale, but the most notable
advantage occurs in the early stages. DualFrac
quickly reaches a regime of competitive perfor-
mance with relatively fewer parameters, as indicated by the dashed lines. This demonstrates its
effectiveness in achieving high performance without relying on excessive parameters. Fig. 4c show-
cases DualFrac’s strength on ETTh1, capturing future variations amid quasi-periodic and intermit-
tent dynamics.

6 CONCLUSION

We introduce DualFrac, a novel neural operator framework for non-stationary time series forecast-
ing using fractional time-frequency representations to model inter- and intra-series dependencies. Its
cascaded approach improves long-term accuracy, with experiments, ablation studies, and analyses
across datasets confirming superiority over SOTA baselines, backed by strong theoretical founda-
tions.
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A THEORETICAL ANALYSIS AND PROOF DETAILS

A.1 PROOF OF NEURAL FRACTIONAL APPROXIMATION OF NON-STATIONARY PROCESSES

Theorem 6. Let Y (t) be a non-stationary stochastic process exhibiting local regularities, as de-
scribed in Dahlhaus (1996). For any ε > 0, there exist m ≥ 0, and second-moment pro-
cesses {Xi(t)}Mi ⊂ L2(Ω;Hs+m,θ) and M learnable fractional pseudo-differential operators
{T (θi)

ai }Mi=1, where each symbol ai(x, ξ) exhibits at most polynomial growth in ξ, and all angles
satisfy | sin θi| > 0, such that each operator Tai satisfies ∥T θi

ai
ϕ∥Hs,θ ≤ C∥ϕ∥Hs+m,θ for a uniform

constant C. The neural forecast is defined as Ŷ (t) :=
∑M

i=1 T
(θi)
ai Xi(t), with the mean-squared

error bound E
[∣∣∣Y (t)− Ŷ (t)

∣∣∣2] < ε.

Proof. We work on the probability space (Ω,F ,P). The Sobolev norm associated with the
fractional-Fourier angle θ is denoted ∥ · ∥Hs,θ , and the Hilbert space is defined as H :=
L2(Ω;Hs,θ(R)) with norm

∥Z∥2H = E∥Z∥2Hs,θ . (12)
We fix the angle θ and omit it from notation when unambiguous.

By the definition of local regularity (Dahlhaus, 1996), there exists a family of weakly stationary
processes {Yt(u) : u ∈ [0, 1]} such that, for some α > 0,

E|Y (t)− Yt(u)|2 = O(T−2α) (13)

whenever |u− t/T | ≤ cT−γ (0 < γ < 1). (14)

Divide the index set {1, . . . , T} into M disjoint blocks of equal length b := ⌊T/M⌋, with block
centers

uj := (jb− 1/2)/T (j = 1, . . . ,M).

Define the blockwise stationary surrogate

Y LS(t) := Yt(uj(t)), j(t) = ⌈t/b⌉.

Using equation 14 and the fact that
∑T

t=1 1{|uj(t)−t/T |≤cT−γ} = T , we obtain

E∥Y − Y LS∥2H = O(MT−2α). (15)

Set M := ⌈T 2α⌉. Then equation 15 yields

E∥Y − Y LS∥2H < ε/2 for T sufficiently large. (16)

Fix a block index j. Inside the block, Y LS coincides with the weakly stationary process Yt(uj),
whose fractional Fourier spectrum is square-integrable, so Yt(uj) ∈ H.

13
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The space V is defined as

V = span
{
T (ϑ)
a [X] : a ∈ Sρ,σ

m,ϑ, ϑ ∈ (0, 2π), X ∈ H
}
⊂ H.

Since symbols in Sρ,σ
m,ϑ form a Sjöstrand/Wiener algebra and the corresponding fractional PDOs map

the Feichtinger algebra M1,1 into itself, the frame density theorem (Prasad & Kumar, 2016) implies

V = H. (17)

By equation 17, for each block center uj , there exist a second-moment process Xj ∈ H, an angle
θj ∈ (0, 2π) with | sin θj | ≥ δ > 0, and a symbol aj(x, ξ) ∈ Sρ,σ

m,θj
with polynomial growth in ξ,

such that the operator T (θj)
aj satisfies

∥T (θj)
aj

ϕ∥Hs,θ ≤ C∥ϕ∥Hs+m,θ

and
E∥Yt(uj)− T (θj)

aj
[Xj ]∥2Hs,θ <

ε

2M
. (18)

Define the global approximation

Ŷ (t) =

M∑
j=1

T (θj)
aj

[Xj ](t).

By the triangle inequality and orthogonality of the blocks,

E∥Y − Ŷ ∥2H ≤ 2E∥Y − Y LS∥2H + 2E∥Y LS − Ŷ ∥2H

< ε+ 2

M∑
j=1

E∥Yt(uj)− T (θj)
aj

[Xj ]∥2Hs,θ

< ε+ 2M · ε

2M
= ε.

Thus, the finite collection {Xj , θj , aj}Mj=1 achieves the mean-square error bound ε.

Corollary 7 (Wigner–Ville Convergence of NFO Approximation). Under the hypotheses of Theo-
rem 6, further assume that each component T

(θi)
ai Xi has its energy essentially confined to a disjoint

frequency band. Then for the partial approximants

ŶM (t) =

M∑
i=1

T (θi)
ai

[Xi](t)

the corresponding Wigner–Ville distributions satisfy

lim
M→∞

∥∥WY (t, ω) − WŶM
(t, ω)

∥∥
L1(R2)

= 0. (19)

Proof. Let e = f − g and s = f + g. The Moyal identity gives∫∫
R2

∣∣Wf −Wg

∣∣(t, ω) dt dω ≤ ∥e∥L2(R) ∥s∥L2(R).

Apply this with f = Y and g = ŶM . Since Theorem 6 guarantees ∥Y − ŶM∥L2 → 0, and both
∥Y ∥L2 and ∥ŶM∥L2 remain uniformly bounded, it follows that ∥WY −WŶM

∥L1 → 0. To handle

cross-terms arising from the finite sum ŶM =
∑M

i=1 fi, one uses the disjoint-band assumption: each
fi has negligible Wigner overlap with fj when i ̸= j. Concretely, if suppω fi ∩ suppω fj = ∅, then∫∫

|Wfi,fj | vanishes. Summing over i ̸= j therefore does not affect the limit.

Combining these two observations yields equation 19.

14
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A.2 PROOF OF CONVERGENCE OF CASCADED NFO DECOMPOSITION

Theorem 8. Let Y (t) be a stochastic process satisfying the conditions of Theorem 6. Define the
residual sequence:

R0(t) := Y (t), (20)

Rk+1(t) := Rk(t)− T (θk)
ak

[Rk](t), k = 0, 1, . . . (21)

where each T
(θk)
ak is a learnable neural fractional pseudo-differential operator. Then, for any ε > 0,

there exists N ∈ N such that: ∥∥∥∥∥
N∑
i=1

T (θi)
ai

[Ri−1](t)− Y (t)

∥∥∥∥∥
L2

< ε (21)

Proof. Fix an arbitrary ε > 0. Choose a sequence of tolerances {δk}Nk=1 ⊂ (0,∞) such that

N∑
k=1

δk < ε. (22)

We will construct the residuals Rk and operators T (θk)
ak by induction so that E∥Rk∥2Hs,θ <

k∑
i=1

δi.

Set R0(t) = Y (t). By Theorem 6, applied with tolerance δ1, there exists a process X1 ∈
L2(Ω;Hs+m,θ), an angle θ1, and a symbol a1 ∈ Sρ,σ

m,θ1
such that the corresponding operator T (θ1)

a1

satisfies

E
∥∥∥R0 − T (θ1)

a1
[X1]

∥∥∥2
Hs,θ

< δ1.

We then define
R1 := R0 − T (θ1)

a1
[X1] , (23)

so that
E
∥∥R1

∥∥2
Hs,θ < δ1. (24)

Suppose for some k ≥ 1 we have constructed Rk satisfying E∥Rk∥2Hs,θ <

k∑
i=1

δi. Apply Theorem 6

to Rk with tolerance δk+1: there exist Xk+1, angle θk+1, and symbol ak+1 so that

E
∥∥Rk − T (θk+1)

ak+1
[Xk+1]

∥∥2
Hs,θ < δk+1.

Define
Rk+1 := Rk − T (θk+1)

ak+1
[Xk+1].

Then by the above inequality,

E
∥∥Rk+1

∥∥2
Hs,θ < δk+1 =⇒ E

∥∥Rk+1

∥∥2
Hs,θ <

k+1∑
i=1

δi. (25)

This completes the induction. After N steps, we have

N∑
i=1

T (θi)
ai

[Xi](t) = Y (t) − RN (t),

hence

E
∥∥∥ N∑
i=1

T (θi)
ai

[Xi] − Y
∥∥∥2
Hs,θ

= E
∥∥RN

∥∥2
Hs,θ <

N∑
i=1

δi
equation 22

< ε.

Since Xi = Ri−1 was the choice in each step, this completes the proof of Theorem 8.

15
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Table 3: Full results for the long-term forecasting task. The lookback window size is set to 96,
with prediction lengths of 96, 192, 336, and 720. Avg represents the average results across all four
prediction lengths.

Models WaveTS FITS DeRiTS WPMixer TexFilter FreTS SimpleTM TimeKAN

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.167 0.223 0.145 0.199 0.216 0.270 0.168 0.205 0.162 0.207 0.173 0.223 0.162 0.207 0.162 0.208
192 0.210 0.258 0.190 0.243 0.264 0.304 0.209 0.270 0.210 0.250 0.245 0.285 0.208 0.248 0.207 0.249
336 0.256 0.294 0.238 0.282 0.312 0.335 0.263 0.289 0.263 0.290 0.321 0.338 0.263 0.290 0.263 0.290
720 0.315 0.336 0.310 0.332 0.380 0.375 0.339 0.339 0.339 0.340 0.414 0.410 0.340 0.341 0.338 0.340

Avg 0.237 0.278 0.230 0.266 0.293 0.321 0.235 0.283 0.235 0.272 0.288 0.314 0.243 0.271 0.242 0.271

So
la

r

96 0.180 0.252 0.178 0.245 0.304 0.349 0.192 0.248 0.202 0.252 0.321 0.380 0.163 0.232 0.187 0.258
192 0.221 0.235 0.219 0.234 0.350 0.315 0.232 0.246 0.325 0.361 0.346 0.369 0.182 0.247 0.228 0.241
336 0.238 0.266 0.238 0.266 0.355 0.344 0.252 0.268 0.343 0.371 0.357 0.387 0.193 0.257 0.245 0.272
720 0.302 0.282 0.310 0.286 0.434 0.354 0.325 0.290 0.397 0.373 0.375 0.424 0.199 0.252 0.309 0.289

Avg 0.235 0.259 0.236 0.258 0.361 0.340 0.250 0.263 0.317 0.339 0.350 0.390 0.184 0.247 0.242 0.265

E
C

L

96 0.131 0.227 0.145 0.242 0.275 0.362 0.148 0.240 0.147 0.245 0.169 0.273 0.141 0.235 0.174 0.266
192 0.146 0.240 0.157 0.252 0.277 0.364 0.161 0.250 0.160 0.251 0.182 0.286 0.151 0.247 0.182 0.273
336 0.162 0.256 0.174 0.269 0.291 0.376 0.177 0.265 0.173 0.267 0.200 0.304 0.173 0.267 0.197 0.286
720 0.200 0.288 0.213 0.301 0.329 0.402 0.215 0.302 0.210 0.309 0.222 0.321 0.201 0.293 0.236 0.320

Avg 0.160 0.253 0.172 0.266 0.293 0.376 0.175 0.264 0.172 0.268 0.193 0.296 0.166 0.260 0.197 0.286

Tr
af

fic

96 0.382 0.266 0.401 0.280 0.961 0.542 0.431 0.312 0.430 0.294 0.612 0.338 0.410 0.274 0.389 0.272
192 0.394 0.270 0.415 0.286 0.973 0.547 0.411 0.310 0.452 0.307 0.613 0.340 0.430 0.280 0.401 0.276
336 0.409 0.278 0.429 0.290 0.959 0.536 0.443 0.311 0.470 0.316 0.618 0.328 0.449 0.290 0.416 0.284
720 0.447 0.298 0.468 0.308 1.010 0.556 0.505 0.329 0.498 0.323 0.653 0.355 0.486 0.309 0.455 0.305

Avg 0.408 0.278 0.428 0.291 0.976 0.545 0.448 0.316 0.462 0.310 0.624 0.340 0.444 0.289 0.415 0.284

E
xc

ha
ng

e 96 0.086 0.204 0.109 0.235 0.143 0.255 0.102 0.220 0.091 0.211 0.111 0.237 0.092 0.212 0.094 0.213
192 0.177 0.300 0.229 0.350 0.240 0.355 0.202 0.310 0.186 0.305 0.219 0.335 0.185 0.308 0.183 0.309
336 0.322 0.411 0.400 0.463 0.387 0.456 0.360 0.433 0.380 0.449 0.421 0.476 0.335 0.422 0.331 0.420
720 0.860 0.693 0.1095 0.781 0.940 0.938 0.1041 0.923 0.896 0.712 0.1092 0.769 0.872 0.705 0.875 0.702

Avg 0.361 0.402 0.458 0.457 0.427 0.505 0.426 0.471 0.388 0.421 0.461 0.454 0.371 0.412 0.371 0.411

E
T

T
h1

96 0.367 0.391 0.374 0.396 0.625 0.531 0.368 0.379 0.382 0.402 0.513 0.491 0.366 0.392 0.367 0.395
192 0.404 0.414 0.407 0.416 0.665 0.550 0.419 0.419 0.430 0.429 0.534 0.504 0.422 0.421 0.414 0.420
336 0.427 0.432 0.430 0.436 0.710 0.574 0.438 0.433 0.472 0.451 0.588 0.535 0.440 0.438 0.445 0.434
720 0.440 0.455 0.435 0.458 0.730 0.608 0.446 0.460 0.481 0.473 0.643 0.616 0.463 0.462 0.444 0.459

Avg 0.410 0.423 0.412 0.427 0.682 0.566 0.418 0.423 0.441 0.439 0.570 0.537 0.422 0.428 0.417 0.427

E
T

T
h2

96 0.267 0.333 0.273 0.339 0.380 0.400 0.281 0.336 0.293 0.343 0.476 0.458 0.281 0.338 0.290 0.340
192 0.332 0.375 0.334 0.377 0.442 0.435 0.350 0.380 0.374 0.396 0.512 0.493 0.355 0.387 0.375 0.392
336 0.349 0.396 0.356 0.398 0.465 0.461 0.374 0.405 0.417 0.430 0.552 0.551 0.365 0.401 0.423 0.435
720 0.380 0.428 0.384 0.427 0.452 0.459 0.412 0.432 0.449 0.460 0.562 0.560 0.413 0.436 0.443 0.449

Avg 0.332 0.383 0.337 0.385 0.435 0.439 0.354 0.388 0.383 0.407 0.526 0.516 0.353 0.391 0.383 0.404

E
T

T
m

1

96 0.301 0.344 0.306 0.348 0.691 0.541 0.309 0.346 0.321 0.361 0.386 0.398 0.321 0.361 0.322 0.361
192 0.338 0.365 0.340 0.369 0.708 0.550 0.350 0.369 0.367 0.387 0.459 0.444 0.360 0.380 0.357 0.383
336 0.367 0.384 0.373 0.388 0.719 0.558 0.372 0.394 0.401 0.409 0.495 0.464 0.390 0.404 0.382 0.401
720 0.416 0.412 0.424 0.419 0.742 0.572 0.430 0.422 0.477 0.448 0.585 0.516 0.454 0.438 0.445 0.435

Avg 0.356 0.376 0.361 0.381 0.715 0.555 0.365 0.383 0.391 0.401 0.481 0.456 0.381 0.396 0.376 0.395

E
T

T
m

2

96 0.162 0.252 0.165 0.256 0.227 0.308 0.170 0.254 0.175 0.258 0.192 0.274 0.173 0.257 0.174 0.255
192 0.215 0.292 0.219 0.294 0.284 0.338 0.228 0.293 0.240 0.301 0.280 0.339 0.238 0.299 0.239 0.299
336 0.263 0.326 0.271 0.328 0.339 0.370 0.290 0.330 0.311 0.347 0.334 0.361 0.296 0.338 0.301 0.340
720 0.335 0.373 0.352 0.382 0.434 0.419 0.367 0.390 0.414 0.405 0.417 0.413 0.393 0.395 0.395 0.396

Avg 0.244 0.311 0.252 0.315 0.321 0.359 0.264 0.317 0.285 0.328 0.306 0.347 0.275 0.322 0.277 0.322

W
ils

on
-C

ow
an 96 0.264 0.330 0.279 0.347 0.385 0.462 0.283 0.339 0.297 0.357 0.352 0.422 0.272 0.341 0.271 0.339

192 0.612 0.574 0.646 0.606 0.892 0.806 0.655 0.591 0.689 0.623 0.815 0.738 0.625 0.585 0.621 0.582
336 0.812 0.743 0.856 0.736 1.182 0.992 0.868 0.728 0.913 0.767 1.081 0.908 0.825 0.755 0.821 0.751
720 0.969 0.807 1.041 0.854 1.409 1.136 1.035 0.833 1.088 0.878 1.288 1.040 0.982 0.819 0.978 0.815

Avg 0.664 0.614 0.706 0.636 0.967 0.849 0.710 0.623 0.747 0.656 0.884 0.777 0.676 0.625 0.672 0.622
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Table 4: Full results for the long-term forecasting task. We set the lookback window size L as 96
and the prediction length as τ ∈ {96, 192, 336, 720}. Avg means the average results from all four
prediction lengths.

Models DualFrac CFPT Twinsformer LiNo TimeMixer++ TimeMixer iTransformer PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Nonstationary Autoformer

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.150 0.184 0.154 0.200 0.161 0.201 0.154 0.199 0.155 0.205 0.163 0.209 0.174 0.214 0.186 0.227 0.195 0.271 0.202 0.261 0.172 0.220 0.195 0.252 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.212 0.240 0.203 0.242 0.211 0.248 0.205 0.248 0.201 0.245 0.208 0.250 0.221 0.254 0.234 0.265 0.209 0.277 0.242 0.298 0.219 0.261 0.237 0.295 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.225 0.261 0.261 0.286 0.266 0.291 0.262 0.290 0.237 0.265 0.251 0.287 0.278 0.296 0.284 0.301 0.273 0.332 0.287 0.335 0.280 0.306 0.282 0.331 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.324 0.331 0.340 0.339 0.347 0.343 0.343 0.342 0.312 0.334 0.339 0.341 0.358 0.347 0.356 0.349 0.379 0.401 0.351 0.386 0.365 0.359 0.345 0.382 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.228 0.254 0.240 0.267 0.246 0.271 0.241 0.270 0.226 0.262 0.240 0.272 0.258 0.278 0.265 0.285 0.264 0.320 0.270 0.320 0.259 0.286 0.265 0.315 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

So
la

r

96 0.152 0.224 0.232 0.318 0.193 0.224 0.171 0.254 0.171 0.231 0.189 0.259 0.203 0.237 0.265 0.323 0.232 0.302 0.312 0.399 0.373 0.358 0.290 0.378 0.237 0.344 0.286 0.341 0.321 0.380 0.456 0.446
192 0.181 0.237 0.265 0.247 0.223 0.250 0.237 0.298 0.218 0.263 0.222 0.283 0.233 0.261 0.288 0.332 0.371 0.410 0.339 0.416 0.397 0.376 0.320 0.398 0.280 0.380 0.291 0.337 0.346 0.369 0.588 0.561
336 0.193 0.250 0.323 0.381 0.246 0.268 0.296 0.336 0.212 0.269 0.231 0.292 0.248 0.273 0.301 0.339 0.495 0.515 0.368 0.430 0.420 0.380 0.353 0.415 0.304 0.389 0.354 0.416 0.357 0.387 0.595 0.588
720 0.202 0.255 0.342 0.397 0.245 0.272 0.395 0.393 0.212 0.270 0.223 0.285 0.249 0.275 0.295 0.336 0.526 0.542 0.370 0.425 0.420 0.381 0.357 0.413 0.308 0.388 0.380 0.437 0.375 0.424 0.733 0.633

Avg 0.182 0.241 0.291 0.336 0.227 0.254 0.275 0.320 0.203 0.258 0.216 0.280 0.233 0.262 0.287 0.333 0.406 0.442 0.347 0.417 0.402 0.374 0.330 0.401 0.282 0.375 0.328 0.383 0.350 0.390 0.593 0.557

E
C

L

96 0.125 0.223 0.136 0.231 0.139 0.233 0.138 0.233 0.135 0.222 0.153 0.247 0.148 0.240 0.190 0.296 0.219 0.314 0.237 0.329 0.168 0.272 0.210 0.302 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.140 0.232 0.153 0.246 0.158 0.252 0.155 0.250 0.147 0.235 0.166 0.256 0.162 0.253 0.199 0.304 0.231 0.322 0.236 0.330 0.184 0.322 0.210 0.305 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.162 0.256 0.168 0.265 0.172 0.267 0.171 0.267 0.164 0.245 0.185 0.277 0.178 0.269 0.217 0.319 0.246 0.337 0.249 0.344 0.198 0.300 0.223 0.319 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.443
720 0.187 0.279 0.199 0.293 0.200 0.293 0.191 0.290 0.212 0.310 0.225 0.310 0.225 0.317 0.258 0.352 0.280 0.363 0.284 0.373 0.220 0.320 0.258 0.350 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

Avg 0.154 0.248 0.164 0.259 0.167 0.261 0.164 0.260 0.165 0.253 0.182 0.273 0.178 0.270 0.216 0.318 0.244 0.334 0.252 0.344 0.193 0.303 0.225 0.319 0.268 0.365 0.213 0.327 0.193 0.296 0.227 0.364

Tr
af

fic

96 0.375 0.254 0.444 0.274 0.382 0.260 0.429 0.276 0.392 0.253 0.462 0.285 0.395 0.268 0.526 0.347 0.644 0.429 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.393 0.265 0.460 0.280 0.392 0.267 0.450 0.289 0.402 0.258 0.473 0.296 0.417 0.276 0.522 0.332 0.665 0.431 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.396 0.259 0.477 0.289 0.410 0.276 0.468 0.297 0.428 0.263 0.498 0.296 0.433 0.283 0.517 0.334 0.674 0.420 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.440 0.278 0.499 0.313 0.442 0.292 0.514 0.320 0.441 0.282 0.506 0.313 0.467 0.302 0.552 0.352 0.683 0.424 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.401 0.264 0.470 0.289 0.406 0.274 0.465 0.295 0.416 0.264 0.485 0.297 0.428 0.282 0.529 0.341 0.667 0.426 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.609 0.376 0.624 0.340 0.628 0.379

E
xc

ha
ng

e 96 0.082 0.198 0.189 0.207 0.081 0.200 0.084 0.203 0.085 0.214 0.090 0.235 0.086 0.206 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.174 0.293 0.210 0.312 0.172 0.295 0.176 0.298 0.175 0.313 0.187 0.343 0.177 0.299 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.311 0.409 0.314 0.437 0.320 0.409 0.316 0.409 0.316 0.420 0.353 0.473 0.331 0.417 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.816 0.674 0.846 0.692 0.812 0.677 0.823 0.682 0.851 0.689 0.934 0.761 0.847 0.691 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.346 0.394 0.390 0.412 0.346 0.395 0.350 0.398 0.357 0.409 0.391 0.453 0.360 0.403 0.366 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

E
T

T
h1

96 0.354 0.382 0.372 0.391 0.385 0.401 0.378 0.395 0.361 0.403 0.375 0.400 0.386 0.405 0.460 0.447 0.423 0.448 0.479 0.402 0.384 0.402 0.397 0.412 0.654 0.599 0.395 0.424 0.513 0.491 0.449 0.459
192 0.385 0.383 0.425 0.421 0.439 0.431 0.423 0.423 0.416 0.441 0.429 0.421 0.441 0.512 0.477 0.429 0.471 0.474 0.525 0.492 0.436 0.429 0.446 0.441 0.719 0.631 0.469 0.470 0.534 0.504 0.500 0.482
336 0.419 0.431 0.467 0.442 0.480 0.452 0.455 0.438 0.430 0.434 0.484 0.458 0.487 0.458 0.546 0.496 0.570 0.546 0.565 0.515 0.491 0.469 0.489 0.467 0.778 0.659 0.530 0.499 0.588 0.535 0.521 0.496
720 0.432 0.450 0.466 0.461 0.480 0.474 0.459 0.456 0.467 0.451 0.498 0.482 0.503 0.491 0.544 0.517 0.653 0.621 0.594 0.558 0.521 0.500 0.513 0.510 0.836 0.699 0.598 0.544 0.643 0.616 0.514 0.512

Avg 0.398 0.412 0.432 0.429 0.446 0.440 0.429 0.428 0.418 0.432 0.447 0.440 0.454 0.467 0.507 0.472 0.529 0.522 0.541 0.507 0.458 0.450 0.461 0.458 0.747 0.647 0.498 0.484 0.570 0.536 0.496 0.487

E
T

T
h2

96 0.279 0.332 0.285 0.336 0.292 0.345 0.292 0.340 0.276 0.328 0.289 0.341 0.297 0.349 0.308 0.355 0.745 0.584 0.400 0.440 0.340 0.374 0.340 0.394 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.356 0.384 0.363 0.388 0.375 0.395 0.375 0.391 0.342 0.379 0.372 0.392 0.380 0.400 0.393 0.405 0.877 0.656 0.528 0.509 0.402 0.414 0.482 0.479 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.335 0.402 0.413 0.426 0.417 0.429 0.418 0.426 0.346 0.398 0.386 0.414 0.428 0.432 0.427 0.436 1.043 0.731 0.643 0.571 0.452 0.452 0.591 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.382 0.410 0.396 0.422 0.406 0.430 0.422 0.441 0.392 0.415 0.412 0.434 0.427 0.445 0.436 0.450 1.104 0.763 0.874 0.679 0.462 0.468 0.839 0.661 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.338 0.382 0.364 0.393 0.372 0.400 0.377 0.400 0.339 0.380 0.365 0.395 0.383 0.406 0.391 0.411 0.942 0.683 0.611 0.550 0.414 0.427 0.563 0.519 0.954 0.723 0.436 0.449 0.526 0.516 0.450 0.459

E
T

T
m

1

96 0.288 0.329 0.316 0.356 0.325 0.364 0.322 0.361 0.310 0.334 0.320 0.357 0.334 0.368 0.352 0.374 0.404 0.426 0.364 0.387 0.338 0.375 0.346 0.374 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.341 0.356 0.354 0.380 0.372 0.390 0.365 0.383 0.348 0.362 0.361 0.381 0.390 0.393 0.374 0.387 0.450 0.451 0.398 0.404 0.374 0.387 0.382 0.391 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.366 0.378 0.383 0.400 0.406 0.412 0.401 0.408 0.376 0.391 0.390 0.404 0.426 0.420 0.421 0.414 0.532 0.515 0.428 0.425 0.410 0.411 0.415 0.415 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.422 0.411 0.444 0.434 0.467 0.448 0.469 0.447 0.440 0.423 0.454 0.441 0.491 0.459 0.462 0.449 0.666 0.589 0.487 0.461 0.478 0.450 0.473 0.451 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.354 0.369 0.374 0.393 0.393 0.403 0.389 0.400 0.368 0.378 0.381 0.396 0.410 0.410 0.402 0.406 0.513 0.495 0.419 0.419 0.400 0.406 0.404 0.408 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T

T
m

2

96 0.165 0.250 0.167 0.249 0.173 0.256 0.171 0.254 0.170 0.245 0.175 0.258 0.180 0.264 0.183 0.270 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.293 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.209 0.287 0.232 0.292 0.239 0.300 0.237 0.298 0.229 0.291 0.237 0.299 0.250 0.309 0.255 0.314 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.361 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.256 0.313 0.290 0.331 0.298 0.339 0.296 0.336 0.303 0.343 0.298 0.340 0.311 0.348 0.309 0.347 0.597 0.542 0.377 0.422 0.321 0.351 0.382 0.429 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.359 0.388 0.385 0.389 0.397 0.397 0.395 0.393 0.373 0.399 0.391 0.396 0.412 0.407 0.412 0.404 1.730 1.042 0.558 0.524 0.408 0.403 0.558 0.525 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.247 0.310 0.269 0.315 0.277 0.323 0.275 0.320 0.269 0.320 0.275 0.323 0.288 0.332 0.290 0.334 0.757 0.611 0.358 0.404 0.291 0.333 0.354 0.402 0.571 0.537 0.304 0.349 0.306 0.347 0.327 0.371

W
C

N

96 0.257 0.320 0.291 0.339 0.277 0.334 0.284 0.343 0.267 0.319 0.296 0.350 0.286 0.354 0.301 0.362 0.510 0.507 0.375 0.451 0.378 0.454 0.337 0.411 0.342 0.408 0.507 0.613 0.346 0.432 0.412 0.498
192 0.595 0.558 0.672 0.597 0.636 0.598 0.656 0.608 0.611 0.569 0.652 0.606 0.665 0.602 0.700 0.640 1.189 0.874 0.887 0.799 0.892 0.802 0.758 0.705 0.791 0.741 1.163 1.059 0.808 0.732 0.944 0.843
336 0.789 0.686 0.900 0.743 0.856 0.708 0.877 0.725 0.805 0.702 0.870 0.746 0.878 0.726 0.910 0.778 1.573 1.082 1.188 0.983 1.140 1.003 1.027 0.884 1.061 0.913 1.550 1.275 1.058 0.921 1.249 1.060
720 0.941 0.787 1.042 0.839 1.006 0.858 1.049 0.872 0.953 0.854 0.947 0.864 1.055 0.851 1.124 0.905 1.871 1.235 1.398 1.094 1.393 1.087 1.230 1.031 1.257 1.028 1.876 1.470 1.292 1.034 1.504 1.206

Avg 0.646 0.588 0.726 0.630 0.694 0.624 0.716 0.637 0.659 0.611 0.691 0.642 0.721 0.633 0.759 0.671 1.286 0.924 0.962 0.832 0.951 0.836 0.838 0.758 0.863 0.772 1.274 1.104 0.876 0.780 1.027 0.902

B FULL RESULTS

B.1 MAIN EXPERIMENTS

The full results of main comparison experiments are presented in Table 4 and 3.

B.2 ABLATION STUDIES

The detailed results of ablation experiments are provided in Tab. 5.

Table 5: Ablation and operator replacement studies for DualFrac across multiple prediction lengths.
✓ and ✗ indicate the presence or removal of a component. (1): w/o Static NFO; (2): w/o Dynamic
NFO; (3): w/o Interleaved Architecture; (4): w/o Dual-Stream Architecture; (5): w/o Cascaded
Residual; (6): w/o ξ; (7): w/o x; (8): w/o inter-series spatial non-stationary; (9)-(12): Operator
replacements (specific variants to be detailed as needed).

Dataset Horizon Default (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
C

L

96 .125 .223 .132 .224 .137 .224 .142 .260 .139 .260 .139 .233 .132 .253 .136 .224 .137 .224 .138 .225 .156 .272 .144 .264 .145 .270
192 .140 .232 .171 .270 .154 .253 .153 .274 .160 .258 .156 .257 .148 .261 .158 .250 .152 .257 .146 .258 .175 .286 .172 .292 .160 .280
336 .162 .256 .204 .311 .181 .297 .175 .285 .183 .296 .174 .275 .179 .269 .180 .280 .174 .280 .176 .286 .199 .296 .195 .309 .190 .310
720 .187 .279 .227 .323 .215 .331 .210 .312 .213 .307 .205 .312 .201 .320 .210 .300 .204 .300 .205 .310 .220 .346 .235 .358 .220 .340

Avg .154 .248 .183 .282 .172 .276 .170 .283 .174 .280 .168 .269 .165 .276 .171 .263 .167 .265 .166 .270 .188 .300 .186 .306 .179 .300

E
T

T
h1

96 .354 .382 .390 .410 .395 .410 .417 .430 .370 .440 .378 .422 .354 .406 .370 .420 .395 .420 .398 .421 .415 .441 .435 .459 .420 .450
192 .385 .383 .470 .465 .463 .446 .418 .449 .401 .427 .416 .415 .393 .416 .400 .420 .417 .440 .432 .423 .452 .443 .472 .462 .465 .450
336 .419 .431 .481 .514 .498 .509 .482 .491 .444 .496 .444 .453 .451 .466 .440 .480 .470 .480 .472 .475 .491 .498 .512 .520 .500 .510
720 .432 .450 .514 .535 .518 .503 .468 .494 .461 .527 .462 .484 .438 .492 .460 .500 .465 .490 .486 .498 .508 .519 .529 .541 .520 .510

Avg .398 .412 .464 .481 .468 .467 .446 .466 .419 .473 .425 .444 .409 .445 .418 .455 .437 .458 .447 .454 .467 .475 .487 .496 .476 .480

W
ea

th
er

96 .150 .184 .171 .195 .167 .204 .152 .195 .159 .216 .161 .192 .159 .200 .159 .216 .152 .190 .153 .198 .188 .225 .194 .226 .170 .220
192 .212 .240 .257 .265 .239 .261 .237 .287 .226 .277 .238 .259 .213 .262 .226 .277 .237 .287 .228 .266 .248 .275 .249 .285 .240 .270
336 .225 .261 .279 .295 .267 .311 .253 .293 .235 .287 .232 .285 .233 .284 .235 .287 .253 .293 .250 .298 .272 .297 .283 .323 .270 .320
720 .324 .331 .377 .388 .383 .365 .359 .373 .361 .358 .347 .369 .346 .356 .361 .358 .359 .373 .356 .381 .379 .392 .409 .417 .385 .370

Avg .228 .254 .271 .286 .264 .285 .250 .287 .245 .284 .244 .276 .238 .275 .245 .284 .250 .286 .247 .286 .272 .297 .284 .313 .266 .295

W
C

N

96 .257 .320 .280 .360 .286 .379 .280 .360 .269 .370 .269 .333 .278 .339 .269 .367 .280 .367 .281 .368 .315 .370 .323 .377 .300 .380
192 .595 .558 .722 .643 .704 .606 .699 .632 .648 .624 .669 .599 .652 .643 .648 .600 .690 .630 .692 .644 .685 .632 .727 .663 .710 .610
336 .789 .686 .944 .779 .876 .789 .870 .776 .823 .782 .824 .744 .810 .742 .823 .780 .870 .775 .853 .807 .933 .808 .975 .817 .880 .790
720 .941 .787 1.110 .958 1.067 .906 1.014 .928 .987 .862 1.023 .819 .986 .885 .987 .860 1.010 .920 1.064 .917 1.090 .950 1.113 .953 1.070 .910

Avg .646 .588 .764 .685 .733 .670 .717 .674 .682 .660 .696 .624 .682 .652 .682 .652 .712 .673 .723 .684 .756 .690 .784 .703 .740 .673

C EXPERIMENTAL DETAILS

We present details of datasets, evaluation metrics and experiments in this appendix.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Effectiveness analysis of non-stationarity across multiple prediction lengths.

Cases Default + RevIN + FISH-TS + SAN

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

E
C

L

96 .125 .223 .126 .223 .126 .224 .128 .229
192 .140 .232 .143 .232 .140 .233 .141 .233
336 .162 .256 .166 .260 .164 .258 .164 .256
720 .187 .279 .191 .284 .189 .284 .189 .280

Avg .154 .248 .157 .250 .155 .250 .156 .250

E
T

T
h1

96 .354 .382 .356 .384 .358 .384 .359 .388
192 .385 .383 .387 .387 .389 .387 .391 .393
336 .419 .431 .424 .443 .422 .431 .425 .447
720 .432 .450 .434 .458 .436 .454 .439 .458

Avg .398 .412 .400 .418 .401 .414 .404 .423

W
ea

th
er

96 .150 .184 .153 .185 .153 .184 .151 .184
192 .212 .240 .214 .241 .214 .240 .211 .240
336 .225 .261 .228 .263 .229 .263 .226 .261
720 .324 .331 .325 .333 .326 .335 .325 .335

Avg .228 .254 .230 .256 .231 .256 .228 .255

W
C

N

96 .257 .320 .258 .321 .262 .327 .261 .322
192 .595 .558 .596 .559 .616 .569 .595 .556
336 .789 .686 .790 .687 .794 .688 .792 .689
720 .941 .787 .942 .788 .953 .793 .943 .789

Avg .645 .588 .647 .589 .656 .594 .648 .589

C.1 DATASETS

We evaluate the performance of different models for long-term forecasting on 9 well-established
long-term datasets, including Weather, Traffic, ECL, Exchange, Solar-Energy, and ETT datasets
(ETTh1, ETTh2, ETTm1, ETTm2). Furthermore, we adopt Wilson-Cowan Network (WCN) (Wil-
son, 2019), which is a high-dimensional hyperchaotic dynamical system to evaluate the long-term
forecasting performance on non-stationary complicated dynamics. We detail the descriptions of
experimental data as follows:

• ETT: The ETT datasets, namely ETTh1, ETTh2, ETTm1, and ETTm2, consist of measure-
ments from electrical transformers. ETTh datasets (ETTh1, ETTh2) record seven vari-
ables including voltage, current, and temperature on an hourly basis, while ETTm datasets
(ETTm1, ETTm2) capture the same seven variables every 15 minutes, from July 2016 to
July 2018.

• ECL: This dataset tracks the electricity consumption metrics of 321 clients, recorded every
15 minutes, reflecting both residential and industrial usage. It involves a large number of
variables, with 321 distinctive measures of consumption patterns.

• Exchange Rate: Featuring daily records of exchange rates for eight major currencies,
this dataset encompasses a time span from 1990 to 2016 and includes eight variables per
timestamp, aiding in the analysis of long-term economic trends.

• Traffic: Capturing the dynamics of traffic flow and occupancy rates with 862 sensors, this
dataset provides hourly data across various freeways in the San Francisco Bay Area from
January 2015 to December 2016. The dataset is rich in dimensions, focusing on a broad
range of traffic-related variables.

• Weather: This dataset is gathered every 10 minutes from the Max Planck Institute for Bio-
geochemistry’s weather station and includes 21 comprehensive meteorological variables
such as temperature, humidity, and wind speed throughout 2020. It offers a detailed look
into climatic conditions with a high resolution in both time and variable space.
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• Solar: This dataset records the power output of 137 photovoltaic plants in Alabama at
10-minute resolution during 2016. It provides multi-site solar production data, often used
for multivariate forecasting benchmarks in renewable energy prediction tasks.

• WCN: A dataset or synthetic simulation suite derived from networks of coupled Wil-
son–Cowan oscillators arranged in chains, grids, or sparse arrays. When coupling in-
hibitory nodes to excitatory nodes between oscillators, the system exhibits hyperchaotic
dynamics, quantified by multiple positive Lyapunov exponents that scale approximately
linearly with the number of oscillators. The time series data comprise excitatory/inhibitory
population activities across nodes under varying coupling strengths, enabling analysis of
complex, high-dimensional chaos.

Table 7: Dataset Descriptions. The dataset size is organized as (Train, Validation, Test). Forecasta-
bility is computed based on predictability scores from (Liu et al., 2022b).

Dataset Dim Series Length Dataset Size Forecastability
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 0.46
ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 0.55
ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 0.38
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 0.45
ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) 0.77
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 0.68
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 0.75
Solar 137 {96, 192, 336, 720} (36601, 5161, 10417) 0.33
Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) 0.41
WCN 90 {96, 192, 336, 720} (5243, 817, 15602) 0.29

C.2 METRICS

Regarding metrics, we utilize the mean square error (MSE) and mean absolute error (MAE) for
long-term forecasting.

C.3 IMPLEMENTATION DETAILS

All experiments are conducted using PyTorch 2.5.0 with CUDA 12.0, leveraging four NVIDIA
A100 40GB GPUs for computation. The model is optimized using the AdamW optimizer, with
the initial learning rate selected from {5.0 × 10−5, 1.0 × 10−4, 2.5 × 10−4, 5.0 × 10−4, 7.5 ×
10−4}. A cosine annealing learning rate schedule is employed throughout the training process.
The embedding dimension D was chosen from {16, 32, 64, 128, 256}, while the patch size p was
fixed at 8. The batch size was determined based on dataset size, selected from {4, 8, 16, 32, 64, 128}.
Training is performed for up to 50 epochs, with an early stopping mechanism that halts training if
the validation performance does not improve for 10 consecutive epochs. The mean squared error
(MSE) loss function is used during training. To ensure fair comparisons, the drop last option is
set to False. The code will be made available upon publication.
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