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Abstract

One-shot generative domain adaption aims to transfer a pre-trained generator on
one domain to a new domain using one reference image only. However, it remains
very challenging for the adapted generator (i) to generate diverse images inherited
from the pre-trained generator while (ii) faithfully acquiring the domain-specific
attributes and styles of the reference image. In this paper, we present a novel
one-shot generative domain adaption method, i.e., DiFa, for diverse generation
and faithful adaptation. For global-level adaptation, we leverage the difference
between the CLIP embedding of reference image and the mean embedding of
source images to constrain the target generator. For local-level adaptation, we
introduce an attentive style loss which aligns each intermediate token of adapted
image with its corresponding token of the reference image. To facilitate diverse
generation, selective cross-domain consistency is introduced to select and retain
the domain-sharing attributes in the editing latent W+ space to inherit the diversity
of pre-trained generator. Extensive experiments show that our method outperforms
the state-of-the-arts both quantitatively and qualitatively, especially for the cases
of large domain gaps. Moreover, our DiFa can easily be extended to zero-shot
generative domain adaption with appealing results. Code is available at https:
//github.com/YBYBZhang/DiFa.

1 Introduction

Generative adversarial networks (GANs) [8] have achieved remarkable progress in generating photo-
realistic and highly-diverse images [11, 12, 18]. However, GANs usually require a large number
of samples for stable training, and suffer from severe mode collapse when trained with insufficient
data (e.g., one image). Recently, several works [2, 10, 27, 29, 34, 37, 39] have been proposed to train
a GAN from scratch with only one or few images, but are limited in generating high quality and
diverse images. In this paper, we resort to one-shot or few-shot generative domain adaption (GDA),
i.e., transferring a pre-trained generator on one domain to a new domain using one or few reference
images (as shown in Fig. 1). Thus, GDA can provide a new perspective to address the above issues
by inheriting the generation ability and diversity of the pre-trained generator.

Many methods [16, 19, 21, 25, 31, 33, 35, 38] have been proposed for one-shot GDA. Nonetheless,
domain-specific attributes and styles usually can be described by language, and thus can be well
depicted by Contrastive-Language-Image-Pretraining (CLIP) [22]. Hence, CLIP-based one-shot GDA
methods [7, 15, 32, 41] have been proposed to adapt a pre-trained generator, e.g., StyleGAN2 [12], to
the target domain. In particular, the domain-gap direction between source and target domains is first
calculated in the CLIP embedding space. Then, the pre-trained generator is transferred by aligning
the CLIP direction between the source and adapted images with the domain-gap direction.
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Figure 1: Diverse and faithful one-shot generative domain adaption. Left: One-shot generative
domain adaption aims to transfer a pre-trained GAN from domain A (e.g., FFHQ) to domain B
(e.g., sculptures) by providing one reference image only. Right: Synthesised images by our DiFa.
Notably, our DiFa is effective in inheriting the diverse generation ability of GAN from domain A,
while faithfully acquiring the representative characteristics of the reference image in domain B.

However, it remains very challenging for the adapted generator (i) to generate images as diverse as
the pre-trained generator while (ii) faithfully acquiring the domain-specific attributes and styles of the
reference image. Firstly, although the domain-gap direction extracts the pronounced characteristics
of the reference image, the detailed local styles and attributes are usually ignored in CLIP embedding.
Without considering these local styles and attributes, the adapted generator cannot faithfully acquire
the domain-specific characteristics of the reference image. Secondly, the domain-gap direction
is the difference between the CLIP embedding of the reference image and source domain, which
contains both domain-specific attribute shifts (e.g., thick eyebrows in second row of Fig. 1) and
domain-sharing attribute shifts (e.g., gender). Directly aligning the training sample-shift direction
with the domain-gap direction introduces the unnecessary domain-sharing attribute changes to the
adapted images, thereby being harmful to inheriting the diversity from the pre-trained generator.
Although [15, 41] proposed to use the style mixing and editing direction preservation to address these
issues, only limited improvements are achieved.

In this work, we present a novel one-shot GDA method, i.e., DiFa, for diverse generation and faithful
adaption. In terms of faithful adaption, we consider both attributes and styles. For global-level
adaptation, we define the domain-gap direction as the difference between the CLIP embedding
of reference image and the mean embedding of source images. As for local-level adaptation, we
introduce an attentive style (AS) loss on the intermediate layer of the CLIP image encoder. For each
intermediate token of an adapted image, it first finds the nearest token of the reference image, and
then minimizes their difference to make GDA adapt to the target style. In terms of diverse generation,
selective cross-domain consistency (SCC) is introduced to select and retain domain-sharing attributes
in the editing latent W+ space to inherit the diversity of pre-trained generator. In particular, we use a
styleGAN inversion models [24, 30] to invert the images from source and target domains into the
W+ space. Then, we compute the direction ∆w between the two domains, where smaller values
in ∆w indicate that the corresponding latent variables in W+ space are domain-sharing attributes.
Selective cross-domain consistency encourages an adapted image and its corresponding source image
to be similar in domain-sharing attributes, and can be different in other attributes. SCC allows the
adapted generator to inherit from the pre-trained generator selectively. Thus our DiFa can guarantee
the diversity of adapted images without the sacrifice of decreasing domain adaption ability.

Quantitative and qualitative experiments are conducted on a wide range of source and target domains.
Evaluation results highlight the superiority of our DiFa compared against the state-of-the-art methods,
especially for the cases of large domain gaps (e.g., Cat → Tiger). To illustrate the editing capabilities
of the adapted latent space, we employ InterFaceGAN [28] to edit the real images in target domain.

Overall, our contributions are summarized as follows:

• We introduce a novel method namely DiFa, along with selective cross-domain consistency and
attentive style losses, for diverse generation and faithful adaption.
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• Extensive experiments show the effectiveness of our DiFa in acquiring the representative domain
characteristics from the reference image, and inheriting the ability of pre-trained generator to
produce diverse images.

• Our DiFa can be easily extended to zero-shot generative domain adaption with appealing results.

2 Related Work
Few-shot Domain Adaption of GANs. Few-shot generative domain adaption aims to transfer a
generator pre-trained on a source domain to a new target domain with very limited reference images.
Earlier studies [16,19,21,25,31,33,35,38] utilized the adversarial loss [8] to capture domain-specific
information from given reference images. To reduce mode collapse, these methods usually adopted
fewer learnable parameters [19, 25, 31, 35] or introduce regularization terms [16, 21, 33, 38], but still
produce images with insufficient diversity. With the success of CLIP [22], recent works [7, 15, 32, 41]
leveraged the difference between the CLIP embeddings of the source and target domains to guide
the attribute-level adaption, beating the methods with adversarial loss [8]. To better capture domain-
specific styles, several methods [15,41] adopted the style mixing trick during inference time, however,
it may bring undesired semantic artifacts when there is a significant shape discrepancy. [15, 32, 41]
attempted to generate diverse images by preserving the editing distance of input pairs, before and
after adaption. Nonetheless, they indistinguishably retain both domain-sharing and domain-specific
attributes, which is conflicted with faithful adaption.

GAN Inversion. GAN inversion aims to invert an image into its corresponding latent codes,
which can be grouped into optimization-based and encoder-based methods. Optimization-based
inversion [5, 40] directly updates the latent code by minimizing the reconstruction error. Albeit
high-quality and accurate reconstruction can be obtained, it usually costs a few minutes for an image.
In contrast, encoder-based algorithms [1, 24, 30] directly embed a given image into latent codes, so
that the inference can be completed in real-time, and the gradients of input images could also be
passed backward. Moreover, encoder-based algorithms also achieve considerable performance when
handling out-of-domain images, and thus it is feasible to project adapted images into W+ codes
during training.

3 Proposed Method

In this work, we focus on one-shot generative domain adaption task, which aims to transfer a
generator GA pre-trained on domain A to a new domain B using one reference image Itar only.
Specifically, we present a novel method termed DiFa to generate diverse images inherited from
the pre-trained generator while faithfully acquiring the domain-specific attributes and styles of the
reference image. The overview of our DiFa is illustrated in Fig. 2. In this section, we first introduce
the global-level adaption loss with an estimated domain-gap direction. The attentive style loss and
selective cross-domain consistency loss are then proposed for local-level adaptation and diverse
generation, respectively. Finally, we introduce the overall learning objective for training.

3.1 Global-level Adaption

Recent studies [7, 15, 41] have demonstrated the superiority of CLIP in transferring a generator in
one domain to a new domain under the one-shot setting. In comparison to the methods based on
adversarial loss [16, 19, 21, 25, 31, 33, 35, 38], CLIP-based methods are effective in describing domain
characteristics and resulting in photo-realistic images. Given a generator GA pre-trained on domain A
and a target reference image Itar from domain B, CLIP-based methods first calculate the domain-gap
direction between domain B and A:

∆vdom = vtar − vsrc, (1)

where vtar = EI(Itar) denotes the embedding of target domain B and EI is the CLIP image encoder.
vsrc represents the CLIP embedding of source domain A. To transfer GA to domain B, they copy a
new generator GB from GA and finetune it by aligning the sample-shift direction ∆vsamp with the
domain-gap direction ∆vdom:

∆vsamp = vB − vA, (2)

Lglobal = 1− ∆vsamp ·∆vdom

|∆vsamp||∆vdom|
, (3)
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Figure 2: Overview of our DiFa. The adapted generator GB is initialized by pre-trained generator
GA. With the aid of CLIP image encoder, the global-level adaption loss Lglobal and attentive style
loss Llocal encourage GB to faithfully acquire both global and local representative domain-specific
characteristics from the reference Itar. To facilitate diverse generation inherited from GA, the
selective cross-domain consistency loss Lscc selects and retains domain-sharing attributes.

where vB = EI(GB(z)) and vA = EI(GA(z)) denote the CLIP embeddings of domain B and
domain A samples. z ∼ N (0, I) denotes the input noise. After finetuning with the global-level
adaption loss Lglobal, the adapted generator GB can generate high-quality images of domain B.

Note that the embedding of source domain vsrc can be calculated in different ways. Two-stage
methods [15,41] find the image corresponding to Itar in domain A and treat its CLIP-space embedding
as vsrc. Nonetheless, the corresponding image in domain A inevitably contains domain-specific
attributes of Itar, leading to ∆vdom ignoring these domain-specific attributes. One-stage methods [7]
utilize the mean embedding of source images as vsrc. Intuitively, the mean embedding usually
represents the common attributes of source domain, and does not affect domain-specific attribute
shifts in ∆vdom. Thus, in our experiments, we use the mean embedding of source images as the
source domain embedding, i.e., vsrc = vĀ = Ez∼N (0,I)[EI(GA(z))].

3.2 Local-level Adaption
Albeit the domain-gap direction ∆vdom captures the global-level representative domain charac-
teristics of reference image Itar, the local attributes and visual styles are usually ignored in CLIP
embedding. Therefore, training GB with Lglobal only cannot faithfully capture the local-level domain-
specific characteristics of Itar. For example, images generated by StyleGAN-NADA [7] fail to acquire
the mane and stripes of tigers during the Cat → Tiger adaption (the first row in Fig. 6(c)). [15, 41]
tried to inherit the detailed visual styles from Itar through the style mixing. However, when there is a
significant shape discrepancy (e.g., pose or cross-category) between Itar and the original adapted
image IB , the mismatch of content and style in Imix

B will lead to visible artifacts (the last row in
Fig. 5(b) and the first row in Fig. 6(b)).

To mitigate the above issue, we further present an attentive style loss Llocal to help GB faithfully
acquire the local-level representative attributes and styles of Itar. Inspired by content-style alignment
in style transfer [14], Llocal is designed to encourage each part of IB to attentively align with its
corresponding styles from Itar. Specifically, we first extract the intermediate tokens of IB and Itar
from the k-th layer of CLIP image encoder (shown in Fig. 4), and then align each of adapted tokens FB

with its closest target token from Ftar, where FB = {F 1
B , . . . ,F

n
B} and Ftar = {F 1

tar, . . . ,F
m
tar}

are the extracted tokens. The final attentive style loss is defined as,

Llocal = max
( 1

n

∑
i

min
j

Ci,j ,
1

m

∑
j

min
i

Ci,j

)
, (4)

where C is the cost matrix to measure the token-wise distances from FB to Ftar, and each element
of C is computed as:

Ci,j = 1− F i
B · F j

tar

|F i
B ||F

j
tar|

. (5)

4



Domain B

Δ𝑤

Domain A

Figure 3: The process of computing ∆w be-
tween domain A and domain B. Given two
clusters of W+ codes from domain A and do-
main B, ∆w is defined as the difference of their
cluster centers.

Layer_1

...
Layer_12

Layer_4

...

Image Encoder (ViT) 𝐸!

Target Image

Adapted Image

L local

Figure 4: Illustration of the Attentive Style
loss. We extract the intermediate adapted and
target tokens from the Layer 4 of CLIP image en-
coder, following by aligning each adapted token
with its corresponding target token attentively.

3.3 Selectively Diverse Generation

The ability to generate diverse target domain images is also critical for one-shot generative domain
adaption. Recall that the domain-gap direction is the difference between the embedding of Itar and
source domain, which contains both domain-specific and domain-sharing attribute shifts. Training
GB with Llocal also introduces the unnecessary domain-sharing attribute changes to the adapted
images, which hinders GB from inheriting the diversity of the pre-trained generator GA. To facilitate
diverse generation, we propose a selective cross-domain consistency loss to select and retain the
domain-sharing attributes in W+ space. Intuitively, if an attribute is similar between domains A and
B during adaption, it is more likely to be a domain-sharing attribute. According to this assumption,
we can dynamically analyze and preserve the domain-sharing attributes. Specifically, we first invert
GA(z) and GB(z) into W+ latent codes wA and wB with an pre-trained inversion model (e.g.,
pSp [24] or e4e [30]) for each iteration. Then, as shown in Fig. 3, we compute the difference ∆w
between the centers of a queue of W+ latent codes XA and a queue of W+ latent codes XB , where
XA and XB are dynamically updated with wA and wB during training. According to ∆w, we
encourage wA and wB to be consistent in channels with less difference,

Lscc = ||mask(∆w, α) · (wB −wA)||1, (6)
where α represents the proportion of preserved attributes and mask(∆w, α) determines which
channels to be retained. Let |∆wsαN

| be the αN -th largest element of |∆w|, and each dimension of
mask(∆w, α) is calculated as:

mask(∆w, α)i =

{
1 |∆wi| < |∆wsαN

|
0 |∆wi| ≥ |∆wsαN

| . (7)

Note that fine layers of StyleGAN [11, 12] usually control color information, and constraining
them may have a detrimental effect on obtaining styles of Itar. Hence, we only use latent codes
corresponding to coarse spatial resolutions (42–82) and middle resolutions (162–322) in Lscc.

3.4 Overall Training Loss

Our overall training loss consists of three terms, i.e., the global-level adaption loss Lglobal, the
attentive style loss Llocal for acquiring detailed style information and the selective cross-domain
consistency loss Lscc for inheriting the diversity:

Loverall = Lglobal + λlocalLlocal + λsccLscc. (8)

In our experiments, we use λlocal = 2 and λscc = max(0, niter−nB

Niter−niter
), where Niter and niter

denote the total number of training iterations and the niter-th iteration of training, respectively. That
is, λscc increases linearly as the training proceeds.

4 Experiments

In this section, we first introduce the experimental settings of our DiFa, including implementation
details, datasets, and metrics (Sec. 4.1). Both qualitative and quantitative experiments are conducted
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Figure 5: Qualitative comparisons using the generator pre-trained on FFHQ [11] between our
DiFa, Mind The Gap [41], StyleGAN-NADA [7] and Few-Shot Adaption [21]. The first row and
first column show source images in domain A and reference images in domain B. Our DiFa not only
inherits the ability from the pre-trained generator to produce highly diverse and photo-realistic images,
but also faithfully acquires the representative characteristics from the reference images, significantly
outperforming the competing methods. Results best seen at 500% zoom.
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Figure 6: Qualitative comparisons using the generator pre-trained on AFHQ-Cat [4]. The
first row shows source images in domain A while the first column presents reference images in
domain B. Our DiFa captures both the representative attributes and styles from various categories
of reference images, and exhibits better performance in comparison to the competing methods. In
contrast, StyleGAN-NADA [7] misses some domain-specific styles while Mind The Gap [41] fails to
obtain the essential attributes of animals in domain B. Results best seen at 500% zoom.

on a wide range of domains to demonstrate the superiority of our DiFa in generating diverse images
and faithful adaption (Sec. 4.2 and Sec. 4.3). Besides, ablation studies are considered to evaluate the
effects of our proposed two losses (Sec. 4.4). Finally, we also investigate the editing ability of the
adapted generator and extend our DiFa to zero-shot generative domain adaption (Sec. 4.5).

4.1 Experimental Settings

Implementation Details. In our experiments, we use StyleGAN2 pre-trained on FFHQ [11] and
StyleGAN-ADA [10] pre-trained on AFHQ-Cat [4], and employ e4e [30] and pSp [24] as their
inversion models, respectively. Following StyleGAN-NADA [7], we utilize both ViT-B/16 and
ViT-B/32 [6] models for CLIP-base losses. For training, we use ADAM optimizer [13] with a learning
rate 0.02 and set the batch size to 2. We finetune the generator for 300∼400 iterations, which takes
about 3∼4 minutes on an RTX 2080Ti GPU.
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Table 1: KID (↓) comparisons between different one-shot domain adaption methods. Each result
is averaged over 5 training shots and in the form of {mean ± standard error}. FSA, NADA and MTG
denote Few-Shot Adaption [21], StyleGAN-NADA [7] and Mind The Gap [41], respectively.

Models FFHQ Cat

Amedeo. Fernand. Raphael Tiger Fox Wolf

FSA [21] 180.10± 1.12 187.26± 13.10 165.25± 66.31 - - -
NADA [7] 131.03± 28.14 169.83± 31.52 149.19± 55.91 13.83± 2.75 73.17± 39.30 47.96± 20.37
MTG [41] 146.84± 46.24 192.19± 42.73 125.58± 18.63 48.27± 13.87 69.19± 26.23 51.11± 11.32

Ours 121.21 ± 24.62 159.93 ± 31.39 112.72 ± 17.61 13.13 ± 2.09 54.20 ± 31.42 33.52 ± 9.21

Table 2: FID (↓) comparisons between different one-shot domain adaption methods. Each result
is averaged over 5 training shots and in the form of {mean ± standard error}.

Models FFHQ Cat

Amedeo. Fernand. Raphael Tiger Fox Wolf

FSA [21] 171.56 ± 33.68 236.61± 25.03 177.47± 32.21 - - -
NADA [7] 188.44± 19.15 257.27± 19.39 186.20± 28.60 16.74 ± 1.53 82.59 ± 25.31 54.28± 13.34
MTG [41] 215.88± 34.14 278.46± 48.27 193.76± 7.07 46.72± 13.34 82.30± 15.09 58.65± 6.60

Ours 187.28 ± 24.45 254.68 ± 17.73 172.34 ± 10.15 16.26 ± 1.08 71.57 ± 18.18 44.39 ± 5.96

Datasets. For FFHQ adaption, the target images are collected from three datasets: (i) Artstation-
Artistic-face-HQ (AAHQ) [17], (ii) MetFaces [10], and (iii) face paintings by Amedeo Modigliani,
Fernand Leger and Raphael [36]. Each of them contains 10 images. For Cat adaption, we collect
target images from the AFHQ-Wild validation dataset and divide them into Tiger, Fox, and Wolf
datasets, which include 103, 53, and 46 images, respectively. In particular, Amedeo Modigliani,
Fernand Leger, Raphael, Tiger, Fox and Wolf are used in quantitative experiments.

Metrics. Following StyleGAN-ADA [10], we use Fréchet Inception Distance (FID) [9] and Kernel
Inception Distance (KID) [3] to evaluate our DiFa quantitatively. Both metrics measure the quality
and diversity of the images, while KID is more suitable for the few-shot setting (only a few images in
validation sets). In all our experiments, both FID and KID are calculated between 5,000 synthesized
images and each validation sets.

4.2 Qualitative and Quantitative Evaluation
Qualitative Results. Fig. 5 shows the qualitative comparisons adapted from FFHQ [11]. As shown
in the figure, Few-Shot Adaption [21] suffers from severe model collapse and generates similar
images. Due to StyleGAN-NADA [7] is trained by aligning the sample-shift direction ∆vsamp with
domain-gap direction ∆vdom, which contains the domain-sharing attributes (e.g., gender) shift, it
also cannot inherit the sufficient diversity from the pre-trained generator. For example, the gender
of adapted images is changed to female in 4∼6-th rows in Fig. 5(c). Mind The Gap [41] retains the
local styles of reference image via style mixing. However, it produces undesired semantic artifacts
when there is a significant shape discrepancy between domains, e.g., redundant noses and eyes in
3rd and last row of Fig. 5(b). In contrast, with the proposed SCC and AS losses, our DiFa not only
faithfully acquires the representative domain-specific attributes and styles from the reference image,
but also produces images with high diversity inherited from the pre-trained generator. Additionally,
we also illustrate the qualitative results adapted from AFHQ-Cat [4] in Fig. 6. Our DiFa also captures
sufficient domain-specific characteristics from the reference image in comparison to the competing
methods (e.g., the mane and stripes of the tiger in first row), further demonstrating the superiority of
our method. More visualizations adapted from other domains are shown in Suppl.

Quantitative Results. We also quantitatively compare our DiFa with competing methods [7, 21,
41] under six settings, i.e., FFHQ → {Amedeo Modigliani, Fernand Leger, Raphael} and Cat →
{Tiger, Fox, Wolf}. For each setting, we randomly sample an image from a target dataset to perform
adaption, and report both Kernel Inception Distance (KID) [3] and Fréchet Inception Distance
(FID) [9] metrics. To reduce random sampling error, we repeat it five times and use the mean value as
final score. The results are listed in Table 1 and Table 2. One can see that our DiFa clearly outperforms
the competing methods, which are consistent with qualitative results in Fig. 5 and Fig. 6. We observe
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Table 3: User preference study. The numbers represent the percentage of users who favor the images
synthesized by our DiFa over the other competitor.

Model
Comparison

Image
Quality

Style
Similarity

Attribute
Consistency

Ours vs. FSA [21] 87.90% 36.00% 96.10%
Ours vs. NADA [7] 76.76% 77.33% 78.95%
Ours vs. MTG [41] 81.43% 73.62% 64.05%

Dom. A Baseline Baseline + SCC Baseline + SCC + AS (Ours)Reference

Figure 7: Ablation studies on Selective Cross-modal Consistency (SCC) loss and Attentive Style
(AS) loss. Compared to the baseline, SCC enhances keeping the consistency (e.g., hairstyles) between
source and adapted images, vastly boosting the diversity of generation. Moreover, AS encourages the
adapted generator to further acquire the representative styles (e.g., darker hue and purple hair) from
the reference.

that FSA [21] obtains better FID scores in Amedeo and Fernand datasets, which is inconsistent with
above qualitative results (see Fig. 5(d)). Note that FID cannot reflect the overfitting problem very well
when target dataset is extremely small and biased [10]. Specifically, these two small datasets have
different data biases with FFHQ, e.g., gender bias. 8/10 images in the Amedeo Modigliani dataset and
9/10 images in the Fernand Leger dataset are female. Due to our DiFa acquiring the diversity from
the original generator which is trained on FFHQ, it generates male and female adapted images with
similar probability. In contrast, for FSA, the adapted images are all similar to the reference image.
When comparing on the above two datasets, FSA tends to generate images that have similar gender
distribution to the validation dataset, thus achieving better FID results. For the Raphael dataset, which
has 5/10 images that are female, our DiFa achieves better FID results.

4.3 User Study

We further perform user study to compare our DiFa with the competing methods. Specifically, we
provide users a reference image, a source image, and two adapted images from different methods, and
ask them to choose the better adapted image for each of three measurements: (i) image quality, (ii)
style similarity with the reference and (iii) attribute consistency with the source image. We randomly
generate 1,050 samples for each comparison (3,150 in total). There are 30 users. We assign 105
samples for each of them, and give them unlimited time to complete the evaluation. From Table 3,
the users strongly favor our DiFa in all three aspects, especially from the perspective of image quality
and attribute consistency. Note that FSA [21] suffers from severe mode collapse and simply copies
from the reference, hence, it is favored on style similarity but performs worse on the other aspects.

4.4 Ablation Study

Ablation studies are conducted to evaluate the effects of two critical components of our DiFa, i.e.,
the selective cross-domain consistency (SCC) loss and the attentive style (AS) loss. As shown
in Fig. 7, the images from the baseline have very limited diversity and lack some representative
characteristics of the reference image, e.g., darker hue. Benefited from SCC, the adapted generator
begins to retrain the domain-sharing attributes (e.g., hair length and gender), thereby inheriting the
diverse generation ability from the pre-trained generator. When further adding AS, we observe that
the adapted generator faithfully captures the domain-specific styles and local-level representative
attributes from the reference image, e.g., darker hue and purple hair. More ablation studies about
hyper-parameters are provided in the Suppl.
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Figure 8: Editing a real image in domain B. The first three columns show a real image in domain
A, a reference image, and an adapted real image in domain B, respectively. The other columns
present the editing operations and their corresponding results in domain B. All editing directions are
discovered by InterfaceGAN [28] in domain A.

Dom. A

“A sketch with 
black pencils”

“A painting
in the style of

Edvard Munch”

Ours StyleGAN-NADA

Figure 9: Qualitative comparisons on zero-shot generative domain adaption between our DiFa
and StyleGAN-NADA [7]. Given the text description in first column, our DiFa adapts source images
in domain A (last row) to the described target domain, significantly surpassing StyleGAN-NADA [7]
from the consistency perspective.

4.5 Extensions
Latent Space Editing. In Fig. 8, we illustrate the editing results performed on a real image adapted
into a new domain. Concretely, we employ InterfaceGAN [28] to discover some editing directions
in domain A, and then leverage these directions to edit the adapted real image. As can be seen, the
directions from domain A still manage to control real images in domain B, indicating that the adapted
generator maintains a similar ability in latent-based editing with the original generator.

Zero-shot Domain Adaption of GANs. With minor modifications (e.g., removing the AS loss), our
DiFa can be easily extended to zero-shot GDA, i.e., adapting to a target domain described by text only.
Fig. 9 shows the comparison between our DiFa and StyleGAN-NADA [7]. One can see that adapted
images from our DiFa are more consistent with their corresponding source images, thereby inheriting
more diversity from the pre-trained generator. For example, when performing adaption from FFHQ
to a target domain described by “A sketch with black pencils”, all eyes in StyleGAN-NADA results
look to the left, which is inconsistent with the original eyes in source domain. More visualizations
and the implementation details are given in the Suppl.

5 Discussion

In this paper, we presented DiFa to address the diverse generation and faithful adaptation issues for
one-shot generative domain adaption. In particular, DiFa leverages the difference between the CLIP
embedding of the reference image and the embedding of source domain to guide the global-level
adaption. To faithfully acquire local-level domain-specific characteristics, we introduce the attentive
style loss to align each intermediate token of adapted images with its closest token of the reference
image. For highly diverse generation, the selective cross-domain consistency loss is proposed to select
and retain the domain-sharing attributes in W+ space. Both qualitative and quantitative experiments
show the superiority of our DiFa against state-of-the-arts under a wide range of settings, especially for
the cases of large domain gap. Furthermore, our DiFa can be easily extended to zero-shot generative
domain adaption with compelling results.

Limitations. When there are few domain-sharing attributes between source and target domains,
e.g., Church → Tiger, our DiFa cannot produce highly diverse images. Fortunately, this issue may be
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largely alleviated by adaptively inheriting the prior knowledge from large-scale generators [20,23,26],
which are pre-trained on sufficient variety of source domains.

Broader Impact. Transferring a pre-trained generator with very limited data plays a crucial role in
academia and industry. More specifically, our DiFa provides insights on tasks in computer vision, e.g.,
data augmentation and few-shot adaption. Meanwhile, our DiFa also makes AI more accessible to
the public. On the one hand, users could leverage our method to create the artworks with any desired
styles, even without adequate computing and data resources. On the other hand, our work may bring
potential concerns on the probability of producing fake images. For example, someone may use our
DiFa to spoof other people’s portraits, to synthesize deceptive interactions, or even to impersonate
public figures to influence political processes. Albeit there are a few potential negative impacts, we
believe that they could be well addressed with the development of DeepFake detection and proper
protocols. In particular, we could verify the authenticity, integrality, and source of images by adding
digital watermarks or signatures. Also, we may employ DeepFake detection technique to analyze
the images without digital signatures. Furthermore, our community should help the government to
improve corresponding laws and regulations to avoid the abuse of image generation.
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[3] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd gans.

arXiv:1801.01401, 2018. 7
[4] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for

multiple domains. In CVPR, 2020. 6, 7
[5] Antonia Creswell and Anil Anthony Bharath. Inverting the generator of a generative adversarial network.

TNNL, 2018. 3
[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv:2010.11929, 2020. 6

[7] Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-guided
domain adaptation of image generators. arXiv:2108.00946, 2021. 1, 3, 4, 6, 7, 8, 9

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. NeurIPS, 2014. 1, 3

[9] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 2017. 7

[10] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. NeurIPS, 2020. 1, 6, 7, 8

[11] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In CVPR, 2019. 1, 5, 6, 7

[12] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan. In CVPR, 2020. 1, 5

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 6
[14] Nicholas Kolkin, Jason Salavon, and Gregory Shakhnarovich. Style transfer by relaxed optimal transport

and self-similarity. In CVPR, 2019. 4
[15] Gihyun Kwon and Jong Chul Ye. One-shot adaptation of gan in just one clip. arXiv:2203.09301, 2022. 1,

2, 3, 4
[16] Yijun Li, Richard Zhang, Jingwan Cynthia Lu, and Eli Shechtman. Few-shot image generation with elastic

weight consolidation. In NIPS, 2020. 1, 3
[17] Mingcong Liu, Qiang Li, Zekui Qin, Guoxin Zhang, Pengfei Wan, and Wen Zheng. Blendgan: Implicitly

gan blending for arbitrary stylized face generation. NeurIPS, 2021. 7
[18] Ming Liu, Yuxiang Wei, Xiaohe Wu, Wangmeng Zuo, and Lei Zhang. A survey on leveraging pre-trained

generative adversarial networks for image editing and restoration. arXiv preprint arXiv:2207.10309, 2022.
1

10



[19] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the discriminator: a simple baseline for fine-tuning
gans. arXiv:2002.10964, 2020. 1, 3

[20] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided
diffusion models. arXiv:2112.10741, 2021. 10

[21] Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros, Yong Jae Lee, Eli Shechtman, and Richard Zhang.
Few-shot image generation via cross-domain correspondence. In CVPR, 2021. 1, 3, 6, 7, 8

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In ICML, 2021. 1, 3

[23] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021. 10

[24] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and Daniel Cohen-
Or. Encoding in style: a stylegan encoder for image-to-image translation. In CVPR, 2021. 2, 3, 5,
6

[25] Esther Robb, Wen-Sheng Chu, Abhishek Kumar, and Jia-Bin Huang. Few-shot adaptation of generative
adversarial networks. arXiv:2010.11943, 2020. 1, 3

[26] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse datasets.
2022. 10

[27] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model from a single
natural image. In ICCV, 2019. 1

[28] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. Interfacegan: Interpreting the disentangled face
representation learned by gans. TPAMI, 2020. 2, 9

[29] Assaf Shocher, Shai Bagon, Phillip Isola, and Michal Irani. Ingan: Capturing and retargeting the” dna” of
a natural image. In ICCV, 2019. 1

[30] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an encoder for
stylegan image manipulation. TOG, 2021. 2, 3, 5, 6

[31] Yaxing Wang, Chenshen Wu, Luis Herranz, Joost van de Weijer, Abel Gonzalez-Garcia, and Bogdan
Raducanu. Transferring gans: generating images from limited data. In ECCV, 2018. 1, 3

[32] Yue Wang, Ran Yi, Ying Tai, Chengjie Wang, and Lizhuang Ma. Ctlgan: Few-shot artistic portraits
generation with contrastive transfer learning. arXiv:2203.08612, 2022. 1, 3

[33] Jiayu Xiao, Liang Li, Chaofei Wang, Zheng-Jun Zha, and Qingming Huang. Few shot generative model
adaption via relaxed spatial structural alignment. arXiv:2203.04121, 2022. 1, 3

[34] Ceyuan Yang, Yujun Shen, Yinghao Xu, and Bolei Zhou. Data-efficient instance generation from instance
discrimination. NeurIPS, 2021. 1

[35] Ceyuan Yang, Yujun Shen, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Zhirong Wu, and Bolei Zhou. One-shot
generative domain adaptation. arXiv:2111.09876, 2021. 1, 3

[36] Jordan Yaniv, Yael Newman, and Ariel Shamir. The face of art: landmark detection and geometric style in
portraits. TOG, 2019. 7

[37] Dan Zhang and Anna Khoreva. Pa-gan: Improving gan training by progressive augmentation. 2018. 1
[38] Yunqing Zhao, Henghui Ding, Houjing Huang, and Ngai-Man Cheung. A closer look at few-shot image

generation. arXiv:2205.03805, 2022. 1, 3
[39] Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, and Han Zhang. Image augmentations for gan

training. arXiv:2006.02595, 2020. 1
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The main contributions can be summarized as: (1) We
introduce a novel method namely DiFa, along with Selective Cross-domain Consistency
Loss (SCC) and Attentive Style Loss (AS), for diverse generation and faithful adaption.
(2) Extensive experiments highlight the effectiveness of our DiFa in acquiring the
representative characteristics from the reference image, and inheriting the capability
to produce high-diversity images from the pre-trained generator. (3) Our DiFa can be
easily extended to zero-shot generative domain adaption with appealing results.

(b) Did you describe the limitations of your work? [Yes] See Sec. 5
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