
Under review as a conference paper at ICLR 2022

ERNIE-SPARSE: ROBUST EFFICIENT TRANSFORMER
THROUGH HIERARCHICALLY UNIFYING ISOLATED IN-
FORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse Transformer has recently attracted a lot of attention since the ability for
reducing the quadratic dependency on the sequence length. In this paper, we argue
that two factors could affect the robustness and causing performance degradation of
the Sparse Transformer. The first factor is information bottleneck sensitivity, which
is caused by the key feature of Sparse Transformer — only a small number of global
tokens can attend to all other tokens. The second factor is sparse pattern sensitivity,
which is caused by different token connections in different sparse patterns. To
address these issues, we propose a well-designed model, named ERNIE-SPARSE.
It consists of two distinctive parts: (i) a Hierarchical Sparse Transformer (HST)
mechanism, which introduces special tokens to sequentially model local and global
information. This method is not affected by bottleneck size and improves model ro-
bustness and performance. (ii) Sparse-Attention-Oriented Regularization (SAOR)
method, the first robust training method designed for Sparse Transformer, which
increases model robustness by forcing the output distributions of transformers
with different sparse patterns to be consistent with each other. To evaluate the
effectiveness of ERNIE-SPARSE, we perform extensive evaluations. Firstly, we
perform experiments on a multi-modal long sequence modeling task benchmark,
Long Range Arena (LRA). Experimental results demonstrate that ERNIE-SPARSE
significantly outperforms a variety of strong baseline methods including the dense
attention and other efficient sparse attention methods and achieves improvements
by 2.7% (55.01% vs. 57.78%). Secondly, to further show the effectiveness of our
method, we pretrain ERNIE-SPARSE and verified it on 3 text classification and
2 QA downstream tasks, achieve improvements on classification benchmark by
0.83% (91.63% vs. 92.46%), on QA benchmark by 3.27% (74.7% vs. 71.43%).
Experimental results continue to demonstrate its superior performance.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) architecture is a key component for many pretrained language
models such as BERT (Devlin et al., 2018), RoBERTa Liu et al. (2019), XLNet (Yang et al., 2019),
ERNIE (Sun et al., 2020b), ALBERT (Lan et al., 2019), ELECTRA(Clark et al., 2020), T5 (Raffel
et al., 2020). Self-attention is one of the most important modules in transformer. It eliminates the
sequential dependency constraints of recurrent neural networks by introducing interactions between
each token pair to capture contextual information. However, the self-attention’s computational
complexity and memory cost grow quadratically with sequence length, which comes with complexity
O(N2) for processing contexts of N inputs.

One way to optimize self-attention complexity is introducing sparsity into attention layers (Child
et al., 2019; Qiu et al., 2019; Beltagy et al., 2020) by having each token attend to only a subset of
tokens in the whole sequence. Recent sparse-attention works (Child et al., 2019; Beltagy et al., 2020;
Ainslie et al., 2020; Zaheer et al., 2020) introduce global tokens that can attend to the whole sequence.
Those global tokens are used as a form of memory to strengthen global information. While this
method reduces the complexity of full self-attention, there are two issues with Sparse Transformer
that affect robustness.

1

Under review as a conference paper at ICLR 2022

The first issue is information bottleneck sensitivity as show in Figure 1. Information bottleneck is a
phenomenon caused by the low number of global tokens — the model had to encapsulate the entire
input sequence into those global tokens. If the size of the information bottleneck becomes smaller,
performance can suffer. The second issue is sparse pattern sensitivity. Sparse pattern sensitivity
means that transformer with different sparse patterns may produce different outputs for the same
input. For example, in Figure 2, the left sparse attention divides the input into two blocks, while the
right into three by shifting the pattern two tokens to the upper left corner, resulting in the change
of attention topology. Attention topology determines which tokens can interact with each other.
Attention topology change causes transformer output different values even for the same input. This
will leads to over sensitivity to pattern change and less robustness. To increase model robustness,
existing works include adversarial training (Goodfellow et al., 2015; Miyato et al., 2019; Liu et al.,
2020) and regularization methods (Krizhevsky et al., 2012; Srivastava et al., 2014). However, those
methods are designed for dense models. To the best of our knowledge, we are the first to study robust
training method for Sparse Transformers and propose a simple but efficient solution to improve the
robustness.

To resolve the aforementioned issues, we propose a well-designed efficient model ERNIE-SPARSE.
Our method proposes two major techniques including Hierarchical Sparse Transformer (HST) and
Self-Attention Oriented Regularization (SAOR). The first technique HST is designed for information
bottleneck sensitivity problem based on hierarchical attention mechanism. HST introduces special
tokens to represent local information and global information in two sequential steps, providing an
additional way for modeling global information that is not affected by bottleneck size. The second
technique SAOR, is designed for sparse pattern sensitivity problem. The main idea is to force models
with different sparse patterns to have consistent outputs for two identical inputs. Except for robustness,
another benefit of this method is it only needs to be used in the training phase and does not affect the
inference of the model.

To evaluate ERNIE-SPARSE’s ability to model long documents, we first perform extensive evaluations
on a long sequence modeling task benchmark (Tay et al., 2020c): Long Range Arena (LRA).
Experiment results demonstrate that our model significantly outperforms existing methods and
provides a new robust solution to the long range sequence modeling. Our proposed method achieves
improvements by average 2.77 points (55.01% vs. 57.78%) on five long sequence tasks of LRA. We
also conduct experiments on 3 long document classification and 2 question answering tasks using
pretraining and finetuning paradigm, further shows the effectiveness of ERNIE-SPARSE. Extensive
experiments on those 10 tasks demonstrate the effectiveness and robustness of our approach in both
cold start and pretrain-then-finetune paradigm.

2 RELATED WORK

Sparse Transformer Sparse attention is widely adopted to solve the long range sequence modeling
problem. A simple version is (Qiu et al., 2019) that splits the sequence into blocks and perform
attention only within block. This mechanism is also called local attention because only local tokens
within the block can attend to each other. To improve the connection between tokens, global attention
is introduced by (Child et al., 2019; Beltagy et al., 2020; Ainslie et al., 2020; Zaheer et al., 2020).
The global attention mechanism mainly relies on specifying some tokens as global tokens. Those
global tokens are used as a form of memory to strengthen global information. However, we observed
that the mechanism of global and local attention in sparse attention would cause an information
bottleneck, which would affect the information flow between local tokens and lead to the degradation
of effect. This phenomenon was also observed in paper (Alon & Yahav, 2021) for Graph Neural
Network (Gori et al., 2005). To solve this problem, we propose to use hierarchical mechanism which
will be discussed below.

Hierarchical Transformer Hierarchical learning has been suggested by many researchers and it has
been empirically shown to be effective in numerous diverse tasks of natural language processing
(Zhang et al., 2019; Liu & Lapata, 2019; Rohde et al., 2021; Wu et al., 2021). In this paper, we
propose to apply a hierarchical mechanism in Sparse Transformer and provide a new perspective
from information flow to describe its beneficiary for Sparse Transformer.

Robust Training Although state-of-the-art deep neural networks have achieved high performance on
various NLP tasks, the architectures used for these tasks have been shown to be unstable to small
modifications of input texts (Ebrahimi et al., 2018; Jin et al., 2020; Sun et al., 2020a). Adversarial

2

Under review as a conference paper at ICLR 2022

training (Szegedy et al., 2014; Goodfellow et al., 2015; Miyato et al., 2019; Liu et al., 2020) is
proposed to improve model robustness by constructing adversarial input. However, current robust
training methods are mostly designed for dense models and don’t take into account the characteristic
of sparse model. Recently, (Liang et al., 2021) proposed a simple regularization strategy which forces
the output distributions of different sub models generated by dropout to be consistent with each other.
Inspired by this work, we propose to apply different sparse attention patterns for the same input data
and encourage the model to generate the same prediction to increase Sparse Transformer’s robustness.

3 METHOD

In this section, we first revisit the mechanism of Sparse Transformer in Section 3.1, and describe
the two components of sparse attention (i.e. global attention and local attention). In addition, we
provide a new perspective for understanding Sparse Transformers from information flow. At the end
of Section 3.1, we discuss the problems existing in the mechanism of the Sparse Transformer. Next,
we introduce the motivation, formulation and benefits of the HST in Section 3.2. Finally, a robust and
regularization method designed for Sparse Transformer, SAOR, is illustrated in Section 3.3.

3.1 REVISITING SPARSE TRANSFORMER

Given a sequence of input x = (t1, ..., tn) of length n, dense attention can be formulated as:

(
Q
K
V

)
= H

(
Wq

Wk

Wv

)
+

(
bq

bk

bv

)
,

Attention = Softmax
(
QKT

)
V,

where Q,K,V ∈ Rn×d is linearly mapped from H ∈ Rn×d, d is the size of the hidden vector,
H = (hl1, ..., h

l
n) for layer l ∈ [1, L], L is the number of model layers. For simplicity, the scale

factor for Q is omitted in the equation. Computation complexity for dense transformer is O(n2). In
dense attention, tokens are connected to each other while in sparse attention, tokens are only partially
connected.

As shown in Figure 1 (a), sparse attention mainly consists of global attention and local attention. In
this Figure, Q, K, V are divided into 4 blocks respectively, (t1, t2 ∼ t3, t4 ∼ t5, t6 ∼ t7). The light
blue part denotes the global attention meaning the global tokens from this part can attend to all other
tokens. The dark blue part express local attention denoting that the local tokens can only attend to
the tokens within the same block. It can be seen from Figure 1 (b) that there is a bottleneck in the
information flow of Sparse Transformer. For sparse attention mechanism, tokens in different attention
blocks within the same layer are invisible to each other. For example, t3 can’t attend to t4 and vice
versa. For these tokens, the only way to attend to each other is through global tokens as relay nodes.
As shown Figure 1 (b), the information of t3 and t4 first flows to t1 at layer l, and then distributes
back to t3 and t4 at layer l + 1. This mechanism causes the current layer local token information to
be carried by only a few global tokens leading to a bottleneck in the flow of information. According
to our observation in section 5.1, with the information bottleneck size decreases, the performance
degrades.

Another problem caused by sparse attention mechanism is susceptible to the sparse attention pattern
change. As shown in Figure 2, for the sparse pattern on the left, t1 ∼ t4 and t5 ∼ t8 form two blocks
of local attention blocks. For the one on the right, t1 ∼ t2, t3 ∼ t6, and t7 ∼ t8 form three blocks. In
other words, the change of pattern will lead to the change of attention topology between tokens. This
change will result in different outputs corresponding to different patterns while dense attention does
not have this problem. We can see that sparse attention is over sensitive to the pattern change.

For solving those two problems, we propose HST to improve the information flow resuling in solve
the bottleneck sensitivity problem, and SAOR to make the Sparse Transformer more robust.

3.2 HST: HIERARCHICAL SPARSE TRANSFORMER

HST mainly contains three key elements, i.e. representative tokens insertion, hierarchical attention
and the usage for those representative tokens in the last layer for downstream task.

3

Under review as a conference paper at ICLR 2022

Figure 1: The comparison between Sparse Transformer (ST) and Hierarchical Sparse Trans-
former (HST). (a) Sparse Transformer mainly consists of global attention and local attention .
(b) The bottleneck that existed in ST is harmful for information flow: all the sequence information
is compressed into a fixed size vector. (c) In HST, representative tokens are inserted into local
attention for hierarchical attention. (d) Information flow demonstration for HST: interaction between
representative nodes can increase the path of global information interaction and solve the bottleneck
problem in ST.

As aforementioned, the input sample consists of n tokens (t1, t2, ..., tn). We set g as the number of
global tokens and w as the block size meaning the number of tokens for each local attention. We
propose to insert m representative tokens into input sequence, where m = (n− g) mod w. Those
tokens are inserted to the start position of each block. Similar to BERT (Devlin et al., 2018), we use
[CLS] for those representative tokens. Thus the encoder input is as follows:

H0 = E(t1); · · · ;E(tg);︸ ︷︷ ︸
global

E(ri);E(tg+w(i−1)+1); · · · ;E(tg+wi)︸ ︷︷ ︸
i−th local

,
(1)

where i ∈ [1,m], E(t) ∈ Rd is the embedding lookup for token t. E(r) ∈ Rd is the representation
token embedding. Then we use Sparse Transformer to encode the sequence as follows:

Hl
s = SparseTransformer

([
Hl−1]) ,

where Hl
s ∈ Rn×d is the hidden output from one layer Sparse Transformer. To better interact globally,

representative tokens are extracted from Hl
s for dense attention as shown in Figure 1 (c). Formally,

the hierarchical attention is calculated by:

Rl
s =

(
rl1 · · · rlm

)
,

Rl = Attention
(
Rl

s

)
,

where Rl
s ∈ Rm×d is the matrix of representative token’s hidden states for layer l, rl1 · · · rlm are

extracted from Hl
s. Attention is the dense attention described in 3.1. After dense attention, these

representative token hidden vectors in Rl are distributed back to Hl
s so we get the final hidden

vectors Hl of l-th layer. The whole process can be seen more clearly in Figure 1 (c), after hierarchical
attention (green matrix), the green dots (denoting representative tokens) are distributed back to the
list of tokens. The information flow of those two steps attention is shown in Figure 1 (d) showing
that richer global information interaction path are created. For example, t3 and t5 can complete an
interaction by representative nodes in addition to global tokens. As this method is only related to
the number of local attention blocks m and not affected by bottleneck size, the bottleneck sensitivity
problem is solved.

Note that the Attention module will introduce additional weights Wq, Wk and Wv mentioned
in Section 3.1, so how to initialize these three weights needs to be discussed. One option is to
randomly initialize these three weights, or we can use the weight of the SparseTransformer to warm
start. During training, we should also consider whether to share the weights in Attention with
SparseTransformer. Those details will be discussed in Experiment section.

For the downstream task, it is efficient to use the representative tokens as follow:

OL = Pooling
(
RL
)
,

P (y | x) = Softmax(OLWo),

4

Under review as a conference paper at ICLR 2022

Figure 2: The overall framework of our proposed SAOR. We take local sparse pattern for illustra-
tion. The picture shows that one input x will go through the model twice and obtain two distributions,
while the left sparse pattern is default and right one shows a rolled version sparse pattern.

where Pooling can be MAX, MEAN, OL ∈ Rd, Wo ∈ Rd×c, c is the downstream task class
number. y is the downstream task label, P (y | x) denotes the predicted probability. Note that for
operator Pooling, in addition to pooling representative tokens, CLSg can also be used as OL where
CLSg is the first global token.

3.3 SAOR: SPARSE-ATTENTION-ORIENTED REGULARIZATION

Different with dense attention, sparse attention doesn’t guarantee interaction between all tokens
as the design of sparse attention is to allow tokens can only attend to some of other tokens. This
leads to a problem with robustness: different sparse patterns for the same input can affect the output
of the attention module. This is a problem that dense attention does not have. In other word, the
Sparse Transformer is susceptible to the sparse attention pattern change. To this end, we introduce a
regularization method to improve the Sparse Transformer’s robustness.

Our method is designed based on the motivation that for the same input, the output of different
patterns should be the same. Specifically, we force the model output of the default sparse attention
transformer and shifted-window version transformer output to be consistent with each other. As
shown in Figure 2, the left shows a L layers Sparse Transformer with the default sparse attention, and
the right shows a transformer with shifted attention pattern. The right pattern is shifted two tokens
to the upper left compared to the default pattern. We call this method Sparse-Attention-Oriented
Regularization (SAOR). Concretely, given the input data x at each training step, we feed x to go
through the forward pass of the network twice with different sparse attention patterns. Therefore, we
can obtain two distributions of the model predictions, denoted P1 (y | x) and P2 (y | x) in a model.
Thus the distributions of P1 (y | x) and P2 (y | x) are different for the same input data pair (x, y).
Then at this training step, in order for those two distributions to be close to each other, our SAOR
method tries to minimize the bidirectional Kullback-Leibler (KL) divergence between these two
output distributions for the same sample (x, y). Formally speaking,

LSAOR =
1

2
[DKL (P1 (y | x) ‖P2 (y | x)) +DKL (P2 (y | x) ‖P1 (y | x))] .

Assume that the learning objective of target task is negative log-likelihood, the loss of the two forward
passes is:

LNLL = − logP1 (y | x)− logP2 (y | x) ,
as a result, the total loss should be :

L = LNLL + αLSAOR,

where α is the loss coefficient of LSAOR. Our method naturally makes transformer outputs of
different attention patterns close to each other. From this point of view, adding the regularization
SAOR to the final loss will make Sparse Transformer more robust.

In addition, since changing the sparse pattern is complicated in practical implementation, we rec-
ommend a simple and fast implementation method to achieve the effect of shifting attention pattern
approximately. To demonstrate the quick trick, we take the transformers in Figure 2 as an example.
For simulating the right sparse pattern in Figure 2, we only need to roll the model input by two
tokens and keep the sparse pattern as same as the default left sparse attention pattern, e.g. we roll
x = (t1, t2, · · · , t6, t7, t8) to x′ = (t7, t8, t1, t2, · · · , t6). Then we get the corresponding model
outputs for x and x′ and we can regularize them by making the outputs distance closer.

5

Under review as a conference paper at ICLR 2022

Models ListOps Text Retrieval Image Pathfinder Avg

Local Attention 15.82 52.98 53.39 41.46 66.63 46.06
Linear Trans. (Katharopoulos et al., 2020) 16.13 65.90 53.09 42.34 75.30 50.55
Reformer (Kitaev et al., 2020) 37.27 56.10 53.40 38.07 68.50 50.67
Sparse Trans. (Child et al., 2019) 17.07 63.58 59.59 44.24 71.71 51.24
Sinkhorn Trans.(Tay et al., 2020b) 33.67 61.20 53.83 41.23 67.45 51.39
Linformer (Wang et al., 2020) 35.70 53.94 52.27 38.56 76.34 51.36
Performer (Choromanski et al., 2021) 18.01 65.40 53.82 42.77 77.05 51.41
Synthesizer (Tay et al., 2020a) 36.99 61.68 54.67 41.61 69.45 52.88
Longformer (Beltagy et al., 2020) 35.63 62.85 56.89 42.22 69.71 53.46
Transformer (Vaswani et al., 2017) 36.37 64.27 57.46 42.44 71.40 54.39
BigBird (Zaheer et al., 2020) 36.05 64.02 59.29 40.83 74.87 55.01

ERNIE-SPARSE 37.75 64.47 62.64 45.28 78.77 57.78

Table 1: Experimental results on the long range arena (LRA) benchmark. The highest score for each
dataset is highlighted in bold and the second place is underlined.

4 EXPERIMENTS

To evaluate our approach and show its performance, we first conduct experiments on a long context
sequence modeling benchmark, LRA, which is consisted of 5 multi-modal tasks including logical
inference, natural language and image tasks. LRA is a benchmark for cold start models and does not
require the model to be pre-trained, so LRA is a suitable benchmark for testing the model structure
designs. To further evaluate the ability of ERNIE-SPARSE in the pretrain-then-finetune paradigm,
we also follow (Beltagy et al., 2020) and (Zaheer et al., 2020) to pretrain ERNIE-SPARSE and test
the pretrained ERNIE-SPARSE on 3 natural language classification and 2 question answering tasks.

4.1 LONG-CONTEXT SEQUENCE MODELING

We first evaluate the effectiveness and efficiency of ERNIE-SPARSE on the LRA benchmark recently
introduced by (Tay et al., 2021), which is designed to evaluate efficient transformer models under
the long-context scenario. This multi-modal dataset contains two image tasks (Krizhevsky et al.,
2009; Linsley et al., 2018), two text-based tasks (Maas et al., 2011; Radev et al., 2013), and one
mathematical operation inference task (Nangia & Bowman, 2018). At the same time, LRA also set a
robust baseline, in which the hyperparameters and the model were fixed. We run each experiment
five times with different random seeds and report the average accuracy.

The result of ERNIE-SPARSE on the LRA tasks are reported in Table 1. First, we note that ERNIE-
SPARSE achieves strong results on all tasks consistently compared to the transformer model and
significantly outperforms all the other baseline methods and achieve best score in terms of the average
accuracy. By taking a closer look at the accuracy for each task, ERNIE-SPARSE wins over baseline
models on four out of five tasks. Notably, ERNIE-SPARSE can work well on both image and text
and the math inference data sets.

4.2 PRETRAINING AND FINETUNING

4.2.1 PRETRAINING

In the training task, we follow (Liu et al., 2019) and pretrain ERNIE-SPARSE using the Mask
Language Model (MLM) training object. This task involves predicting tokens that are randomly
masked out. For the training samples, we train ERNIE-SPARSE with maximum sequence length of
4096 and train it for 1 million steps. Samples with sequence length less than 4096 will be concatenated
as one sample to improve training efficiency. For those samples longer than max sequence length,
we truncate them to 4096. Statistics of pretraining data can be found in A.1. Following (Beltagy
et al., 2020), ERNIE-SPARSE warm-starts from the public RoBERTa checkpoint and we compare
the performance in MLM task in terms of bits per character (BPC). As shown in Table 3, BigBird,
Longformer, ERNIE-SPARSE are all better than RoBERTa whose max sequence length is 512.
Among those methods, ERNIE-SPARSE performs best.

6

Under review as a conference paper at ICLR 2022

Models Arxiv 1 IMDB Hyperpartisan
F1 Acc F1

RoBERTa 86.86 95.00±0.2 87.80±0.8
BigBird 87.50 95.20±0.2 92.20±1.7

ERNIE-SPARSE 89.05 95.53±0.1 92.81±1.4

Table 2: Performance of various models on development set of benchmark natural language under-
standing tasks.

Setting BPC

RoBERTa (Liu et al., 2019) 1.846

Longformer (Beltagy et al., 2020) 1.705

BigBird (Zaheer et al., 2020) 1.678

ERNIE-SPARSE 1.674

Table 3: MLM BPC for ERNIE-SPARSE and
other models.

Models WikiHop TriviaQA
Acc F1 EM

Longformer 75.0 75.2 -
BigBird 75.9 79.5 -

Reproduce
Longformer 75.2 75.0 67.0
BigBird 72.3 73.4 68.6

ERNIE-SPARSE 75.8 76.5 71.8

Table 4: Model comparison for WikiHop and
TriviaQA.

4.2.2 TEXT CLASSIFICATION

To test ERNIE-SPARSE on downstream tasks, we first select three text classification tasks: Arxiv
paper categories classification (He et al., 2019), IMDB reviews classification (Maas et al., 2011)
and Hyperpartisan news detection (Kiesel et al., 2019). The experiment was repeated 5 times for
both datasets, and the mean and standard deviation were listed in the table. ERNIE-SPARSE’s
hyperparameters are recorded in the appendix A.2.2. Note that all linear transformation weights of
hierarchical attention are shared with the weights of the previous Sparse Transformer attention. Table 2
summarizes the results of ERNIE-SPARSE. From this table, it shows that ERNIE-SPARSE surpasses
all baselines on the text classification datasets. For Arxiv, ERNIE-SPARSE surpasses baseline by
a large margin. For IMDB and Hyperpartisan, the performance gain continues demonstrating that
ERNIE-SPARSE is capable of utilizing information from long document input.

4.2.3 QUESTION ANSWERING

For QA tasks, we choose WikiHop (Welbl et al., 2018) and TriviaQA (Joshi et al., 2017). In ERNIE-
SPARSE model, following (Beltagy et al., 2020), we concatenate the answer / question / candidates
with special tokens along with the context. As the global tokens is important for QA tasks, the use
SOAR requires careful control over which tokens should be shifted. For implementation, we only
roll tokens in local attention to create samples to avoid disturbing the global information in the front
of sentence.

The results of WikiHop and TriviaQA are shown in Table 4. The first two rows are copied from
(Beltagy et al., 2020) and (Zaheer et al., 2020). We have reproduced the results and record them in
the third and fourth row. Note that we first tried to reproduce Longformer’s score. It can be seen from
this table that the score reproduced is basically the same as the score in the (Beltagy et al., 2020).
Secondly, we tried to directly replace the warm start model with BigBird’s checkpoint and tuned the
hyperparameters to get the best reproduce result and the score was recorded in the table. From this
table, we see that ERNIE-SPARSE surpasses the baseline and achieves the best results.

4.3 ABLATION

Effect of proposed components: HST and SAOR Table 5 shows the performance of ERNIE-
SPARSE by ablating each proposed component. All models are reported with mean results of 5 runs,

1The reported numbers from (Zaheer et al., 2020) on Arxiv dataset are not comparable with ours because they
did not release the train/test split of the data. So we re-tested RoBERTa and BigBird’s open source checkpoint
on our Arxiv train/test split. We open source our Arxiv dataset split: https://github.com/anonymous

7

Under review as a conference paper at ICLR 2022

Models ListOps Text Retrieval Image Pathfinder Avg
#0 ERNIE-SPARSE 37.75 64.47 62.64 45.28 78.77 57.60
#1 w/o HST 35.97 63.25 62.24 42.76 78.79 56.60
#2 w/o SAOR 37.36 63.54 61.87 42.77 75.25 56.16
#3 w/o SAOR + ws in HST 37.41 62.55 60.32 42.62 76.55 55.89
#4 w/o SAOR + R-Drop 37.68 61.73 60.59 43.48 78.11 56.32

Table 5: Performance of ERNIE-SPARSE by ablating each proposed components. ws means the
linear weights for hierarchical and sparse attention are shared.

the hyperparameters keep the same as the official recommendation. From the last column in Table 5,
we see that the HST improves ERNIE-SPARSE with 1.0 percent point on average (#1 vs. #0). As
the default setting is weight not sharing for linear mapping weight in hierarchical attention with the
sparse attention layer, we add a group of experiment #3 to explore the effect of weight sharing on
experimental results. We see that with weight sharing, the results drop by 0.27 points on average by
(#3 vs #2). By comparing #2 to #0, we see that SAOR is beneficial in modeling the long sequence
bringing 1.44 points improvement on average. Except for those observation on average scores, let us
take a closer to the how HST and SAOR perform in different types of data. Since HST is expected to
be more useful on tasks that require global information, let’s look at ListOps, Text and Image first. It
can be seen that after removing HST, the average decrease is 1-2 points (ListOps, Text and Image
in #1 vs. #0). Especially, for ListOps, the task need the model to see all characters in order to do
valid logical inference, HST have shown its importance (35.97 vs. 37.75). Except for the global
information, some tasks require the model has more stability. For example, the image task Pathfinder,
dropped 3.5 points after removing SAOR (75.25 vs. 78.77) showing the effect of SAOR. Except for
those component discussed above, the relation between SAOR and R-Drop (#4) will be discuss later.

Setting Image Retrieval AvgAcc Acc
ERNIE-SPARSE (MEAN) 45.28 62.64 53.96
ERNIE-SPARSE (MAX) 46.51 58.98 52.75
ERNIE-SPARSE (CLSg-Only) 42.88 60.03 50.75

Table 6: Ablation for the pooling method of
representative tokens in ERNIE-SPARSE for
downstream tasks.

Effect of pooling method for representative to-
kens In the experiment, we have explored three dif-
ferent pooling methods while keeping other settings
unchanged. The results are shown in Table 6. MEAN
and MAX represent mean pooling and max pooling,
respectively. CLSg-Only refers to use the first token
CLS only. As presented in Table 6, CLSg-Only is
the worst on average score, and MEAN performs
best. Take a a closer look at the score each task, it
shows that MAX performs best at Image and MEAN
performs best at Retrieval, indicating that MEAN is
a stable method for predicting strong results and for image tasks, the MAX can be considered as a
candidate for hyperparameters. For CLS, the score drops significantly at Image task and maintain a
good performance on Retrieval, indicating that the contextual global information is more important
for image tasks.

Effect of SAOR vs. R-Drop In this study, we specifically investigate the importance of Dropout
(Srivastava et al., 2014) in those experiments. As the Dropout technique is commonly used in
deep neural network training and (Liang et al., 2021) use Dropout to constrain the outputs of two
subnetworks, we ablate Dropout to compare SAOR and R-Drop (Liang et al., 2021) as shown by (#4
vs. #0) in Table 5. #1 is the SAOR-only version ERNIE-SPARSE result, which means for getting
the regularization version model output P2 (y | x) in 3.3, we roll the input (which is equivalent to
shift sparse pattern) and use the Dropout at the same time, #4 means that we only use Dropout to
get the regularization version model output P2 (y | x). We see that SAOR achieve the best for the
average score (#4 vs. #0). Moreover, for specific task in Table 5, our method is more efficient in 3
out of 5, indicating not only SAOR’s effectiveness, but also that SAOR and Dropout are compatible
and complementary.

5 DISCUSSION

5.1 BOTTLENECK ANALYSIS

In this section, we analyze the impact of bottleneck size on performance of Sparse Transformer
and HST respectively. All the hyperparameter configuration follows (Tay et al., 2020c). We ran
each experiment twice and average the results. The experimental results can be seen in Figure 3.

8

Under review as a conference paper at ICLR 2022

0326496128
#Global tokens

0.363

0.366

0.369

0.372

0.375

A
cc

ur
ac

y

ListOps

ST
HST

064128
#Global tokens

0.620

0.625

0.630

0.635

0.640

A
cc

ur
ac

y

Text

ST
HST

064128
#Global tokens

0.570

0.585

0.600

0.615

0.630

A
cc

ur
ac

y

Retrieval

ST
HST

064128
#Global tokens

0.380

0.395

0.410

0.425

0.440

A
cc

ur
ac

y

Image

ST
HST

064128
#Global tokens

0.74

0.75

0.76

0.77

0.78

A
cc

ur
ac

y

Pathfinder

ST
HST

Figure 3: Phenomenon of bottleneck and the effectiveness of HST: Accuracy across global token size
in the LRA benchmark. Performance degradation of ST are observed on all datasets when bottleneck
size decrease (blue line). With our proposed HST method, the performance is better (red line). Error
bar denotes standard deviation.

Models ListOps ListOps Adv Text Text Adv Retrieval Retrieval Adv Image Image Adv Pathfinder Pathfinder Adv

ERNIE-SPARSE 37.40 18.90 63.14 63.17 61.89 61.80 44.82 42.78 78.22 67.29
w/o SAOR 37.30 9.65 62.54 62.41 61.84 61.52 43.59 40.12 76.39 51.00

Table 7: Performance of w/ and w/o SAOR: We construct an adversarial dataset by shift word to test
the robustness of ERNIE-SPARSE and the sensitivity for sparse pattern shift.

As discussed in section 3.1, the number of global tokens determines the size of a bottleneck in
Sparse Transformer and we recorded the trend of Sparse Transformer and HST in LRA dataset by
changing the size of bottleneck. In this figure, blue and red line denotes Sparse Transformer and HST
respectively. As shown in Figure 3, as the number of global tokens decreases, the score of Sparse
Transformer decreases (blue line in each subfigure). This trend indicates that in Sparse Transformer,
the global token causes a bottleneck for information flow, which in turn makes the model sensitive
to the bottleneck size. For our method, HST can avoid the bottleneck of Sparse Transformer by
introducing hierarchical attention and using representative token for global information interaction.
As can be seen in this figure, the task score of HST (red line) in each subfigure can be maintained in
the same interval without a downward trend, which proves the effectiveness of HST proposed by us.

5.2 SYNTHETIC DATASET: WORD ORDER SHIFT ATTACK

As mentioned in 3.1, in addition to bottleneck, another problem we found affecting the robustness of
the Sparse Transformer is the sensitivity to sparse patterns. To further demonstrate this phenomenon,
we create an adversarial dataset to observe the performance of Sparse Transformer and ERNIE-
SPARSE. Concretely, we constructed a adversarial version of the LRA by rolling tokens and we
consider the roll(x) operation as an attack method named Word Order Shift Attack for the Sparse
Transformer. As shown in Table 7, all datasets with Adv are corresponding adversarial version
datasets, for example, ListOps Adv is an adversarial dataset for ListOps. Firstly, it was observed
that all the models in Table 7 show different degrees of decline on the adversarial dataset, which
verifies that Sparse Transformer is sensitive to this kind of attack. Secondly, by comparing the result
on adversarial dataset, we can see that ERNIE-SPARSE surpasses the w/o SAOR version by a large
margin, which indicates that SAOR method can improve the robustness of the model and reduce the
sensitivity of the model to Word Order Shift Attack.

6 CONCLUSION

In this paper, we propose ERNIE-SPARSE, a robust training method for Sparse Transformer. It
contains two key features: HST mechanism and SAOR regularization method. Firstly, the advantages
and disadvantages of Sparse Transformer are analyzed from the perspective of information flow,
and then the over-sensitivity of Sparse Transformer to bottleneck is found. Then representative
token is introduced to solve the Sparse Transformer’s dependence on bottleneck and improve the
performance of Sparse Transformer. On the other hand, we also find that the Sparse Transformer is
sensitive to the sparse pattern of attention, and then we convert this sensitivity into a regularization
method to enhance model robustness. At last, ERNIE-SPARSE, outperforms a variety of strong
baseline methods including the full-rank attention and other efficient sparse and dense attention
methods. Moreover, we also conducted pretraining and finetune experiments, which are validated
in two downstream benchmarks, text classification and QA. The results also prove the validity of
ERNIE-SPARSE.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Joshua Ainslie, Santiago Ontañón, Chris Alberti, Philip Pham, Anirudh Ravula, and Sumit Sanghai.
Etc: encoding long and structured data in transformers. arXiv e-prints, pp. arXiv–2004, 2020.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=i80OPhOCVH2.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
jamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
Ua6zuk0WRH.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: pre-training
text encoders as discriminators rather than generators. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=r1xMH1BtvB.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial examples
for text classification. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 2: Short Papers, pp. 31–36. Association for Computational Linguistics, 2018.
doi: 10.18653/v1/P18-2006. URL https://aclanthology.org/P18-2006/.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6572.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

Jun He, Liqun Wang, Liu Liu, Jiao Feng, and Hao Wu. Long document classification from local
word glimpses via recurrent attention learning. IEEE Access, 7:40707–40718, 2019. doi: 10.1109/
ACCESS.2019.2907992. URL https://doi.org/10.1109/ACCESS.2019.2907992.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is BERT really robust? A strong baseline
for natural language attack on text classification and entailment. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8018–
8025. AAAI Press, 2020. URL https://aaai.org/ojs/index.php/AAAI/article/
view/6311.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pp. 1601–1611.
Association for Computational Linguistics, 2017. doi: 10.18653/v1/P17-1147. URL https:
//doi.org/10.18653/v1/P17-1147.

10

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=r1xMH1BtvB
https://aclanthology.org/P18-2006/
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/ACCESS.2019.2907992
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147

Under review as a conference paper at ICLR 2022

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 5156–5165. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/katharopoulos20a.html.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David P. A.
Corney, Benno Stein, and Martin Potthast. Semeval-2019 task 4: Hyperpartisan news detection.
In Jonathan May, Ekaterina Shutova, Aurélie Herbelot, Xiaodan Zhu, Marianna Apidianaki,
and Saif M. Mohammad (eds.), Proceedings of the 13th International Workshop on Semantic
Evaluation, SemEval@NAACL-HLT 2019, Minneapolis, MN, USA, June 6-7, 2019, pp. 829–839.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/s19-2145. URL https:
//doi.org/10.18653/v1/s19-2145.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
rkgNKkHtvB.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. ALBERT: A lite BERT for self-supervised learning of language representations. CoRR,
abs/1909.11942, 2019. URL http://arxiv.org/abs/1909.11942.

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min Zhang, and
Tie-Yan Liu. R-drop: Regularized dropout for neural networks, 2021.

Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learn-
ing long-range spatial dependencies with horizontal gated recurrent units. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pp. 152–164, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
ec8956637a99787bd197eacd77acce5e-Abstract.html.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng
Gao. Adversarial training for large neural language models. CoRR, abs/2004.08994, 2020. URL
https://arxiv.org/abs/2004.08994.

Yang Liu and Mirella Lapata. Hierarchical transformers for multi-document summarization. arXiv
preprint arXiv:1905.13164, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and Rada
Mihalcea (eds.), The 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland,
Oregon, USA, pp. 142–150. The Association for Computer Linguistics, 2011. URL https:
//aclanthology.org/P11-1015/.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:
A regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern
Anal. Mach. Intell., 41(8):1979–1993, 2019. doi: 10.1109/TPAMI.2018.2858821. URL https:
//doi.org/10.1109/TPAMI.2018.2858821.

11

http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
https://doi.org/10.18653/v1/s19-2145
https://doi.org/10.18653/v1/s19-2145
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
http://arxiv.org/abs/1909.11942
https://proceedings.neurips.cc/paper/2018/hash/ec8956637a99787bd197eacd77acce5e-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ec8956637a99787bd197eacd77acce5e-Abstract.html
https://arxiv.org/abs/2004.08994
https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/
https://doi.org/10.1109/TPAMI.2018.2858821
https://doi.org/10.1109/TPAMI.2018.2858821

Under review as a conference paper at ICLR 2022

Nikita Nangia and Samuel R. Bowman. Listops: A diagnostic dataset for latent tree learning.
In Silvio Ricardo Cordeiro, Shereen Oraby, Umashanthi Pavalanathan, and Kyeongmin Rim
(eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 2-4, 2018,
Student Research Workshop, pp. 92–99. Association for Computational Linguistics, 2018. doi:
10.18653/v1/n18-4013. URL https://doi.org/10.18653/v1/n18-4013.

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise
self-attention for long document understanding. arXiv preprint arXiv:1911.02972, 2019.

Dragomir R. Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-Jbara. The ACL
anthology network corpus. Lang. Resour. Evaluation, 47(4):919–944, 2013. doi: 10.1007/
s10579-012-9211-2. URL https://doi.org/10.1007/s10579-012-9211-2.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/
papers/v21/20-074.html.

Tobias Rohde, Xiaoxia Wu, and Yinhan Liu. Hierarchical learning for generation with long source
sequences. arXiv preprint arXiv:2104.07545, 2021.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li, Philip S. Yu, and Caiming Xiong.
Adv-bert: BERT is not robust on misspellings! generating nature adversarial samples on BERT.
CoRR, abs/2003.04985, 2020a. URL https://arxiv.org/abs/2003.04985.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang. Ernie
2.0: A continual pre-training framework for language understanding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 8968–8975, 2020b.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and Yann LeCun
(eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/
1312.6199.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention in transformer models. CoRR, abs/2005.00743, 2020a. URL https:
//arxiv.org/abs/2005.00743.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 9438–9447.
PMLR, 2020b. URL http://proceedings.mlr.press/v119/tay20a.html.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020c.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
transformers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=qVyeW-grC2k.

Trieu H. Trinh and Quoc V. Le. A simple method for commonsense reasoning. CoRR, abs/1806.02847,
2018. URL http://arxiv.org/abs/1806.02847.

12

https://doi.org/10.18653/v1/n18-4013
https://doi.org/10.1007/s10579-012-9211-2
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2003.04985
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://arxiv.org/abs/2005.00743
https://arxiv.org/abs/2005.00743
http://proceedings.mlr.press/v119/tay20a.html
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
http://arxiv.org/abs/1806.02847

Under review as a conference paper at ICLR 2022

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. CoRR, abs/2006.04768, 2020. URL https://arxiv.org/abs/2006.
04768.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-hop reading
comprehension across documents. Trans. Assoc. Comput. Linguistics, 6:287–302, 2018. URL
https://transacl.org/ojs/index.php/tacl/article/view/1325.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. Hi-transformer: Hierarchical interactive
transformer for efficient and effective long document modeling. arXiv preprint arXiv:2106.01040,
2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33, 2020.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner,
and Yejin Choi. Defending against neural fake news. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
9051–9062, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html.

Xingxing Zhang, Furu Wei, and Ming Zhou. Hibert: Document level pre-training of hierarchical
bidirectional transformers for document summarization. arXiv preprint arXiv:1905.06566, 2019.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In 2015 IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, pp. 19–27. IEEE Computer Society, 2015. doi:
10.1109/ICCV.2015.11. URL https://doi.org/10.1109/ICCV.2015.11.

13

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://transacl.org/ojs/index.php/tacl/article/view/1325
https://proceedings.neurips.cc/paper/2019/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://doi.org/10.1109/ICCV.2015.11

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 PRETRAINING

A.1.1 PRETRAINING DATASET

For ERNIE-SPARSE pretraining, we use Wikipedia (English Wikipedia dump2; 12GB), BookCorpus
(Zhu et al., 2015) (4.6GB), Realnews (Zellers et al., 2019) (7.4GB) and Stories (Trinh & Le, 2018)
(11GB). For pretraining, we also sample 5% training data as the validation set to monitor the training
process. Table 8 shows statistics of the pretraining data.

Source Tokens Avg doc len

Wikipedia 3.0B 515
BookCorpus 1.2B 23K
Realnews 1.8B 3.0K
Stories 2.7B 8.7K

Table 8: Pretraining data statistics

Parameter ERNIE-SPARSE

α of LSAOR 0
learning rate 3e−5
batch size 256
weight decay 0.1
warmup steps 10k
total steps 1m
max seq length 4096
embedding dim 768
#head 12
#layer 12
activation layer gelu
dropout 0.1
attn dropout 0.1

Table 9: Hyperparameters for the ERNIE-
SPARSE for Pretraining

A.1.2 PRETRAINING HYPERPARAMETERS

We split any document longer than 4096 into multiple documents and we joined multiple documents
that were much smaller than 4096. During the pre-training phase, we only use mask language
model for training tasks. Specifically, we mask 15% of tokens in these four datasets, and train
ERNIE-SPARSE to predict the mask. We warm start ERNIE-SPARSE from RoBERTa’s checkpoint.
The hyperparameters for these ERNIE-SPARSE are given in Table 9. We use a learning rate warmup
over the first 10,000 steps, and polynomial decay of the learning rate. Notably, attention weight in
HST are shared with sparse attention.

A.2 TASKS

To evaluate ERNIE-SPARSE, we chose three benchmarks, including LRA, and text classification, as
well as question answering. The latter two need to follow the pretraining and finetuning paradigm.
Table 10 lists the data distribution, task type, evaluation metric of each dataset.

A.2.1 HYPERPARAMETERS FOR LRA

Table 11 gives the detail list of hyperparameters used to get results shown in Table 1.

A.2.2 HYPERPARAMETERS FOR CLASSIFICATION AND QA

Table 12 gives the detail list of hyperparameters used to get results shown in Table 2 and Table 4.

1

Under review as a conference paper at ICLR 2022

Corpus Task Split #Sample Length in percentile #Label Metrics50% 90% 95% max
Long Range Arena (LRA)

ListOps Logical Reasoning
Train 96k 954 1646 1800 1999

10 AccDev 2k 960 1648 1813 1999
Test 2k 947 1657 1803 1999

Text Sentiment Classification Train 25k 979 2615 3431 13704 2 AccDev 25k 962 2543 3333 12988

Retrieval Retrieval
Train 147k 7648 13467 20495 72885

2 AccDev 18k 7665 13359 19928 72885
Test 17k 7702 15955 22427 50012

Image Category Classification
Train 45k - - - 1024

10 AccDev 5k - - - 1024
Test 10k - - - 1024

PathFinder Image Reasoning
Train 160k - - - 1024

2 AccDev 20k - - - 1024
Test 20k - - - 1024

Text Classification

Arxiv Category Classification Train 33k 14733 34209 43951 1121751 11 Micro F1Test 3.3k 14710 32417 40965 850540

IMDB Sentiment Classification Train 25k 215 569 748 3084 2 Micro F1Test 25k 212 550 724 2778

Hyperpartisan News Classification
Train 516 536 1517 1990 5560

2 Micro F1Dev 65 520 1535 1971 2637
Test 65 637 1771 1990 5560

Question Answering

TriviaQA Question Answering Train 110k 4576 5027 5166 10091 Span Macro F1 & EMDev 14k 4577 5026 5169 10210

WikiHop Question Answering Train 43k 1313 3001 3685 19747 Candidates AccDev 5.1k 1413 3184 3871 17004

Table 10: Downstream tasks statistics. Samples of tasks Image and PathFinder are all 32×32 images.

Hyperparameter ListOps Text Retrieval Image Pathfinder

Hyperparameters for HST and SAOR

HST pooling { MIN,MEAN,MAX}
α of LSAOR { 0.5, 5, 10}
#roll tokens of LSAOR { 2, 8, 16 }

Fixed hyperparameters provided by LRA (Tay et al., 2021)

learning rate 5e-2 5e-2 5e-2 5e-4 1e-3
batch size 32 32 32 256 512
weight decay 1e-1 1e-1 1e-1 0 0
warmup 1000 8000 8000 175 312
max seq length 2000 1000 4000 1024 1024
embedding dim 512 256 128 32 64
#head 8 4 4 1 2
#layer 4 4 4 1 4
Q/K/V dim 512 256 128 32 32
MLP dim 1024 1024 512 64 64
dropout 0.1 0.1 0.1 0.3 0.2
attn dropout 0.1 0.1 0.1 0.2 0.1
lr decay root square root square root square cosine cosine

Table 11: The upper part is the hyperparameter related to ERNIE-SPARSE, while the lower part is
the fixed hyperparameter provided by LRA and cannot be changed.

A.3 COMPLEXITY ANALYSIS

In this section, we analyze the complexity of ERNIE-SPARSE. Note that the two techniques of
ERNIE-SPARSE, HST and SAOR, are general and can be applied with any type of sparse patterns.
Considering that only HST of the two techniques affects time complexity, we will only test the
performance of HST here. In order to test the complexity, we will follow the following process: firstly
we select a sparse attention and record this sparse pattern’s performance and secondly we combine

2https://dumps.wikimedia.org/enwiki/

2

Under review as a conference paper at ICLR 2022

Hyperparameter Arxiv IMDB Hyperpartisan WikiHop TriviaQA

HST pooling mean mean mean mean mean
α of LSAOR 10 0.1 0 10 3
#roll tokens of LSAOR 8 8 0 8 8
learning rate 6e-5 1e-5 3e-5 3e-5 3e-5
batch size 48 64 16 48 32
epoch 10 20 20 30 10
warmup 10% 10% 10% 200 (steps) 10%
max seq len 4096 2048 1024 4096 4096
#global token 128
local window size 192
#random token 192
Optimizer Adam

Table 12: Hyperparameters of classification and question answering tasks.

0 3000 6000 9000 12000
seq len

0

3

6

9

st
ep

/s

Speed

Dense
ERNIE-Sparse
BigBird

0 3000 6000 9000 12000
seq len

0

5

10

15

20

25

30

G
iB

Memory

Dense
ERNIE-Sparse
BigBird

Figure 4: Runtime and memory of full self-attention, ERNIE-SPARSE and BigBird (Zaheer et al.,
2020).

the HST with this sparse pattern to show the adding computation complexity. For the sparse pattern
we choose to use the recently proposed pattern from BigBird (Zaheer et al., 2020) for comparison.
And then we test ERNIE-SPARSE with same test settings. For those comparison, we carry out the
experiment on a V100 32GB GPU. The result is shown in Figure 4. ERNIE-SPARSE ’s memory
usage scales linearly with the sequence length, unlike the full self-attention mechanism that runs out
of memory for long sequences on current GPU. ERNIE-SPARSE and BigBird are almost on par. The
speed test data shows that the performance is consistent. The difference between ERNIE-SPARSE
and BigBird is negligible in memory test. Given that ERNIE-SPARSE outperformed BigBird on the
test set as mentioned in Section 4, the performance of ERNIE-SPARSE was remarkable.

3

	Introduction
	Related Work
	Method
	Revisiting Sparse Transformer
	HST: Hierarchical Sparse Transformer
	SAOR: Sparse-Attention-Oriented Regularization

	Experiments
	Long-Context Sequence Modeling
	Pretraining and Finetuning
	Pretraining
	Text Classification
	Question Answering

	Ablation

	Discussion
	Bottleneck Analysis
	Synthetic Dataset: Word Order Shift Attack

	Conclusion
	Appendix
	Pretraining
	Pretraining Dataset
	Pretraining Hyperparameters

	Tasks
	Hyperparameters for LRA
	Hyperparameters for Classification and QA

	Complexity Analysis

