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ABSTRACT

Recent works have introduced input-convex neural networks (ICNNs) as learn-
ing models with advantageous training, inference, and generalization properties
linked to their convex structure. In this paper, we propose a novel feature-convex
neural network (FCNN) architecture as the composition of an ICNN with a Lip-
schitz feature map in order to achieve adversarial robustness. We consider the
asymmetric binary classification setting with one “sensitive” class, and for this
class we prove deterministic, closed-form, and easily-computable certified robust
radii for arbitrary `p-norms. We theoretically justify the use of these models by
characterizing their decision region geometry, extending the universal approxima-
tion theorem for ICNN regression to the classification setting, and proving a lower
bound on the probability that such models perfectly fit even unstructured uni-
formly distributed data in sufficiently high dimensions. Experiments on Malimg
malware classification as well as subsets of MNIST, CIFAR-10, and ImageNet-
scale datasets show that FCNNs can attain orders of magnitude larger certified
`1-radii than competing methods while maintaining substantial `2- and `∞-radii.

1 INTRODUCTION

Although neural networks achieve state-of-the-art performance across a range of machine learning
tasks, researchers have shown that they can be highly sensitive to adversarial inputs that are mali-
ciously designed to fool the model (Biggio et al., 2013; Szegedy et al., 2014; Nguyen et al., 2015).
For example, the works Eykholt et al. (2018) and Liu et al. (2019) show that small physical and
digital alterations of vehicle traffic signs can cause image classifiers to fail. In safety-critical ap-
plications of neural networks, such as autonomous driving (Bojarski et al., 2016; Wu et al., 2017)
and medical diagnostics (Amato et al., 2013; Yadav & Jadhav, 2019), this sensitivity to adversarial
inputs is clearly unacceptable.

A line of heuristic defenses against adversarial inputs has been proposed, only to be defeated by
stronger attack methods (Carlini & Wagner, 2017; Kurakin et al., 2017; Athalye et al., 2018; Uesato
et al., 2018; Madry et al., 2018). This has led researchers to develop certifiably robust methods that
provide a provable guarantee of safe performance. The strength of such certificates can be highly
dependent on network architecture; general off-the-shelf models tend to have large Lipschitz con-
stants, leading to loose Lipschitz-based robustness guarantees (Hein & Andriushchenko, 2017; Fa-
zlyab et al., 2019; Yang et al., 2020b). Consequently, lines of work that impose certificate-amenable
structures onto networks have been popularized, e.g., randomized smoothing-based networks (Li
et al., 2019; Cohen et al., 2019; Zhai et al., 2020; Yang et al., 2020a; Anderson & Sojoudi, 2022)
and ReLU networks that are certified using convex optimization and mixed-integer programming
(Wong & Kolter, 2018; Weng et al., 2018; Raghunathan et al., 2018; Anderson et al., 2020; Ma &
Sojoudi, 2021). Both of these method families incur serious computational challenges: random-
ized smoothing typically requires the classification of thousands of randomly perturbed samples per
input, while optimization-based solutions scale poorly to large networks.

Despite the moderate success of these certifiable classifiers, conventional assumptions in the liter-
ature are unnecessarily restrictive for most practical adversarial settings. Specifically, most works
consider a multiclass setting where certificates are desired for inputs of any class. By contrast, many
real-world adversarial attacks involve a binary setting with only one sensitive class that must be
made robust to adversarial perturbations. Consider the representative problem of spam classifica-
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tion; a malicious adversary crafting a spam email will always attempt to fool the classifier toward
the “not-spam” class—never conversely (Kuchipudi et al., 2020). Similar logic applies for a range
of applications, including malware detection (Grosse et al., 2017), malicious network traffic fil-
tering (Sadeghzadeh et al., 2021), fake news and social media bot detection (Cresci et al., 2021),
hate speech removal (Grolman et al., 2022), insurance claims filtering (Finlayson et al., 2019), and
financial fraud detection (Cartella et al., 2021).

These applications motivate us to introduce a narrower, asymmetric robustness problem and develop
a novel classifier architecture to address this challenge.

1.1 PROBLEM STATEMENT AND CONTRIBUTIONS

This work considers the problem of asymmetric robustness certification. Specifically, we assume
a classification setting wherein one class is “sensitive” and seek to certify that, if some input is
classified into this sensitive class, then adversarial perturbations of sufficiently small magnitude
cannot change the prediction.

To tackle the asymmetric robustness certification problem and attain state-of-the-art certified radii,
we propose feature-convex neural networks, and achieve the following contributions in doing so:

1. We provide easily-computable class 1 certified robust radii for feature-convex classifiers
with respect to arbitrary `p-norms.

2. We characterize the decision region geometry of feature-convex classifiers, extend the uni-
versal approximation theorem for input-convex ReLU neural networks to the classification
setting, and show that, in high dimensions, feature-convex classifiers can perfectly fit even
unstructured, uniformly distributed datasets.

3. We evaluate against several baselines on Malimg malware classification (Nataraj et al.,
2011), MNIST 3-8 (LeCun, 1998), CIFAR-10 cats-dogs (Krizhevsky et al., 2009), and
Kaggle cats-dogs (Kaggle, 2016) and show that our classifiers yield state-of-the-art certified
robust radii.

1.2 RELATED WORKS

Certified adversarial robustness. Two of the most popular approaches for generating robustness
certificates are randomized smoothing and convex optimization. Randomized smoothing, popular-
ized by Lecuyer et al. (2019); Li et al. (2019); Cohen et al. (2019), uses the expected prediction
of a model when subjected to Gaussian input noise. These works derive `2-norm balls around in-
puts on which the smoothed classifier remains constant, but suffer from nondeterminism and high
computational burden. Follow-up works generalize randomized smoothing to certify input regions
defined by different metrics, e.g., Wasserstein, `1-, and `∞-norms (Levine & Feizi, 2020; Teng et al.,
2020; Yang et al., 2020a). Other works focus on enlarging the certified regions by optimizing the
smoothing distribution (Zhai et al., 2020; Eiras et al., 2021; Anderson et al., 2022), incorporating
adversarial training into the base classifier (Salman et al., 2019; Zhang et al., 2020), and employing
dimensionality reduction at the input (Pfrommer et al., 2022). Convex optimization-based certifi-
cates seek to derive a convex over-approximation of the set of possible outputs when the input is
subject to adversarial perturbations, and show that this over-approximation is safe. Various over-
approximations have been proposed, e.g., based on linear programming and bounding (Wong &
Kolter, 2018; Weng et al., 2018), semidefinite programming (Raghunathan et al., 2018), and parti-
tioned linear and semidefinite programming (Anderson et al., 2020; Ma & Sojoudi, 2021), but it is
generally the case that these convex relaxations are either computationally burdensome or too loose
when employed on large-scale models. In this paper, we exploit the convex structure of input-convex
neural networks to directly derive closed-form robustness certificates for our proposed architecture.

Input-convex neural networks. Input-convex neural networks, popularized by Amos et al.
(2017), are a class of parameterized models whose input-output mapping is convex (in at least a
subset of the input variables). In Amos et al. (2017), the authors develop tractable methods to
learn an input-convex neural network f : Rd × Rn → R and show that utilizing it for the convex
optimization-based inference x 7→ arg miny∈Rn f(x, y) yields state-of-the-art results in a variety of
domains. Subsequent works propose novel applications of input-convex neural networks in areas

2



Under review as a conference paper at ICLR 2023

such as optimal control and reinforcement learning (Chen et al., 2019; Zeng et al., 2022), optimal
transport (Makkuva et al., 2020), and optimal power flow (Chen et al., 2020; Zhang et al., 2021b).
Other works have generalized input-convex networks to input-invex networks (Nesterov et al., 2022)
and global optimization networks (Zhao et al., 2022) so as to maintain the benign optimization prop-
erties of input-convexity. The authors of Siahkamari et al. (2022) present algorithms for efficiently
learning convex functions, while Chen et al. (2019); Kim & Kim (2022) derive universal approx-
imation theorems for input-convex neural networks in the convex regression setting. The work
Sivaprasad et al. (2021) shows that input-convex neural networks do not suffer from overfitting, and
generalize better than multilayer perceptrons on common benchmark datasets. In this work, we in-
corporate input-convex neural networks as a part of our overall feature-convex architecture, and we
leverage convexity properties to derive our novel robustness guarantees.

1.3 NOTATIONS

The natural numbers and real numbers are denoted by N and R, respectively. The d × d identity
matrix is written as Id ∈ Rd×d, and the identity map on Rd is denoted by Id : x 7→ x. ForA ∈ Rn×d,
we define |A| ∈ Rn×d by |A|ij = |Aij | for all i, j, and we write A ≥ 0 if and only if Aij ≥ 0 for
all i, j. The `p-norm on Rd is given by ‖ · ‖p : x 7→ (|x1|p + · · ·+ |xd|p)1/p for p ∈ [1,∞) and by
‖·‖p : x 7→ max{|x1|, . . . , |xd|} for p =∞. The dual norm of ‖·‖p is denoted by ‖·‖p,∗. The convex
hull of a setX ⊆ Rd is denoted by conv(X). The subdifferential of a convex function g : Rd → R at
x ∈ Rd is denoted by ∂g(x). If ε : Ω→ Rd is a random variable on a probability space (Ω,B,P) and
P is a predicate defined on Rd, then we write P(P (ε)) to mean P({ω ∈ Ω : P (ε(ω))}). Lebesgue
measure on Rd is denoted by m. We define ReLU: R → R as ReLU(x) = max{0, x}, and if
x ∈ Rd, ReLU(x) denotes (ReLU(x1), . . . ,ReLU(xd)). For a function ϕ : Rd → Rq and p ∈
[1,∞], we define Lipp(ϕ) = inf{K ≥ 0 : ‖ϕ(x)− ϕ(x′)‖p ≤ K‖x− x′‖p for all x, x′ ∈ Rd},
and if Lipp(ϕ) < ∞ we say that ϕ is Lipschitz continuous with constant Lipp(ϕ) (with respect to
the `p-norm).

2 FEATURE-CONVEX CLASSIFIERS

Let d, q ∈ N and p ∈ [1,∞] be fixed, and consider the task of classifying inputs from a subset of
Rd into a fixed set of classes Y ⊆ N. In what follows, we restrict to the binary setting where Y =
{1, 2} and class 1 is the sensitive class for which we desire robustness certificates (Section 1). In
Appendix A, we briefly discuss possible avenues to generalize our framework to multiclass settings
using one-versus-all and sequential classification methodologies.

We now formally define the classifiers considered in this work.
Definition 1. Let f : Rd → {1, 2} be defined by

f(x) =

{
1 if g(ϕ(x)) > 0,

2 if g(ϕ(x)) ≤ 0,

for some ϕ : Rd → Rq and some g : Rq → R. Then f is said to be a feature-convex classifier if the
feature map ϕ is Lipschitz continuous with constant Lipp(ϕ) <∞ and g is a convex function.

We denote the class of all feature-convex classifiers by F . Furthermore, for q = d, the subclass of
all feature-convex classifiers with ϕ = Id is denoted by FId.

As we will see in Section 3.1, defining our classifiers using the composition of a convex classifier
with a Lipschitz feature map enables the fast computation of certified regions in the input space. This
naturally arises from the global underestimation of convex functions by first-order Taylor approxi-
mations. Since sublevel sets of such g are restricted to be convex, the feature map ϕ is included to
increase the representation power and practical performance of our architecture (see Appendix B for
a motivating example). In practice, we find that it suffices to choose ϕ to be a “simple” map with a
small closed-form Lipschitz constant. For example, in our experiments that follow with q = 2d, we
choose ϕ(x) = (x−µ, |x−µ|) with a constant channel-wise dataset mean µ, yielding Lip1(ϕ) ≤ 2,
Lip2(ϕ) ≤

√
2, and Lip∞(ϕ) ≤ 1. Although this particular choice of ϕ is convex, the function g

need not be monotone, and therefore the composition g ◦ ϕ is nonconvex in general. The prediction
and certification of feature-convex classifiers are illustrated in Figure 1.
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Figure 1: Illustration of feature-convex classifiers and their robustness certification. Since g is
convex, it can be globally underapproximated by its tangent plane at ϕ(x), yielding certified sets for
all norm balls in the higher-dimensional feature space. Lipschitzness of ϕ then yields appropriately
scaled certificates in the original input space.

In practice, we implement feature-convex classifiers using parameterizations of g, which we now
make explicit. Following Amos et al. (2017), we instantiate g as a neural network with nonneg-
ative weight matrices and nondecreasing convex nonlinearities. Specifically, we consider ReLU
nonlinearities, which is not restrictive, as our universal approximation result in Theorem 2 proves.

Definition 2. A feature-convex ReLU neural network is a function f̂ : Rd → {1, 2} defined by

f̂(x) =

{
1 if ĝ(ϕ(x)) > 0,

2 if ĝ(ϕ(x)) ≤ 0,

with ϕ : Rd → Rq Lipschitz continuous with constant Lipp(ϕ) <∞ and ĝ : Rq → R defined by

x(1) = ReLU
(
A(1)x(0) + b(1)

)
,

x(l) = ReLU
(
A(l)x(l−1) + b(l) + C(l)x(0)

)
, l ∈ {2, 3, . . . , L− 1},

ĝ(x(0)) = A(L)x(L−1) + b(L) + C(L)x(0),

for some L ∈ N, L > 1, and some consistently sized matrices A(l), C(l) and vectors b(l) satisfying
A(l) ≥ 0 for all l ∈ {2, 3, . . . , L}.

Going forward, we denote the class of all feature-convex ReLU neural networks by F̂ . Furthermore,
if q = d, the subclass of all feature-convex ReLU neural networks with ϕ = Id is denoted by F̂Id,
which corresponds to the input-convex ReLU neural networks proposed in Amos et al. (2017).

For every f̂ ∈ F̂ , it holds that ĝ is a convex function due to the rules for composition and nonnega-
tively weighted sums of convex functions (Boyd & Vandenberghe, 2004, Section 3.2), and therefore
F̂ ⊆ F and F̂Id ⊆ FId. The “passthrough” weights C(l) were originally included by Amos et al.
(2017) to improve the practical performance of the architecture. In some of our more challenging
experiments that follow, we remove these passthrough operations and instead add residual identity
mappings between hidden layers, which also preserves convexity. We note that the transformations
defined by A(l) and C(l) can be taken to be convolutions, which are nonnegatively weighted linear
operations and thus preserve convexity (Amos et al., 2017).
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3 CERTIFICATION AND ANALYSIS OF FEATURE-CONVEX CLASSIFIERS

We begin by deriving asymmetric robustness certificates for our feature-convex classifier in Sec-
tion 3.1. In Section 3.2, we introduce convexly separable sets and theoretically analyze the clean
performance of our classifiers through this lens. Namely, we show that there exists a feature-convex
classifier with ϕ = Id that perfectly classifies the CIFAR-10 cats-dogs training dataset, which we
show is unsurprising by proving that feature-convex classifiers can perfectly fit high-dimensional
uniformly distributed data with high probability. Proofs are deferred to the appendix.

3.1 CERTIFIED ROBUSTNESS GUARANTEES

In this section, we address the asymmetric certified robustness problem by providing class 1 ro-
bustness certificates for feature-convex classifiers f ∈ F . Such robustness corresponds to proving
the absence of false negatives in the case that class 1 represents positives and class 2 represents
negatives. For example, if in a malware detection setting class 1 represents malware and class 2 rep-
resents non-malware, the following certificate gives a lower bound on the magnitude of the malware
file alteration needed in order to misclassify the file as non-malware.
Theorem 1. Let f ∈ F be as in Definition 1 and let x ∈ f−1({1}) = {x′ ∈ Rd : f(x′) = 1}. If
v(ϕ(x)) ∈ Rq is a nonzero subgradient of the convex function g at ϕ(x), then f(x+ δ) = 1 for all
δ ∈ Rd such that

‖δ‖p < r(x) :=
g(ϕ(x))

Lipp(ϕ)‖v(ϕ(x))‖p,∗
Remark 1. For f ∈ F and x ∈ f−1({1}), a subgradient v(ϕ(x)) ∈ Rq of g always exists at ϕ(x),
since the subdifferential ∂g(ϕ(x)) is a nonempty closed bounded convex set, as g is a finite convex
function on all of Rq—see Theorem 23.4 in Rockafellar (1970) and the discussion thereafter. Fur-
thermore, if f is not a constant classifier, such a subgradient v(ϕ(x)) must necessarily be nonzero,
since, if it were zero, then g(y) ≥ g(ϕ(x)) + v(ϕ(x))>(y − ϕ(x)) = g(ϕ(x)) > 0 for all y ∈ Rq ,
implying that f identically predicts class 1, which is a contradiction. Thus, the certified radius given
in Theorem 1 is always well-defined in practical settings.

Theorem 1 is derived from the fact that a convex function is globally underapproximated by any tan-
gent plane. The nonconstant terms in Theorem 1 afford an intuitive interpretation: the radius scales
proportionally to the confidence g(ϕ(x)) and inversely with the input sensitivity ‖v(ϕ(x))‖p,∗. In
practice, the subgradient v(ϕ(x)) is easily evaluated as the Jacobian of g at ϕ(x) using standard
automatic differentiation packages. This provides fast, deterministic class 1 certificates for any `p-
norm without modification of the feature-convex network’s training procedure or architecture.

3.2 REPRESENTATION POWER CHARACTERIZATION

We restrict our analysis to the class FId of feature-convex classifiers with an identity feature map.
This can be equivalently considered as the class of classifiers for which the input-to-logit map g is
convex. We therefore refer to models in FId as input-convex classifiers. While the feature map ϕ is
useful in boosting the practical performance of our classifiers, the theoretical results in this section
suggest that there is significant potential in using input-convex classifiers as a standalone solution.

Classifying convexly separable sets. We begin by introducing the notion of convexly separable
sets, which are intimately related to decision regions representable by the class FId.
Definition 3. Let X1, X2 ⊆ Rd. The ordered pair (X1, X2) is said to be convexly separable if there
exists a nonempty closed convex set X ⊆ Rd such that X2 ⊆ X and X1 ⊆ Rd \X .

Notice that it may be the case that a pair (X1, X2) is convexly separable yet the pair (X2, X1) is
not. Although low-dimensional intuition may cause concerns regarding the convex separability of
sets of binary-labeled data, we will soon see in Theorem 4 that, even for relatively unstructured
data distributions, binary datasets are actually convexly separable in high dimensions with high
probability. We now show that convexly separable datasets possess the property that they may
always be perfectly fit by input-convex classifiers.
Proposition 1. For any nonempty closed convex set X ⊆ Rd, there exists f ∈ FId such that
X = f−1({2}) = {x ∈ Rd : f(x) = 2}. In particular, this shows that if (X1, X2) is a convexly
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separable pair of subsets of Rd, then there exists f ∈ FId such that f(x) = 1 for all x ∈ X1 and
f(x) = 2 for all x ∈ X2.

We also show that the converse of Proposition 1 holds: the geometry of the decision regions of
classifiers in FId can be characterized as consisting of a convex set and its complement.
Proposition 2. Let f ∈ FId. The decision region under f associated to class 2, namely X :=
f−1({2}) = {x ∈ Rd : f(x) = 2}, is a closed convex set.

Note that this is not necessarily true for our more general feature-convex architectures with ϕ 6= Id.
We continue our theoretical analysis of input-convex classifiers by extending the universal approxi-
mation theorem for regressing upon real-valued convex functions (given in Chen et al. (2019)) to the
classification setting. In particular, Theorem 2 below shows that any input-convex classifier f ∈ FId

can be approximated arbitrarily well on any compact set by ReLU neural networks with nonnegative
weights. Here, “arbitrarily well” means that the set of inputs where the neural network prediction
differs from that of f can be made to have arbitrarily small Lebesgue measure.
Theorem 2. For any f ∈ FId, any compact convex subsets X of Rd, and any ε > 0, there exists
f̂ ∈ F̂Id such that m({x ∈ X : f̂(x) 6= f(x)}) < ε.

An extension of the proof of Theorem 2 combined with Proposition 1 yields that input-convex ReLU
neural networks can perfectly fit convexly separable pairs of sampled data.

Theorem 3. If (X1, X2) is a convexly separable pair of finite subsets of Rd, then there exists f̂ ∈
F̂Id such that f̂(x) = 1 for all x ∈ X1 and f̂(x) = 2 for all x ∈ X2.

Theorems 2 and 3 theoretically justify the particular parameterization in Definition 2 for learning
feature-convex classifiers to fit convexly separable data.

Empirical convex separability. Interestingly, we find empirically that high-dimensional image
training data is convexly separable. We illustrate this in Appendix D by attempting to reconstruct
a CIFAR-10 cat image from a convex combination of the dogs and vice versa; the error is always
significantly positive and image reconstruction is visually poor. This observation, combined with
Theorem 3, immediately yields the following result.

Corollary 1. There exists f̂ ∈ F̂Id such that f̂ achieves perfect training accuracy for the unaug-
mented CIFAR-10 cats versus dogs dataset.

The gap between this theoretical guarantee and our practical performance is large; without the fea-
ture map, our CIFAR-10 cats-dogs classifier achieves just 73.4% training accuracy (Table 2). While
high training accuracy may not necessarily imply strong test set performance, Corollary 1 demon-
strates that the typical deep learning paradigm of overfitting to the training dataset is attainable and
that there is at least substantial room for improvement in the design and optimization of input-convex
classifiers (Nakkiran et al., 2021). We leave the challenge of overfitting to the CIFAR-10 cats-dogs
training data with an input-convex classifier as an open research problem for the field.

Convex separability in high dimensions. We conclude by investigating why the convex separability
property that allows for Corollary 1 might hold for natural image datasets. We argue that dimen-
sionality facilitates this phenomenon by showing that data is easily separated by some f ∈ F̂Id

when d is sufficiently large. In particular, although it may seem restrictive to rely on models in F̂Id

with convex class 2 decision regions, we show in Theorem 4 below that even uninformative data
distributions that are seemingly difficult to classify may be fit by such models with high probability
as the dimensionality of the data increases.
Theorem 4. Consider M,N ∈ N. Let X1 = {x(1), . . . , x(M)} ⊆ Rd and X2 =

{y(1), . . . , y(N)} ⊆ Rd be samples with all elements x(i)k , y
(j)
l drawn independently and identically

from the uniform probability distribution on [−1, 1]. Then, it holds that

P
(
(X1, X2) is convexly separable

)
≥ 1−

(
1− 1

2MN

)d
. (1)

In particular, the probability that F̂Id contains an input-convex ReLU neural network that classifies
all x(i) into class 1 and all y(j) into class 2 converges linearly to 1 as d→∞.

6



Under review as a conference paper at ICLR 2023

Although the uniformly distributed data in Theorem 4 is unrealistic in practice, the result demon-
strates that the class F̂Id of input-convex ReLU neural networks has sufficient complexity to fit
even the most unstructured data in high dimensions. Despite this ability, researchers have found that
current input-convex neural networks tend to not overfit in practice, yielding small generalization
gaps relative to conventional neural networks (Sivaprasad et al., 2021). Achieving the typical mod-
ern deep learning paradigm of overfitting to the training dataset with input-convex networks is an
exciting open challenge (Nakkiran et al., 2021).

4 EXPERIMENTS

We first describe our baseline methods, feature-convex architecture, and class accuracy balancing
procedure. Our results are then reported across a variety of datasets, ranging from simple MNIST
3-8 and malware classification to more challenging CIFAR-10 and ImageNet-scale cats-dogs classi-
fication. Further experimental setup details are deferred to Appendix E.

Baseline methods. We consider several state-of-the-art randomized and deterministic baselines. For
all datasets, we evaluate the randomized smoothing certificates of Yang et al. (2020a) for the Gaus-
sian, Laplacian, and uniform distributions, trained with noise augmentation. We also evaluate, when
applicable, deterministic certified methods for each norm ball. These include the splitting-noise `1-
certificates from Levine & Feizi (2021), the orthogonality-based `2-certificates from Trockman &
Kolter (2021), and the `∞-distance-based `∞-certificates from Zhang et al. (2021a). We note that
the last two deterministic methods are not evaluated on the large-scale Malimg and Kaggle datasets
due to their prohibitive runtime; furthermore, the `∞-distance net was unable to significantly sur-
pass the performance of a random classifier on the CIFAR-10 cats-dogs dataset and therefore is only
included in the MNIST 3-8 experiment.

Feature-convex architecture. Our simple experiments (MNIST 3-8 and Malimg) require no feature
map (ϕ = Id); for both cats-dogs classification tasks, we let our feature map be the concatenation
ϕ(x) = (x− µ, |x− µ|), where µ is the channel-wise dataset mean (e.g., size 3 for an RGB image)
broadcasted to the appropriate dimensions. Our MNIST architecture then consists of a simple two
hidden layer input-convex multilayer perceptron with (n1, n2) = (200, 50) hidden features, ReLU
nonlinearities, and passthrough weights. For all other datasets, we use various instantiations of
a convex ConvNet where successive layers have a constant number of channels and image size.
This allows for the addition of identity residual connections to each convolution and lets us remove
the passthrough connections altogether. Convexity is enforced by projecting relevant weights onto
the nonnegative orthant after each epoch and similarly constraining BatchNorm γ parameters to be
positive. We initialize positive weight matrices to be drawn uniformly from the interval [0, ε], where
ε = 0.003 for linear weights and ε = 0.005 for convolutional weights. Jacobian regularization is
also used to improve our certified radii (Hoffman et al., 2019).

Class accuracy balancing. Since we consider asymmetric certified robustness, care must be taken
to ensure a fair comparison of class 1 certificates. Indeed, a constant classifier that always outputs
class 1 would achieve perfect class 1 accuracy and infinite class 1 certified radii—yet it would not be
a particularly interesting classifier as its accuracy on class 2 inputs would be poor. We therefore post-
process the decision threshold of each classifier such that the clean class 1 and class 2 accuracies are
equivalent, allowing for a direct comparison of the certification performance for class 1.

4.1 DATASETS

We now introduce the various datasets considered in this work. The first two (MNIST 3-8 and
Malimg) are relatively simple classification problems where near-perfect classification accuracy is
attainable; the Malimg dataset falls in this category despite containing relatively large images. We
then discuss two cats-versus-dogs classification problems at different image scales. Data augmenta-
tion details are deferred to Appendix E.4.

MNIST 3-8. For our MNIST binary classification problem, we choose the problem of distinguishing
between 3 and 8 (LeCun, 1998). These were selected as 3 and 8 are generally more visually similar
and challenging to distinguish than other digit pairs. Images are 28× 28 pixels and grayscale.
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Malimg. Our malware classification experiments use grayscale, bytewise encodings of raw mal-
ware binaries Nataraj et al. (2011). Each image pixel corresponds to one byte of data, in the range of
0–255, and successive bytes are added horizontally from left to right on the image until wrapping at
some predetermined width. We use the extracted malware images from the seminal dataset Nataraj
et al. (2011), padding and cropping images to be 512× 512. Note that licensing concerns generally
prevent the distribution of “clean” executable binaries; as this work is focused on providing a gen-
eral approach to robust classification, in the spirit of reproducibility we instead report classification
results between different kinds of malware. Namely, we distinguish between malware from the most
numerous “Allaple.A” class (2949 samples) and an identically-sized random subset of all other 24
malware classes.

CIFAR-10 cats-dogs. We take as our two CIFAR-10 classes the cat and dog classes as they are
relatively difficult to distinguish (Giuste & Vizcarra, 2020; Liu & Mukhopadhyay, 2018; Ho-Phuoc,
2018). Other classes (e.g., ships) are typically easier to classify since large background features
(e.g., blue water) are strongly correlated with the target label. Samples are 32× 32 RGB images.

Kaggle cats-dogs. To enable comparisons with the CIFAR-10 cats-dogs dataset, we selected an
ImageNet-scale cats-dogs dataset available on Kaggle (Kaggle, 2016). This dataset contains 25, 000
images of cats and dogs which we crop to 224× 224 pixels. While ImageNet also contains cat and
dog images, these classes are unbalanced and subdivided by species. ImageNet’s extraneous classes
also add significant unnecessary size.

4.2 DISCUSSION

Experimental results for `1-norm balls are reported in Figure 2, where our feature-convex classi-
fier radii outperform all other baselines across all datasets. Due to space constraints, we defer the
corresponding plots for `2- and `∞-norm balls to Appendix F.

For the MNIST 3-8 and Malimg datasets (Figures 2a and 2b), all methods achieve high clean test
accuracy, even with ϕ = Id for the feature-convex classifiers. Our method scales exceptionally well
with the dimensionality of the input, with orders of magnitude improvement over state-of-the-art
certificates for the Malimg dataset. The Malimg certificates in particular have an interesting concrete
interpretation. As each pixel corresponds to one byte in the original malware file, an `1-certificate
of radius r provides a robustness certificate for up to r bytes in the file. Namely, even if a malware
designer were to arbitrarily change r malware bytes, they would be unable to fool our classifier
into returning a false negative. This may not have an immediate practical impact as small semantic
changes (e.g., reordering unrelated instructions) could induce large `p-norm shifts. However, as
randomized smoothing was extended from pixel-space to semantic transformations (Li et al., 2021),
we expect that similar extensions can produce practical certifiably robust malware classifiers.

The two cats-dogs classification experiments provide an interesting study on the impact of dimen-
sionality for similar tasks (Figures 2c and 2d). As with the simple experiments, the benefits of our
method are especially pronounced for the larger 224 × 224 Kaggle images. We also note that the
clean accuracy of our method is 4.6% improved in absolute terms for the higher-dimension images.
This matches our theoretical result in Theorem 4, which finds that convex separability is easier to
achieve in high dimensions. Nevertheless, Corollary 1 and the discussion in Appendix G.3 suggest
that significant performance gains are still attainable for the CIFAR-10 experiment.

While our method produces nontrivial robustness certificates for `2- and `∞-norms (Appendix F), it
offers the largest improvement for `1-certificates in high dimensions. This is likely due to the char-
acteristics of the subgradient dual norm factor in the denominator of Theorem 1. The dual of the
`1-norm is the `∞-norm, which selects the largest magnitude element in the gradient of the output
logit with respect to the input pixels. As the input image scales, it is natural for the classifier to be-
come less dependent on any one specific pixel, shrinking the denominator in Theorem 1. Conversely,
when certifying for the `∞-norm, one must evaluate the `1-norm of the gradient, which scales pro-
portionally to the input size. Nevertheless, we find in Appendix F that our `2- and `∞-radii are
generally on the same order as those of the baselines while maintaining speed and deterministism.

Unlike randomized smoothing-based methods, our method’s certificates are almost immediate, re-
quiring just one forwards pass and one backwards pass through the network. For our largest inputs
from the 512× 512 Malimg dataset, the certification procedure requires fewer than 10 milliseconds

8
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Figure 2: Class 1 certified radii curves for the `1-norm. Note the log-scale on the rightmost plots.

per sample on our hardware. This is substantially faster than the runtime for randomized smooth-
ing, which scales from several seconds per CIFAR-10 image to minutes for an ImageNet image
(Cohen et al., 2019). Our method has the added benefit of being completely deterministic in both
certification and prediction.

Ablation tests examining the impact of Jacobian regularization, the feature map ϕ, and data aug-
mentation are included in Appendix G.

5 CONCLUSION

This work introduces the problem of asymmetric certified robustness, which we show naturally ap-
plies to a number of practical adversarial settings. We define feature-convex classifiers in this setting
and theoretically characterize their representation power from geometric, approximation theoretic,
and statistical lenses. Closed-form certified robust radii for the sensitive class are proven for arbi-
trary `p-norms, and we find that our `1 robustness certificates in particular substantially outperform
those of prior state-of-the-art methods. We also show theoretically that significant performance
improvements should be realizable for natural image datasets such as CIFAR-10 cats-versus-dogs.
Possible directions for future research include bridging the gap between the theoretical power of
feature-convex models and their numerical implementation, exploring more sophisticated choices
of the feature map ϕ, and developing multiclass extensions.

9



Under review as a conference paper at ICLR 2023

6 ETHICS AND REPRODUCIBILITY

We strongly feel that improving the robustness of machine learning systems will have a positive
social impact by enhancing the reliability of systems that are integral to many aspects of modern
life. One potential point of concern could include cases where machine learning systems are used
in oppressive ways, such as intrusive facial identification software—in this case a robust classifier
could remove a possible technique to avoid identification. For legal and reproducibility reasons,
in our malware classification experiment we do not use clean binaries. Complete reproduction is
directly feasible from our attached code, with further instructions in the associated README. Our
detailed experiment descriptions are also included in Appendix E.
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A CLASSIFICATION FRAMEWORK GENERALIZATION

While outside the scope of our work, we note that there are two natural ways to extend our approach
to a multiclass setting with one sensitive class. LetY = {1, 2, . . . , c}, with class 1 being the sensitive
class for which we aim to generate certificates.

One approach involves a two-step architecture, where a feature-convex classifier first distinguishes
between the sensitive class 1 and all other classes {2, . . . , c} and an arbitrary second classifier dis-
tinguishes between the classes {2, . . . , c}. The first classifier could then be used to generate class
1 certificates, as described in Section 3.1.

Alternatively, we could define g to map directly to c output logits, with the first logit convex in the
input and the other logits concave in the input. Concavity can be easily achieved by negating the
output of a convex network. Let the ith output logit then be denoted as gi and consider an input
where the classifier predicts class 1 (i.e., g1(ϕ(x)) ≥ gi(ϕ(x)) for all i ≥ 2); since the difference
of a convex and a concave function is convex, we can generate a certificate for the nonnegativity of
each convex decision function g1(ϕ(x)) − gi(ϕ(x)). Minimizing these certificates over all i ≥ 2
yields a robustness certificate for the sensitive class.

Note that g mapping to 2 or more logits, all convex in the input, would not yield any tractable
certificates. This is because the classifier decision function would now be the difference of two
convex functions and have neither convex nor concave structure. We therefore choose to instantiate
our binary classification networks with a single convex output logit for clarity.

B FEATURE MAP MOTIVATION
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Figure 3: Experiments demonstrating the role of the feature map ϕ = (x, |x|) in R2, with the output
logit shaded. Certified radii from our method are shown as black rings. (a) Certifying the outer class
(red points). This is possible using an input-convex classifier as a convex sublevel set contains the
inner class (blue points). (b) Certifying the inner class (red points). This would not be possible with
ϕ = Id as there is no convex set containing the outer class (blue points) but excluding the inner. The
feature map ϕ enables this by permitting convex separability in the higher dimensional space. Note
that though the shaded output logit is not convex in the input we still generate certificates.

This section examines the importance of the feature map ϕ with a low-dimensional example. Con-
sider the binary classification setting where one class X2 ⊆ Rd is clustered around the origin and
the other class is X1 ⊆ Rd surrounds it in a ring. Here, the pair (X1, X2) is convexly separable as a
circular decision boundary surrounding X2 would be convex (Figure 3a). Note that the reverse pair
(X2, X1) is not convexly separable, as there does not exist a convex set containing X1 but exclud-
ing X2. A standard input-convex classifier with ϕ = Id would therefore be unable to discriminate
between the classes in this direction (Proposition 2); i.e., we would be able to learn a classifier than
generates certificates for points in X1, but not X2.
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This problem is addressed with by choosing the feature map to be the simple concatenation
ϕ(x) = (x, |x|) mapping from Rd to Rq = R2d, with associated Lipschitz constants Lip1(ϕ) ≤ 2,
Lip2(ϕ) ≤

√
2, and Lip∞(ϕ) ≤ 1. In this augmented feature space, X1 and X2 are convexly

separable in both directions, as they are each contained in a convex set (specifically, a half-plane)
whose complement contains the other class. We are now able to learn a classifier which takes X2

as the sensitive class for which certificates are required (Figure 3b). This parallels the motivation
of the support vector machine “kernel trick,” where inputs are augmented to a higher-dimensional
space wherein the data is linearly separable (instead of convexly separable as in our case).

C PROOFS FOR SECTION 3 (CERTIFICATION AND ANALYSIS OF
FEATURE-CONVEX CLASSIFIERS)

Theorem 1. Let f ∈ F be as in Definition 1 and let x ∈ f−1({1}) = {x′ ∈ Rd : f(x′) = 1}. If
v(ϕ(x)) ∈ Rq is a nonzero subgradient of the convex function g at ϕ(x), then f(x+ δ) = 1 for all
δ ∈ Rd such that

‖δ‖p < r(x) :=
g(ϕ(x))

Lipp(ϕ)‖v(ϕ(x))‖p,∗

Proof. Suppose that v(ϕ(x)) ∈ Rq is a nonzero subgradient of g at ϕ(x), so that g(y) ≥ g(ϕ(x)) +
v(ϕ(x))>(y − ϕ(x)) for all y ∈ Rq . Let δ ∈ Rd be such that ‖δ‖p < r(x). Then it holds that

g(ϕ(x+ δ)) ≥ g(ϕ(x)) + v(ϕ(x))>(ϕ(x+ δ)− ϕ(x))

≥ g(ϕ(x))− ‖v(ϕ(x))‖p,∗‖ϕ(x+ δ)− ϕ(x)‖p
≥ g(ϕ(x))− ‖v(ϕ(x))‖p,∗ Lipp(ϕ)‖δ‖p
> 0,

so indeed f(x+ δ) = 1.

Lemma 1. For any nonempty closed convex set X ⊆ Rd, there exists a convex function g : Rd → R
such that X = g−1((−∞, 0]) = {x ∈ Rd : g(x) ≤ 0}.

Proof. LetX ⊆ Rd be a nonempty closed convex set. We take the distance function g = dX defined
by dX(x) = infy∈X ‖y − x‖2. Since X is closed and y 7→ ‖y − x‖2 is coercive for all x ∈ Rd,
it holds that y 7→ ‖y − x‖2 attains its infimum over X (Bertsekas, 2016, Proposition A.8). Let
x(1), x(2) ∈ Rd and let θ ∈ [0, 1]. Then there exist y(1), y(2) ∈ X such that g(x(1)) = ‖y(1)−x(1)‖2
and g(x(2)) = ‖y(2)−x(2)‖2. SinceX is convex, it holds that θy(1)+(1−θ)y(2) ∈ X , and therefore

g(θx(1) + (1− θ)x(2)) = inf
y∈X
‖y − (θx(1) + (1− θ)x(2))‖2

≤ ‖θy(1) + (1− θ)y(2) − (θx(1) + (1− θ)x(2))‖2
≤ θ‖y(1) − x(1)‖2 + (1− θ)‖y(2) − x(2)‖2
= θg(x(1)) + (1− θ)g(x(2)).

Hence, g = dX is convex. Since X = {x ∈ Rd : infy∈X ‖y − x‖2 = 0} = {x ∈ Rd : dX(x) =
0} = {x ∈ Rd : dX(x) ≤ 0} = {x ∈ Rd : g(x) ≤ 0} by nonnegativity of dX , the lemma
holds.

Proposition 1. For any nonempty closed convex set X ⊆ Rd, there exists f ∈ FId such that
X = f−1({2}) = {x ∈ Rd : f(x) = 2}. In particular, this shows that if (X1, X2) is a convexly
separable pair of subsets of Rd, then there exists f ∈ FId such that f(x) = 1 for all x ∈ X1 and
f(x) = 2 for all x ∈ X2.

Proof. Let X ⊆ Rd be a nonempty closed convex set. By Lemma 1, there exists a convex function
g : Rd → R such that X = {x ∈ Rd : g(x) ≤ 0}. Define f : Rd → {1, 2} by f(x) = 1 if g(x) > 0
and f(x) = 2 if g(x) ≤ 0. Clearly, it holds that f ∈ FId. Furthermore, for all x ∈ X it holds that
g(x) ≤ 0, implying that f(x) = 2 for all x ∈ X . Conversely, if x ∈ Rd is such that f(x) = 2, then
g(x) ≤ 0, implying that x ∈ X . Hence, X = {x ∈ Rd : f(x) = 2}.
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If (X1, X2) is a convexly separable pair of subsets of Rd, then there exists a nonempty closed convex
set X ⊆ Rd such that X2 ⊆ X and X1 ⊆ Rd \ X , and therefore there exists f ∈ FId such that
X2 ⊆ X = f−1({2}) and X1 ⊆ Rd \ X = f−1({1}), implying that indeed f(x) = 1 for all
x ∈ X1 and f(x) = 2 for all x ∈ X2.

Proposition 2. Let f ∈ FId. The decision region under f associated to class 2, namely X :=
f−1({2}) = {x ∈ Rd : f(x) = 2}, is a closed convex set.

Proof. For all x ∈ Rd, it holds that f(x) = 2 if and only if g(x) ≤ 0. Since f ∈ FId, g is convex,
and hence, X = {x ∈ Rd : g(x) ≤ 0} is a (nonstrict) sublevel set of a convex function and is
therefore a closed convex set.

In order to apply the universal approximation results in Chen et al. (2019), we now introduce their
parameterization of input-convex ReLU neural networks. Note that it imposes the additional con-
straint that the first weight matrix A(1) is elementwise nonnegative.

Definition 4. Define F̃Id to be the class of functions f̃ : Rd → {1, 2} given by

f̃(x) =

{
1 if g̃(x) > 0,

2 if g̃(x) ≤ 0,

with g̃ : Rd → R given by

x(1) = ReLU
(
A(1)x+ b(1)

)
,

x(l) = ReLU
(
A(l)x(l−1) + b(l) + C(l)x

)
, l ∈ {2, 3, . . . , L− 1},

g̃(x) = A(L)x(L−1) + b(L) + C(L)x,

for some L ∈ N, L > 1, and some consistently sized matrices A(1), C(1), . . . , A(L), C(L), all of
which have nonnegative elements, and some consistently sized vectors b(1), . . . , b(L).

The following preliminary lemma relates the class F̂Id from Definition 2 to the class F̃Id above.

Lemma 2. It holds that F̃Id ⊆ F̂Id.

Proof. Let f̃ ∈ F̃Id. Then certainly A(l) ≥ 0 for all l ∈ {2, 3, . . . , L}, so indeed f̃ ∈ F̂Id. Hence,
F̃Id ⊆ F̂Id.

Theorem 1 in Chen et al. (2019) shows that a Lipschitz convex function can be approximated within
an arbitrary tolerance. We now provide a technical lemma adapting Theorem 1 in Chen et al. (2019)
to show that convex functions can be underapproximated within an arbitrary tolerance on a compact
convex subset.
Lemma 3. For any convex functions g : Rd → R, any compact convex subsets X of Rd, and any
ε > 0, there exists f̂ ∈ F̂Id such that ĝ(x) < g(x) for all x ∈ X and supx∈X (g(x)− ĝ(x)) < ε.

Proof. Let g : Rd → R be a convex function, letX be a compact convex subset of Rd, and let ε > 0.
Since g − ε/2 is a real-valued convex function on Rd (and hence is proper), its restriction to the
closed and bounded set X is Lipschitz continuous (Rockafellar, 1970, Theorem 10.4), and therefore
Lemma 2 together with Theorem 1 in Chen et al. (2019) gives that there exists f̂ ∈ F̃Id ⊆ F̂Id such
that supx∈X |(g(x)− ε/2)− ĝ(x)| < ε/2. Thus, for all x ∈ X ,

g(x)− ĝ(x) =
(
g(x)− ε

2

)
− ĝ(x) +

ε

2

>
(
g(x)− ε

2

)
− ĝ(x) + sup

y∈X

∣∣∣(g(y)− ε

2

)
− ĝ(y)

∣∣∣
≥
(
g(x)− ε

2

)
− ĝ(x) +

∣∣∣(g(x)− ε

2

)
− ĝ(x)

∣∣∣
≥ 0.
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Furthermore,

sup
x∈X

(g(x)− ĝ(x)) = sup
x∈X
|g(x)− ĝ(x)|

= sup
x∈X

∣∣∣(g(x)− ε

2

)
− ĝ(x) +

ε

2

∣∣∣
≤ sup
x∈X

∣∣∣(g(x)− ε

2

)
− ĝ(x)

∣∣∣+
ε

2

< ε,

which proves the lemma.

We leverage Lemma 3 to construct a uniformly converging sequence of underapproximating func-
tions.
Lemma 4. For all f ∈ FId and all compact convex subsets X of Rd, there exists a sequence
{f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id such that ĝn(x) < ĝn+1(x) < g(x) for all x ∈ X and all n ∈ N and
ĝn converges uniformly to g on X as n→∞.

Proof. Let f ∈ FId and let X be a compact convex subset of Rd. Let {εn > 0 : n ∈ N} be a
sequence such that εn+1 < εn for all n ∈ N and εn → 0 as n → ∞. Such a sequence clearly
exists, e.g., by taking εn = 1/n for all n ∈ N. Now, for all n ∈ N, the function g − εn+1 is convex,
and therefore by Lemma 3 there exists f̂n ∈ F̂Id such that ĝn(x) < g(x) − εn+1 for all x ∈ X

and supx∈X ((g(x)− εn+1)− ĝn(x)) < εn − εn+1. Fixing such f̂n, ĝn for all n ∈ N, we see that
supx∈X ((g(x)− εn+2)− ĝn+1(x)) < εn+1 − εn+2, which implies that

ĝn+1(x) > g(x)− εn+1 > ĝn(x)

for all x ∈ X , which proves the first inequality. The second inequality comes from the fact that
ĝn+1(x) < g(x) − εn+2 < g(x) for all x ∈ X . Finally, since g(x) − ĝn(x) > εn+1 > 0 for all
x ∈ X and all n ∈ N, we see that

sup
x∈X
|g(x)− ĝn(x)| = sup

x∈X
(g(x)− ĝn(x)) < εn → 0 as n→∞,

which proves that limn→∞ supx∈X |g(x)− ĝn(x)| = 0, so indeed ĝn converges uniformly to g on
X as n→∞.

With all the necessary lemmas in place, we now present our main theoretical results.
Theorem 2. For any f ∈ FId, any compact convex subsets X of Rd, and any ε > 0, there exists
f̂ ∈ F̂Id such that m({x ∈ X : f̂(x) 6= f(x)}) < ε.

Proof. Let f ∈ FId and let X be a compact convex subset of Rd. By Lemma 4, there exists a
sequence {f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id such that ĝn(x) < ĝn+1(x) < g(x) for all x ∈ X and all
n ∈ N and ĝn converges uniformly to g on X as n→∞. Fix this sequence.

For all n ∈ N, define
En = {x ∈ X : f̂n(x) 6= f(x)},

i.e., the set of points in X for which the classification under f̂n does not agree with that under f .
Since ĝn(x) < g(x) for all x ∈ X and all n ∈ N, we see that

En = {x ∈ X : ĝn(x) > 0 and g(x) ≤ 0} ∪ {x ∈ X : ĝn(x) ≤ 0 and g(x) > 0}
= {x ∈ X : ĝn(x) ≤ 0 and g(x) > 0}.

Since g is a real-valued convex function on Rd, it is continuous (Rockafellar, 1970, Corollary
10.1.1), and therefore g−1((0,∞)) = {x ∈ Rd : g(x) > 0} is measurable. Similarly,
ĝ−1n ((−∞, 0]) = {x ∈ Rd : ĝn(x) ≤ 0} is also measurable for all n ∈ N since ĝn is continu-
ous. Furthermore, X is measurable as it is compact. Therefore, En is measurable for all n ∈ N.
Now, since ĝn(x) < ĝn+1(x) for all x ∈ X and all n ∈ N, it holds that En+1 ⊆ En for all n ∈ N. It
is clear that to prove the result, it suffices to show that limn→∞m(En) = 0. Therefore, if we show
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that m
(⋂

n∈NEn
)

= 0, then the fact that m(E1) ≤ m(X) <∞ together with Lebesgue measure’s
continuity from above yields that limn→∞m(En) = 0, thereby proving the result.

It remains to be shown that m
(⋂

n∈NEn
)

= 0. To this end, suppose for the sake of contradiction
that

⋂
n∈NEn 6= ∅. Then there exists x ∈ ⋂n∈NEn, meaning that g(x) > 0 and ĝn(x) ≤ 0 for

all n ∈ N. Thus, for this x ∈ X , we find that lim supn→∞ ĝn(x) ≤ 0 < g(x), which contradicts
the fact that ĝn uniformly converges to g on X . Therefore, it must be that

⋂
n∈NEn = ∅, and thus

m
(⋂

n∈NEn
)

= 0, which concludes the proof.

Theorem 3. If (X1, X2) is a convexly separable pair of finite subsets of Rd, then there exists f̂ ∈
F̂Id such that f̂(x) = 1 for all x ∈ X1 and f̂(x) = 2 for all x ∈ X2.

Proof. Throughout this proof, we denote the complement of a set Y ⊆ Rd by Y c = Rd \ Y .

Suppose that X1 = {x(1), . . . , x(M)} ⊆ Rd and X2 = {y(1), . . . , y(N)} ⊆ Rd are such that
(X1, X2) is convexly separable. Then, by definition of convex separability, there exists a nonempty
closed convex set X ′ ⊆ Rd such that X2 ⊆ X ′ and X1 ⊆ Rd \ X ′. Let X = X ′ ∩ conv(X2).
Since X2 ⊆ X ′ and both sets X ′ and conv(X2) are convex, the set X is nonempty and convex.
By finiteness of X2, the set conv(X2) is compact, and therefore by closedness of X ′, the set X is
compact and hence closed.

By Proposition 1, there exists f ∈ FId such that f−1({2}) = X . Since conv(X1 ∪X2) is compact
and convex, Lemma 4 gives that there exists a sequence {f̂n ∈ F̂Id : n ∈ N} ⊆ F̂Id such that
ĝn(x) < ĝn+1(x) < g(x) for all x ∈ conv(X1 ∪X2) and all n ∈ N and ĝn converges uniformly to
g on conv(X1 ∪X2) as n→∞. Fix this sequence.

Let x ∈ X2. Then, since X2 ⊆ X ′ and X2 ⊆ conv(X2), it holds that x ∈ X ′ ∩ conv(X2) =
X = f−1({2}), implying that f(x) = 2 and hence g(x) ≤ 0. Since ĝn(x) < g(x) for all n ∈ N,
this shows that f̂n(x) = 2 for all n ∈ N. On the other hand, let i ∈ {1, . . . ,M} and consider
x = x(i) ∈ X1. Since X1 ⊆ Rd \ X ′ = Rd ∩ (X ′)c ⊆ Rd ∩ (X ′ ∩ conv(X2))c = Rd ∩ Xc =
Rd ∩ f−1({1}), it holds that f(x) = 1 and thus g(x) > 0. Suppose for the sake of contradiction
that f̂n(x) = 2 for all n ∈ N. Then ĝn(x) ≤ 0 for all n ∈ N. Therefore, for this x ∈ X1, we find
that lim supn→∞ ĝn(x) ≤ 0 < g(x), which contradicts the fact that ĝn uniformly converges to g
on conv(X1 ∪ X2). Therefore, it must be that there exists ni ∈ N such that f̂ni(x) = 1, and thus
ĝni(x) > 0. Since ĝn(x) < ĝn+1(x) for all n ∈ N, this implies that ĝn(x) > 0 for all n ≥ ni.
Hence, f̂n(x) = f̂n(x(i)) = 1 for all n ≥ ni.
Let n? be the maximum of all such ni, i.e., n? = max{ni : i ∈ {1, . . . ,M}}. Then the above
analysis shows that f̂n?(x) = 2 for all x ∈ X2 and that f̂n?(x) = 1 for all x ∈ X1. Since
f̂n? ∈ F̂Id, the claim has been proven.

Theorem 4. Consider M,N ∈ N. Let X1 = {x(1), . . . , x(M)} ⊆ Rd and X2 =

{y(1), . . . , y(N)} ⊆ Rd be samples with all elements x(i)k , y
(j)
l drawn independently and identically

from the uniform probability distribution on [−1, 1]. Then, it holds that

P
(
(X1, X2) is convexly separable

)
≥ 1−

(
1− 1

2MN

)d
. (1)

In particular, the probability that F̂Id contains an input-convex ReLU neural network that classifies
all x(i) into class 1 and all y(j) into class 2 converges linearly to 1 as d→∞.

Proof. For notational convenience, let P ≥ 0 be the probability of interest:

P = P
(
(X1, X2) is convexly separable

)
.

Suppose that there exists a coordinate k ∈ {1, 2, . . . , d} such that x(i)k < y
(j)
k for all pairs (i, j) ∈

{1, 2, . . . ,M} × {1, 2, . . . , N} and that a := min{y(1)k , . . . , y
(N)
k } < max{y(1)k , . . . , y

(N)
k } =:

b. Then, let X = {x ∈ Rd : xk ∈ [a, b]}. That is, X is the extrusion of the convex hull of
the projections {y(1)k , . . . , y

(N)
k } along all remaining coordinates. The set X is a nonempty closed
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convex set, and it is clear by our supposition that X2 ⊆ X and X1 ⊆ Rd \ X . Therefore, the
supposition implies that (X1, X2) is convexly separable, and thus

P ≥ P
(
there exists k ∈ {1, 2, . . . , d} such that x(i)k < y

(j)
k for all pairs (i, j)

and that min{y(1)k , . . . , y
(N)
k } < max{y(1)k , . . . , y

(N)
k }

)
= 1− P

(
for all k ∈ {1, 2, . . . , d}, it holds that x(i)k ≥ y

(j)
k for some pair (i, j)

or that min{y(1)k , . . . , y
(N)
k } = max{y(1)k , . . . , y

(N)
k }

)
= 1−

d∏
k=1

P
(
x
(i)
k ≥ y

(j)
k for some pair (i, j) or min{y(1)k , . . . , y

(N)
k } = max{y(1)k , . . . , y

(N)
k }

)
,

where the final equality follows from the independence of the coordinates of the samples. Since
min{y(1)k , . . . , y

(N)
k } < max{y(1)k , . . . , y

(N)
k } almost surely, we find that

P ≥ 1−
d∏
k=1

(
P(x

(i)
k ≥ y

(j)
k for some pair (i, j))

+ P(min{y(1)k , . . . , y
(N)
k } = max{y(1)k , . . . , y

(N)
k })

)
= 1−

d∏
k=1

P(x
(i)
k ≥ y

(j)
k for some pair (i, j))

= 1−
d∏
k=1

(
1− P(x

(i)
k < y

(j)
k for all pairs (i, j))

)

= 1−
d∏
k=1

1−
∏

(i,j)∈{1,...,M}×{1,...,N}

P(x
(i)
k < y

(j)
k )


= 1−

d∏
k=1

1−
∏

(i,j)∈{1,...,M}×{1,...,N}

1

2


= 1−

(
1− 1

2MN

)d
,

which proves (1). The linear convergence to 1 as d → ∞ of the probability of F̂Id containing
a classifier that classifies all x(i) into class 1 and all y(j) into class 2 follows immediately from
Theorem 3.
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D CIFAR-10 CATS-VERSUS-DOGS CONVEX SEPARABILITY

In order to establish that the cat and dog images in CIFAR-10 are convexly separable, we experi-
mentally attempt to reconstruct an image from one class using a convex combination of all images
in the other class (without augmentation such as random crops, flips, etc.). Namely, if x is drawn
from one class and y(1), . . . , y(N) represent the entirety of the other class, we form the following
optimization problem:

minimize
α∈RN

∥∥∥x− N∑
j=1

αjy
(j)
∥∥∥
2

subject to α ≥ 0,

N∑
j=1

αj = 1.

The reverse experiment for the other class follows similarly. We solve the optimization using
MOSEK (ApS, 2019), and report the various norms of x−∑N

j=1 αjy
(j) in Figure 4. Reconstruction

accuracy is generally very poor, with no reconstruction achieving better than an `1-error of 52. A
typical reconstructed image is shown in Figure 5.
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Figure 4: Reconstructing CIFAR-10 cat and dog images as convex combinations. The label “Dogs
→ cat” indicates that a cat image was attempted to be reconstructed as a convex combination of all
5, 000 dog images.
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Figure 5: Reconstructing a CIFAR-10 cat image (left) from a convex combination of dog images
(right). The reconstruction error norms are 294.57, 6.65, and 0.38 for the `1-, `2-, and `∞-norms,
respectively. These are typical, as indicated by Figure 4.

E EXPERIMENTAL SETUP

We include a detailed exposition of our experimental setup in this section, beginning with general
details on our choice of epochs and batch size. We then discuss baseline methods, architecture
choices for our method, class balancing, and data processing.

Epochs and batch size. For the MNIST 3-8 experiments, we used 30 epochs for all methods. This
was increased to 50 epochs for the Malimg dataset, 150 epochs for CIFAR-10 cats-dogs (besides
the smoothing baselines which were given 600 epochs), and 225 epochs for Kaggle cats-dogs. The
batch size was 64 for all datasets besides the 512× 512 Malimg dataset, where it was lowered to 32.

Hardware. All experiments were conducted on a single Ubuntu 20.04 instance with an Nvidia RTX
A6000 GPU. Complete reproduction of the experiments takes approximately 0.08 GPU-years.

E.1 BASELINE METHODS

We provide additional details on each of the baseline methods below.

Randomized smoothing. Since the certification runtime of randomized smoothing is large, espe-
cially for the 512 × 512 pixel Malimg images, we evaluate the randomized smoothing classifiers
over 104 samples and project the certified radius to 105 samples by scaling the number fed into
the Clopper-Pearson confidence interval, as described in Cohen et al. (2019) (we exempt the small
MNIST 3-8 dataset and evaluate the full 105 samples). This allows for a representative and improved
certified accuracy curve while dramatically reducing the method’s runtime. We take an initial guess
for the certification class with n0 = 100 samples and set the incorrect prediction tolerance param-
eter α = 0.001. Our MNIST base classifier was a two-hidden layer ReLU multilayer perceptron
with (n1, n2) = (200, 50) hidden features to maintain consistency with the other MNIST methods.
For CIFAR-10 we use a depth-40 Wide ResNet and for Kaggle we use a ResNet-50 architecture,
mirroring the choices from Cohen et al. (2019); Yang et al. (2020a). To improve computational
efficiency on the large Malimg images we use a ResNet-18. All networks were trained using SGD
with an initial learning rate of 0.1, Nesterov momentum of 0.9, weight decay of 10−4, and cosine
annealing scheduling as described in Yang et al. (2020a). We set the smoothing noise parameter
σ = 0.75 for the MNIST 3-8 and CIFAR-10 cats-dogs experiments; for the higher-resolution Kag-
gle cats-dogs and Malimg experiments we increase the noise to σ = 3.5, matching the highest noise
level examined in Levine & Feizi (2021).

Splitting noise. As this method is a deterministic derivative of randomized smoothing, it avoids the
many aforementioned hyperparameter choices. We use the same architectures described above for
the other randomized smoothing experiments.
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Cayley convolutions. To maintain consistency, we use a two-hidden layer multilayer perceptron
with (n1, n2) = (200, 50) hidden features, CayleyLinear layers, and GroupSort activations for the
MNIST experiment. For the CIFAR-10 experiment, we use the ResNet9 architecture implementation
from Trockman & Kolter (2021). Following the authors’ suggestions, we trained these networks
using Adam with a learning rate of 0.001.

`∞-distance nets. As the architecture of the `∞-distance net (Zhang et al., 2021a) is substantially
different from traditional architectures, we use the authors’ 5-layer MNIST architecture and 6-layer
CIFAR-10 architecture with 5120 neurons per hidden layer. Unfortunately, the classification accu-
racy on the CIFAR-10 cats-dogs experiment remained near 50% throughout training. This was not
the case when we tested easier classes, such as planes-versus-cars, where large features (e.g., blue
sky) can be used to discriminate. We therefore only include this model in the MNIST experiments,
and use the training procedure directly from the aforementioned paper’s codebase.

E.2 CONVEX CONVNET ARCHITECTURE AND TRAINING

The convex ConvNet architecture consists of a sequence of convolutional layers, BatchNorms, and
ReLU nonlinearities. The first convolutional layer is unconstrained, as the composition of a convex
function with an affine function is still convex (Amos et al., 2017). All subsequent convolutions
and the final linear readout layer are uniformly initialized from some small positive weight interval
([0, 0.003] for linear weights, [0, 0.005] for convolutional weights) and projected to have nonnega-
tive weights after each gradient step. We found this heuristic initialization choice helps to stabilize
network training, as standard Kaiming initialization assumptions are violated when weights are con-
strained to be nonnegative instead of normally distributed with mean zero. More principled weight
initialization strategies for this architecture would form an exciting area of future research. Be-
fore any further processing, inputs into the network are fed into an initial BatchNorm; this enables
flexibility with different feature augmentation maps.

Since the first convolutional layer is permitted negative weights, we generally attain better perfor-
mance by enlarging the first convolution kernel size (see Table 1). For subsequent convolutions, we
set the stride to 1, the input and output channel counts to the output channel count from the first con-
volution, and the padding to half the kernel size, rounded down. This ensures that the output of each
of these deeper convolutions has equivalent dimension to its input, allowing for an identity residual
connection across each convolution. If Ci(z) is a convolutional operation on a hidden feature z, this
corresponds to evaluating Ci(z) + z instead of just Ci(z). The final part of the classifier applies
MaxPool and BatchNorm layers before a linear readout layer with output dimension 1. See Figure 6
for a diagram depicting an exemplar convex ConvNet instantiation.

For training, we use a standard binary cross entropy loss, optionally augmented with a Jacobian
regularizer (Hoffman et al., 2019) scaled by λ > 0. As our certified radii in Theorem 1 vary
inversely to the norm of the Jacobian, this regularization helps boost our certificates at a minimal
loss in clean accuracy. We choose λ = 0.1 for Malimg, λ = 0.01 for Kaggle and CIFAR-10 cats-
dogs, and λ = 0.0001 for MNIST 3-8. Further ablation tests studying the impact of regularization
are reported in Appendix G. All feature-convex networks were trained using SGD with a learning
rate of 0.001, momentum 0.9, and exponential learning rate decay with γ = 0.99.

Dataset Features Depth C1 size C1 stride C1 dilation C2,... size Pool

Malimg 32 4 21 2 1 3 4
CIFAR-10 16 5 11 1 1 3 1
Kaggle 32 5 15 1 2 3 8

Table 1: Convex ConvNet architecture parameters. C1 denotes the first convolution, with C2,...

denoting all subsequent convolutions. The “Features” column denotes the number of output features
of C1, which is held fixed across C2,.... The “Pool” column refers to the size of the final MaxPool
window before the linear readout layer. The MNIST architecture is a simple multilayer perceptron
and is therefore not listed here.
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Figure 6: An example convex ConvNet of depth 4 with aC1 stride of 2, pool size of 4, and 224×224
images. There are 6 input channels from the output of the feature map ϕ : x 7→ (x− µ, |x− µ|).

E.3 CLASS ACCURACY BALANCING

As discussed in Section 4, a balanced class 1 and class 2 test accuracy is essential for a fair com-
parison of different methods. For methods where the output logits can be directly balanced, this
is easily accomplished by computing the ROC curve and choosing the threshold that minimizes
|TPR− (1−FPR)|. This includes both our feature-convex classifiers with one output logit and the
Cayley orthogonalization and `∞-net architectures with two output logits.

Randomized smoothing classifiers are more challenging as the relationship between the base clas-
sifier threshold and the smoothed classifier prediction is indirect. We address this using an iterative
balancing procedure. Namely, on each iteration, the classifier’s prediction routine is executed over
the test dataset and the “error” between the class 1 accuracy and the class 2 accuracy is computed.
The base classifier decision threshold is then shifted proportionally to the error, and the procedure is
continued until the error magnitude drops below 1%.

E.4 DATA PROCESSING

For consistency with Zhang et al. (2021a), we augment the MNIST training data with 1-pixel
padding and random cropping. The CIFAR-10 dataset is augmented with 3-pixel edge padding,
horizontal flips, and random cropping. We similarly randomly crop and flip the Kaggle cats-dogs
dataset, with scaling bounds [0.5, 1.0]. The Malimg dataset is augmented with 20-pixel padding and
random 512× 512 cropping.

For CIFAR-10 and MNIST, we use the preselected test sets. For Malimg and Kaggle cats-dogs
we hold out a random 20% and 10% test dataset, respectively, although this may not be entirely
used during testing. The training set is further subdivided by an 80%-20% validation split. For all
experiments, we use the first 1000 test samples to evaluate our methods.

F `2- AND `∞-CERTIFIED RADII

This section reports the counterpart to Figure 2 for the `2- and `∞-norms. Across all experiments, we
attain substantial `2 and `∞ radii without relying on computationally expensive sampling schemes
or nondeterminism. Methods that certify to another norm ‖ · ‖p are converted to `q-radii at a factor
of 1 if p > q or d1/p−1/q otherwise.
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Certified `2-radii are reported in Figure 7. Note that some methods’ certificates scale poorly in high
dimensions and are thus omitted in the Malimg and Kaggle cats-dogs plots. Our `2-radii are moder-
ate, generally half the size of those produced by Gaussian randomized smoothing on low-resolution
datasets. Higher resolution images prove more challenging—see the dimensionality discussion in
Section 4.2.

Certified `∞-radii are reported in Figure 8. For the MNIST 3-8 experiment, the `∞-distance nets
produce exceptional certified radii, nearly achieving the theoretical maximum certified radii of 0.5;
this is a logical upper bound as it suffices to perturb the entire image to a uniform gray. Compared
to randomized smoothing, our `∞-radii seem to scale similarly for the higher-dimensional Malimg
and Kaggle cats-dogs datasets.
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Figure 7: Class 1 certified radii curves for the `2-norm. Methods with negligible radii not shown.
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Figure 8: Class 1 certified radii curves for the `∞-norm. Methods with negligible radii not shown.

G ABLATION TESTS

We conduct a series of ablation tests on the CIFAR-10 cats-dogs dataset, examining the impact of
regularization, feature maps, and data augmentation.

G.1 REGULARIZATION

Figure 9 examines the impact of Jacobian regularization over a range of regularization scaling factors
λ, with λ = 0 corresponding to no regularization. Clean accuracy is minimally affected, while
increasing λ generally enlarges the certified radii. Further increases in λ yield minimal additional
benefits.

G.2 FEATURE MAP

In this section, we investigate the importance of the feature map ϕ. Figure 10 compares our standard
feature-convex classifier with ϕ(x) = (x−µ, |x−µ|) against an equivalent architecture with ϕ = Id.
Note that the initial layer in the convex ConvNet is a BatchNorm, so even with ϕ = Id, features still
get normalized before being passed into the convolutional architecture. We perform this experiment
across both the standard cats-dogs experiment (cats are certified) in the main text and the reverse
dogs-cats experiment (dogs are certified).

26



Under review as a conference paper at ICLR 2023

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

`1 radius

0.0

0.2

0.4

0.6

0.8

1.0

C
er

tifi
ed

ac
cu

ra
cy

λ = 0.0

λ = 0.0025

λ = 0.005

λ = 0.0075

λ = 0.01

[72.2% clean]
[72.6% clean]
[69.8% clean]
[72.2% clean]
[71.8% clean]

Figure 9: Impact of the Jacobian regularization parameter λ on CIFAR-10 cats-dogs classification.

As expected, the clean accuracies for both datasets are lower for ϕ = Id, while the certified radii are
generally larger due to the Lipschitz scaling factor in Theorem 1. Interestingly, while the standard
ϕ produces comparable performance in both experiments, the identity feature map classifier is more
effective in the dogs-cats experiment, achieving around 7% greater clean accuracy. This reflects the
observation that convex separability is an asymmetric condition and suggests that feature maps can
mitigate this concern.
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Figure 10: (a) Certification performance with cats as class 1 and dogs as class 2. (b) Certification
performance with dogs as class 1 and cats as class 2.

G.3 UNAUGMENTED ACCURACIES

Table 2 summarizes the experimental counterpart to Section 3.2. Namely, Corollary 1 proves that
there exists an input-convex classifier (ϕ = Id) that achieves perfect training accuracy on the
CIFAR-10 cats-dogs dataset with no dataset augmentations (random crops, flips, etc.). Our prac-
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tical experiments are far from achieving this theoretical guarantee, with just 73.4% accuracy for
cats-dogs and 77.2% for dogs-cats. Improving the practical performance of input-convex classifiers
to match their theoretical capacity is an exciting area of future research.

Table 2: CIFAR-10 accuracies with no feature augmentation (ϕ = Id) and no input augmentation.

Class 1-class 2 data Training accuracy Test accuracy (balanced)

Cats-dogs 73.4% 57.3%
Dogs-cats 77.2% 63.9%
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