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Abstract—Cone beam computed tomography (CBCT) plays 
a vital role in the jaw lesions clinical diagnosis. However, 
different types of jaw lesions exhibit similar appearances in 
CBCT slices, while existing computer-aided diagnostic models, 
neither 2D slices with lack of distinctive features or 3D volume 
with highly redundant information, resulting in limited 
performance. For better detection of jaw lesions, we proposed a 
novel cross-view feature mining detection network based on 
reinforcement learning to adaptively extract the most 
characteristic slices from multi-views. Specifically, for every 
transverse plane slice in the CBCT image, policy network is 
designed to extract these corresponding sagittal and coronal 
slices with the most critical features for lesion detection. And 
then these slices are encoded and fused into the recognition 
branch which enhanced the overall performance. In our 
experiments, the proposed network reached detection recall of 
79.7%, precision of 89.2%, and high average precision (AP) of 
0.84 with an intersection-over-union (IoU) of 0.5. Quantitative 
results show that the proposed network is more effective than 
existing advanced approaches in the clinical detection and 
recognition of jaw lesions. 
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I. INTRODUCTION  

Jaw lesions are the most common diseases in the human 
maxillofacial region, which present with a variety of different 
pathological characteristics [1, 2]. There are three common 
types of jaw lesions clinically: solid lesion, cystic lesion, and 
mixed lesion. Cone beam computed tomography (CBCT) is 
widely used in the clinical examination of jaw lesions, 
offering advantages such as high spatial resolution, low 
radiation dose, and imaging efficiency. However, clinical 
diagnosis of jaw lesions heavily relies on subjective 
evaluation of radiologists [3], leading to variability among 
practitioners [4], especially for lesions with unclear imaging 
features. Since the treatment options for these three types of 
jaw lesions are different, misdiagnosis of the lesions will lead 

to serious medical consequences. Therefore, computer-aided 
diagnosis has become a major research direction at present [5]. 
Yang et al. compared the performance of the YOLO network, 
oral and maxillofacial surgeons, and general practitioners in 
terms of precision, recall, accuracy, and F1 score, with the 
YOLO network outperforming human experts [6]. Yeshua et 
al. adopt Mask R-CNN for the lesions segmentation task 
(segmented as lesions or normal regions) in CBCT slices and 
combined the 2D results into 3D segmentation for subsequent 
lesion volume computation [7]. 

In the clinical diagnosis of jaw lesions, it is crucial not only 
to determine the presence of a lesion but also to determine the 
type to formulate an applicable treatment plan. Radiologists 
often rely on CBCT scans to confirm the cystic or solid nature 
of the jaw lesions. Subsequently, based on different density 
characteristics and in conjunction with pathological results, 
diagnosis results will be made. Accordingly, this paper 
classifies jaw lesions into these three categories: solid lesions, 
cystic lesions, and mixed lesions, also locates the lesion 
location. We introduced one novel method termed "adaptive 
cross-view feature mining" to dynamically extract the most 
distinctive feature slices from disparate views. Specifically, 
we employed one policy network based on reinforcement 
learning to identify and extract the most representative slices, 
i t mines features with the highest degree of uniqueness and 
relevance, thereby improving the performance of the entire 
network. 

Our original contributions are listed below: 

� We presented one feature mining policy network that 
leverages reinforcement learning to adaptively mine slices 
from multiple CBCT slices with the most distinctive 
features. 

� We introduced one cross-view feature fusion strategy for 
3D CBCT images to enhance recognition performance by 
integrating distinct features extracted from multi-views. 



II. RELATED WORKS 

A. Jaw Lesions Diagnosis 
With the development of artificial intelligence (AI) and the 

increase in computational power, deep learning (DL) has 
shown great potential in the analysis of various medical 
imaging data [8] and has been applied in disease diagnosis, 
treatment assistance, prognosis prediction and other medical 
fields [9]. An increasing number of DL-based methods have 
been proposed for the classification, detection, and 
segmentation of medical dental images [10]. Studies have 
shown that the diagnostic accuracy of artificial intelligence in 
diagnosing oral diseases is comparable to or even surpasses 
that of professionals [11]. Lee et al. adopted the GoogLeNet 
Inception-v3 architecture to evaluate the classification 
performance of dentigerous cysts, keratocystic odontogenic 
tumors, and periapical cysts in CBCT and panoramic images. 
They enrolled 247 patients and used histopathologic results as 
the gold standard [12]. Literature [13] employed Inception v3 
networks to categorize ameloblastomas and keratocystic 
odontogenic tumors in CBCT images. Jonas first categorized 
panoramic images into four classes (periapical cyst, periapical 
granuloma, other cysts, no lesions) using MobileNetv2, then 
employed YOLOv3 to detect lesions in images classified as 
periapical cysts or granulomas [14]. Ariji et al. utilized 
DetectNet to detect ameloblastomas, keratocystic odontogenic 
tumors, dentigerous cysts, radicular cysts, and simple bone 
cysts in panoramic images [15]. Kwon et al. modified 
YOLOv3 network to detect dentigerous cysts, keratocystic 
odontogenic tumors, periapical cysts, and ameloblastomas in 
1282 panoramic radiographs, increasing the dataset size 12-
fold via flipping, rotation, and intensity variation [16]. 

B. Reinforcement Learning in Medical Image Analysis 
In recent years, reinforcement learning has been widely 

used in the field of DL and has shown its superiority in various 

image processing tasks, especially in medical image detection 
applications [17]. Maicas et al. detected breast lesions from 
DCE-MRI images by implementing an attention mechanism 
through training an intelligent agent to search and focus on 
appropriate regions within the input volume, thereby 
effectively guiding the detection process [18]. Xu et al. takes 
computational challenge of breast cancer classification from 
histopathological images [19]. The selection network is 
trained using reinforcement learning, which outputs a soft 
decision about whether the cropped patch is necessary for 
classification. Alansary et al. evaluates multiple different 
reinforcement learning agents with training strategies for 
detecting anatomical landmarks in 3D images [20]. Yang et al. 
localized multiple uterine standard planes in 3D ultrasound 
simultaneously by one multi-agent DRL [21], which is 
equipped with one-shot neural architecture search (NAS) 
module. 

III. METHODS 

A. Overall Architecture 
The structure of the detection of jaw lesions is depicted in 

the Fig. 1. Our network is mainly divided into two modules. 
The global feature extraction (GFE) module (composed of 
encoder and decoder), which is used to extract image features 
of one single two-dimensional CBCT slice. And the slices-
feature mining and fusion (SMF) module, which is used to 
adaptively extract cross-view information for feature fusion. 

Mirroring the clinical practice, axial-view image slice was 
selected as the principal-view slice Spv, which serves as the 
foundation for subsequent detection and recognition tasks. 
And the sagittal- and coronal-views provide supplementary 
perspectives, as auxiliary-view slices Sav. 

 

Fig. 1. The overall architecture of the proposed model. 



B. GFE network 
The core process begins with the input of the Spv into 

convolutional neural network, where the initial feature 
extraction captures semantic nuances pertinent to the slice. 
The network architecture is fortified with residual blocks and 
integrated skip connections between the encoder and decoder, 
combining high-level semantic information with fine-grained 
spatial details. Following this, a feature pyramid framework is 
employed to generate feature maps across diverse scales, 
enhancing our ability to identify lesions of varying dimensions. 

C. SMF module 
SMF block draws parallels to conventional dual-branch 

target detection heads, bifurcates its output between lesion 
classification and localization. Within this block, Sav are 
adaptively extracted through the policy network, from which 
features are mined and fused into the jaw lesion recognition 
framework. This integration process is meticulously designed 
to augment the jaw lesions recognition network with the more 
comprehensive feature set derived from those multiple-view, 
thereby elevating the accuracy and robustness of the detection 
mechanism. 

D. Policy Network for Cross-View Slices Adaptively 
Extraction 
In one CBCT image, slices from three viewing plane will 

intersect at one point in the 3D space, upon this, for each axial 
slice we select the sagittal and coronal slices that are most 
characteristic of the lesions, and the point of intersection of 
these three slices is what we call the best feature point Pbf. In 
other words, if we determine the Pbf, we obtain the slices from 
different views which present the most typical features for 
lesions recognition. 

In SMF block, we first divide the bounding box from the 

localization branch into n×n regions evenly (here we take 

3×3 as an example), and select the center point of each region 

as a candidate for Pbf. We extract coarse features from the 

axial slice, together with the n×n Pbf candidates as inputs to 

the "π" network (Fig. 2). "π" is a policy network based on 

actor-critic (AC) algorithm [22]. The actor is responsible for 

selecting an action based on the current policy. Critic is 

responsible for evaluating how good the action taken by 

Actor is. The critic updates the value function based on the 

temporal difference (TD) error, which is the difference 

between the actual reward plus the discounted expected value 

of the next state and the value of the current state. The actor 

then updates its policy based on feedback from the critic. In 

this work, the actor will choose the Pbf from the n×n 

candidate points: {P1, P2, …, Pn×n}. In specific, Pbf is drawn 

from the distribution: 

                                   .                              (1) 

where e denotes the coarse feature from the axial slice, cn 
denotes the n×n candidate points. After selecting one point 
Pk, π will receive a reward rk indicating whether this action is 
beneficial. Ideally, the reward is expected to measure the 
value of selecting Pk in terms of lesion recognition. With this 
aim, we define rk as. 

.          (2) 

here y refers to the label corresponding to the lesion, Sy(k) 
refers to the softmax prediction score on y (i.e., confidence on 

the ground truth label), Sy(0) refers to the score of P0 (center 
of the bounding box) on y. That is, we define the reward value 
as the increase in confidence value of choosing Pk as the Pbf 
compared to choosing the center point of the bounding box as 
the Pbf. 

After obtaining the Pbf, we determine the coordinates of 
the Pbf in the axial slice, and together with the layer number 
of the axial slice in CBCT, we can determine the coordinates 
of Pbf in 3D space: (xk, yk, zk). With Pbf, slices across three 
views are subsequently determined, the flow is shown in the 
Fig. 3. 

 

Fig. 2. The architecture of the policy network π. 

 

Fig. 3. Process for determining cross-view slices. 

E. Cross-View Feature Fusion 
One 2D image slice in the CBCT scan can be seen as one 

single channel image, thus, we can process the slices across 
the three views as a three-channel image in an RGB-like 
format. The cross-view slices encoding structure, as shown in 
the Fig.1, comprises several Residual Bottleneck units, each 
containing: one bottleneck layer to reduce the dimensionality 
of the input feature map, thereby reducing computational load; 
one 3×3 convolutional layer to extract features while 
maintaining the size of the feature map; and one expansion 
layer, one 1×1 convolutional layer, to increase the dimension 
of the feature map back to its pre-bottleneck size, helping to 
minimize information loss. After passing through several 
Residual Bottlenecks, the cross-view slices will undergo one 
convolutional layer to match the size of feature map of the 
main network, preparing for subsequent fusion. 

Note that we used a convolutional block to make the 
encoded cross-view features have the same shape as the 
classification branch features of the detection network. We 
used multiplication fusion strategy, which multiplies these 
corresponding elements of each feature vectors. This above 
strategy is computationally less expensive, straightforward to 
implement, and can better capture nonlinear interactions 
between features, enhancing expressive power of the model. 

With the above structure, the classification branch not only 
directly benefits from the optimization brought by the fusion 
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of cross-view information but also establishes a synergistic 
learning link with the location branch. This inter-branch 
enhancement addresses the issue of diminishing correlation 
between the classification and location branches. 

IV. EXPERIENT AND ANALYSIS 

A. Dataset 
The dataset in this study comes from the School of 

Stomatology, Peking University and has received approval 
from the ethics review board. Pathological and radiological 
diagnoses were used as the gold standard for the data. The 
dataset was annotated and verified by a team comprising three 
radiologists with over three years of experience, one of them 
with over ten years of experience, and one senior radiologist. 
The inclusion types and criteria are as shown in Table I. For 
validation of our proposed framework, the dataset was divided 
into training set, validation set and test set at a ratio of 
0.6:0.15:0.25. 2D slices in the axial planes were resized to 
580×580 pixels in this process. Some example images are 
shown in the Fig. 4. 

B. Ethical Approval 
This study was approved by the Biomedical Ethics 

Committee of Peking University School and Hospital of 
Stomatology (Approval Number: PKUSSIRB-202281152). 
Written informed consent was obtained from all participants 
prior to this study. All procedures were conducted in 
accordance with the Declaration of Helsinki. 

TABLE I.  INCLUSION/EXCLUSION CRITERIA USED IN THE STUDY 

Category Inclusion Criteria Exclusion Criteria 
Clinical 
Records 

Complete Incomplete 

Disease 
Type 

 Cystic lesions 

(42): periapical 
cyst, dentigerous 
cyst, odontogenic 
keratocyst, 
ameloblastoma. 

 Solid lesions 

(22): odontoma. 

 Mixed lesions 

(13): ossifying 
fibroma. 

Excluding cases with 
complex lesions, excluding 
cases with pathological 
diagnoses other than 
dentigerous cyst, 
odontogenic keratocyst, 
standard type 
ameloblastoma, odontoma, 
ossifying fibroma, as well 
as extra osseous/peripheral 
ameloblastoma, metastatic 
ameloblastoma.  

Imaging 
Timing 

Pre-operative 
CBCT images 

Excluding patients with a 
history of previous surgery, 
malignant lesions, or 
recurrence; excluding 
postoperative X-rays 

Image 
Quality 

Images clearly 
showing the lesion 
areas of interest 

 Images with significant 

artifacts affecting the 
region of interest, 
including metal artifacts, 
motion artifacts, etc. 

 Radiological images 

severely distorted, with 
artificial noise, blurring, 
and poor quality making 
them difficult to 
distinguish. 

C. Training Details 
We experimented with CUDA 11.1 on Ubuntu server 

18.04 with 1 NVIDIA RTX 6000 Ada Generation GPU (48 
GB). The designed framework is implemented using Python 
3.7, and Pytorch. The axial slices sizes vary across different 
cases in the dataset. Thus, in the preprocessing stage, for axial 
slices smaller than 580 pixels, zero padding is applied to the 
edges to pad the images to 580×580. For axial slices larger 
than 580 pixels, up-sampling is used to unify the image size. 

     
(a)                         (b)                         (c) 

     
 (d)                          (e)                          (f) 

Fig. 4. Axial plane slices of CBCT images, with lesion areas marked in red 
boxes, (a)-(d) represent cystic lesions, (e) represents a solid lesion, and (f) is 
a mixed lesion. 

D. Visualization and Quantitative Results 
The visualization results of our network's detections are 

shown in the Fig. 5, the first row shows the original axial slice 
to be detected, the second row presents the ground truth for 
detection, the third row displays the predicted results, and the 
fourth and fifth rows show the slices from the other two 
viewing planes mined by the policy network. 

In our comparative experiments conducted on four 
networks (YOLOv8, Faster-RCNN [23], SSD [24], and 
DETR [25]), we considered one prediction to be correct if the 
intersection over union (IoU) between the predicted bounding 
box and the true bounding box exceeded 0.5, and incorrect if 
the IoU was less than 0.5. Under the condition of an IoU 
threshold set to 0.5, we obtained different categories of 
precision and recall values for five groups of networks as 
shown in the Fig. 6, where precision is denoted as P, and recall 
is denoted as �. The calculation formulas are as follows: 

                    ,   (3) 

where TP stands for True Positive, FN for False Negative, 
and FP for False Positive. It is observed that mixed lesions 
have very low recall value in the other four networks. This is 
due to the fact that mixed lesions exhibit different pathological 
characteristics at different slices, if we only identify the type 
of lesion from one single view, it is easy to misclassify them 
as other types of lesions. Our proposed network mines and 
integrates features from different views, compensating for the 
lack of distinctive features in single-view slice.  This approach 
maintains the high precision for mixed lesions while achieving 
a recall rate of 0.701. Besides, the overall mean precision is 
0.892, the recall is 0.797, which are all much higher than the 
other networks.



 

 

 

 

 

Fig. 5. Visualization results on detection of jaw lesions from different slices. 

The mean average precision (mAP)50 value and mAP50-
95 value, compared with other networks, are shown in Tables 
II and III. respectively. Here, mAP50 refers to the mean 
average precision at an IoU threshold of 0.5, while mAP50-95 
represents the average precision across the range of IoU 

thresholds increasing from 0.5 to 0.95, with increments of 0.05 
in our experiments. The network proposed in this paper 
achieved a mAP50 value of 0.843 and a mAP50-95 value of 
0.695, both significantly surpassing the comparative networks. 

 

Fig. 6. The recall and precision results of different detection models. 

Additionally, we conducted detection experiments on 
different Spv: using the axial slice as the Spv with sagittal and 

coronal slices as Sav; employing the sagittal plane as the Spv 
with axial and coronal slices as Sav; and utilizing the coronal 



slice as the Spv with sagittal and axial planes as Sav. The R, P 
and mAP50 values from these experiments results are 
presented in Table  Ⅳ. 

TABLE II.  mAP50 VALUE OF THREE TYPES OF LESIONS AND 

AVERAGE VALUE, THE RESULTS COME FROM DIFFERENT DETECTION 

MODELS YOLOV8 FASTER-RCNN, SSD, DETR AND OUR PROPOSED 

MODEL, THE BEST RESULTS ARE IN BOLD. 

Models cystic solid mixed all 

YOLOv8  0.828 0.891 0.521 0.747 

Fater-RCNN [23] 0.767 0.894 0.514 0.725 

SSD [24] 0.800 0.835 0.438 0.691 

DETR [25] 0.780 0.902 0.574 0.752 

Ours 0.807 0.944 0.778 0.843 

TABLE III.  mAP50-95 VALUE OF THREE TYPES OF LESIONS AND 

AVERAGE VALUE, THE RESULTS COME FROM DIFFERENT DETECTION 

MODELS YOLOV8 FASTER-RCNN, SSD, DETR AND OUR PROPOSED 

MODEL, THE BEST RESULTS ARE IN BOLD. 

Models cystic solid mixed all 

YOLOv8 0.684 0.612 0.388 0.561 

Fater-RCNN [23] 0.683 0.599 0.332 0.538 

SSD [24] 0.646 0.547 0.307 0.500 

DETR [25] 0.654 0.622 0.395 0.557 

Ours 0.734 0.730 0.621 0.695 

TABLE IV.  RESULTS FROM DIFFERENT Spv, USING AXIAL, SAGITTAL 

AND CORONAL SLICE AS THE SPV. 

Views P R mAP50 

axial slice 0.892 0.797 0.843 

sagittal slice 0.875 0.763 0.826 

coronal slice 0.859 0.791 0.832 

E. Ablation Study 
Here, we performed ablation studies to evaluate these 

enhancement. Baseline is a traditional dual-branch detection 
network without cross-view selection and fusion; baseline + 
cross-view feature fusion uses the center point of the bounding 
box as the Pbf to determine the cross-view features and then 
fuse them into the classification branch; baseline + Pbf 
adaptively selecting + cross-view feature fusion is the main 
method proposed in this paper. Table V shows the quantitative 
results of our ablation studies. With our proposed strategy, 
mAP50 value is improved by 0.121 compared to the baseline. 

TABLE V.  ABLATION STUDY RESULTS ON mAP50. 

Frameworks cystic solid mixed all 

Baseline 0.772 0.882 0.506 0.720 

Baseline + cross-view feature 
fusion 

0.803 0.943 0.741 0.829 

Baseline + Pbf adaptively selecting 

+ cross-view feature fusion 
0.806 0.946 0.772 0.841 

F. Discussion and Analysis 
In this study, we present a jaw lesions detection and 

recognition network that can adaptively select slices from 
different views of the CBCT image, and utilizes cross-view 
feature fusions to significantly enhance the performance of 
jaw lesions recognition. Meanwhile, the slices selection 

strategy based on the reinforcement learning is able to 
adaptively select the slices with the most typical features. The 
fusion of sagittal, coronal, and axial slices addresses the 
challenge of identifying lesions with similar radiographic 
appearance, as well as the difficulty of detecting lesions from 
one single 2D slice. Our results show that cross-view fusion 
based on adaptive selection strategy greatly improves the 
accuracy of detection and recognition, highlighting the 
potential of adaptive cross-view fusion technology in medical 
imaging. 

One of the main findings of this study is that our network 
is able to compensate for the lack of distinctive features in 
individual slices, which is a common limitation in CBCT 
image analysis. By adaptively selecting and fusion features 
from multiple views, our network is able to provide a more 
comprehensive representation of jaw lesions, leading to more 
reliable diagnoses. 

However, this study also acknowledges certain limitations. 
The first aspect is the weak interpretability of the adaptive 
slice selection. Although our experiments show that the 
diagnostic accuracy of the network can be improved by fusing 
adaptively selected cross-view slices, we cannot accurately 
understand the reasons why the network chooses these slices 
over the other slices. Interpretability of network decisions is 
one of the most important factors that enable computer-aided 
diagnosis to be used in the clinic. The second is that the 
present network uses supervised learning, which relies heavily 
on well-annotated medical data, whereas for jaw lesions, the 
gold standard data must be supported by pathology results; 
however, not all patients with CBCT images have a pathologic 
diagnosis. In other words, there is limited labeled data that can 
be used as fully supervised learning. Future work will focus 
on enhancing the interpretability of the network and further 
utilizing data without gold standard to improve the 
performance of the network to further improve diagnostic 
accuracy. 

V. CONCLUSION 

We present one method for detection and classification of 
jaw lesions in CBCT images through adaptive cross-view 
feature mining and fusion. Our approach, utilizing 
reinforcement learning, effectively identifies the most 
informative slices from different views, enhancing the model's 
ability to distinguish between lesions with similar appearances. 
The experimental results demonstrate the superiority of our 
method over traditional techniques, offering significant 
improvements in detection and recognition accuracy. Despite 
its promising outcomes, the study highlights the need for 
further research to improve the interpretability of adaptive 
slice selection and reduce reliance on extensively annotated 
datasets. Future work will focus on addressing these 
challenges, aiming to advance the application of deep learning 
in medical images and contribute to more accurate and 
efficient diagnostics in clinical practice. 
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