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Abstract. Pixel-wise predictions are required in a wide variety of tasks such as
image restoration, image segmentation, or disparity estimation. Common mod-
els involve several stages of data resampling, in which the resolution of feature
maps is first reduced to aggregate information and then increased to generate a
high-resolution output. Previous works have shown that resampling operations
are subject to artifacts such as aliasing. During downsampling, aliases have been
shown to compromise the prediction stability of image classifiers. During up-
sampling, they have been leveraged to detect generated content. Yet, the effect of
aliases during upsampling has not yet been discussed w.r.t. the stability and ro-
bustness of pixel-wise predictions. While falling under the same term (aliasing),
the challenges for correct upsampling in neural networks differ significantly from
those during downsampling: when downsampling, some high frequencies can not
be correctly represented and have to be removed to avoid aliases. However, when
upsampling for pixel-wise predictions, we actually require the model to restore
such high frequencies that can not be encoded in lower resolutions. The applica-
tion of findings from signal processing is therefore a necessary but not a sufficient
condition to achieve the desirable output. In contrast, we find that the availability
of large spatial context during upsampling allows to provide stable, high-quality
pixel-wise predictions, even when fully learning all filter weights.

1 Introduction

Most computer vision models addressing perceptual tasks such as image restoration 16}
89|, semantic segmentation [[7,/35L70]], optical flow estimation [20,43|/83|] and disparity
estimation [6,/11},50] in realistic scenarios are required to behave in a stable way, at
least under mild corruptions. Interestingly, for the slightly simpler task of image clas-
sification, recent progress has shown that a model’s robustness does not only depend
on its training but also on its architecture [29-32,41},/42,45,|58,/91}|95]. Specifically,
aliasing, i.e. spectral artifacts that emerge from naive image resampling, have shown to
compromise prediction stability, in particular in the context of classical convolutional
models [33}|37}/48.,/521/69,80L/82]] which predominantly use small filter kernels in com-
bination with severe data aggregation during downsampling [30,|58]]. Principled cures
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Fig. 1: Image restoration example using NAFNet variants on GoPro . Upsampling tech-
niques like Pixel Shuffle (first row) and transposed convolution [22] using small learnable
filters (2x2 or 3x3) (second row) are used by most prior art. Both lead to spectral artifacts for
which the model needs to compensate. The clean (in-domain) restored images look appealing -
while adversaries (here 5-step PGD [49] attack) can leverage aliases such that artifacts become
easily visible. When observed in the frequency domain, they manifest as repeating peaks all over
the spectra. Based on sampling theoretic considerations, we propose Large Context Transposed
Convolutions (7x7 or larger) (bottom row). They significantly increase the model’s stability dur-
ing upsampling, observable in the restored image under attack and the frequency spectrum.

usually refer to basic concepts from signal processing such as anti-aliasing by blur-
ring before downsampling [29][91]. While this discussion on classifier (i.e. encoder)
networks is insightful, it does not provide a recipe to counteract aliases emerging dur-
ing upsampling for pixel-wise prediction tasks such as image restoration. Specifically,
naive upsampling introduces artifacts in the feature representation, such as grid arti-
facts [4,/65]] or ringing artifacts [62]]. As shown in Fig.[I} these artifacts, an inherent
property of inadequate upsampling (refer Sec. [3) are not always visible to the human
eye, are accentuated under adversarial attack such that they can also be seen with a
human eye. We leverage this effect in our analysis. When observed in the frequency
domain, these artifacts are apparent as multiple peaks, i.e. aliases of the original data.

While for downsampling, signal processing laws basically prescribe which part of
the information can be retained at lower resolutions without aliases [76]], “correct”,
alias-free upsampling can not restore the original high-resolution information. Thus,
learning to upsample feature maps such that the feature stability is not harmed is of
paramount importance. In this paper, we therefore first provide a synopsis of differ-
ent aliases that emerge from different upsampling techniques. Based on this work, we
propose a simple, transposed convolution-based upsampling block. We study our pro-
posed operation in the context of various models, from image restoration [16}[89] over
semantic segmentation to disparity estimation [50].
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Our main contributions can be summarized as follows:

— Motivated by sampling theory [76], we study upsampling in models for diverse
pixel-wise prediction tasks. We find that the availability of large kernels in trans-
posed convolutions helps the feature stability and significantly improves over stan-
dard, small kernel transposed convolutions as well as pixel shuffle [[77].

— While large kernels are required to allow for reduced aliasing and to provide the
necessary spatial context for increasing the resolution, additional small kernels can
add details and remain useful.

— We provide empirical evidence for our findings on diverse architectures (includ-
ing vision transformer-based architectures) and downstream tasks such as image
restoration, semantic segmentation, and depth estimation.

— We show empirically that our proposed upsampling operation complements other
feature stability-increasing approaches like adversarial training.

2 Related Work

In the following, we discuss recent challenges for neural networks regarding artifacts
introduced by spatial sampling methods [4,62,/65]. Further, we review related work
on the most recent use of large kernels in CNNs. Finally, we provide an overview of
adversarial attacks to gauge the quality of representations learned by a network.

Spectral Artifacts. Several prior works have studied the effect of downsampling oper-
ations on model robustness, e.g. [21[29]/30,421/461/91,95]]. Inspired by [30], [29] propose
an aliasing-free downsampling in the frequency domain which translates to an infinitely
large blurring filter before downsampling in the spatial domain. Thus, for image clas-
sification, using large filter kernels has been shown to remove artifacts from downsam-
pled representations and it leads to favorable robustness in all these cases [30,42,46].
However, all these works focus on improving the properties of encoder networks.

Models that use transposed convolutions in their decoderf] are widely used for tasks
like image generation [27}/68]] or segmentation [7,/55/64[70]. However, in simple trans-
posed convolutions, the convolution kernels overlap based on the chosen stride and
kernel size. If the stride is smaller than the kernel size, this will cause overlaps in the
operation, leading to uneven contributions to different pixels in the upsampled feature
map and thus to grid-like artifacts [4}/65[. Further, image resampling can lead to aliases
that become visible as ringing artifacts [76]. In the context of deepFake detection, im-
age generation, and deblurring, several works analyzed [[14}/18}21}23|38}144}47]] and
improved upsampling techniques [26}/46,78}/87]] to reduce visual artifacts.

Some architectures like PSPNet [93]], PSANet [94], or PSMNet [[15] simply use
bilinear interpolation operations for upsampling the feature representations. While this
reduces grid artifacts as bilinear interpolation smoothens out the feature maps, it also
has major drawbacks as they sample incorrectly. These new artifacts are sometimes
visible as overly smooth predictions, in particular, apparent in the PSPNet segmentation
masks. The segmentation masks over-smoothen around edges and often miss out on thin

3 For more details on Transposed Convolutions refer to [22]].
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details (predictions showing these are included in the Appendix [B.4). This observation
already shows why image encoding and decoding have to be considered separately
when it comes to sampling artifacts. While during encoding, artifacts can be reduced by
blurring, the main purpose of decoder networks is reducing blur in many applications,
to create fine-granular, pixel-wise accurate outputs, which our approach facilitates.

Large Kernels. For image classification, [54] showed that using large kernels like 7x7
in the CNN convolution layer can outperform self-attention based vision transform-
ers [53)/84]. In [[17,33L35511|66]], the receptive field of the convolution operations was
further expanded by using larger kernels, up to 3131 and 51x51. These larger recep-
tive fields provide more context to the encoder, leading to better performance on clas-
sification, segmentation, or object detection tasks. [[17,51]] use a small kernel in parallel
to capture the local context along with the global context. In contrast to these works,
which are limited to exploring increased context only during encoding, we investigate
if larger kernels can benefit upsampling when considering pixel-wise prediction tasks
such as image restoration or segmentation.

Adbversarial Attacks. The purpose of adversarial attacks is to reveal neural networks’
weaknesses [3}[30}/74,81]] by perturbing pixel values in the input image [[12}28|49].
These perturbations should lead to a false prediction even though the changes are hardly
visible [28//6181]]. Especially attacks that have access to the network’s architecture and
weights, so-called white-box attacks, are a common approach to analyzing weaknesses
within the networks’ structure [12}28]]. They employ the gradient of the network to
optimize the perturbation, which is bounded within an e-ball of the original image,
i.e. € defines the strength of the attack. Most adversarial attacks are proposed to attack
classification networks like the one-step Fast Gradient Sign Method (FGSM) [28]] or the
multi-step Projected Gradient Descent (PGD) attack [49]. However, they can be adapted
to other tasks as e.g. in [59,/67,|88|]. Furthermore, there are dedicated methods like
SegPGD [34] for attacks on semantic segmentation models or PCFA [[74]] and [71,[73]]
for optical flow models and CosPGD [3]] and others [72] for other pixel-wise prediction
tasks. We evaluate the stability of upsampled features using adversarial attacks such as
PGD and CosPGD for image restoration and FGSM and SegPGD for segmentation.

3 Spectral Upsampling Artifacts and How They Can Be Reduced

Following, we first theoretically review artifacts that are caused during upsampling from
a signal processing aspect. We start by describing the spectral artifacts [[76] induced by
the bed of nails interpolation, similar to the discussion in [23]], and then extend the the-
oretical analysis to further upsampling schemes. Second, we derive from this analysis
two hypotheses for the prediction stability of encoder-decoder networks, depending on
their architecture. These hypotheses will motivate the remainder of the manuscript.

Consider, w.l.o.g., a one-dimensional signal I and its discrete Fourier Transform
F(I) with k being the index of discrete frequencies

FDp=> e~ .1, for k=0,...,N—1.
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During decoding, we need to upsample the spatial resolution of I to get I"P. For exam-
ple for an upsampling factor of 2 (often used in DNNs [|1,|161/19}/82,|89]]) we have for
kE=0,...,2N -1

2N-—-1

L S M Y

Jj=0

I )]

where I ; = 0in bed of nails interpolation. Therefore, the second term in (E]) can be
dropped and the first term resembles the original (). Equivalently, we can rewrite
Eq. (1), for I; = 0, using a Dirac impulse comb as

2N—-1 0

M= e2midn. 3 150 —20). )
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If we now apply the pointwise multiplication with the Dirac impulse comb as convolu-
tion in the Fourier domain (assuming periodicity) [25], it is
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We can see that such upsampling creates high-frequency replica of the signal at % for
tin —oo0,...,00 in F(I)"P and spatial frequencies apparent beyond array positions %
will be impacted by spectral artifacts if no appropriate countermeasures are taken.

A standard countermeasure is interpolation of the inserted values with [; = %
for linear interpolation in Eq. (T). Linear interpolation (and in consequence bi-linear
interpolation in 2D signals) corresponds to a convolution with a triangular impulse with
width 2, which can be represented as the convolution of two rectangle functions with
width 1. Accordingly, the Fourier response for frequency ¢, F; of the triangular impulse
is a squared sinc function (sinc?(¢)) with sinc(£) = w. Since the output signal after
interpolation is still discrete, i.e. sampled with sampling rate %, a replica of the interpo-
lation function, the sinc? function, will appear with rate 2 in the resulting spectrum (see
also Fig. 2). The resulting interpolated signal is not optimal for several reasons. Most
importantly, the spectrum of the interpolation function is not flat although the estimated
values appear overly smooth (see Fig.[3] ). This is arguably suboptimal for, for example,
image restoration or segmentation tasks, where fine structural details are supposed to
emerge in the upsampled data.

Note that, in Eq. (), pixel shuffle [[77] will set I ; to completely unrelated values of
a different feature map channel, leading to a highly non-smooth signal with frequencies
at the band limit. The resulting issues in the spectrum are similar to the ones caused by
the bed of nails interpolation. These spectral artifacts can be visually observed in Fig.[3]

Therefore, in transposed convolutions, the interpolation function is not fixed to a
predefined smoothing kernel but learned so that the resulting signal can represent fine
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Fig. 2: (Left) Linear interpolation (pink) of the samples (green) causes aliases. (Right) Optimal
signal reconstruction (pink) is achieved by sinc interpolation. In practice our spatial context is
limited and the interpolation function is discrete. Yet, increasing the kernel size enables the ap-
proximation of larger sinc-like structures.
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Fig.3: An image from GoPro downsampled with 3x3 MaxPooling and then upsampled
using various upsampling techniques. The resulting artifacts are compared on zoomed-in red box
regions for better visibility. Bilinear interpolation causes over-smoothing. Bicubic interpolation
causes overestimation along image boundaries while Pixel Shuffle and Nearest Neighbor cause
strong grid artifacts along with discoloration. Small kernel transposed convolutions cause grid
artifacts, however, on increasing kernel size we start getting better upsampling.

details after the initial bed of nails interpolation and potentially learn to add fine details.
One issue is that the learned convolution kernels may overlap based on the chosen stride
and kernel size. If the stride is smaller than the kernel size, this will cause overlaps in the
operation, leading to uneven contributions to different pixels in the upsampled feature
map and thus to grid-like artifacts [4,[65]. Besides this rather technical aspect, trans-
posed convolutions, if sufficiently large (thus also containing more context), could in
principle learn to approximate correct upsampling functions. This can be understood
when again looking at the Fourier representation. When interpolating, we want to in-
crease the signal array size so that all the original information is preserved and the
model can easily learn additional details. Such upsampling to preserve the information
from the original low-resolution data is most easily achieved by transforming the signal
to the Fourier domain, then padding the missing high-frequency parts with zeros and
transforming the resulting array back to the spatial domain [[79]). In the Fourier domain,
this padding operation can be understood as a point-wise multiplication of the desired
full spectrum with a rectangle function with width IV (denoted rect y). Conversely, this
operation corresponds to a convolution with F~!(recty) = +-sinc(zN) in the spatial
domain. While the sinc function drops off as x increases, it never drops to zero. When
applied for interpolation, its crests and the troughs cancel out the aliasing to a large
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extent as shown in Fig. [2| Thus, in order to allow the approximation of the optimal in-
terpolation function, the kernel size in transposed convolutions has to be chosen as large
as possible. This is, however, at odds with the “learnability” of suitable filter weights.
Note that for pixel-wise predictions, models not only need to correctly interpolate, but
they also need to “fill in” the missing details, which requires global as well as local
context. Therefore, we expect a trade-off on the kernel size of transposed convolutions,
where larger kernels improve the stability of the upsampled features and thus can reduce
artifacts while the absolute prediction quality can suffer from very large learnable ker-
nels. Sufficiently but not overly large kernels provide sufficient spatial context and are
appropriate to allow for the model to learn when to blur and when to preserve/sharpen
upsampled features. We illustrate this in Fig.[T2)in Appendix[C.4]

From this theoretical analysis of common upsampling methods, we derive the fol-
lowing hypotheses that we deem relevant for encoder-decoder architectures:

Hypothesis 1 (HI): Large Context Transposed Convolutions (LCTC) i.e. Large ker-
nels in transposed convolution operations provide more context and reduce spectral
artifacts and can therefore be leveraged by the network to facilitate better and more
robust pixel-wise predictions.

Hypothesis 2 (H2} Null Hypothesis): 7o leverage prediction context and reduce spec-
tral artifacts, it is crucial to increase the size of the transposed convolution kernels (up-
sample using large filters). Increasing the size of normal (i.e. non-upsampling) decoder
convolutions does not have this effect.

In the following, we show the proposed, simple, and principled architecture changes
that allow for studying the above hypotheses and improving robustness by improving
feature stability.

4 Upsampling using Large Context Transposed Convolutions

Driven by the observations on upsampling artifacts, we investigate the advantage of
larger kernel sizes during upsampling, for applications such as semantic segmentation
or disparity estimation. Therefore, we keep the models’ encoder part fixed and exclu-
sively change operations in the architecture of the decoder part of the model. There,
we have two design choices: Upsampling — The kernel size for the transposed convo-
lution operations that learn upsampling, and Decoder Block — The kernel size in the
convolution operations of blocks that learn to decode the features. Probing options for
Upsampling works towards proving H| while a combination of both options proves
H2] i.e. shows that a pure increase in the decoder parameters does not have the desired
effect. This is considered in our ablation study in Sec.

Figure [] summarizes the studied options for an abstract encoder-decoder architec-
ture like [[70]. The model decoder is depicted in the green box. Operations that we
consider to be executed along the red upwards arrows (Upsampling Operators) are de-
tailed in the top right part of the figure (operations a) to c)). Operations that we consider
to be executed along the blue sideways arrows (Decoder Building Blocks) are depicted
in the bottom right (operations d) to f)).
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Fig. 4: Abstract representation of an encoder-decoder architecture. While for different tasks, the
implementation of the model encoder varies (including transformer-based encoders), our study
focuses on the model decoder (in green). The backbone for the decoder is commonly a ResNet-
like structure for feature extraction [7}70], additionally we also used a ConvNeXt-like [54] struc-
ture. We investigate variants of different upsampling operations (the operations along the red
arrows in the decoder) for fixed decoder blocks. We consider, as a probe for HI] the baseline
transposed deconvolution (a) in the top right), and for LCTC an increased convolution kernel size
(b) in the top right), and an increased convolution kernel with a second path using a small convo-
Iution kernel (c) in the top right). To test whether the plain increase in parameters is responsible
for improved results (zero hypotheses, HZ)), we also ablate on the increase of convolution kernel
size in the decoder block (operations along the blue arrows in the green block), as shown on the
bottom right. We consider the common ResNet-like decoder building block structure (in d)) and
two ConvNext-like structured backbones for the decoder building block in e) and f), where f) has
an additional small convolution applied in parallel, analog to c).

Model Details. Here, we provide details on the studied models. All implementation
details are given in the Appendix [A]

Transposed Convolution Kernels for Upsampling. The upsampling operation is typ-
ically performed with small kernels (2x2 or 3x3) in the transposed convolution op-
erations [8,|13}/70]. We aim to increase the spatial context during upsampling and to
reduce grid artifacts. Thus we use Large Context Transposed Convolutions (LCTC).
We either use 7x7 transposed convolutions or 11x 11 transposed convolutions with a
parallel 3x 3 transposed convolution. Adding a parallel 3 x 3 kernel is motivated by [[17],
as large convolution kernels tend to lose local context, and thus adding a parallel small
kernel helps to overcome this potential drawback (see Appendix [B.3).

Decoder Building Blocks. To verify that the measurable effects are due to the improved
upsampling and not due to merely increasing the decoder capacity, we ablate on decoder
convolution blocks similar to convolution blocks used in the ConvNeXt [|54]] basic block
for encoding. While the standard ConvNeXt block uses a 7x7 depth-wise convolution,
we consider 7x7 and 11x 11 group-wise convolutions, followed by layers present in a
ConvNeXt basic block to analyze the importance of the receptive field within the block.



Improving Feature Stability during Upsampling 9

PixelShuffle 3x3 7X7+3x%x3(@LCTC) 11 x 11 + 3 x 3 (LCTC)
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Fig. 5: NAFNet, as proposed, uses Pixel Shuffle for upsampling. We modify only the upsampling
operations to transposed convolution with kernel size (3x3) and LCTC (Ours) for comparisons.
We observe, for example, under a 10-step PGD attack with € ~ 2%5 our proposed gains
validity. More examples for using different attacks and budgets are in Appendix|C.3]

Table 1: Comparison of performances of different upsampling methods in SotA Image Restora-
tion Networks on the GoPro dataset. The architectures use Pixel Shuffie for Upsampling, we
propose replacing the Pixel Shuffle with Large Context Transposed Convolutions (LCTC). We
report additional results using adversarial training in Tab. T3] Note, that some trade-off between
clean performance and robustness is expected [85,90].

Test Accuracy CosPGD (¢ ~ %) attack iterations PGD (e = %) attack iterations

Network Upsampling Method 5 10 20 5 10 20
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM | PSNR SSIM PSNR SSIM PSNR SSIM
Pixel Shuffle 31.99 0.9635 11.36 0.3236  9.05 0.2242 7.59 0.1548 | 11.41 0.3256 9.04 0.2234 7.58 0.1543
Transposed Conv 3x3 9.68  0.095 824 0.0452 853 0.0628 8.44 0.0631 | 7.66 0.0464 7.72 0.0577 8.64 0.0527

Restormer 1. 7,7 +3 x3 (Ours) | 29.51 09337 | 13.69 04186 1153 03136 1016 0.2484 | 13.69 0.4183 11.54 03137 10.16 0.2483

LCTC: 11x11 + 3x3 (Ours) 29.44 09324 14.65 0.4251 12.83 0.3438 11.48 0.29 14.65 0.4253 12.84 0.3445 11.48 0.2893

Pixel Shuffle 32.87 0.9606 8.67 0.2264 6.68 0.1127 5.81 0.0617 | 10.27 0.3179 8.66 0.2282 5.95 0.0714
Transposed Conv 3x3 31.02 0.9422 6.15 0.0332 595 0.0258 5.87 0.0233 | 6.15 0.0332 5.95 0.0258 5.87 0.0234
LCTC: 7x7 + 3 x3 (Ours) 31.12 0.9430 14.54 0.4827 11.05 0.3220 9.06 0.2213 | 14.53 0.4823 11.03 0.3201 9.08 0.2224
LCTC: 11x11 + 3x3 (Ours) 30.77 0.9392 14.34 0.4492 11.41 0.3244 9.54 0.2411 | 1434 045 114 0.3236 9.55 0.2398

NAFNet

Figure [ (bottom right e) and f)) shows the structure of a ConvNeXt-style building
block used in our work. First, a group-wise convolution is performed, followed by a
LayerNorm [E]] and two 1x1 convolutions which, similar to I@], creates an inverted
bottleneck by first increasing the channel dimension and after a GELU [40] activation
compressing the channel dimension again. We consider the ResNet-style building block
(Figureﬂ d)), with 3 x3 convolution, yet without skip connection, as our baseline when
studying this architectural design choice.

S Experiments

In the following, we evaluate the effect of the considered upsampling operators in sev-
eral applications. We start by evaluating the effect on the upsampled feature stability
of recent state-of-the-art (SotA) image restoration models [16l[89]], then provide results
on semantic segmentation using more generic convolutional architectures that allow us
to provide compulsory ablations. Last, we show that our results also extend to disparity
estimation |]3_U[] We provide details on the used adversarial attacks, datasets, reported
metrics, and other experimental details in Appendix [A]
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In all cases, we observe that Large Context Transposed Convolutions (LCTC) im-
prove the results of the respective pixel-wise prediction task in terms of stability under
attack, showing that HT| holds. Further, our extensive ablation on image segmentation
shows that increasing the convolution kernel in the decoder building blocks does not
have this beneficial effect, providing experimental evidence for our hypothesis H2 and
confirming the impact of spectral artifacts on pixel-wise predictions.

5.1 Image Restoration

For image restoration, we consider the Vision Transformer-based Restormer [89]] and
NAFNet [[16]. Both originally use the Pixel Shuffle [[77] for upsampling. Here, we com-
pare the reconstructions from these proposed architectures to their variants using the
proposed operators with large transposed convolution filters. We use the same metrics
as [|16,89]], Peak Signal-to-Noise Ratio (PSNR), and structural similarity index measure
(SSIM) [86]. We perform our experiments on the GoPro [[63]] image deblurring dataset,
following the experimental setup in [/1]].

Results on Image Restoration. We first consider qualitative results on NAFNet [[16]
in Figure[5]and Restormer [89)]) in Fig.[T0] Fig.[TT(in Appendix[C.3)), where we see that
the proposed upsampling operators allow for visually good results in image deblurring
on clean data (similar to pixel shuffle). Yet, in contrast to pixel shuffle and the baseline
small transposed convolution filters, the proposed Large Context Transposed Convolu-
tions (LCTC) significantly reduces artifacts that arise on attacked images (in this case,
10-step PGD with € ~ %). attacks with varying numbers of steps.

In Table[I] we report the average PSNR and SSIM values of the reconstructed im-
ages from the GoPro test set. These results confirm that at filter size 3x3, the perfor-
mance of the transposed convolution variant of both the considered networks is sig-
nificantly worse than the originally proposed Pixel Shuffle variant, justifying the com-
munity’s extensive use of Pixel Shuffle. However, we observe on increasing context
by increasing the kernel size to 7x7 that the performance of the transposed convolu-
tion variants significantly improves, especially making the networks more stable when
facing adversarial attacks. This boost in performance is further accentuated by increas-
ing the kernel size to 11x11 (both with parallel small kernels). These results provide
evidence for Hypothesis

Note that the slightly reduced performance on clean images, seen in Table |1} is
expected to some degree: here, we only investigate sampling in the decoder, while
pixel unshuffle is used in the encoder, potentially causing a mismatch. Further, pre-
vious works have shown that there exists a trade-off between adversarial robustness and
clean performance [85,(90]]. However, we do not observe this trade-off for matching
encoder-decoder architectures, e.g. in semantic segmentation.

5.2 Semantic Segmentation

As baseline architecture for semantic segmentation, we consider a UNet-like architec-
ture [[70] with encoder backbone layers from ConvNeXt [|54]] (see Appendix@]on the
choice of encoder). This generic architecture facilitates providing a thorough ablation



Improving Feature Stability during Upsampling 11

Input
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Prediction
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Fig.6: A comparison of semantic segmentation mask predictions for the shown input images.
The row labeled “Prediction Difference” shows the difference in predictions between the base-
line model and the model with Large Context Transposed Convolutions (11x11+3 x 3 kernels).
On white pixels, both models agree. Red pixels indicate that the baseline model predicts correctly
but our modified model predicts incorrectly. Green pixels indicate that our modified model pre-
dicts correctly but the baseline does not. The ground truth segmentation boundaries are drawn in
black. Our modification improves the segmentation result along object boundaries, which can be
attributed to spectral artifact removal, but also in more extended regions, where the context plays
a more crucial role.

Table 2: Semantic Segmentation performance on the PASCAL VOC2012 validation set for UNet
with ConvNeXt encoder, and the baseline UNet decoder (see Figure ) with differently sized
kernels in transposed convolution for feature map upscaling while keeping rest of the architecture
fixed. Additional results are provided in Tab. |Z|and Tab. |§|in Appendix@

Clean
Test Accuracy
mloU mAcc allAcc

78.34 86.89 95.15

78.92 88.06 95.23
79.33 87.81 95.41

Transposed I*;GSM attack epsnlo;n

Convolution Kernels

255 255

mloU mAcc allAcc|mloU mAcc allAcc
53.54 70.96 86.08 |47.02 65.41 82.78
56.02 74.13 86.45 |49.24 68.89 82.87
58.04 74.93 87.80 |51.25 69.31 84.64

SegPGD (e ~ ;%) attack iterations
3 20
mloU mAcc allAcc|mloU mAcc allAcc

23.06 46.51 45.30| 5.54 18.79 23.72

26.53 53.05 61.16| 7.17 23.05 27.52
27.49 53.08 64.13| 7.08 23.30 26.82

2x2 (baseline)
LCTC: 7x7 (Ours)
LCTC: 11x11 + 3x3 (Ours)

on all considered blocks in the decoder network. Our experiments are conducted on the
PASCAL VOC 2012 dataset . We report the mean Intersection over Union (mloU)
of the predicted and ground truth segmentation mask, the mean accuracy over all pixels
(mAcc), and the mean accuracy over all classes (allAcc).

Results on Semantic Segmentation. We first discuss the results for different upsam-
pling operations. The remaining architecture is kept identical, with ResNet-style build-
ing blocks in the decoder, throughout these experiments. The clean test accuracies are
shown in Table [2] We see that as we increase the kernel size of the transposed convo-
lution layers, there is a slight increase across all three evaluation metrics. Moreover,
Figure[6] visually demonstrates that, as we increase the size of the kernels in transposed
convolution from 2x2 (baseline) to 11x 11, the segmentations of the thin end and pro-
trusions, for example, in the wing of the aircraft sample image are improving. The
baseline model with small transposed convolution kernels could not predict these de-
tails. As hypothesized in HT] we observe that increasing the context can reduce spectral
artifacts caused when representation and images are upsampled using LCTC.

Further, in Table[2] we evaluate the performance of the segmentation models against
FGSM (28] and the multi-step attack SegPGD [34]] adversarial attacks for the indicated
€ values. As expected, with the increasing intensity of the attack, the performance of all
models drops. Yet, even at high attack intensities, the larger kernels perform better than
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Table 3: Adversarially trained models using FGSM (e =~ %) from Table [2| tested against
SegPGD adversarial attacks (¢ ~ %) on UNet with ConvNeXt encoder and decoder with
different sized kernels in the transposed convolution for upsampling, while keeping rest of the

architecture identical. See Tab. @in Appendix@for more evaluations including PGD training.

Clean SegPGD attack iterations
Transposed
Convolution Kernels Test Data 3 20
mloU mAcc allAcc | mIoU mAcc allAcc | mloU mAcc allAcc
2x2 78.57 86.68 95.23 | 26.59 48.99 67.71 7.6 24.06 31.37
LCTC: 7x7 (Ours) 78.41 86.22 95.20 | 28.11 53.39 66.30 | 8.36 28.54 28.13

LCTC: 11x11 + 3x3 (Ours) | 79.57 88.1 953 | 30.37 55.54 68.3 94 29.79 32.37

Table 4: Empirical evaluations for using a UNet with ConvNeXt encoder. We observe that
across different-sized kernels in transposed convolution, for a fixed kernel size, increasing the
context in the decoder building blocks by using larger kernels causes performance deterioration.
These observations for image decoding contrast the findings on image encoding by [[17,/51}/54].

" . ~ 8 . .
‘Transposed Convolution o Test Accuracy FGSM attack epsilon SegPGD (¢ ~ 557) attack iterations
Kernel Decoder Building Block Style 1 8 3 2
ernels mloU/ mAcc / allAce 255 255 N
mloU / mAce / allAce mIoU / mAcc / allAce | mIoU / mAcc / allAcc mloU / mAce / allAce

ResNet Style 3x 3 78.34/86.89/95.15 | 53.54/70.96/86.08 47.02/65.41/82.78 | 23.06/46.51/60.04 5.54/18.79/23.72

2x2 ConvNeXt style 7 x 7 77.17/86.86/94.81 | 49.98/72.22/83.93 42.04/64.86/79.08 | 17.94/44.81/47.96  3.20/14.73/9.81
ConvNeXtstyle 11 X 11 +3X3 | 77.17/86.86/94.81 | 47.34/67.72/83.34  37.91/57.79/78.21 | 13.97/35.82/45.68  2.21/10.75/5.29
ResNet Style 3 x 3 78.92/88.06/95.23 | 56.02/74.13/86.45 49.24/68.89/82.87 | 26.53/53.05/61.16  7.17/23.05/27.52

LCTC: 7 X 7 (Ours) ConvNeXt style 77 77.57/87.04/94.92 | 52.93/72.18/85.51 44.89/65.71/80.74 | 17.64/43.32/47.80 1.86/7.18/3.55

77.99/87.86/94.96

ConvNeXtstyle 11 X 11+3X3 51.61/73.01/84.85 43.93/66.22/80.73 | 17.07/42.30/48.78 1.80/7.11/3.04

ResNet Style 3x 3
ConvNeXt style 7 7
ConvNeXtstyle 11X 11 +3X3

79.33/87.81/95.41
78.32/86.98/95.09
77.42/86.24/94.94

58.04/74.93/87.80 51.25/69.31/84.64
53.31/72.45/86.16  44.89/65.18/82.03
54.48/72.53/86.25 46.67/66.59 /82.29

27.49/53.08/64.13  7.08/23.30/26.82
16.14/40.65/50.39  1.93/9.35/3.90
18.76/44.60/51.49  2.31/8.70/3.50

LCTC: 11 X 11 43 X 3 (Ours)

the small ones, and we see a trend of improvement in performance as we increase the
kernel size, providing more evidence for Hypothesis [T}

Ablation Study. In the following, we first consider the effects of additional adversar-
ial training, then ablate on the impact of other decoder building blocks and the filter
size. Variations of the model encoder are ablated in the Appendix [B.2] the impact of
using small parallel kernels in addition to large kernels is ablated and discussed in Ap-
pendix and competing upsampling techniques are ablated in Appendix

Adversarial Training. In Table 3] we report results for FGSM adversarially trained
models under SegPGD attack, with attacks as in Table [2] While the overall perfor-
mance under attack is improved as expected, the trend of LCTC providing better results
persists. More results for FGSM attack and SegPGD attacks with different numbers of
iterations are given in Tab. [7]and Tab. [§]in the Appendix. In Table [T5] we additionally
evaluate image restoration models under adversarial training.

Change in the decoder backbone architecture. While all previous experiments fo-
cused on the upsampling using transposed convolutions in the decoder, we now eval-
uate the influence of the convolutional kernel size within the decoder which does not
upsample (see Section ). For these experiments, we use a UNet-like architecture with
a ConvNeXt backbone in the encoder and the PASCAL VOC 2012 dataset.

In Table@we observe, for a fixed transposed convolution kernel size, as we increase
the size of the convolution kernel in the decoder building blocks, the performance of
the model decreases. This phenomenon extends to the performance of the architectures



Improving Feature Stability during Upsampling 13

135

130
3125
€120

— Clean
FGSM (e= 1/255)

—— FGSM (e= 8/255)

—— SegPGD (€= 8/255) 3-Step

—— SegPGD (e= 8/255) 5-Step

211
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Fig. 7: Performance comparison on PASCAL VOC2012 using UNet with ConvNeXt encoder for
different LCTC sizes from 2 x 2 (small) to 31 x 31 (LCTC) kernels. All, besides the baseline
with 2 X 2 and 3 x 3, have a parallel 3x3 kernel, as shown in Figure E| (bottom left). For the
decoder building block backbone, a ResNet Style 3 x 3 style is used. See Tab,|§|for the values.

Table 5: Comparison of performances of different upsampling methods in the UNet-like archi-
tecture. All architectures use the baseline (ConvNeXt) encoder and 3 x3 convolution kernels in
the decoder block. Please refer to Table[T3]in Appendix [B.3]for more evaluations and discussion,
including those with ConvNeXt style 7 x7+3 x3 Convolution kernels in the decoder blocks.

5= - 20
355 255
mloU mAcc allAcc mloU mAcc allAcc ‘ mloU mAcc allAcc mIoU mAcc allAcc

53.82 71.58 85.88 46.67 65.03 81.71 | 15.06 38.85 41.71 6.69 23.43 24.05
52.68 73.51 84.55 46.08 67.96 80.22 | 15.34 44.53 36.21 7.65 27.89 20.48
53.76 70.62 86.32 47.33 64.58 83.16 | 14.43 35.50 45.30 5.54 18.79 23.72
58.04 74.93 87.80 51.25 69.31 84.64 | 18.15 43.51 49.36 7.08 23.30 26.82

Test Accuracy FGSM attack epsilon SegPGD (e ~ %) attack iterations
Upsampling Method 1 = 5

mloU mAcc allAcc

Pixel Shuffle

Nearest Neighbour Interpolation
Transposed Convolution 2x2
LCTC: 11x11+3%3 (Ours)

78.54 87.32 95.18
78.40 88.16 95.09
78.45 86.66 95.20
79.33 87.81 95.41

under adversarial attacks, showing that a mere increase in parameters in the model
decoder does not have a positive effect on model performance or on its stability. This
proves the validity of hypothesis H2] An explanation for this phenomenon could be
that we only need to increase context during the actual upsampling step, increasing
context in the consequent decoder building blocks has a negligible effect on the quality
of representations learned. However, the increase in the number of parameters makes
the architecture more susceptible to adversarial attacks.

Ablation on filter size saturation. After proving HI|one could argue that networks will
consistently improve with increased kernel size for Large Context Transposed Convolu-
tions. Hence, we test larger kernel sizes of 15x15, 17x17, 19x19 and 31x31 kernels.
Yet, as seen in Figure [7} the effect of the kernel size appears to saturate: the perfor-
mance after 13 x 13 and the performance of 31 x31 kernels is not better than for 11x11
kernels. Yet, they are significantly better than the baseline’s performance.

Ablation on different Upsampling Methods. Following, we compare different upsam-
pling techniques thus justifying our advocacy for using LCTC instead of other upsam-
pling techniques like interpolation and pixel shuffle in the real world.

We report the comparison in Table [5and observe that both Pixel shuffie and Near-
est Neighbor interpolation perform better than the usually used Transposed Convolu-
tion with a 2x2 kernel size. However, as we increase the kernel size for Transposed
Convolution to 11x11 with a 3x3 small kernel in parallel, we observe that LCTC is
strictly outperforming Pixel Shuffle, on both clean unperturbed images and under ad-
versarial attacks, across all metrics used. Large Context Transposed Convolutions are
either outperforming or performing at par with Nearest Neighbor interpolation. Thus
we demonstrate the superior clean and adversarial performance of Large Context Trans-
posed Convolutions operation over other commonly used techniques.
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5.3 Disparity Estimation

To show that the observations extend from image restorations and segmentation to
other tasks, we conduct additional experiments for disparity estimation. We consider
the STTR-light [|50]] architecture, built from STTR, which is a recent state-of-the-art
vision-transformer based model for disparity estimation and occlusion detection. To
implement the proposed modification, we alter the kernel sizes in the transposed con-
volution layers used for pixel-wise upsampling in the “feature extractor” module of the
architecture from 3x3 kernels to larger kernels. We conduct evaluations on FlyingTh-
ings3D [60] and keep all other details as implemented in [50].

In Table [6] we report the im-

. Table 6: Comparison of performance of STTR-light
provements in performance due to

. . . . architecture with different sized kernels in transposed
our archltectufe modification of in- convolution for upsampling the feature maps in the fea-
creasing the size of the transposed ture extractor (lower is better). The entire set of results
convolution kernels used for up- g provided as Tab.in Appendix

sampling, from the 3x3 in the Transposed Test Accuracy  3-Step PGD attack
baseline model to 7x7 (LCTC) Convolution Kernels epe| 3px error ‘ epe| 3px error

.. . I STTR-light [50] reported | 0.5 1.54 |
Similar to previous applications,
3x3 [50] reproduced 04927  1.54 ‘ 405 185

the increased kernel sizes with par-  Lerei7x7+3x3 Ours) | 04788 150 | 402 183
allel 3x3 kernels further facilitate

to stabilize the model when attacked, as evaluated here for 3 attack iterations using
PGD with € ~ % on the disparity loss. Indicating that larger kernels in the transposed
convolutions can better decode learned representations from the encoder regardless of

the specific downstream task. We provide visual results in Appendix

6 Conclusion

We provide conclusive reasoning and empirical evidence for our hypotheses on the
importance of context during upsampling. While increasing the size of convolutions
during upsampling (LCTC) increases prediction stability, increasing the size of those
convolution layers without upsampling does not benefit the network. This indicates that
observations made for increased context during encoding do not translate to decoding.
Further, we show that our simple LCTC can be directly incorporated into recent models,
yielding better stability even in ViT-based architectures like Restormer, NAFNet, and
STTR-light as well as in classical CNNs. Our observations are consistent across several
architectures and downstream tasks.

Limitations. Current metrics for measuring performance do not completely account
for spectral artifacts. Spectral artifacts begin affecting these metrics only when they
become pronounced such as under adversarial attacks, and here LCTC consistently per-
forms better across tasks and architectures. Ideally, we would want infinitely large ker-
nels, however, with increasing kernel size and task complexity, training extremely large
kernels can be challenging. Thus, in this work, while having ablated over kernels as
large as 31x31, we propose using kernels only as large as 7x7 to 11x11 for good
practical trade-offs. Further improvements might be possible when jointly optimizing
the encoder and decoder. Moreover, there might exist other factors that contribute to the
introduction and existence of spectral artifacts such as spatial bias.
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Improving Feature Stability during Upsampling —
Spectral Artifacts and the Importance of Spatial Context

Supplementary Material

In the following, we present results and figures to support our statements in the
main paper and provide additional information. The following has been covered in the
appendix:

- Appendix [A} Detailed experimental setup for all downstream tasks.

o Appendix[A.T} Image Restoration experimental setup

Appendix Semantic Segmentation experimental setup

Appendix [A.3} Disparity Estimation experimental setup

Appendix [A.4} Detailed setup of Adversarial attacks for all downstream tasks.

Appendix[A.5} Detailed setup of adversarial training for semantic segmentation
and image restoration.

- Appendix [B} Semantic Segmentation: Additional Experiments and Ablations. In
detail:

e Appendix Detailed results from Sec.[5.2]and Sec.[5.2]
e Appendix Discussion on saturation of kernel size for upsampling.

e Appendix [B.2} An ablation on the impact of the capacity of the encoder block
for standard options such as ResNet or ConvNeXt blocks.

e Appendix [B.3} Ablation about including or excluding a small parallel kernel
during upsampling using transposed convolution.

e Appendix [B.4} Short study on drawbacks of using interpolation for pixel-wise
upsampling.

o Appendix A comparison to different kinds of upsampling Operations on
Segmentation Models.

e Appendix B.6] A comparison of the performance of different sized kernels
in the transposed convolution operations of UNet-like models adversarially
trained using FGSM attack and 3-step PGD attack on 50% of the mini-batches
during training.
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— Appendix [C; Image Restoration : Additional Results:

A

o Appendix [C.T} Here we report the number of parameters and latency study of
LCTC.

o Appendix [C.2} Adversarial training evaluation for Restormer and NAFNet for
Image deblurring task.

o Appendix [C.3} Qualitative results for image reconstruction models using Restormer

and NAFNet and evaluated on clean data, PDG and CosPGD attack with vary-
ing numbers of attack iterations.

o Appendix[C.4} Visualizing Kernel Weights: Here we visualize kernel weights
from a random channel for models from Figure [5] to show the how different
kernels handle uneven contributions of pixels that leads to spectral artifacts.

e Appendix Out-Of-Distribution and Real World Generalization.

Appendix [D} Disparity Estimation : We provide additional results for Section[5.3}
including performance against adversarial attacks.

e Appendix [D.T| Additional discussion on the results and importance of a parallel
33 kernel with large kernels for transposed convolution operation.

Appendix [E} Nomenclature- What are “Large Context Transposed Convolu-
tions?””: We discuss the nomenclature used in this work and describe what com-
prises a LCTC.

Appendix [F} Additional visualizations of Upsampling Artifacts and their Fre-
quency Spectra: Here we extend Figure [I] with more examples showing failure
of upsampling operations used in prior work and superiority of LCTC both in the
spatial and frequency domain.

Appendix [G} Limitations: Here we discuss the limitations of our work in detail.

Experimental Setup

All the experiments were done using NVIDIA V100 16GB GPUs or NVIDIA Tesla
A100 40GB GPUs. For image restoration, models were trained on 1 NVIDIA Tesla
A100 40GB GPU. For the semantic segmentation downstream task, UNet [70] was
trained using 1 GPU. For the disparity estimation task, STTR-light [50] was trained
using 4 NVIDIA V100 GPUs in parallel.
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A.1 Image Restoration

Architectures. We consider the recently proposed state-of-the-art transformer-based
Image Restoration architectures Restormer [[89]] and NAFNet [|16]]. Both architectures as
proposed use Pixel Shuffle [[77] to upsample feature maps. We use these as our baseline
models. We replace this pixel shuffle operation with a transposed convolution operation.
Dataset. For the Image Restoration task, we focus on Image Deblurring. For this, we
use the GoPro image deblurring dataset [|63]]. This dataset consists of 3214 real-world
images with realistic blur and their corresponding ground truth (deblurred images) cap-
tured using a high-speed camera. The dataset is split into 2103 training images and 1111
test images.

Training Regime. For Restormer we follow the same training regime of progressive
training as that used by [[89]]. Similarly, for NAFNet we use the same training regime as
that used by [[16].

Evaluation Metrics. Following common practice [|1}/16,/89]], We report the PSNR and
SSIM scores of the reconstructed images w.r.t. to the ground truth images, averaged
over all images. PSNR stands for Peak Signal-to-Noise ratio, a higher PSNR indicates
a better quality image or an image closer to the image to which it is being compared.
SSIM stands for Structural similarity [[86]. A higher SSIM score corresponds to better
higher similarity between the reconstruction and the ground-truth image.

A.2 Semantic Segmentation

Here we describe the experimental setup for the segmentation task, the architectures
considered, the dataset considered and the training regime.

Architectures. We considered UNet [70] with encoder layers from ConvNeXt [54].
For the decoder, the baseline comparison is done with 2x2 kernels in the transposed
convolution layers and the commonly used ResNet [|37] BasicBlock style layers for the
convolution layers in the decoder building blocks. In our experiments, we used larger
sized kernels, e.g. 7x7 and 11x11 in the transposed convolution while keeping the
rest of the architecture, including the convolution blocks in the decoder identical to
Sec.[5.2] When using kernels larger than 7x 7 for transposed convolution we follow the
work of [[17,51]] and additionally include a parallel 3 x3 kernel to keep the local context.
Usage of this parallel kernel is denoted by “+3x3" Further, we analyze the behavior of
a different block of convolution layers in the decoder, as explained in Sec.[d]and replace
the ResNet-style layers with ConvNeXt-style layers in Sec.[5.2]

Dataset. We considered the PASCAL VOC 2012 dataset [24] for the semantic seg-
mentation task. We follow the implementation of [92-94] and augment the training
examples with semantic contours from [36] as instructed by [75]].

Training Regime. We follow a similar training regime as [92,|93]], and train for 50
epochs, with an AdamW optimizer [57] and the learning rate was scheduled using
Cosine-Annealing [56]. In the implementation of [93]], the authors slide over the images
using a window of size 473 x473, however for computation reasons and for symmetry
we use a window of size 256 x256. We use a starting learning rate of 10~* and a weight
decay of 5 x 1072,
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Evaluation Metrics. We report the mean Intersection over Union (mloU) of the pre-
dicted and the ground truth segmentation mask, the mean accuracy over all pixels
(mAcc) and the mean accuracy over all classes (allAcc).

A.3 Disparity Estimation

Following, we describe the experimental setup for disparity estimation and occlusion
detection tasks.

Architectures. We consider the STTR-light [50] architecture for our work. To analyze
the influence of implementing larger kernels in transposed convolution as described in
Section [ we alter the kernel sizes in the transposed convolution layers used for pixel-
wise upsampling in the “feature extractor" module of the architecture. We consider
the STTR-light architecture as proposed by [50] with 3x3 kernels in the transposed
convolution layers as our baseline.

Dataset. Similar to [S0] we train and test our models on FlyingThings3D dataset [|60]].

Training Regime. We follow the training regime as implemented in [S0].

Evaluation Metrics. We report the end-point-error (epe) and the 3-pixel error (3px) for
the disparity estimation w.r.t. the ground truth.

A.4 Adversarial Attacks

We consider the commonly used [34,59,67,88|]| FGSM attack [28]] and a new segmentation-
specific SegPGD attack [34] for testing the robustness of the models against adversarial
attacks. For the semantic segmentation downstream task, each crop of the input was
perturbed with FGSM and SegPGD, while for the disparity estimation downstream task,
each of the left and right inputs were perturbed using FGSM.

For FGSM, we test our model against epsilons € € {%7 % }. Where, we follow com-
mon practice and use = ~0.004 and 55= ~0.03 .

For SegPGD we follow the testing parameters as originally proposed in [34]f], with
€~ %5, a=0.01 and number of iterations € {3, 5, 10, 20,40, 100}. We use the same
scheduling for loss balancing term A as suggested by the authors. We use SegPGD
for the semantic segmentation task as it is a stronger attack specifically designed for
segmentation. Thus providing more accurate insights into the models’ performance and
giving a better evaluation of the architectural design choices made.

For the Image Restoration task, we follow the evaluation method of [1], and eval-
uate against CosPGD [3]] and PGD [49] adversarial attacks. For both attacks, we use

%, a=0.01 and test for number of attack iterations € {5, 10,20}.
For the Depth Estimation task, we use the PGD attack with ¢ ~ %, a=0.01 and
test for number of attack iterations € {5, 10, 20}.

e~

A.5 Adversarial Training

Following, we describe the adversarial training setup employed in this work for adver-
sarially training models for semantic segmentation and image restoration.
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Semantic Segmentation. We follow the commonly used [34] procedure and split the
batch into two 50%-50% mini-batches. One mini-batch is used to generate adversarial
examples using FGSM attack with € ~ % and PGD attack with 3 attack iterations and

. ~ 8 _ . o .
with € ~ == and @=0.01 during training.

Image Restoration. We follow the training procedure used by [1]]. We split each train-
ing batch into two equal 50%-50% mini-batches. We use one of the mini-batches to
generate adversarial samples using FGSM attack with € ~ %.
A.6 Frequency spectrum analysis

To analyze the images in the frequency domain, we use the Fast Fourier Transform
[9] (FFT) X. = FFT(x.) for all channels ¢ of feature maps = and aggregate a 2D
representation over frequencies w. We compute the mean over C' channels of the FFT
of the difference between the prediction and the ground truth.

1
2D Frequency Spectra = ol Z FFT(zPmed — 29%) ()
ceC

Here, 2P"°? are the predictions from the model, 29° is the ground truth, and in Fig.
and Fig. 14| C'=3 for the RGB channels. For better visualization, we plot the log of the
magnitude of the Discrete Fourier Transform.

Next, we describe, from the literature, the process of performing a Discrete Fourier
Transform.

Fast Fourier Transform (FFT) [9]]. The discrete Fourier transform has been used
in this work to convert the images from the spatial domain to the frequency domain.

“ DFT is a linear operator (i.e. a matrix) that maps the data points in f to the
frequency domain f ” [[10]]

Equation 2.26 in [10]] shows the formula to perform DFT is:

n—1
fk — Z fje—iQﬂ'jk/n (5)

=0

where fk from each sample n contains the amplitude and phase (of the sine and cosine
components) information at frequency k. These are integer multiples of e 2™/™  the
fundamental frequency, short-handed as w,, [10]]. Equation 2.29 in [[10] shows the Dis-
crete Fourier transform matrix (in terms of w,,) that when multiplied by the samples in
f, converts the information in those samples to frequency domain (a basis transforma-
tion). FFT is an algorithm by [9]] to perform Discrete Fourier transform in an efficient
manner. In Eq. (@), we use these frequencies w (referred to as & in Eq. (3)) from sample
x. obtained using an FFT( ) function that uses the FFT algorithm.

B Additional Experiments and Ablation

Here we provide detailed results from Sec. [5] and Sec. [5.2] and additional results as
mentioned in the main paper.
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B.1 Semantic Segmentation

— 43«3 Clean
+3x3 FGSM 1/255

—— +3x3FGSM 8/255

—— +3x35egPGD 8/255 3 iterations

—— +3x35egPGD 8/255 5 iterations

relative allAcc

Fig. 8: Comparison of performance of different sizes of transpose convolutions from standard
sizes like 2 x 2 as well as very large 31 x 31 kernels with ConvNeXt style 11x11 + 3x3 style in
the decoder building blocks. All have a parallel 3x3 kernel, as shown in Figure[z_f](bottom left).

Table [7] and Table [§] provide all the results of empirical performance (across the
considered upsampling blocks) on clean inputs images and input images perturbed by
varying intensities of FGSM and SegPGD attacks respectively.

Limit of large kernels for Upsampling As discussed in Sec.[5.2] the performance of
large kernels begins to saturate at a point. We report results from Figure [/|in tabular
form in Table[9] In Table [0} we find that 1313 appears to be the saturation point for
this setting and 31 x31 kernels are beyond this saturation point. While 31 x31 performs
worse or on-par with 17x17, it still performs significantly better than the baseline of
2x2.In Section[5.2] we explain the kernel size limit and that larger kernels are difficult
to train. We also find that these results further strengthen our Hypothesis 2} For
ease of understanding, we visualize the trends from Table[9]in Figure ]

B.2 Choice of encoder

Following we aim to understand the importance of the encoder and its influence on
the quality of representations later decoded during the upsampling. Consequently, we
justify our choice of using ConvNeXt tiny encoder for the majority of our studies.

In Table[TT|we compare different encoders: ResNet50, ConvNeXt tiny, and SLaK [51]]
while fixing the decoder to the baseline implementation. All encoders are pre-trained
on the ImageNet- 1k training dataset.

We observe that using ConvNeXt tiny and SLaK as the encoder backbone gives us
significantly better performance than using ResNet50 as the encoder. This observation
holds true for both clean and adversarially perturbed samples. We additionally observe
that SLaK gives us marginally better performance than ConvNeXt. As shown by [51],
SLaK is a significantly better encoder than ConvNeXt tiny as it provides significantly
more context than ConvNeXt by using kernel sizes up to 51 x51 in the convolution lay-
ers during encoding. This proves that better encoding can be harnessed during decoding
which can lead to better upsampling.

However, in this work, we used the ConvNeXt tiny encoder since the SLaK encoder
takes significantly longer to train for only a marginal gain in performance. We report
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the performance results in Table[T2] We observe that given our computation budget and
the wall-clock time limit of 24 hours, we are unable to even compute the performance
of the model with the SLaK encoder at 100 attack iterations.

B.3 Ablation over small parallel kernel

Following we ablate over the use of a small (3x3) kernel in parallel to a large (>7x7)
kernel for Large Context Transposed Convolutions. This concept is inspired by [17,51]
who use a small kernel in parallel with the large kernels to preserve local context when
downsampling. Similar behavior is observed while upsampling. Table [7] compares the
usage of this small parallel kernel. We observe, that while not using the small kernel
results in marginal better performance on clean images (for a fixed backbone style), it
lacks context and thus performs poorly (when compared to using a small parallel kernel)
against adversarial attacks.

This is further highlighted inTab. [§] when the performance is compared against
strong adversarial attacks. Moreover, we observe that from medium-sized kernels i.e. ,
the upsampling seems to lose local context, and adding a kernel in parallel helps the
model in getting this additional context. This effect can also be observed in the adver-
sarial performances of the respective models.

B.4 Drawbacks of interpolation

As discussed in Section [3] architecture designs that use interpolation for pixel-wise
upsampling suffer with over-smoothening of feature maps. This can be seen in the final
predictions, as shown in Fig. [Ob] compared to the ground truth segmentation mask in
Fig.[9aland prediction from a model with 11x11 + 3x3 transposed convolution kernel
in Fig.

In their work, [34] showed that PSPNet has considerably lower performance against
adversarial attacks, similar to the analysis made in Section[5.2] This is explained by H2]

B.5 Different Upsampling Methods

Following we compare different upsampling techniques thus justifying our advocacy for
using Transposed Convolution instead of other upsampling techniques like interpolation
and pixel shuffle.

We report the comparison in Table[5|and observe that both Pixel shuffle and Nearest
Neighbor interpolation perform better than the usually used Transposed Convolution
with a 2x2 kernel size. However, as we increase the kernel size for Transposed Con-
volution to 11x 11 with a 3x3 small kernel in parallel, we observe that Large Context
Transposed Convolutions are strictly outperforming pixel shuffle, on both clean unper-
turbed images and under adversarial attacks, across all metrics used. Transposed Con-
volution with a large kernel is either outperforming or performing at par with Nearest
Neighbor interpolation as well. Thus we demonstrate the superior clean and adversarial
performance of large kernel-sized Transposed Convolution operation over other com-
monly used upsampling techniques.
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(a) Ground truth segmentation mask (b) Prediction from PSPNet with (¢) Prediction when using LCTC
of the third image in the test set. ResNet 50 backbone as implemented (11x11 + 3x3) and 3x3 convolu-
by the authors. tion kernels in the decoder building

blocks of UNet.

Fig.9: A comparison of differences in the sharpness of final predictions due to different upsam-
pling techniques. Fig.[9a]is the ground truth segmentation mask with sharp and thin edges in the
rear fin and wing with protrusions in the wing of the aircraft. We observe that PSPNet with a
ResNet50 backbone as implemented by [93] is not able to accurately predict the thin edges and
the protrusions, and is simply smoothening them out. This is due to the interpolation operation
used in upsampling. However in comparison, as shown in Fig.[9¢c| when a transposed convolution
operation is used for pixel-wise upsampling, the thin edges are sharper and protrusions are more
accurately predicted.

There might be speculation if other downsampling techniques can utilize larger
convolution kernels in the decoder building blocks better than transposed convolution.
Thus, we additionally experiment using a ConvNeXt-like 7x 7433 kernel in the Con-
volution operations in the decoder building blocks that follow the upsampling operation.
We report these results in Table [I3]and observe that similar to transposed convolution,
other upsampling methods also do not benefit from an increase in the kernel size in the
decoder building blocks.

B.6 Adversarial Training

Following, we present the results from adversarial training for semantic segmentation.
In Table[I0] we report the performance of different transposed convolution kernel-sized
adversarially trained UNet on clean input and adversarially perturbed inputs. The ob-
served performance improvement when increasing the transposed convolution kernel
size during normal training also extends to adversarial training.

C Additional Results on Image Restoration

Following we provide additional results for the Image deblurring tasks, like the per-
formance of models after adversarial training and some visual results of the deblurring
for a better understanding of the impact of increased spatial context against different
adversarial attack methods and strengths.
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C.1 Latency Study

As PixelShuffle, when downsampling with a factor of 2, reduces the channel dims by
a factor of 4, works [[16,/89] use a 1x1 convolution layer before the PixelShuffle to
increase the number of channels by a factor of 4. This added complexity is not needed
for Transposed Convolution. Thus, in Table [[4] we report the number of parameters in
the models from Figure [5] and report latencies (mean over 1000 runs) of the upsam-
pling operations, and show that these are comparable. In practice, these differences are
negligible as other unchanged operations are more costly.

C.2 Adpversarial Training

In Table [T5] we provide additional results for adversarially training image restoration
network NAFNet using FGSM attack on 50% of the training minibatch of the GoPro
dataset each iteration. The state-of-the-art Image Restoration models are significantly
larger w.r.t. the number of parameters, compared to the models considered for semantic
segmentation. Thus, they are significantly more difficult to train adversarially. They
require more training iterations. Due to the limited computing budget, we have only
trained them for the same iterations as clean (non-adversarial) training iterations. We
already observe the advantages of using a larger kernel for transposed convolution over
pixel-shuffle in these experiments.

C.3 Visual Results

Figure shows reconstruction under PGD attack for Restormer [[89]] and NAFNet [16].
Figure@shows reconstruction under CosPGD attack for Restormer [89]] and NAFNet [ 16]].

C.4 Visualizing Kernel Weights

An increase in kernel size leads to an increase in context and since the context is in-
creased, the effect of uneven contributions of pixels is negated leading to reduced spec-
tral artifacts. This can be seen in Figure [I2] Here we observe that the weights for 3x3
are high at the edges, causing the described grid effect, whereas for 11x11 kernels there
is a smooth fading towards the border of kernels, negating this effect.

C.5 Real World and Out-Of-Distribution (ODD) Generalization

Since LCTC leads to improved sampling that provides stability to feature maps learned
by the network (not merely defense), inspired by observations from [29], we hypothe-
size that the trends on adversarial attacks should translate to Real-World noise. We show
this in Table [I6] by applying 2D common corruptions (CC) (severity=3) from [39] on
images from the GoPro dataset and using NAFNet models from Figure [} Since the task
is deblurring, we consider all common corruptions but additional blurring and weather
corruptions, as these would have to be captured before blurring.
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D Additional Results Disparity Estimation

Following we report additional results for Disparity Estimation using STTR-light. In
Table [17] we report the performance of STTR-light architecture on clean test images
and under PGD attack. Whereas in Figure [I3] we present a visual comparison of depth
estimation predictions by a vanilla STTR-light as proposed by [50] and our proposed
modification of increasing the kernel size of the transposed convolution operation in the
“feature extractor” module of the architecture from 3x3 to Large Context Transposed
Convolutions with kernel sizes 7x7+3x3 and 11x11+3x3.

D.1 Disparity Estimation Discussion

In Figure [13]| as shown by the region in the red circle, both vanilla architecture and
the architecture with our proposed change perform well compared to the ground truth
on clean images. However, under a 10 iteration PGD adversarial attack, we observe
small protrusion’s depth(shown by the red arrow) is incorrectly estimated by the vanilla
architecture. The architecture with 7x7+3x3 and 11x11+3 x3 transposed convolution
kernels preserves the prediction of the disparity.

Additionally from Table we observe the significance of the parallel 3x3 small
kernel with the large 7x7 and 11x 11 kernels. The stability of the performance of the
large kernels without the small parallel kernel compared to the baseline is better. How-
ever, the stability of performance when only using larger kernels compared to larger
kernels with small parallel kernels is marginally worse.

E Nomenclature: What are Large Context Transposed
Convolutions?

In Section[d]we introduce the term “Large Context Transposed Convolutions (LCTC)”.
In this work, we use this to describe the Transposed Convolution layers in the decoder
with large kernel sizes and thus a large spatial context. However, terms like “large” are
subjective, this in the following we discuss our interpretation of a “large” kernel size.

Most previous works use kernel sizes of 2x2 or 3x3 for any convolution operation,
be it for downsampling [37)52] or be it for upsampling [[70]. [54] introduced performing
downsampling using convolution operations with a large kernel size which in their case
was 7x7. This “larger” kernel size for downsampling was further extended by other
works like [[17,35]] to 3131 and even up to 51x51.

In Section[3] we show how increasing context during upsampling can reduce spec-
tral artifacts from a theoretical perspective. Theoretically, we would want an infinite-
sized kernel when performing upsampling. However, this is not practical, thus we used
Transposed Convolution with kernel sizes sufficiently large to give a good trade-off
between theorized context and practical trainability and compute requirements.

Thus, inspired by encoding literature [[17,35}/54] we use kernel sizes for upsampling
that are larger than those used by previous works. Given that previous works used kernel
sizes like 2x2 or 33, anything bigger than this already provides more spatial context.
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Thus, even a kernel size of 5 x5 would be an interesting exploration and thus we explore
this as well in Tab.[7]and Tab.

However, given the theoretically ideal kernel size is infinity, a kernel size of 5x5
does not provide enough spatial context and thus we start calling transposed convolution
operations as Large Context Transposed Convolution only when their kernel sizes are
7x7 or larger.

F Additional visualizations of Upsampling Artifacts and their
Frequency Spectra

Following, we extend the example from Figure [T]to Figure [T4]showing similar upsam-
pling artifacts but on different input images to demonstrate that our findings are not
limited to one example.

G Limitations

Current metrics for measuring performance do not completely account for spectral ar-
tifacts. Spectral artifacts begin affecting these metrics only when they become pro-
nounced such as under adversarial attacks, and here Large Context Transposed Con-
volutions consistently perform better across tasks and architectures. Ideally, we would
want infinitely large kernels, however, with increasing kernel size and task complexity,
training extremely large kernels can be challenging. Thus, in this work, while having
ablated over kernels as large as 31x31, we propose using kernels only as large as 7x7
to 11x11 for good practical trade-offs. Further improvements might be possible when
jointly optimizing the encoder and decoder of architectures.

In this work, we are focused on the reduction of spectral artifacts in upsampled
images and features introduced due to the theoretical limitations of upsampling oper-
ations. However, there might exist other factors that contribute to the introduction and
existence of spectral artifacts such as spatial bias. This might also present an interesting
avenue to explore.
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Table 7: Complete comparison of performances against FGSM attack, of UNet with ConvNeXt
encoder and decoder with architectures along with different sized kernels in transposed convolu-
tion and different convolution blocks in the decoder for upscaling the feature maps.

ransposed Convalution Test Aceuracy FGSM attack epsilon
Kernels Backbone Style mioU mAce allAce] =355
mloU mAce allAcc|mloU mAce allAce
ResNet Style 3x3 7834 86,89 95.15[53.54 70.96 86.08[47.02 6541 8278
2x2 ConvNeXtsiyle 7x7  77.17 86.86 94.81 [77.42 86.24 94.94 |42.04 64.86 79.08
ConyNeXt style 7x7 +3x3 7724 86.03 94.84[51.09 70.53 85.29 43.52 6374 8118
ConvNeXstyle 11x 11 77.68 8642 94.97[50.73 69.78 84.88 [4233 61.80 8036
ConvNeXtstyle 11x 11 +3x3 77.17 86.86 94.81|47.34 67.72 83.34[37.91 57.79 7821
ResNet Style 3x3 7845 86.66 95.20[53.76 70.62 86.32[47.33 6458 83.16
3x3 ConvNeXtstyle 7x7 7770 86.89 94995230 71.56 85.73 |44.80 6338 81.99
ConyNeXi style 7x7 +3x3 7733 87.53 94.79(50.90 72.77 83.78 [44.40 67.08 79.11
ConvNeXtstyle 11x 11 77.86 86.75 94.99 [51.30 7039 85.33 [42.78 62.76 81.08
ConvNeXtstyle 11x11+3x3 77.81 86.48 94.98 5195 70.08 85.57 |43.82 62.56 81.63
ResNet Style 3x3 7919 87.62 95.36(55.57 73.51 86.65[48.96 67.97 83.41
5%5 (Ours) ConvNeXtstyle 7x7 7694 86.92 94.75(51.32 72.37 84.96 [44.19 66.56 81.13
ConyNeXtstyle 7x7+3x3 7852 87.39 95.13| 544 72.48 86.29[46.33 6565 820
ComyNeXtstyle 11x 11 77.83 8699 94.91[53.76 72.8 8596 [45.32 65.82 8182
ConvNeXt style 1 11+ 3x3 77.92 8692 95.02|48.67 68.11 83.96 [38.88 58.13 7896
ResNet Style 3x3 7883 87.56 95.28[56.11 73.97 86.91[49.84 69.26 83.44
5%5+3x3 (Ours) ConNeXtstyle 7x7  78.11 86.90 95.01(53.17 7155 86.0 [45.98 66.05 82.18
ConyNeXi style 7x7 +3x3 7873 87.81 95.24(53.86 73.12 85.86[45.93 66.83 81.51
ConyNeXstyle 11x 11 77.83 8657 95.07 [52.12 7029 8579 |44.05 63.11 81.63
ConvNeXtstyle 11x 11 +3x3 77.07 86.11 94.87[54.31 7245 86.1 [47.33 66.88 8242
ResNetStyle 3x3 7892 88.06 95.23[56.02 74.13 86.45[49.24 68.89 82.87
LCTC: 7%7 (Ours) ConvNeXtstyle 7x7  77.57 87.04 94925293 72.18 85.51 |44.89 6571 80.74
ConyNeXi style 7x7 +3x3 7788 87.0 95.05|S1.63 70.74 85.37 |[43.15 62.74 80.83
ConvNeXtstyle 11x11 779 8735 94.94(53.47 72.61 85.79 [45.49 67.04 8136
ConvNeXtstyle 1111 +3x3 77.99 87.86 94.96 [S1.61 73.01 84.85 |43.93 66.22 §0.73
ResNet Siyle 3x3 78.5 §7.57 95.13|53.85 7275 85.87|47.1 67.57 82.04
LCTC: 7x7 +3x3 (Ours) ConvNeXtstyle 7x7  78.09 87.14 95.04(52.42 7188 85.59 [43.43 65,39 80.88
ConyNeXtstyle 7x7+3x3 7837 88.11 95.07|52.15 7231 84.95|42.77 63.69 79.78
ConyNeXtstyle 11x 11 77.71 87.22 9497|5247 73.22 85.55 [44.07 65.84 8131
ConvNeXt style 11 11+ 3x3 78.14 86.94 95.05 [52.08 70.63 85.98 [43.82 63.65 8195
ResNet Style 3x3 7836 86,88 95.18[55.62 7262 869 [49.5 67.03 83.9
LCTC: 9x9 (Ours) ConvNeXtstyle 7x7 7717 86.74 94.84(52.76 7231 8556 [44.23 64.98 81.39
ConyNeXt style 7x7 +3x3 77.93 86.97 95.04|S1.01 70.59 84.87|41.93 6163 80.18
ConvNeXtstyle 11x11 77.80 86.80 94.99 [52.42 72.22 85.39 [44.14 65.56 81.16
ConvNeXtstyle 11x 11 +3x3 78.25 86.71 95.07[54.59 7204 86.48 |46.88 65.56 8273
ResNet Style 3x3 7877 87.77 95.24[55.94 73.79 86.67[48.82 69.2 8276
LCTC: 9%9 + 33 (Ours) ConvNeXtstyle 7x7 7779 86.65 9492|526 70.51 8575|433 62.16 80.89
ComyNeXi style 7x7+3x3 77.96 87.24 94.98|51.21 70.01 85.24[41.75 6116 80.64
ConvNeXtstyle 11x 11 77.92 8682 95.03|52.71 7117 8602 |4433 63.26 82.2
ConvNeXtstyle 11x11+3x3 77.57 8671 95.02[53.32 7175 86.29 |46.24 65.3 8292
ResNet Style 3x3 7911 87.06 95.36[56.18 72.11 87.27[49.51 6615 84.12
LCTC: 1111 (Ours) ConvNeXtstyle 7x7 7787 86.98 95.06|54.32 72.59 86.42 |47.14 67.05 82.71
ConvNeXtstyle 7x7+3x3 7834 87.06 95.07|51.93 7119 85.54|41.77 6231 808
ConvNeXtstyle 11x 11 77.42 86.68 94.94[53.11 7143 86.03 [44.5 6345 8175
ConvNeXt style 11x 11 +3x3 77.75 86.83 95.01 |52.88 71.47 85.93 |43.55 6275 814
ResNet Style 3x3 7933 87.81 95.41[S8.04 7493 87.8 [51.25 6931 84.64
LCTC: 1111 +3x3 (Ours) ConvNeXtstyle 7x7 7832 86.98 95.00(53.31 72.45 86.16 |44.89 65.18 82.03
ConvNeXt style 7x7 +3x3 7864 86.78 95.17|54.32 71.27 86.63 45.48 63.62 82.32
ConvNeXtstyle 11x11 7715 85.93 94.87|51.19 69.72 85.45 [42.02 61.09 81.1
ConvNeXtstyle 11x 11 +3x3 77.42 86.24 94.94|54.48 72.53 86.25 |46.67 66.59 8229
ResNet Style 3x3 7941 88.18 95.36[56.89 74.71 87.36[51.06 70.39 84.48
LCTC: 13x13 (Ours) ConvNeXtstyle 7x7 7.9 87.11 95.06[54.96 73.32 86.69 |47.39 672 8273
ComyNeXi style 7x7+3x3 7844 87.22 95.13|54.21 7218 86.34|47.27 6572 82.95
ConvNeXtstyle 11x 11 77.57 85.99 95.00[53.51 70.31 86.67 [45.63 63.59 83.11
ConvNeXtstyle 111 +3x3 77.40 86.53 94.89[53.16 7162 86.12 [45.00 64.23 8239
ResNet Style 3x3 7917 87.96 95.38[S7.17 75.08 87.44| 508 70.67 84.06
LCTC: 13x13 +3x3 (Ours) ConNeXtstyle 7x7  78.05 86.73 95.02(53.41 71.62 86.12 [45.07 65.04 81.76
ConvNeXtstyle 7x7+3x3 77.76 86.14 95.06[54.09 72.11 8629 45,69 65.15 822
ConvNeXtstyle 11x 11 77.81 8743 9501 [51.71 7177 8525 |41.97 62.61 80.66
ConvNeXt style 1111 +3x3 77.20 8655 94.81| 53.1 7188 85.87|45.0 6501 8191
ResNet Style 3x3 7917 87.68 95.28[S8.08 73.56 87.58[S1.11 6794 8436
LCTC: 15%15 (Ours) ConvNeXtstyle 7x7  78.34 87.14 95.03{53.86 7277 86.11 [45.12 65.22 81.65
ConvNeXt style 7x7 +3x3 7739 86.40 94.95| 512 69.42 85.27|42.65 60.88 81.24
ConvNeXtstyle 11x11 7714 8636 94.82|50.14 69.32 84.49 [40.97 60.11 79.81
ConvNeXtstyle 11x 11 +3x3 77.67 86.78 94.90[54.44 7274 86.54[46.37 66.24 8229
ResNet Style 3x3 7872 87.50 95.25[56.28 73.97 87.15| 495 68.69 83.53
LCTC: 1515 + 3x3 (Ours) ConvNeXtstyle 7x7  77.56 87.01 94935328 72.15 85.78 |45.51 64.84 81.57
ConvNeXt style 7x7+3x3 77.09 8627 94.76(52.25 70.01 85.41|44.01 6249 81.16
ConvNeXtstyle 11x 11 77.40 86.39 94.92[53.59 7149 8621 [45.48 64.37 8228
ConvNeXtstyle 1111 +3x3 78.64 87.46 95.20[54.77 73.2 86.65 |46.53 654 8278
ResNet Style 3x3 7922 §7.77 9537|565 73.3 87.27|50.1 6823 84.11
LCTC: 17x17 (Ours) ConvNeXtstyle 7x7 7736 87.64 94.89(54.06 73.88 85.84 [47.25 683 82.19
ConvNeXtstyle 7x7+3x3 78.03 87.56 95.01 [275 720 85.65 |44.32 64.16 8154
ConyNeXt style 11x 11 77.82 8740 94.92|51.43 7057 53 6268 8079
ConvNeXt style 11x 11+ 3x3 77.74 86.69 94.99 5131 69.71 85.53 |41.58 6043 5083
ResNet Style 3x3 7841 86,84 95.26[56.03 73.28 87.16[49.65 6795 8374
LCTC: 17%17 +3x3 (Ours) ConvNeXtstyle 7x7 78,14 86.99 94.98(53.44 7234 86.01 [45.02 65.35 81.85
ConvNeXt style 7x7 +3x3 7862 87.64 95.14|55.54 73.87 86.85 [47.86 6722 83.18
ConvNeXtstyle 11x 11 77.59 87.73 94.84 |52.84 74.14 84.63 | 4.1 67.34 79.57
ConvNeXtstyle 11x 11 +3x3 77.33 88.15 9475[49.29 71.71 84.04[39.85 637 78381
ResNet Style 3x3 7854 87.64 95.12[56.63 74.09 87.25[50.02 68.73 83.99
LCTC: 19%19 (Ours) ConvNeXtstyle 7x7 7874 87.66 95.15(36.28 73.79 87.11|49.44 68.74 83.84
ConvNeXt style 7x7+3x3 7705 86.33 94.89 (5447 72.38 86.78 [45.63 64.94 82.81
ConvNeXistyle 11x 11 77.66 8661 95.00[S1.58 7151 84.83 [42.48 63.44 79.58
ConvNeXt siyle 11 11+3x3 77.61 86.59 94.93[50.34 6939 84.54 [41.82 61.29 7975
ResNet Style 3x3 7878 87.34 95.28[56.53 74.59 86.97| 506 6995 83.98
LCTC: 19%19 +3x3 (Ours) ConvNeXtstyle 7x7 7744 86.70 94.91(54.05 72.52 86.09 [45.52 65.29 81.52
ConvNeXtstyle 7x7+3x3 78.14 87.14 95.02|55.82 74.54 86.96 [48.97 69.98 83.3
ConyNeXt style 11x 11 78.03 86.64 95.08 7121 86.26[45.79 64.16 82.42
ConvNeXtstyle 11x 11+ 3x3 77.42 86.61 94.91|53.83 72.54 86.17|46.29 66.94 82
ResNet Style 3x3 7869 86.98 95.30[56.61 73.22 87.08[49.49 66.69 83.68
LCTC: 3131 (Ours) ConvNeXtstyle 7x7  77.54 8730 94.84|52.36 72.27 85.14 4356 65.14 8
ConyNeXt style 7x7 +3x3 7696 86.38 94.77|53.59 72.14 86.05|45.22 6522 81.84
ConvNeXtstyle 11x11 7684 86.72 94.71 |50.74 70.53 84.61|41.62 61.96 79.96
ConvNeXtstyle 11x11+3x3 7677 85.60 94715142 69.17 852 [42.12 6032 8077
ResNet Style 3x3 7847 87.26 95.16[56.27 73.39 87.22[49.66 68.81 83.92
LCTC: 3131 +3x3 (Ours) ConvNeXtstyle 7x7  77.43 86.56 9493 (5345 72.74 86.17 |45.84 66.41 82.16
ConvNeXt style 7x7+3x3 7843 87.07 95.17|56.72 73.65 87.6 [49.56 68.15 84.22
ConvNeXtstyle 11x 11 78.00 87.04 94.94[50.66 7023 84.83 [40.71 61.31 79.94
ConvNeXtstyle 1111 +3x3 77.73 86.54 94.93[53.94 71.65 86.39 44.04 62.19 81.8
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Table 8: Comparison of performances against SegPGD attack, of UNet with ConvNeXt encoder
and decoder with architectures along with different sized kernels in transposed convolution and
different convolution blocks in the decoder for upscaling the feature maps.

Transposed Convolution SegPGD attack terations

Kerna Backbone Style 3 N 40 100

mloU mAce allAcc  mloU mAcc allAcc  mloU mAcc allAcc  mloU mAcc allAcc  mloU mAcc allAcc  mloU mAce allAcc

ResNet Style 3x3 2306 46.51 60.04 1443 3550 4530  08.12 24.67 2988 0554 1879 2372 0439 1498 2370 0350 1161 27.93

2x2 ConvNeXtstyle 7x7  17.04 04481 47.96  10.64 33.63 30.64 0547 2174 158 032 1473 0981 0204 0.1047 00641 0135 07.57 043
ConvNeXtstyle 7x7 +3x3 17.59 42.55 0.5168  09.88 3041 0.3233  04.75 1683 0.1431  02.65 09.46 0.0668 ~ 01.68 05.64 0.034 010 0.0316 01.94
ConvNeXtstyle 1111 1639 04013 0485 09.37 2866 29.63  03.97 1416 1141 01.56 0611 03.56  00.59 0261 0131 0023 00.99 00.51

ConvNeXtstyle 11x11+3x3 1397 3582 4568  07.61 2507 2833 034 1438 1204 0221 1075 0529 0157 08.02 0301 0107 0575 0185
ResNet Style 3x3 2337 4633 6078 1526 380 4651 0926 29.64 319 0678 24.18 2695 0571 2039 2869 0502 16.11 33.12

3x3 ConvNeXtstyle 7x7 1848 4381 5497  09.51 2992 3486  03.63 151 1303 0164 0823 0451 010 0512 0213 0059 02.84 00.89
ConvNeXtstyle 7x7 +3x3 1908 4697 47.74 1115 346 299 0596 22.62 1567  03.61 1504 0933 0217 09.18 0586 0129 06.02 03.55

ConvNeXtsyle 11x11 162 39.11 5093  09.5229.32 3261 0493 20.31 1482 0286 13.94 0646 0205 1094 03.58 014 0823 0221

ConvNeXtstyle 11x11+3x3 18.54 4134 5556 1025 30.11 360 048 1925 1394 0241 11.87 0456 0159 07.78 0211  OL11 0421 01.09

ResNet Style 3x3 2423 518 5782 16164298 4329 10113279 303  07.3225.16 2742 0602 1904 3125  05.16 14.03 37.36

5%5 (Ours) ConvNeXtstyle 7x7  17.59 43.57 5141 099 30.84 33.14 0474 183 1455 0223 09.47 0521 0147 0603 0232 0097 03.64 01.28
ConvNeXtstyle 7x7 +3x3 187 4318 5274 10.56 3141 3332 0487 185 1478 0249 1084 0559 0139 0561 0269 0091 0338 0146

ConvNeXtstyle 1111 1896 4479 5300  09.85 2977 3288  03.89 1494 126  01.94 0829 0458 0103 0472 01.86 0048 0263 00.75

ConvNeXtstyle 11x11+3x3 13.38 3361 450 0684 2094 2599 0251 0885 085  OLIS 0439 0262 0071 0248 0107 0048 0152 0053

ResNet Style 3x3 2503 5396 5889 1661 458 4218 1079 37.16 2734 080 29.62 2171 0616 2169 2225 0483 1387 2897

55+ 33 (Ours) ConvNeXtstyle 7x7  17.65 44.79 4841  09.79 31.78 2851 0462 1837 1112 0258 10.89 0461 0152 0659 023 01O 0404 01.33
ConvNeXtsiyle 7x7 +3x3 1831 4275 4926  09.89 28.58 30.02  03.78 1249 11.08 0134 0476 03.54 0048 02.13 0145  00.19 00.88 00.76

ConvNeXtstyle 1111 17.87 40.62 5277 09.74 27.94 3421 0465 1498 1434 020 0595 0477  01.07 0281 0171 0032 00.98 00.63

ConvNeXtstyle 11x11+3x3 20.84 4695 5391 1186 33.96 3486 0565 198 1666 0283 1073 082 0159 0621 0468 OLIl 042 0262

ResNet Style 3x3 2653 5305 6116 1775 4331 4699 1026 3092 32.62  07.17 2305 27.52 0569 1724 2948 0437 1129 35.16

LCTC: 7%7 (Ours) ConvNeXtstyle 7x7  17.64 4332 478 09.95 3043 2802 0421 1508 10.07  01.86 07.18 03.55 0099 0352 0142  00.68 01.89 00.74
ConvNeXtstyle 7x7 +3x3 16,64 40.11 5056  09.75 2972 3223 0495 194 1447 0287 1323 064 0206 0955 0345 0159 07.24 02.04

ConvNeXtstyle 11x11 1737 4507 4732 08.86 30.03 2648  03.47 14.22 0794  01.53 0655 0245 0093 039 012 0061 023 00.64

ConvNeXtstyle 11x11+3x3 17.07 423 4878 0931 2804 2888 0382 1379 09.54 018 07.11 03.04 0103 043 0145  00.53 0261 00.77

ResNet Style 3x3 2403 5208 5743 1621 4338 4301  09.99 3277 3022 07.38 2616 26.11 0631 2242 2832 0535 17.41 33.09

LCTC: 7x7 +3x3 (Ours) ConvNeXtstyle 7x7 16,19 434 4859  09.02 3238 29.17 0423 19.63 1047 0246 1218 0399  01.53 0685 01.97 0091 03.94 OL1
ConvNeXtstyle 7x7 +3x3 1604 39.67 48.16  08.94 2745 3033 0381 1469 1279  01.91 09.17 0463 012 0616 01.95 0084 03.96 00.95

ConvNeXtsiyle 1111 1808 4624 50.64 10,18 33.17 3135 0449 1833 1204 0201 07.98 0455 0104 0391 0217 0045 017 012

ConvNeXtstyle 11x11+3x3 1531 37.02 5208  07.62 24.44 3235 033 1504 1235 0192 1024 0512 0132 07.37 0263 0091 0507 0139

ResNet Style 3x3 2526 50.75 6085 1688 4102 47.16  09.44 2803 3387 0623 20.76 2891 0471 1645 29.14 0369 1263 31.93

LCTC: 99 (Ours) ConvNeXtstyle 7x7 1811 44.53 5060 1046 31.69 3226 0492 18.52 1448 0286 1213 0636 021 093 0351  OLS 0659 019
ConvNeXtsiyle 7x7 +3x3 162 39.55 5082 09.0 2853 3331  04.07 17.03 156 0214 1013 07.12 0138 0591 03.74 0071 02.56 01.82

ConvNeXtstyle 1111 17.02 4301 4845 0892 2835 28.13  03.64 1436 1006  01.17 0628 03.11 ~ 00.55 0404 01.35 0032 0276 00.77

ConvNeXtstyle 11x11+3x3 1934 436 5441 10713122 3398 046 1576 1275 0198 07.78 0404 0095 0395 0169  00.51 0196 0078

ResNet Style 3x3 2487 5504 5735 170 4634 4208  10.88 3604 2855 0791 28.17 2286 0602 21.13 2287  04.63 14.45 27.39

LCTC: 9x9 +3x3 (Ours) ConvNeXtstyle 7x7 1656 365 5358  08.74 2395 3567 0401 1392 1664 0213 08.87 0634 0138 0637 0227 0101 048 0Ll
ConvNeXt style 7x7 +3x3 16,03 088 2553 3315  03.64 1395 1225 0161 0602 0408  00.83 0272 0183 0037 OLI13 00.87

ConvNeXtstyle 11x11 16.42 08322664 3111 03.66 157 1L61 1011 044 0119 0675 0223  00.83 04.83 0136

ConvNeXtstyle 11x11+3x3 1872 4183 5548 1038 207 3672 0474 18.16 17.44 112 07.18 0169 0821 0356 0124 0607 01.93

ResNet Style 3x3 2602 4881 6376 168 39.62 4972 09.62 29.4 3422 2407 27.66 0563 2038 2645 0456 1564 28.86

LCTC: 1111 (Ours) ConvNeXtstyle 7x7  19.04 4539 5263 10.17 323 3246  04.58 2016 13.36 1363 0533 0174 10.13 0304 0121 07.07 017

ConvNeXtstyle 7x7 +3x3 1608 39.09 531 08.86 2827 3506  03.94 1677 1575
ConvNeXtsiyle 1111 1809 40.72 537 09.93 29.6 3468 0455 1822 14.17
ConvNeXtstyle 11x11+3x3 1529 372 5071 07.6 25.19 3065  03.17 15.06 09.58

ResNet Style 3x3 2749 5308 64.13 18154351 4936 1029 3112 33.17

LCTC: 1111 + 3%3 (Ours) ConvNeXtstyle 7x7  16.14 40.65 5039 0808 272 314 0334 1536 1229
ConvNeXtsyle 7x7 +3x3 177 39.71 54.64  09.71 2692 358  04.32 1393 158

ConvNeXtstyle 1111 14,62 34.73 4937 07.26 2221 2937 0276 1224 10.69

ConvNeXtstyle 11x11+3x3 1876 44.6 5149 1007 3115 3026 044 17.02 10.56

ResNet Style 3x3 2851 5718 63.94 1971 4899 50.08  11.99 37.69 33.26
LCTC: 1313 (Ours) ConvNeXtstyle 7x7 209 4662 5513 1232 3421 3591  06.14 21.39 1639
ConvNeXtstyle 7x7 +3x3 20.13 4292 57.7 1138 29.96 3957  04.85 1581 1937

ConvNeXtsyle 11x11 1865 39.48 564 10.02 27.46 3802  04.69 17.27 19.03

5 1187 0631 0132 0798 0272 0082 05.14 01.28
1051 052 0138 0635 0234 0096 0384 0128
1021 0307  0L3 07.74 0139 010 056 0088
233 2682 0514 1614 2732 0377 096 3161
09.35 039 0136 0577 0176 0092 0351 0083
0849 067 0159 0585 03.43 0109 0387 0183
230706 0416 0071 0471 01.96  00.63 03.65 00.96
087 035 0134 0485 01.66 0073 02.56 00.81
2829 2623 0617 2138 2565 0483 1534 29.52
151344 0751 0216 1021 043 0141 0661 0254

5 0645 0 .86 03.83
1135 0876 0139 07.95 0412 009 0602 02.11
256 00.72

ConvNeXtstyle 11x11+3x3 1895 4288 5582 1068 3121 3569 0492 1829 1263 50929 0378 0126 0502 016 00.79 0!
ResNet Style 3x3 2808 5822 634 194 S0.01 4889 1204 392 3211 3100 249 0646 2251 2398 0434 1359 2841
LCTC: 13x 13 + 3%3 (Ours) ConvNeXtstyle 7x7 1842 43.52 5126 3056 305 0437 1641 1129 09.09 0439 0135 06.65 0249  00.86 0428 0137
ConvNeXtstyle 7x7 +3x3 167 41.09 50.56 2694 3039 0331 13.44 11.22 6. 01.02 0401 0201 00.56 0207 01.03
ConvNeXtstyle 11x11 141 364 47.79 2332 2754 0287 1205 10.26 06.85 0456 0113 0521 032 0113 0521 032

ConvNeXtstyle 11x 11 +3x3 18.14 43.14 5231
ResNet Style 3x3 2941 5154 667

2816 3241 0354 1257 11.22
4126 5514 1151 2926 41.04

06.19 0335 0097 03.66 0152  00.65 0211 00.84
208 317 0513 1579 2853 039 1159 2937

LCTC: 1515 (Ours) ConvNeXtstyle 7x7 1862 44.42 5151 53247 3254 04.69 1866 124 1181 0444 0167 07.93 0202 0129 0526 01.21
ConvNeXtstyle 7x7 +3x3 17.63 37.55 5552 2328 3706 03.46 09.05 158 035 0696 0077 0L62 0402 0051 0104 02.48

ConvNeXtstyle 11x11 1524 36.62 49.45 2489 3193 03.68 14.62 13.68 3 07.68 05.66 0126 0448 0325 0061 0251 01.87

ConvNeXtstyle 11x11+3x3 19.01 4478 5274 53198 3235 0438 19.15 1242 120 0484 0153 0772 0224 01.06 04.86 01.17

ResNet Style 3x3 2638 53.79 6159 4503 4736 1079 339 3175  07.14 2502 2501 0543 1897 2539 0418 1325 3047

LCTC: 1515 + 3x3 (Ours) ConvNeXtstyle 7x7 1981 42.18 5373 2825 3703 0472 1345 1741 0192 0527 07.64 0106 03.07 0437 007 0197 0261
ConvNeXtstyle 7x7 +3x3 17.53 394 2667 3552 03731239 1327 0093 042 0322 0044 0214 0101  00.16 0094 0036

ConvNeXtstyle 11x11 16,69 39.29 52.18 2755 328 0372 17.08 1237 0206 11.89 0394 0138 08.59 020  00.99 0641 0124

ConvNeXtstyle 11x11+3x3 19.15 41.08 55.96 20.12 3758 0528 1935 18.54 0288 13.69 0843 020 112 0447 090 0239

ResNet Style 3x3 2774 5324 6448 18514347 5102 1072 3221 3608 0743 255 2878 0585 2069 28.85 1694 32.03

LCTC: 1717 (Ours) ConvNeXtstyle 7x7  19.82 4601 5448 1109 3271 3679 0535 19.1 1749 0267 1025 07.1 0187 07.1 0298 04.64 0133
ConvNeXtstyle 7x7 +3x3 1696 38.94 54.19 0923 2692 3622 0447 168 169 0245 1116 07.09 0161 08.12 03.53 0547 01.95

ConvNeXtstyle 1111 1372 3403 4809  06.57 2094 2693 0232 09.22 07.84 0108 0461 0228  00.63 0255 010 0133 0047

ConvNeXtstyle 11x11+3x3 1447 3355 5216 0733 2091 3291 0282 0975 1311 0128 0495 0496 0079 03.01 0252 0155 01.32

ResNet Style 3x3 2697 5413 6204 1841 455 47.66 1105 3455 3201 0743 2565 2478 0507 1738 24.12 1048 274

LCTC: 1717 + 3%3 (Ours) ConvNeXtstyle 7x7  17.96 41.81 5493  09.08 27.73 357  03.85 1538 1551  01.95 092 0576 0117 0574 0235 0086 03.99 01.25
ConvNeXtstyle 7x7 +3x3 19.86 42.55 5689  10.29 2826 37.83  04.43 1577 1652  01.93 0845 0636  0LO 0527 0261 0068 03.7 0131

ConvNeXtstyle 1111 1684 4491 4535  09.41 3125 2604 038 1479 09.08 014 0556 0283 0047 0205 01.03 0017 OL1 00.54

ConvNeXtstyle 11x11+3x3 1406 3828 4637 06952478 274 0292 1465 1036 01550922 039 0096 0621 0204  00.68 0461 0129

ResNet Style 3x3 27.64 5262 6453 1846 4279 51.19 1049 30.27 3637 0692 22.02 2821 0517 17.07 2609 0399 12.16 27.92

LCTC: 1919 (Ours) ConvNeXtstyle 7x7 2028 4696 5675  10.06 30.29 362 13.07 1456 0151 06.13 0564 0072 0324 024  00.64 022 01.4
ConvNeXtstyle 7x7 +3x3 18.14 3986 5698  09.34 26.13 37.16 1358 1424 01520779 044 0083 0576 0183  00.54 0382 0093

ConvNeXtstyle 1111 1585 40.55 46.13  08.33 2821 2547 1594 0752 OL8 1044 0295  OL3 07.65 OL81 0097 0534 0122

ConvNeXtstyle 11x11+3x3 1617 37.68 5029 0847 2522 31.86 41474 1388 01.93 08.84 0627 012 0541 0328 0079 03.68 0202

ResNet Style 3x3 2862 5615 6393 19194717 489 1096 3441 3154 07152567 236 0525 1932 2184 0424 1512 24.17

LCTC: 1919 + 3%3 (Ours) ConvNeXtstyle 7x7 1745 40.44 5124 09.1327.29 3141  03.56 1376 10.77  01.61 0683 0335 0094 040 0137 0056 0222 00.54
ConvNeXtsyle 7x7 +3x3 209 4861 5454 1159 3505 333 046 1894 1157 0205 109 0351 0142 07.83 01.63  00.9 0528 00.88

ConvNeXtsiyle 1111 1901 4141 5517 1056 289 3754 0523 1935 17.13 0292 1299 0727 0205 09.7 0382 0142 07.14 0218
ConvNeXtstyle 11x11+3x3 17.98 4439 5286 0944 3077 3215 0336 14.64 0976 0114 0522 0206 0048 0249 00.6  00.17 0116 0026

ResNet Style 3x3 2644 501 63.1 178 3996 5081 10442922 366 0667 21.09 28.13 0491 1607 2392 0365 10.93 23.02

LCTC: 31%31 (Ours) ConvNeXtstyle 7x7 1775 41.69 5194  09.26 27.63 3232 03.52 1248 1173 01.37 0495 0418 0062 0257 01.93 0037 0168 01.02
ConvNeXtsyle 7x7 +3x3 1653 40.82 509 080 259 3059 0279 1LI5 1024  01.24 0519 03.11  00.56 0242 0LI12 0034 0L4 00.53

ConvNeXtstyle 1111 13.08 31.95 4587 0585 17.71 2583 0206 07.35 08.65  00.88 03.15 0274 ~ 00.39 0155 01.05 0026 0115 00.55

ConvNeXtstyle 11x11+3x3 1542 3592 51.53 0744 2184 3172 0243 0933 1018 0085 03.85 0259 0041 01.79 0104  00.22 0099 0056

ResNet Style 3x3 2741 5428 64.15 1827 44.66 4997 1102 33.64 34.65  07.24 25.06 2654 0539 1881 2282 043 14.03 2246

LCTC: 31%31 + 3x3 (Ours) ConvNeXtstyle 7x7 1876 40.98 5563  10.33 2832 3872 0495 I8.11 1982 0274 12.53 08.41 01.03 0594 0175

ConvNeXtstyle 7x7 +3x3 20,55 44.15 5899 10,65 3005 400 0469 1749 1807 0265 11.74 07.33
ConvNeXtstyle 11x11 1447 36. 07.12 2287 2965 0257 1114 1067  01.24 06.52 03.69
ConvNeXtstyle 11x11+3x3 13.59 3271 4991 0609 1839 29.50 0196 067 08.76  00.79 02.53 02.11

01.09 0588 01.79
00.63 03.65 0096
00.12 00.65 0045

IS
&
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Table 9: Comparison of performance of Large Context Transposed Convolutions (LCTC) with
very large: 3131 kernels in transposed convolution to large (7x7 to 17x17) kernels. All have
a parallel 3x3 kernel, as shown in Figure [4] (bottom left). Here we observe the saturation of
performance for very large kernels for upsampling. This comparison is for the same encoder
(ConvNeXt) and same ResNet-like building blocks in the decoder (our baseline). The complete
table is provided in Appendix[B:T}

Test Accuracy FGSM attack epsilon SegPGD attack iterations
Transposed 1 8 20
i P 255 255

Convolution Kernels  mloU mAce d”ACC‘mIoU mAcc allAcc‘mIoU mAcc allAcc‘mIoU mAcc allAcc
Tx7 78.50 87.57 95.1353.85 72.75 85.87|47.10 67.57 82.04 | 7.38 26.16 26.11
11x11 79.33 87.81 95.41 |58.04 74.93 87.80|51.25 69.31 84.64 | 7.08 23.30 26.82
15x15 78.72 87.50 95.2556.28 73.97 87.15|49.50 68.69 83.53| 7.14 25.02 25.01
17x17 78.41 86.84 95.26 |56.03 73.28 87.16|49.65 67.95 83.74 | 7.43 25.65 24.78
19%19 78.78 87.34 95.28 |56.53 74.59 86.97|50.60 69.95 83.98 | 7.15 25.67 23.60
31x31 78.47 87.26 95.16|56.27 73.39 87.22|49.66 68.81 83.92| 7.24 25.06 26.54

Table 10: Adversarially trained models using FGSM and PGD from Table [2f tested against ad-
versarial attacks on UNet with ConvNeXt encoder and decoder with different sized kernels in the
transposed convolution for upscaling, while keeping rest of the architecture identical.

SegPGD attack iterations
3 20
mloU mAcc allAcc|mloU mAcc allAcc

Clean Test Accuracy FGSM attack epsilon
1 8

Transposed

Convolution Kernels

255 255
mloU mAcc allAcc |mloU mAcc allAcc|mloU mAcc allAcc

FGSM training

2x%2 (baseline) 78.57 86.68 95.23 |54.28 70.80 86.91|52.45 68.38 86.26|26.59 48.99 67.71| 7.6 24.06 31.37
LCTC: 7x7 (Ours) 78.41 86.22 95.20 |56.87 72.92 87.70|51.31 68.4 85.17(28.11 53.39 66.30 | 8.36 28.54 28.13
LCTC: 11x11 + 3x3 79.57 88.1 95.3 |57.90 74.64 87.61|52.15 70.23 84.96 30.37 55.54 68.3 | 9.4 29.79 32.37
(Ours)
PGD training with 3 attack iterations

2x2 (baseline) 75.33 84.66 94.39 |53.87 72.17 86.58|58.57 73.93 89.0129.38 57.82 66.67|9.39 33.15 28.11
LCTC: 7x7 (Ours) 75.79 84.89 94.38 |54.82 72.31 86.80|61.29 74.33 89.96(31.12 58.36 68.58 [10.24 33.99 31.14
LCTC: 11x11 + 3x3 75.90 86.60 94.30 |56.27 75.66 86.68|63.02 76.17 90.42 |33.50 58.34 71.50|10.77 32.23 37.36
(Ours)

Table 11: Comparison of performances of different encoders in the UNet-like architecture. All
architectures here have the baseline 2x2 transposed convolution kernel for upsampling followed
by 33 convolution kernels in the decoder blocks. For more results please refer to Table @

Test Accuracy FGSM attack epsilon SegPGD attack iterations
Encoder 2;5 2?5 20
mloU mAcc allAcc mloU mAcc allAcc  mloU mAcc allAcc‘ mloU mAcc allAcc
ResNet50 67.69 79.04 92.80 36.78 58.41 78.16 32.60 52.63 74.56 498 19.28 21.07
ConvNeXt tiny 78.45 86.66 95.20 53.76 70.62 86.32  47.33 64.58 83.16 554 18.79 23.72
SLaK tiny 78.82 87.01 95.17 5522 71.72 86.97  48.69 66.45 83.57 845 2542 32.37

Table 12: Comparison of performances of different encoders in the UNet-like architecture. All
architectures here have the baseline 2 x2 transposed convolution kernel followed by 3 x3 convo-
lution kernels in the decoder block.

Test Accuracy FGSM attack epsilon SegPGD attack iterations

L
mloU mAce all Ace
3678 5841 78.16
5376 70.62 §6.32

100
mloU mAce allAce

Encoder 40
mloU mAce allAce

3.95
439

6.22

mloU mAce allAce]  mloU mAce allAce  mloU mAcc allAcc  mloU mAce allAce  mloU mAce allAce

32.60 52.63 74.56
4733 64.58 83.16
48.69 66.45 83.57

mloU mAce allAcc
67.69 79.04 92.80
78.45 86.66 95.20
78.82 87.01

1649 1835
1498 2370
1958 29.06

721 2376 2758 498 1928 2107 309 1387 1587
554 1879 23.72

8.45

16,18 37.46 50.04  11.32 30.59 38.98
14.43 35,50 45.30

1928 4351 5288

ResNet50
ConvNeXt tiny
SLaK tiny

23.06 46,51 60.04 812 2467 29.88 350 1161 27.93

95.17| 5522 71.72 86.97 2671 50.92 64.04 1224 33.65 39.78 25.42 3237
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Table 13: Comparison of performances of different upsampling methods in the UNet-like archi-
tecture. All architectures here have the baseline i.e. ConvNeXt encoder and a ResNet style 3 x3
or ConvNext style 7 x7+3x3 convolution kernels in the decoder block.

ETE
8106

53827158 8588 4667
5178 60.68 8544 4380
5268 7351 8455 4608 67.96 8022
50717121 8445 4197 6492 7889

5316 5175 15, 2
4436 4209 836 3025 2374 2.

765 2789 2048 643 2323 2148 540 1734 2805
27 570 200 052 208 075 017 085 035

6004 14433550 4530 & 879 2372 439 1498 2370 350 1161 27.93
5168 988 3041 3233 475 1683 1431 265 946 668 163 564 34 10 316 194
5125 6031 84.64| 2 6413 18154351 4936 10293012 3307 708 233 2682 S04 1614 2132 377 96 316l
4548 6362 8232|177 3970 5464 971 2692 358 432 1393 IS8 237 849 67 159 585 343 109 387 13

4733 64.58 83.16] 2
9 4352 6374 8LIS

7933 8781 9541|5804
X3 7864 8678 9517|5432 71.27 8663

Table 14: Comparing latency and number of parameters for models from Figure

Upsampling Method Latency (ms) No. of Params

Pixel Shuffle 0.26 17.11 M
Trans. Conv. 3x3 0.27 1643 M
LCTC 11x11+3x%x3 0.38 16.54 M

Table 15: Comparison of performances of adversarially trained SotA Image Restoration Net-
works. The considered architectures use Pixel Shuffle for Upsampling, we propose replacing the
Pixel Shuffle with Transposed Convolution operations using the large filter. Testing for image
deblurring on GoPro dataset.

Test Accuracy PGD attack iterations
Network Upsampling Method 5 10 20
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Pixel Shuffle 29.91 0.9291 15.76 0.5228 13.91 0.4445 12.73 0.3859
NAENet + ADV Transposed Conv 3x3 31.26 0.9448 15.89 0.5390 13.43 0.4627 11.62 0.4098
LCTC: 7x7 + 3 x3 (Ours) 31.21 0.9446 16.46 0.5061 14.55 0.4211 13.31 0.3688

LCTC: 11x11 + 3x3 (Ours) 30.70 0.9390 13.68 0.4857 11.91 0.4085 10.92 0.3604

Table 16: Performance of different upsampling methods in NAFNet in real-world ODD setting
by applying 2D common corruption [39]] (severity=3) on GoPro dataset. We use all common
corruptions from [39]] GitHub repository except weather conditions (ideally these should happen
before the motion blurring) and blurring (since the images are already motion blurred). Here
“Mean” is performance over all the considered corruptions:

Upsampling Method
Common Corruption Pixel Shuffle Trans. Conv. 3x3 LCTC 11x11+3%3
PSNR SSIM PSNR SSIM ‘ PSNR SSIM

Gaussian Noise 4.8501 0.0104 |[8.7346 0.1014 |13.6475 0.1523

Shot Noise 4.8616 0.0127 |8.9524 0.0984 |[13.2464 0.1564
Impulse Noise 5.0154 0.0214 ]9.2451 0.1065 |[14.8425  0.187
Brightness 323199 09576 |30.676 0.9394 [30.4098 0.9361
Contrast 26.5941 0.7759 |25.9743 0.7561 |25.8733  0.7525
Elastic Transform 17.944 0.6392 [19.7686 0.703 19.7672  0.702
Pixelate 44977 0.246 4.4999 0.246 4.4958 0.246

JPEG Compression  25.2767 0.8095 |25.1014 0.8032 |25.3788  0.8104
Speckle Noise 4.8287 0.0158 [9.2336 0.1044 |14.6622  0.2473
Saturate 32.1969 0.958 |30.5904 0.9399 {30.3005  0.9365
Mean 15.8385 0.4447 [17.2776 0.4798 |19.262  0.5127
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MODEL NO ATTACK 5 iterations 10 iterations 20 iterations

3x3
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Fig. 10: Comparing images reconstructed by all models after PGD attack on variants of Upsam-
pling.
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MODEL NO ATTACK 5 iterations 10 iterations 20 iterations

with Transposed Conv  with Pixel Shuffle
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Fig. 11: Comparing images reconstructed by the considered variants of the SotA models after
CosPGD attack [3]. We observe that the originally proposed Restormer and NAFNet architec-
tures that use Pixel Shuffle for upsampling perform considerably well under no adversarial attack
but even a small perturbation of e:% causes ringing and other spectral artifacts to occur in
the deblurred images to the extent that the images are unrecognizable. However, on replacing
the Pixel Shuffle operation in these architectures with a Transposed Convolution operation with
a large kernel (11x11+3x3), we observe a significant reduction in the spectral artifacts in the
images restored under adversarial attack while the image restored under no attack are very com-

parable to those restored by the original architectures.
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Trans. Conv. 3 x 3 NAFNet - kernels LCTC 11 x 11

1 Upsampling Step 2°¢ Upsampling Stey 15t Upsampling Ste 2" Upsampling Step 39 Upsampling Ste 4" Upsampling Ste 1
“I I.l .Io
-1
0 2 4 6 8 100 2 4 6 8 100 2 4 6 8 100 2 4 6 8 10

Fig. 12: Normalized kernel weights from a random channel each for the models from FigureEl

Table 17: Comparison of performance of STTR-light architecture with different sized kernels in
transposed convolution for upscaling the feature maps in the feature extractor.

Test Accuracy PGD Attack
Transposed Convolution Kernels 3 Iterations 5 Iterations 10 Iterations
epe| 3pxerror|| epe/ 3px error, ‘ epel 3px errorv‘ epe| 3px error|
STTR-light [50] reported 0.5 1.54 |
3x3 @ reproduced 0.4927 154 | 4.05 1846 | 4.07 18.59 | 4.08 18.6
LCTC: 7x7 (Ours) 0.487 1.52 426  19.09 |4289 1921 [4.294 19.23
LCTC: 7x7 + 3x3 (Ours) 0.4788 150 | 4.02 183 |4.0474 1843 |4.05 1845
LCTC: 9x9 (Ours) 0.4983 150 | 436 18.02 |4.386 18.14 |439 18.16
LCTC: 11x11 +3%3 (Ours) 05124 1.57 |4.004 1829 |4.028 1842 |4.032 1844

Prediction by STTR-ight with 7x73x3.
Kernels on claan input Kornels on clean Input

Disparity sstimation Ground Truth Pradiction by vanila STTR-light o clean input

200 w00 00 800

TTRAlght with 7xT+3x3

Prodiction by vanilla STTR-Iight afer 10 herations PGD attack Aokl b Filbi =g

Fig. 13: Visual comparison of Disparity Estimation predictions by a vanilla STTR-light as pro-
posed by and our proposed modification of increasing the kernel size of the transposed
convolution operation in the “feature extractor” module of the architecture from 3x3 to LCTC
with 7x7+3%3 and 11x11+3x3 sized kernels. As shown by the region in the red circle, both
vanilla architecture and the architecture with our proposed change perform well compared to the
ground truth on clean images. However, under 10 iteration PGD adversarial attack, we observe
small protrusion’s depth(shown by the red arrow) is incorrectly estimated by the vanilla architec-
ture, however, the architectures with LCTC preserve the prediction of the disparity.
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Clean - within domain Attacked 2D Frequency Spectra

Transp. conv.

Large Context
Transp. conv. (Ours)

Large Context

Large Context

Large Context

Example Image 4

Fig. 14: This is extension to Fig. |1} here we observe the same artifacts both in the spatial and fre-
quency domain as that observed in Fig.[T} Here we perform Image restoration using NAFNet [16]
variants on GoPro [63]. Normal Transposed Convolution uses 3 x 3 sized kernels. Large Context
Transposed Convolution uses kernels of size 7x7+3x3 for upsampling. LCTC significantly in-
creases the model’s stability during upsampling, observable in the restored image under attack
and the frequency spectrum. The procedure for obtaining the 2D Frequency Spectra has been

explained in Appendix [A.6]
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