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ABSTRACT

Searching for novel molecular compounds with desired properties is an impor-
tant problem in drug discovery. Many existing frameworks generate molecules
one atom at a time. We instead propose a flexible editing paradigm that gener-
ates molecules using learned molecular fragments—meaningful substructures of
molecules. To do so, we train a variational autoencoder (VAE) to encode molec-
ular fragments in a coherent latent space, which we then utilize as a vocabulary
for editing molecules to explore the complex chemical property space. Equipped
with the learned fragment vocabulary, we propose Fragment-based Sequential
Translation (FaST), which learns a reinforcement learning (RL) policy to iter-
atively translate model-discovered molecules into increasingly novel molecules
while satisfying desired properties. Empirical evaluation shows that FaST sig-
nificantly improves over state-of-the-art methods on benchmark single/multi-
objective molecular optimization tasks.

1 INTRODUCTION

Molecular optimization is a challenging task that is pivotal to drug discovery applications. Part of the
challenge stems from the difficulty of exploration in the molecular space: not only are there phys-
ical constraints on molecules (molecular strings/graphs have to obey specific chemical principles),
molecular property landscapes are also very complex and difficult to characterize: small changes in
the molecular space can lead to large deviations in the property space.

Recent fragment-based molecular generative models have shown significant empirical advantages
(Jin et al., 2019a; Podda et al., 2020; Xie et al., 2021) over atom-by-atom generative models in
molecular optimization. However, they generally operate over a fixed set of fragments which limit
the generative capabilities of these models. Shifting away from previous frameworks, we learn
a distribution of molecular fragments using vector-quantized variational autoencoders (VQ-VAE)
(van den Oord et al., 2017). Our method builds molecular graphs through the addition and deletion
of molecular fragments from the learned distributional fragment vocabulary, enabling the generative
model to span a much larger chemical space than models with a fixed fragment vocabulary. Con-
sidering atomic edits as primitive actions, the idea of using fragments can be thought of as options
(Sutton et al., 1999; Stolle & Precup, 2002) as a temporal abstraction to simplify the search problem.

We further introduce a novel sequential translation scheme designed for fragment-based molecular
optimization. We start the molecular search by translating from known active molecules and store the
discovered molecules as new potential initialization states for subsequent searches; we incorporate
a delete action in our model, enabling our method to backtrack to good molecular states. Previous
works optimize molecules either by generating from scratch or a single translation from known
molecules, which is inefficient in finding high-quality molecules and often discovering molecules
lacking novelty/diversity. Our proposed framework addresses these deficiencies since our method
is (1) very efficient in finding molecules that satisfy property constraints as the model stay close to
the high-property-score chemical manifold; and (2) able to produce highly novel molecules with our
flexible learned fragment vocabulary and a sequence of fragment-based editing.

Combining the advantage of a distributional fragment vocabulary and the sequential translation
scheme, we propose Fragment-based Sequential Translation (FaST), which is realized by an RL
policy that proposes fragment addition/deletion to a given molecule. Our proposed method can
generate molecules under various objectives such as property constraints, novelty constraints, and
diversity constraints. The main contribution of this paper includes:
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1. We demonstrate a way to learn distributional molecular fragment vocabulary through a
VQ-VAE and the effectiveness of the learned vocabulary in molecular optimization.

2. We propose a novel molecular search scheme of sequential translation, which gradually
improves the quality and novelty of generation through backtracking and a stored frontier.

3. We implement a RL policy combining the fragment vocabulary and the sequential
translation scheme that significantly outperforms state-of-the-art methods in benchmark
single/multi-objective molecular optimization tasks.

2 RELATED WORK

Molecular generation and optimization. Early works on molecular optimization build on genera-
tive models on both SMILES/SELFIES string (Gómez-Bombarelli et al., 2018; Segler et al., 2018;
Kang & Cho, 2018; Krenn et al., 2020; Nigam et al., 2021b; Shin et al., 2021), and molecular graphs
(Simonovsky & Komodakis, 2018; Liu et al., 2018; Ma et al., 2018; De Cao & Kipf, 2018; Samanta
et al., 2020; Mercado et al., 2021) and generate molecules character-by-character or node-by-node.
Jin et al. (2018) generates graphs as junction trees by considering the vocabulary as the set of atoms
or predefined rings from the data; Jin et al. (2020) use the same atom+ring vocabulary to generate
molecules by augmenting extracted rationales of molecules.

Generating molecules with a fixed molecular fragment vocabulary is a well-established idea
in traditional drug design (Erlanson, 2011), and has been recently explored through deep learning
models (Podda et al., 2020; Xie et al., 2021; Kong et al., 2021; Fu et al., 2021; 2020; Leguy et al.,
2020), outperforming previous atom-level models. Recent synthesizability-aware models can also
generate single-step reaction (Bradshaw et al., 2019) and molecule synthesis graphs (Bradshaw et al.,
2020) based on a fixed reactant pool. However, the fixed fragment vocabularies used by these
models, which are typically small and predefined a priori, limit the chemical space spanned by the
models. In our work, we utilize a learned molecular fragment vocabulary, which is obtained by
training a VQ-VAE on a large set of fragments extracted from ChEMBL (Gaulton et al., 2012). By
sampling fragments from the learned distribution, our model can span a much larger chemical space
than methods using a fixed vocabulary (visualized in Figure 3a, Figure 3b).

Sequential generation of molecules. Guimaraes et al. (2017); Olivecrona et al. (2017); You et al.
(2018); Zhou et al. (2019) frame the molecular optimization problem as a reinforcement learning
problem, but they generate on the atom/character level and from scratch each time, reducing the
efficiency of the search algorithm. Jin et al. (2019b) uses a graph-to-graph translation model for
property optimization. However, it requires a large number of translation pairs to train, which often
involves expert human knowledge and is expensive to obtain. Others have used genetic/evolutionary
algorithms to tackle this problem (Nigam et al., 2020; 2021a), which performs random mutations
on chemical strings. Although these methods use learned discriminators to prune sub-optimal
molecules, the random mutation process can become inefficient in searching for good molecules
under complex property constraints. Xie et al. (2021); Fu et al. (2021) applies Markov Chain Monte
Carlo (MCMC) sampling through editing molecules, while Kong et al. (2021) uses Bayesian op-
timization on the latent space. While there are extensive studies in exploration strategies for RL
(Pathak et al., 2017; Burda et al., 2019; Ecoffet et al., 2021), diversity/novelty driven molecular gen-
eration is under-explored. We train a novelty/diversity-aware RL policy to search for novel, diverse
molecules that retain desired properties. Our method initializes searches from model-discovered
molecules, which greatly improves the efficiency and diversity of the generated molecules. Our
ablation in Section 6 show that our proposed RL framework works well with the learned fragment
vocabulary, while a simpler search strategy is not able to utilize this powerful editing paradigm.

3 PRELIMINARIES

Message Passing Neural Networks (MPNN) Molecules are represented as directed graphs, where
the atoms are the nodes and the bonds are the edges of the graph. More formally, let x = (V,E)
denote a directed graph where vi ∈ V are the atoms, and eij ∈ E are the edges of the graph. The
network maintains hidden states hteij for each directed edge, where t is the layer index. At each step,
the hidden representations aggregate information from neighboring nodes and edges, and captures a
larger neighborhood of atoms. Iteratively, the hidden states are updated as:
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Here, f is parameterized by RNN cells (e.g. LSTM cells (Hochreiter & Schmidhuber, 1997) or
GRU cells (Chung et al., 2014)), and N(vi) is the set of neighbors of vi. After T steps of message-
passing, the final node embeddings hvi are obtained by summing their respective incoming edge
embeddings:

hvi = ReLU(Wo[h
0
vi ;

∑
vk∈N(vi)

hT
eki

]) (2)

The final node embeddings are then summed to get a graph embedding representation hx =
∑
vi
hvi .

Vector-Quantised Variational Autoencoders (VQ-VAE) To learn useful representations of frag-
ments, we employ the VQ-VAE architecture (van den Oord et al., 2017), which maps molecule
fragment graphs to a discrete latent space through using categorical distributions for the prior and
posterior. The VQ-VAE defines a dictionary of k embedding elements, [s1, s2, ...sk] ∈ Rk×l. Given
an input x (here the graph for a molecular fragment), let ze(x) ∈ Rd×l be the output of the encoder
(a MPNN in our case). We define l to be the same dimension for both encoder output embeddings
ze(x) and dictionary embeddings si, because input zq(x) is computed by finding the l2 nearest
neighbor dictionary elements for each row of ze(x):

zq(x)i = sk,where k = argmin
j
||ze(x)i − sj ||2 for i = 1, . . . , d (3)

This embedding scheme allows us to represent each molecular fragment using a length d vector,
where each entry takes value from {1, . . . , k} that corresponds to the dictionary embedding index
for that row. The combinatorial vocabulary defined by the VQ-VAE has the capacity to represent kd
distinct molecular fragments, which lifts the constraints of a limited generative span under a fixed
fragment vocabulary.

Since the discretization step does not allow for gradient flow, gradients are passed through the net-
work through approximating the gradient from the dictionary embeddings to the encoder embed-
dings. Additionally, there is a commitment loss that encourages the encoder to output embeddings
that are similar to those in the dictionary (hence commitment). The total loss of the VAE is the
following:

L = log p(x|zq(x)) +
∑
i

||sg[ze(x)i]− sij ||22 + β
∑
i

||ze(x)i − sg[sij ]||22 (4)

Where sij is the closest dictionary element sj for the ze(x)i. Additionally, β is a hyperparameter
that controls for contribution of the commitment term, and sg represents the stop-gradient operator.

4 METHODS

Molecular Optimization. The goal of molecular optimization is to generate a set of high-quality
molecules C (Constrained set) which satisfy or optimize a set of properties P . High novelty and
diversity (detailed in Section 5) are also desired for de novo generation applications. We model
the molecular optimization problem as a Markov decision process (MDP), defined by the 5-tuple
{S,A, p, r, ρ0}, where the state space S is the set of all possible molecular graphs. As an overview,
our method introduces novel designs over the action spaceA and the transition model p (Section 4.1)
by utilizing a distributional fragment vocabulary, learned by a VQ-VAE. We define the reward and
initial state distribution, r and ρ0 (Section 4.2) accordingly for specified tasks and to implement the
proposed sequential translation generation scheme. An illustration of our model is in Figure 1.

4.1 LEARNING DISTRIBUTIONAL FRAGMENT VOCABULARY

Molecular Fragments are extracted from molecules in the ChEMBL database (Gaulton et al.,
2012). For each molecule, we randomly sample fragments by extracting subgraphs that contain
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Figure 1: Overview of Fragment-based Sequential Translation (FaST). FaST is trained in a two-step
fashion. In the first step, we train a VQ-VAE that embeds molecular fragments. In the second step,
we train a search policy that uses the learned latent space as an action space. The search policy
starts an episode by sampling a molecule from the frontier set F , which consists of an initial set of
starting molecules (I), and good molecules discovered by the policy (C). The molecule is encoded
by an MPNN, which is then used to predict either an Add or Delete action. When the Add action is
selected, the model predicts and samples an atom as the attachment point and subsequently predicts
a fragment to attach to that atom. When the Delete action is selected, the model samples a directed
edge, indicating the molecular fragment to be deleted.

ten or fewer atoms that have a single bond attachment to the rest of the molecule. We then use
a VQ-VAE to encode these fragments into a meaningful latent space. The use of molecular frag-
ments simplifies the search problem, while the variable-sized fragment distribution maintains the
reachability of most molecular compounds. Because our search algorithm ultimately uses the latent
representation of the molecules as the action space, we find that using a VQ-VAE with a categorical
prior instead of the typical Gaussian prior makes RL training stable and provides good performance
gains (Tang & Agrawal, 2020; Grill et al., 2020). The training instability under a normal VAE
with Gaussian prior and continuous latents causes failture of the RL training. Our ablation study
also shows that the fragment samples from a VQ-VAE are more diverse than the samples from a
continuous VAE (Section 6).

Encoder/Decoder We use MPNN encoders for any graph inputs, which include both fragments for
the VQ-VAE, as well as molecular states during policy learning. The graph models are especially
suitable for describing actions on the molecular state, as they explicitly parametrize the represen-
tations of each atom and bond. Meanwhile, the decoder architecture is a recurrent network that
decodes a SELFIES representation of a molecule. We choose a recurrent network for the decoder
because we do not need the full complexity of a graph decoder. Due to the construction scheme,
the fragments are rooted trees, and all have a single attachment point. As our fragments are small
in molecular size (≤ 10 atoms), the string grammar is simple to learn, and we find the SELFIES
decoder works well empirically (see Appendix F for more details).

Adding and deleting fragments as actions. At each step of the MDP, the policy network first takes
the current molecular graph as input and produces a Bernoulli distribution on whether to add or
delete a fragment. Equipped with the fragment VQ-VAE, we define the Add and Delete actions at
the fragment-level:

• Fragment Addition. The addition action is characterized by (1) a probability distribu-
tion over the atoms of the molecule: padd(vi) = σ[MLP(hv)], where σ is the softmax
operator. (2) Conditioned on the graph embedding hx and the attachment point atom
vadd sampled from padd, we predict a d-channel categorical distribution pfragment =
σ[MLP([hvadd

;hx])] ∈ Rd×k, where each row of pfragment sums to 1. We can then sam-
ple the discrete categorical latent zadd ∈ {1, ..., k}d from pfragment. The fragment to add
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is then obtained by deocoding zadd through the learned frozen fragment decoder. We then
assemble the decoded fragment with the current molecular graph by attaching the fragment
to the predicted attachment point vadd. Note that the attachment point over the fragment is
indicated through the generated SELFIES string.

• Fragment Deletion. The deletion action acts over the directed edges of the molecule.
A probability distribution over deletable edges is computed with a MLP: pdel(eij) =
σ[MLP(heij )]. One edge is then sampled and deleted; since the edges are directed, the
directionality specifies the the molecule to keep and the fragment to be deleted.

With the action space A defined as above, the transition model for the MDP is simply p(s′|s, a) =
1 if applying the addition/deletion action a to the molecule s results in the molecule s′, and
p(s′|s, a) = 0 otherwise. The fragment-based action space is powerful and suitable for policy learn-
ing as it (1) is powered by the enormous distributional vocabulary learned by the fragment VQ-VAE,
thus spans a diverse set of editing operations over molecular graphs; (2) exploits the meaningful la-
tent representation of fragments since the representation of similar fragments are grouped together.
These advantages greatly simplify the molecular search problem. We terminate an episode when the
molecule fails to satisfy the desired property or when the episode exceeds ten steps.

4.2 DISCOVER NOVEL MOLECULES THROUGH SEQUENTIAL TRANSLATION

We propose sequential translation that incrementally grows the set of discovered novel molecules
and use the model-discovered molecules as starting points for further search episodes. This regime
of starting exploration from states reached in previous episodes was also explored under the setting
of RL from image inputs (Ecoffet et al., 2021). More concretely, we implement sequential translation
with a reinforcement learning policy that operates under the fragment-based action space defined in
Section 4.1, while using a moving initial state distribution ρ0, which is a distribution over molecules
in the frontier set F = I∪C. By starting new search episodes from the frontier set – the union of the
initial set and good molecules that are discovered by the RL policy, we achieve efficient search in the
chemical space by staying close to the high-quality subspace and achieve novel molecule generation
through a sequence of fragment-based editing operations to the known molecules. Our proposed
search algorithm is detailed in Algorithm 1.

Discover novel molecules and expand the frontier. Our method explores the chemical space
with a property-aware and novelty/diversity-aware reinforcement learning policy that proposes ad-
dition/deletion modifications to the molecular state at every environment step to optimize for the
reward r. We gradually expand the discovered set C by adding qualified molecules found in the
RL exploration within the MDP. A molecule x is qualified if: (1) x satisfies the desired properties
measured by property scores

CP (x) =
∏
p∈P

1{scorep(x) > thresholdp} (5)

where P is the set of desired properties and thresholdp is the score threshold for satisfying
property p. A molecule x satisfying all desired properties hasCP (x) = 1 andCP (x) = 0 otherwise.
(2) x is novel/diverse compared to molecules currently in the frontier F , measured by fingerprint
similarity (detailed in Section 5):

CND(x) = 1{max
i∈I

sim(x, i) < thresholdnov} · 1{mean
g∈G

(sim(x, g)) < thresholddiv} (6)

Where sim denotes fingerprint similarity, thresholdnov and thresholddiv are predefined sim-
ilarity thresholds for novelty and diversity, I and C are the initial set of good molecules and model
discovered molecules as defined in previous sections. A molecule that satisfies novelty/diversity
criterion has CND(x) = 1 and CND(x) = 0 otherwise.

We use a reward of +1 for a transition that results in a molecule qualified for the set C, and discour-
age the model from producing invalid molecules by adding a reward of −0.1 for a transition that
produces an invalid molecular graph 1:

r(x, a) = CP ([x← a]) · CND([x← a])− 0.1 · 1([x← a] invalid) (7)

where [x ← a] denotes the molecule resulting from editing x with the fragment addition/deletion
action a.

1validity is checked by the chemistry software RDKit.
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Algorithm 1 Molecular Optimization through Fragment-based Sequential Translation (FaST)
1: Input N the desired number of discovered new molecules
2: Input I the initial set of molecules
3: Input D the pretrained fragment decoder of VQ-VAE
4: Input CP : S → {0, 1} returns 1 if the input x satisfies desired properties . Equation (5)
5: Input CND : S → {0, 1} returns 1 if the input x satisfies novelty/diversity criterion . Equation (6)
6: Let C = ∅ be the discovered set of molecules
7: Let F = I ∪ C be the frontier where search is initialized from
8: Let t = 0 be the number of episodes
9: while |C| ≤ N do

10: Let t = t+ 1
11: Update UCB(x0, t)∀x0 ∈ F according to Equation (8)
12: Sample initial molecule x = (V,E) from pinit = σ[UCB(x0, t)]∀x0 ∈ F
13: Let step = 0
14: while CP (x) = 1 & step < T do . T = 10 in our experiments
15: Encode x with MPNN(x) to get node representation hv, ∀v ∈ V and graph representation hx

16: Sample action type a ∈ {ADD,DELETE} from paction = σ[MLP(hx)]
17: if a = ADD then
18: Sample vadd from padd(v) = σ[MLP(hv)] ∀v ∈ V
19: Sample fragment encoding zadd from pfragment = MLP([hx;hvadd ]) . Section 4.1
20: Decode fragment y = D(zadd)
21: Add fragment y to molecule: x← x+ y
22: else
23: Sample e from pdel(e) = σ[MLP(heij )] ∀e ∈ E . Section 4.1
24: Let y be the fragment designated by e, delete fragment x← x− y
25: if CP (x) = 1 & CND(x) = 1 then
26: C ← C ∪ {x}
27: F ← I ∪ C
28: Let step← step+ 1

Initialize search episodes from promising candidates. To bias the initial state distribution ρ0 to
favor molecules that can derive more novel high-quality molecules, we keep an upper-confidence-
bound (UCB) score for each initial molecule in the frontier F . We record the number of times we
initiate a search N(x, t) from a molecule x ∈ F , and the number of molecules qualified for adding
to C that is found in an episode strating from x: R(x, t). Here t =

∑
x∈ρ0 N(x) is the total number

of search episodes. The UCB score of the initial molecule m is calculated by:

UCB(x, t) =
R(x, t)

N(x, t)
+

√
3
2
log(t+ 1)

N(x, t)
(8)

The probability of a molecule in the initialization set being sampled as the starting point of a new
episode is then computed by a softmax over the UCB scores: pinit(x, t+ 1) = exp(UCB(x,t))∑

x∈I exp(UCB(x,t)) .
To summarize, FaST learns a policy that (1) choose good initial molecules to start search episodes;
(2) choose to add a fragment to or delete a subgraph from a given state (a molecule in our case);
(3) choose what to add through predicting a fragment latent embedding, or what to delete through
predicting a directed edge, and remove part of the molecular graph accordingly.

Although we present our method in this section under the most realistic multi-objective optimization
task settings (with experiments in Section 5), our method is easily extendable to other problem
settings by modifying the constraintsCP ,CND, and the reward function r accordingly. For example,
see Appendix B for the application of our method to the standard constrained penalized logP task
and Section 5 for multi-objective molecular optimization under different novelty/diversity metrics.

5 EXPERIMENTS

Datasets. We use benchmark datasets for molecular optimization, which aims to generate ligand
molecules for inhibition of two proteins: glycogen synthase kinase-3 beta (GSK3β) and c-Jun N-
terminal kinase 3 (JNK3). Following previous work (Jin et al., 2020; Xie et al., 2021; Nigam et al.,
2021a), we adopt the same strategy of using a random forest trained on these datasets as the oracle
property predictor, and incorporate the additional factors, quantitative estimate of drug-likeliness
(QED) (Bickerton et al., 2012) and synthetic accessibility (SA) (Ertl & Schuffenhauer, 2009) as our
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Figure 2: Comparison of the sample complexity of different methods. The x-axis is the number of
molecules searched through and the y-axis is the number of discovered molecules, where the target is
to obtain a set of 5,000 molecules that achieves SR = 1, Nov = 1 and Div = .7. Our method (FaST)
achieves the best sample complexity with 71k molecules visited. Fast+50k and MARS+50k are their
respective models trained with the same fixed fragment vocabulary extracted from ChEMBL.

optimization objectives. Single property optimization is often a flawed task, because the generator
can overfit to the pretrained predictor and generate unsynthesizable compounds.

Evaluation metrics. Following previous works, we evaluate our generative model on three target
metrics, success, novelty and diversity. 5,000 molecules are generated by the model, and the metric
scores are computed as follows: Success rate (SR) measures the proportion of generated molecules
that fit the desired properties. Novelty (Nov) measures how different the generated molecules are
compared to the set of actives in the dataset (range [0, 1]), and Diversity (Div) measures how dif-
ferent the generated molecules are compared to each other (range [0, 1]). PM is the product of the
three metrics above (PM = SR · Nov · Div).

Implementation details. We construct the initial set of molecules for our search algorithm from the
rationales extracted from Jin et al. (2020). These rationales are obtained through a sampling process
on the active molecules that tries to minimize the size of the rationale subgraph, while maintaining
their inhibitory properties. Rationales for multi-property tasks (GSK3β+JNK3) are extracted by
combining the rationales for single-property tasks. Initializing generation with subgraphs is com-
monly done in molecular generative models such as Shi et al. (2020) and Kong et al. (2021). We
train the RL policy using the Proximal Policy Optimization (PPO, Schulman et al. 2017) algorithm.
We find the RL training robust despite both the reward function r and the initial state distribution
ρ0 are non-stationary (i.e., changing during RL training). Hyperparameters used for producing the
results in Section 5 and molecule samples from FaST are included in Appendix D and Appendix E.

Baseline methods. Rationale-RL (Jin et al., 2020) extracts rationales of the active molecules and
then uses RL to train a completion model that add atoms to the rationale in a sequential manner to
generate molecules satisfying the desired properties. GA+D & JANUS (Nigam et al., 2020; 2021a)
are two genetic algorithms that use random mutations of SELFIES strings to generate promising
molecular candidates; JANUS leverages a two-pronged approach, accounting for mutations to-
wards both exploration and exploitation. MARS (Xie et al., 2021) uses Markov Chain Monte
Carlo (MCMC) sampling to iterative build new molecules by adding or removing fragments, and
the model is trained to fit the distribution of the active molecules. To provide a fair comparison
against baselines that do not use rationales, we additionally include a baseline MARS+Rationale
that initialize the MARS algorithm with the same starting initial rationale set used in Rationale-RL
and our method. where possible, we use the numbers from the original corresponding paper.

Performance. The evaluation metrics are shown in Table 1; FaST significantly outperforms all
baselines on all tasks including both single-property and multi-property optimization. On the most
challenging task, GSK3β+JNK3+QED+SA, FaST improves upon the previous best model by over
30% in the product of the three evaluation metrics. Our model is able to efficiently search for
molecules that stay within the constrained property space, and discover novel and diverse molecules
by sequentially translating known and discovered active molecules. The MARS+Rationale model,
which uses the same rationales as the initialization for their search algorithm, does not perform
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Table 1: FaST outperforms all baselines on both single-property and multi-property optimization.
Error bars indicates one standard deviation, obtained from averaging 5 random seeds.

Model GSK3β GSK3β+QED+SA
SR Nov Div PM SR Nov Div PM

Rationale-RL 1.00 .534 .888 .474 .699 .402 .893 .251
GA+D .846 1.00 .714 .600 .891 1.00 .628 .608
JANUS 1.00 .829 .884 .732 - - - -
MARS 1.00 .840 .718 .600 (± .04) .995 .950 .719 .680 (± .03)

MARS+Rationale .995 .804 .746 .597 (± .07) .981 .800 .807 .632 (± .07)
FaST 1.00 1.00 .905 .905 (± .000) 1.00 1.00 .861 .861 (± .001)

Model JNK3 JNK3+QED+SA
SR Nov Div PM SR Nov Div PM

Rationale-RL 1.00 .462 .862 .400 .623 .376 .865 .203
GA+D .528 .983 .726 .380 .857 .998 .504 .431
JANUS 1.00 .426 .895 .381 - - - -
MARS .988 .889 .748 .660 (± .04) .913 .948 .779 .674 (± .02)

MARS+Rationale .976 .843 .780 .642 (± .04) .634 .779 .787 .386 (± .08)
FaST 1.00 1.00 .905 .905 (± .001) 1.00 .866 .856 .741 (± .001)

Model GSK3β+JNK3 GSK3β+JNK3+QED+SA
SR Nov Div PM SR Nov Div PM

Rationale-RL 1.00 .973 .824 .800 .750 .555 .706 .294
GA+D .847 1.00 .424 .360 .857 1.00 .363 .311
JANUS 1.00 .778 .875 .681 1.00 .326 .821 .268
MARS .995 .753 .691 .520 (± .08) .923 .824 .719 .547 (± .05)

MARS+Rationale .976 .843 .780 .642 (± .04) .654 .687 .724 .321 (± .09)
FaST 1.00 1.00 .863 .863 (± .001) 1.00 1.00 .716 .716 (± .011)

well compared to the original implementation, which initializes each search with a simple “C-C”
molecule.

Sample complexity comparison given performance thresholds. Another comparison scheme is
to let a model keep generating molecules until it achieves a good candidate set under certain per-
formance thresholds. Under this evaluation protocol, all models will have the same or very similar
performance in SR, Nov, and Div. The metric of interest will then be the sample complexity of
the algorithm: how many molecules it requires to visit/generate to obtain a good candidate set.
This places every model under the same regime, allowing each model to generate molecules in a
novelty/diversity-aware setting. We compare FaST to Rationale-RL and MARS under this setting in
Figure 2, where we impose SR=1, Nov=1, Div=.7 for the candidate set. FaST on average searched
through 71k molecules in total to gather the 5k proposal set, while Rational-RL and MARS need
to search through 205k and 759k molecules to obtain their corresponding proposal sets. Being a
pretrained generative model, Rationale-RL has a steeper slope initially but then slows down to find
more good molecules. The flexibility of our learned vocabulary and the RL search strategy lead to
the superior performance of FaST, which we further verify through ablation study in Section 6.

Optimize for different novelty/diversity metrics. The Morgan fingerprints used for similarity
comparison contain certain inductive biases. Under different applications, different novelty/diversity
metrics may be of interest. To demonstrate the viability of our model under any metrics, we train
FaST using Atom Pairs (AP) fingerprints (Carhart et al., 1985) on the GSK3β+JNK3+QED+SA
task. The results, and discussion of the different fingerprint methods, are reported in Appendix C.
We find that (1) FaST can still find high-quality molecules that are novel and diverse, while the
baseline methods suffer a low novelty; (2) FaST trained with AP fingerprints still attains good
performance when evaluated under Morgan fingerprints but the reverse is not true. This result
shows that Novelty/diversity under AP fingerprints is a stricter criterion to satisfy and necessitates
novelty/diversity-awareness during optimization.

Penalized logP Maximization. To demonstrate the wide applicability of our method to any molec-
ular optimization task, we also include our results on the standard constrained penalized logP opti-
mization task in Appendix B. We show that our model significantly outperforms all baselines in this
task under different constraint levels. We also provide insight on the task itself: while this task has
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FaST
Rationale-RL

(a)

FaST
MARS

(b)

Figure 3: (a, b) plots the t-SNE embedding of fragments from generated compounds of our model
vs. Rational-RL and MARS. The visualization shows that that our model produces a much more
diverse set of fragments, which is a proxy for functional groups appearing in generated molecules.

been studied in many previous works, the task, as it is currently defined, is not entirely chemically
meaningful. Additionally, one drawback of this task is that a model can achieve high performance
by simply generating large molecules. A detailed discussion can be found in Appendix B.

6 ABLATION AND ANALYSIS

Diversity of generation. In addition to the fingerprint diversity metrics presented in Section 5, we
also examine functional group diversity. We extract all unique molecular fragments of the 5,000
molecules generated for GSK3β+JNK3+QED+SA task for each model, and produce t-SNE visual-
ization of these fragments in Figure 3a and Figure 3b. In total, we extracted 1.7k unique fragments
from our model outputs vs only 1.1k unique fragments for Rational-RL and 500 unique fragments
from MARS. The visualization shows that the fragments in the molecules generated by our model
spans a much larger chemical space. This confirms the advantages of using a learned vocabulary,
compared to using a fixed set of fragments, as we are able to utilize a much more diverse set of
chemical subgraphs. Sampled trajectories (Figure 6) and molecules (Figure 7) are included in Ap-
pendix E.

Benefit of distributional vocabulary. To investigate the benefit of using a distributional vocabulary,
instead of using the pretrained VQ-VAE, we also train our model using a fixed vocabulary of frag-
ments, which consists of roughly 50k unique fragments (the same set used to pretrain the VQ-VAE).
Figure 2 compares the performance of the two models. On average, the model with fixed fragments
took 122k steps, while with VQ-VAE it only took 71k steps to find a set of 5,000 good molecules
(72% improvement). We further analyze the benefit of using discrete latents with a VQ-VAE rather
than continuous latents with a Gaussian prior VAE in Appendix A.

Importance of RL search. We also demonstrate the importance of our RL search policy compared
to previous sampling methods. To do so, we run MARS with both the 50k fixed fragments and our
VQ-VAE. Figure 2 shows the performance of using the 50k fixed fragment vocabulary compared to
the original MARS model which uses a small 1k vocabulary. When the vocabulary is large, MARS
exhibits very poor sample complexity. Additionally, we also implemented our VQ-VAE with the
sampling strategy proposed in MARS, but this model was altogether unable to successfully generate
good candidate molecules. Therefore, we see that when the vocabulary is more complex, we need a
better search strategy, highlighting the importance of our RL algorithm.

7 CONCLUSION

We propose a new framework for molecular optimization, which leverages a learned vocabulary of
molecular fragments to search the chemical space efficiently. We demonstrate that Fragment-based
Sequential Translation (FaST), which adaptively grows a set of promising molecular candidates,
can generate high-quality, novel, and diverse molecules on single-property and multi-property op-
timization tasks. Ablation study shows that all components of our proposed method contribute
to its superior performance. The learning of a flexible vocabulary is a complementary module to
other research in fragment-based drug design. Incorporating FaST to more practical drug discovery
pipelines while taking synthesis paths in mind is an exciting avenue for future work.
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Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis
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Figure 4: (a) t-SNE of fragments sampled from a trained VAE and VQ-VAE. The fragments sampled
from the VAE are tightly clustered, showing much less diversity compared to the fragments sampled
from the VQ-VAE. (b,c) Random samples from the VAE (b) and the VQ-VAE (c). “A” denotes the
attachment point for the fragment. We see that the samples from the VAE are relatively simple.
Meanwhile, the samples from the VQ-VAE are more diverse.

A VOCABULARY LEARNING THROUGH VQ-VAE

To evaluate the benefits of VQ-VAE over a typical VAE trained with Gaussian priors, we train both
models, and look at the distribution of fragments. Figure 4a compares the t-SNE distributions of the
two models, where we sample 2,000 fragments from each model. The VAE model has tight clusters,
while the VQ-VAE model exhibits a much more diverse set of fragments. We visualize random
samples from VAE and VQ-VAE Figure 4, where we see that the samples from VAE are relatively
simple and generic fragments, while samples from the VQ-VAE demonstrate diverse patterns. This
is because the more generic fragments appear more frequently in real molecules, and a Gaussian
prior over the fragment latent space would favor these fragments.

B CONSTRAINED PENALIZED LOGP TASK

To demonstrate the general applicability of our model for any molecular optimization task, we also
run our model on another constrained optimization task, here optimizing for penalized octanol-water
partition coefficients (logP) scores of ZINC (Irwin et al., 2012) molecules. The penalized logP score
is the logP score penalized by synthetic accessibility and ring size. We use the exact computation
in You et al. (2018), where the components of the penalized logP score are normalized across the
entire 250k ZINC training set. The generated molecules are constrained to have similar Morgan
fingerprints (Rogers & Hahn, 2010) as the original molecules.

Following the same setup as previous work (Jin et al., 2019b; You et al., 2018; Shi et al., 2020;
Nigam et al., 2020; Kong et al., 2021), we try to optimize the 800 test molecules from ZINC with the
lowest penalized logP scores (the initial set I). Specifically, the task is to translate these molecules
into new molecules with the Tanimoto similarity of the fingerprints constrained within δ ∈ {.4, .6}.
This task aims for optimizing a certain quantity (instead of satisfying property constraints) and is a
translation task (need to stay close to original molecules rather than finding novel ones). To run FaST
on this task, we apply the following changes to the reward function, the qualification criterion, and
the episode termination criterion, of FaST. We denote score(x) to be the penalized logP scoring
function, and sim(·, ·) to be the Tanimoto similarity between two molecules:

• reward r = score(xj)− score(xi) for any transition from molecule xi → xj

• C, the discovered set contains all explored molecules that satisfy Equation (5), where the
threshold is given by the input parameter δ

• We terminate an episode when the number of steps exceeds 10.

For each molecule we add to G, we keep track of its original parent (the molecule from the 800 test
molecules). After training, for each of the 800 test molecules, we take the set of translated molecules
in G, and select the one with the highest property score.
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Table 2: Results on the constrained penalized logP task. FaST significantly outperform all baselines.

Method δ = 0.4 δ = 0.6
Improvement Success Improvement Success

JT-VAE (Jin et al., 2018) 0.84 ± 1.45 83.6 % 0.21 ± 0.71 46.4 %
GCPN (You et al., 2018) 2.49 ± 1.30 100.0 % 0.79 ± 0.63 100.0 %

DEFactor (Assouel et al., 2018) 3.41 ± 1.67 85.9 % 1.55 ± 1.19 72.6 %
MolDQN (Zhou et al., 2019) 3.37 ± 1.62 100 % 1.86 ± 1.21 100 %
GraphAF (Shi et al., 2020) 3.74 ± 1.25 100 % 1.95 ± 0.99 100 %

GP-VAE (Kong et al., 2021) 4.19 ± 1.30 98.9 % 2.25 ± 1.12 90.3 %
VJTNN (Jin et al., 2019b) 3.55 ± 1.67 - 2.33 ± 1.17 -

GA+D (Nigam et al., 2020) 5.93 ± 1.14 100 % 3.44 ± 1.09 99.8 %
FaST (Ours) 18.09 ± 8.72 100 % 8.98 ± 6.31 96.9 %

Figure 5: Sample translation of our model for the constrained penalized logP task (δ = 0.6).
The model generates a molecule with repeating aromatic rings; though not realistic, this molecule
achieves a high score, while having close Tanimoto similarity using Morgan fingerprints.

Results are shown in Table 2; our method greatly outperforms the other baselines, but we point out a
few flaws intrinsic to the task. Because the similarity is computed through Morgan fingerprint, which
are hashes of substructures, repeatedly adding aromatic rings can often not change the fingerprint by
a lot. Nevertheless, adding aromatic rings will linearly increase penalized logP score, which allows
trivial solutions to produce high scores for this task (see Figure 5). This phenomenon is noted by
Nigam et al. (2020), but they add a regularizer to constrain the generated compounds to look similar
to the reference molecules. Due to the mentioned issues, we believe this task can be reformulated.
For instance, one could use a different fingerprint method so that the fingerprint similarity is not so
easily exploited (see AP (Carhart et al., 1985), MACCS (Durant et al., 2002), or ROCS (Hawkins
et al., 2010)), or size constraints should be incorporated. Nevertheless, we provide our results for
comparison to other molecular generation methods.

In general, the task of optimizing (increasing) the penalized logP scores is not entirely meaningful.
According to Lipinski’s rule of five (Lipinski et al., 1997), which are widely established rules to
evaluate the druglikeness of molecules, the logP score should be lower than 5. So an unbounded
optimization of logP has little practical usability. Perhaps a better task would be to optimize for all
5 rules in Linpinski’s rule of five which includes constraints involving the number of hydrogen bond
donors/acceptors and molecular mass.

C DIFFERENT NOVELTY/DIVERSITY METRICS

FaST is capable of optimizing for different novelty/diversity metrics. In this section, we compute
the novelty/diversity metrics using atom-pair (AP) fingerprints (Carhart et al., 1985). While Morgan
fingerprints have successfully been applied to many molecular tasks such as drug screening, it has
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some failure modes (Capecchi et al., 2020). Namely, Morgan fingerprints is often not informative
about the size or the shape of the molecules. These properties are better captured in AP finger-
prints, as AP fingerprints account for all atom pairs, including their pairwise distances. We run the
same experiment on the GSK3β+JNK3+QED+SA task described in Section 5, but change the fin-
gerprint from Morgan to AP for the novelty/diversity metrics. The results are shown in Table 3 with
comparison to baselines. We observe that our method outperform baselines by a greater margin,
especially in the novelty metric. This is not surprising because our model can explicitly optimize for
any similarity metric, while the baseline methods are not novelty/diversity-aware during training.
Interestingly, we find that optimizing for AP fingerprints also yields molecules that score high under
Morgan fingerprints for this task (but the converse is not true).

Table 3: Results on the GSK3β+JNK3+QED+SA task using AP fingerprints instead of Morgan
fingerprints for novelty/diversity computation.

Method Success (SR) Novelty (Nov) Diversity (Div)
Morgan AP Morgan AP Morgan AP

Rationale-RL .750 .750 .555 .023 .706 .630
MARS .923 .733 .824 .077 .719 .644

FaST (Morgan) 1.00 1.00 1.00 .555 .716 .674
FaST (AP) 1.00 1.00 .987 .867 .675 .719

D IMPLEMENTATION DETAILS

Table 4: Hyperparameters for the VQ-VAE.

VQ-VAE Param Value
hidden size 200

MPNN depth 4
MPNN output size (d) 10

# Dictionary elements (k) 10
Dictionary latent size (l) 10

batch size 32
dictionary loss coef 1.0

commitment loss coef 1.0
learning rate 1e-4

# epochs 10

Table 5: Hyperparameters for training the RL Agent.

Param Name Value

Agent

learning rate 2e-4
γ 0.999

λGAE 0.95
batch size 64

PPO Epoch 3
param clip 0.2

value loss coef 0.5
entropy loss coef 0.01

ε 1e-5
max grad norm 0.5

Actor hidden size 1024
hidden depth 1

Critic hidden size 256
hidden depth 1
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Figure 6: Samples of FaST on the GSK3β+JNK3+QED+SA task. Red indicates the atoms and
bonds that are eligible for addition/deletion, while green indicates the selected atom or bond.

E SAMPLE TRAJECTORIES AND OPTIMIZED MOLECULES FROM FAST

We provide more example molecular optimization trajectories of our model on the
GSK3β+JNK3+QED+SA task in Figure 6.

Additional generated moles for the GSK3β+JNK3+QED+SA task are shown in Figure 7

F DECODER ARCHITECTURE: SELFIES VS SMILES

For our VAE, we decode into string representations of fragments for several reasons. (1) Graph
decoders are complex and requires a lot of hand engineered rules to work. In fact, many graph
decoders require their own vocabularies, which makes the decoder architecture even more complex.
(2) Our fragments are small, less than 10 atoms, so a simpler representation of the fragments in
string form is appropriate. Additionally, we choose to use SELFIES strings over SMILES strings,
because SELFIES strings have a more robust grammar compared to SMILES strings, and has been
shown through many past experiments (Krenn et al., 2020). Empirically, we see in Figure 8 that
SELFIES strings gives better reconstruction accuracy compared to using SMILES strings for the
decoder in the VAE architecture.
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Figure 7: Randomly sampled molecules generated by FaST on the GSK3β+JNK3+QED+SA task.
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Figure 8: Comparison of reconstruction accuracy when using SMILES string vs SELFIES string.
The decoder trained with SELFIES grammar has better reconstruction accuracy (96% vs 86%).
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